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Abstract

Matrix-parametrized models (MPMs) are widely
used in machine learning (ML) applications. In
large-scale ML problems, the parameter matrix
of a MPM can grow at an unexpected rate, result-
ing in high communication and parameter syn-
chronization costs. To address this issue, we of-
fer two contributions: first, we develop a com-
putation model for a large family of MPMs,
which share the following property: the param-
eter update computed on each data sample is
a rank-1 matrix, i.e. the outer product of two
“sufficient factors” (SFs). Second, we imple-
ment a decentralized, peer-to-peer system, Suf-
ficient Factor Broadcasting (SFB), which broad-
casts the SFs among worker machines, and re-
constructs the update matrices locally at each
worker. SFB takes advantage of small rank-1
matrix updates and efficient partial broadcasting
strategies to dramatically improve communica-
tion efficiency. We propose a graph optimiza-
tion based partial broadcasting scheme, which
minimizes the delay of information dissemina-
tion under the constraint that each machine only
communicates with a subset rather than all of
machines. Furthermore, we provide theoreti-
cal analysis to show that SFB guarantees con-
vergence of algorithms (under full broadcasting)
without requiring a centralized synchronization
mechanism. Experiments corroborate SFB’s ef-
ficiency on four MPMs.

1 INTRODUCTION
Machine Learning (ML) provides a principled and effec-
tive mechanism for extracting latent structure and patterns
from raw data and making automatic predictions and deci-
sions. The growing prevalence of big data, such as billions
of text pages in the web, hundreds of hours of video up-

loaded to video-sharing sites every minute1, accompanied
by an increasing need of big model, such as neural net-
works (Dean et al., 2012) and topic models (Yuan et al.,
2015) with billions of parameters, has inspired the design
and development of distributed machine learning systems
(Dean and Ghemawat, 2008; Gonzalez et al., 2012; Zaharia
et al., 2012; Li et al., 2014; Xing et al., 2015) running on
research clusters, data center and cloud platforms with 10s-
1000s machines.

For many machine learning (ML) models, such as mul-
ticlass logistic regression (MLR), neural networks (NN)
(Chilimbi et al., 2014), distance metric learning (DML)
(Xing et al., 2002) and sparse coding (SC) (Olshausen and
Field, 1997), their parameters can be represented by a ma-
trix W. For example, in MLR, rows of W represent the
classification coefficient vectors corresponding to different
classes; whereas in SC rows of W correspond to the basis
vectors used for reconstructing the observed data. A learn-
ing algorithm, such as stochastic gradient descent (SGD),
would iteratively compute an update ∆W from data, to be
aggregated with the current version of W. We call such
models matrix-parameterized models (MPMs).

Learning MPMs in large scale ML problems is challeng-
ing: ML application scales have risen dramatically, a good
example being the ImageNet (Deng et al., 2009) com-
pendium with millions of images grouped into tens of thou-
sands of classes. To ensure fast running times when scal-
ing up MPMs to such large problems, it is desirable to
turn to distributed computation; however, a unique chal-
lenge to MPMs is that the parameter matrix grows rapidly
with problem size, causing straightforward parallelization
strategies to perform less ideally. Consider a data-parallel
algorithm, in which every worker uses a subset of the data
to update the parameters — a common paradigm is to
synchronize the full parameter matrix and update matri-
ces amongst all workers (Dean and Ghemawat, 2008; Dean
et al., 2012; Li et al., 2015; Chilimbi et al., 2014; Sind-
hwani and Ghoting, 2012; Gopal and Yang, 2013). How-
ever, this synchronization can quickly become a bottle-

1https://www.youtube.com/yt/press/statistics.html



neck: take MLR for example, in which the parameter ma-
trix W is of size J ×D, where J is the number of classes
and D is the feature dimensionality. In one application
of MLR to Wikipedia (Partalas et al., 2015), J = 325k
and D > 10, 000, thus W contains several billion entries
(tens of GBs of memory). Because typical computer clus-
ter networks can only transfer a few GBs per second at the
most, inter-machine synchronization of W can dominate
and bottleneck the actual algorithmic computation. In re-
cent years, many distributed frameworks have been devel-
oped for large scale machine learning, including Bulk Syn-
chronous Parallel (BSP) systems such as Hadoop (Dean
and Ghemawat, 2008) and Spark (Zaharia et al., 2012),
graph computation frameworks such as GraphLab (Gon-
zalez et al., 2012), and bounded-asynchronous key-value
stores such as DistBelief(Dean et al., 2012), Petuum-PS
(Ho et al., 2013), Project Adam (Chilimbi et al., 2014)
and (Li et al., 2014). When using these systems to learn
MPMs, it is common to transmit the full parameter ma-
trices W and/or matrix updates ∆W between machines,
usually in a server-client style (Dean and Ghemawat, 2008;
Dean et al., 2012; Sindhwani and Ghoting, 2012; Gopal
and Yang, 2013; Chilimbi et al., 2014; Li et al., 2015).
As the matrices become larger due to increasing problem
sizes, so do communication costs and synchronization de-
lays — hence, reducing such costs is a key priority when
using these frameworks.

We begin by investigating the structure of matrix param-
eterized models, in order to design efficient communica-
tion strategies. We focus on models with a common prop-
erty: when the parameter matrix W of these models is opti-
mized with stochastic gradient descent (SGD) (Dean et al.,
2012; Ho et al., 2013; Chilimbi et al., 2014) or stochastic
dual coordinate ascent (SDCA) (Hsieh et al., 2008; Shalev-
Shwartz and Zhang, 2013), the update4W computed over
one (or a few) data sample(s) is of low-rank, e.g. it can
be written as the outer product of two vectors u and v:
4W = uv>. The vectors u and v are sufficient fac-
tors (SF, meaning that they are sufficient to reconstruct
the update matrix 4W). A rich set of models (Olshausen
and Field, 1997; Lee and Seung, 1999; Xing et al., 2002;
Chilimbi et al., 2014) fall into this family: for instance,
when solving an MLR problem using SGD, the stochastic
gradient is 4W = uv>, where u is the prediction prob-
ability vector and v is the feature vector. Similarly, when
solving an `2 regularized MLR problem using SDCA, the
update matrix 4W also admits such as a structure, where
u is the update vector of a dual variable and v is the feature
vector. Other models include neural networks (Chilimbi
et al., 2014), distance metric learning (Xing et al., 2002),
sparse coding (Olshausen and Field, 1997), non-negative
matrix factorization (Lee and Seung, 1999) and principal
component analysis, to name a few.

Leveraging this property, we propose a system called Suf-

ficient Factor Broadcasting (SFB), whose basic idea is to
send sufficient factors (SFs) between workers, which then
reconstruct matrix updates4W locally, thus greatly reduc-
ing inter-machine parameter communication. This stands
in contrast to the well-established parameter server id-
iom (Chilimbi et al., 2014; Li et al., 2014), a centralized
design where workers maintain a “local” image of the pa-
rameters W, which are synchronized with a central param-
eter image W (stored on the “parameter servers”). In exist-
ing parameter server designs, the (small, low-rank) updates
4W are accumulated into the central parameter server’s
W, and the low-rank structure of each update 4W is lost
in the process. Thus, the parameter server can only trans-
mit the (large, full-rank) matrix W to the workers, in-
ducing extra communication that could be avoided. We
address this issue by designing SFB as a decentralized,
peer-to-peer system, where each worker keeps its own im-
age of the parameters W (either in memory or on local
disk), and sends sufficient factors to only a subset of other
workers, via “partial broadcasting” strategies that avoid the
usual O(P 2) peer-to-peer broadcast communication over
P machines. SFB also exploits ML algorithm tolerance
to bounded-asynchronous execution (Ho et al., 2013), as
supported by both our experiments and a theoretical proof.
SFB is highly communication-efficient; transmission costs
are linear in the dimensions of the parameter matrix, and
the resulting faster communication greatly reduces waiting
time in synchronous systems (e.g. Hadoop and Spark), or
improves parameter freshness in (bounded) asynchronous
systems (e.g. GraphLab, Petuum-PS and (Li et al., 2014)).
SFs have been used to speed up some (but not all) network
communication in deep learning (Chilimbi et al., 2014); our
work differs primarily in that we always transmit SFs, never
full matrices.

The major contributions of this paper are as follows:

• We identify the sufficient factor property of a large
family of matrix-parametrized models when solved
with two popular algorithms: stochastic gradient de-
scent and stochastic dual coordinate ascent.

• In light of the sufficient factor property, we propose
a sufficient factor broadcasting (SFB) model of com-
putation. Through a decentralized, peer-to-peer archi-
tecture with bounded-asynchronous partial broadcast-
ing, SFB greatly reduces communication complexity
while maintaining excellent empirical performance.

• To further reduce communication cost, we investigate
a partial broadcasting scheme and propose a graph-
optimization based approach to determine the topol-
ogy of the communication network.

• We analyze the communication and computation costs
of SFB and provide a convergence guarantee of SFB
based minibatch SGD algorithm, under bulk syn-
chronous and bounded asynchronous executions.



• We empirically evaluate SFB on four popular mod-
els, and confirm the efficiency and low communica-
tion complexity of SFB.

The rest of the paper is organized as follows. In Sec-
tion 2 and 3, we introduce the sufficient factor property of
matrix-parametrized models and propose the sufficient fac-
tor broadcasting computation model, respectively. Section
4 analyzes the costs and convergence behavior of SFB. Sec-
tion 5 gives experimental results. Section 6 reviews related
works and Section 7 concludes the paper.

2 SUFFICIENT FACTOR PROPERTY OF
MATRIX-PARAMETRIZED MODELS

The core goal of Sufficient Factor Broadcasting (SFB)
is to reduce network communication costs for matrix-
parametrized models; specifically, those that follow an op-
timization formulation

(P) min
W

1
N

N∑
i=1

fi(Wai) + h(W) (1)

where the model is parametrized by a matrix W ∈ RJ×D.
The loss function fi(·) is typically defined over a set of
training samples {(ai,bi)}Ni=1, with the dependence on bi
being suppressed. We allow fi(·) to be either convex or
nonconvex, smooth or nonsmooth (with subgradient every-
where); examples include `2 loss and multiclass logistic
loss, amongst others. The regularizer h(W) is assumed
to admit an efficient proximal operator proxh(·). For ex-
ample, h(·) could be an indicator function of convex con-
straints, `1-, `2-, trace-norm, to name a few. The vectors
ai and bi can represent observed features, supervised in-
formation (e.g., class labels in classification, response val-
ues in regression), or even unobserved auxiliary informa-
tion (such as sparse codes in sparse coding (Olshausen and
Field, 1997)) associated with data sample i. The key prop-
erty we exploit below ranges from the matrix-vector multi-
plication Wai. This optimization problem (P) can be used
to represent a rich set of ML models (Olshausen and Field,
1997; Lee and Seung, 1999; Xing et al., 2002; Chilimbi
et al., 2014), such as the following:

Distance Metric Learning (DML) (Xing et al., 2002) im-
proves the performance of other ML algorithms, by learn-
ing a new distance function that correctly represents similar
and dissimilar pairs of data samples; this distance function
is a matrix W that can have billions of parameters or more,
depending on the data sample dimensionality. The vector
ai is the difference of the feature vectors in the ith data pair
and fi(·) can be either a quadratic function or a hinge loss
function, depending on the similarity/dissimilarity label bi
of the data pair. In both cases, h(·) can be an `1-, `2-, trace-
norm regularizer or simply h(·) = 0 (no regularization).

Sparse Coding (SC) (Olshausen and Field, 1997) learns a
dictionary of basis from data, so that the data can be re-

represented sparsely (and thus efficiently) in terms of the
dictionary. In SC, W is the dictionary matrix, ai are the
sparse codes, bi is the input feature vector and fi(·) is a
quadratic function (Olshausen and Field, 1997). To pre-
vent the entries in W from becoming too large, each col-
umn Wk must satisfy ‖Wk‖2 ≤ 1. In this case, h(W)
is an indicator function which equals 0 if W satisfies the
constraints and equals∞ otherwise.

2.1 OPTIMIZATION VIA PROXIMAL SGD, SDCA

To solve the optimization problem (P), it is common to em-
ploy either (proximal) stochastic gradient descent (SGD)
(Dean et al., 2012; Ho et al., 2013; Chilimbi et al., 2014; Li
et al., 2015) or stochastic dual coordinate ascent (SDCA)
(Hsieh et al., 2008; Shalev-Shwartz and Zhang, 2013), both
of which are popular and well-established parallel opti-
mization techniques.

Proximal SGD: In proximal SGD, a stochastic estimate of
the gradient, 4W, is first computed over one data sam-
ple (or a mini-batch of samples), in order to update W via
W ← W − η 4W (where η is the learning rate). Fol-
lowing this, the proximal operator proxηh(·) is applied to
W. Notably, the stochastic gradient 4W in (P) can be
written as the outer product of two vectors 4W = uv>,
where u = ∂f(Wai,bi)

∂(Wai)
, v = ai, according to the chain

rule. Later, we will show that this low rank structure of
4W can greatly reduce inter-worker communication.

Stochastic DCA: SDCA applies to problems (P) where
fi(·) is convex and h(·) is strongly convex (e.g. when h(·)
contains the squared `2 norm); it solves the dual problem of
(P), via stochastic coordinate ascent on the dual variables.
Introducing the dual matrix U = [u1, . . . ,uN ] ∈ RJ×N
and the data matrix A = [a1, . . . ,aN ] ∈ RD×N , the dual
problem of (P) can be written as

(D) min
U

1
N

N∑
i=1

f∗i (−ui) + h∗( 1
NUA>) (2)

where f∗i (·) and h∗(·) are the Fenchel conjugate functions
of fi(·) and h(·), respectively. The primal-dual matrices
W and U are connected by2 W = ∇h∗(Z), where the
auxiliary matrix Z := 1

NUA>. Algorithmically, we need
to update the dual matrix U, the primal matrix W, and the
auxiliary matrix Z: every iteration, we pick a random data
sample i, and compute the stochastic update 4ui by min-
imizing (D) while holding {uj}j 6=i fixed. The dual vari-
able is updated via ui ← ui − 4ui, the auxiliary vari-
able via Z ← Z − 4uia

>
i , and the primal variable via

W ← ∇h∗(Z). Similar to SGD, the update of Z is also
the outer product of two vectors: 4ui and ai, which can
be exploited to reduce communication cost.

2The strong convexity of h is equivalent to the smoothness of
the conjugate function h∗.



Sufficient Factor Property in SGD and SDCA: In both
SGD and SDCA, the parameter matrix update can be com-
puted as the outer product of two vectors — we call these
sufficient factors (SFs). This property can be leveraged to
improve the communication efficiency of distributed ML
systems: instead of communicating parameter/update ma-
trices among machines, we can communicate the SFs and
reconstruct the update matrices locally at each machine.
Because the SFs are much smaller in size, synchronization
costs can be dramatically reduced. See Section 4 below for
a detailed analysis.

Low-rank Extensions: More generally, the update matrix
4W may not be exactly rank-1, but still of very low rank.
For example, when each machine uses a mini-batch of size
K,4W is of rank at mostK; in Restricted Boltzmann Ma-
chines, the update of the weight matrix is computed from
four vectors u1,v1,u2,v2 as u1v

>
1 − u2v

>
2 , i.e. rank-2;

for the BFGS algorithm (Bertsekas, 1999), the update of
the inverse Hessian is computed from two vectors u,v as
αuu> − β(uv> + vu>), i.e. rank-3. Even when the up-
date matrix4W is not genuinely low-rank, to reduce com-
munication cost, it might still make sense to send only a
certain low-rank approximation. We intend to investigate
these possibilities in future work.

3 SUFFICIENT FACTOR
BROADCASTING

Leveraging the SF property of the update matrix in
problems (P) and (D), we propose a Sufficient Factor
Broadcasting (SFB) system that supports efficient (low-
communication) distributed learning of the parameter ma-
trix W. We assume a setting with P workers, each of
which holds a data shard and a copy of the parameter ma-
trix3 W. Stochastic updates to W are generated via proxi-
mal SGD or SDCA, and communicated between machines
to ensure parameter consistency. In proximal SGD, on ev-
ery iteration, each worker p computes SFs (up,vp), based
on one data sample xi = (ai,bi) in the worker’s data
shard. The worker then broadcasts (up,vp) to all other
workers; once all P workers have performed their broad-
cast (and have thus received all SFs), they re-construct the
P update matrices (one per data sample) from the P SFs,
and apply them to update their local copy of W. Finally,
each worker applies the proximal operator proxh(·). When
using SDCA, the above procedure is instead used to broad-
cast SFs for the auxiliary matrix Z, which is then used
to obtain the primal matrix W = ∇h∗(Z). Figure 1 il-
lustrates SFB operation: 4 workers compute their respec-
tive SFs (u1,v1), . . . , (u4,v4), which are then broad-

3For simplicity, we assume each worker has enough memory
to hold a full copy of the parameter matrix W. If W is too large,
one can either partition it across multiple machines (Dean et al.,
2012; Li et al., 2014), or use local disk storage (i.e. out of core
operation). We plan to investigate these strategies as future work.
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Figure 1: Sufficient Factor Broadcasting (SFB).

cast to the other 3 workers. Each worker p uses all 4
SFs (u1,v1), . . . , (u4,v4) to exactly reconstruct the up-
date matrices 4Wp = upv

>
p , and update their local copy

of the parameter matrix: Wp ←Wp−
∑4
q=1 uqv

>
q . While

the above description reflects synchronous execution, it is
easy to extend to (bounded) asynchronous execution.

SFB vs Client-Server Architectures: The SFB peer-to-
peer topology can be contrasted with a “full-matrix” client-
server architecture for parameter synchronization, e.g. as
used by Project Adam (Chilimbi et al., 2014) to learn
neural networks: there, a centralized server maintains the
global parameter matrix, and each client keeps a local copy.
Clients compute sufficient factors and send them to the
server, which uses the SFs to update the global parame-
ter matrix; the server then sends the full, updated parame-
ter matrix back to clients. Although client-to-server costs
are reduced (by sending SFs), server-to-client costs are still
expensive because full parameter matrices need to be sent.
In contrast, the peer-to-peer SFB topology never sends full
matrices; only SFs are sent over the network. We also note
that under SFB, the update matrices are reconstructed at
each of the P machines, rather than once at a central server
(for full-matrix architectures). Our experiments show that
the time taken for update reconstruction is empirically neg-
ligible compared to communication and SF computation.

Partial Broadcasting A naive peer-to-peer topology in-
curs a communication cost of O(P 2) (where P is the num-
ber of worker machines), which inhibits scalability to data
center scale clusters where P can reach several thousand
(Dean et al., 2012; Li et al., 2014). Hence, SFB adopts
an (optional) partial broadcasting scheme where each ma-
chine connects with and sends messages to a subset of Q
machines (rather than all other machines), thus reducing
communication costs from O(P 2) to O(PQ). Figure 2
presents an example. In partial broadcasting, an update U tp
generated by machine p at iteration t is sent only to ma-
chines that are directly connected with p (and the update
U tp takes effect at iteration t + 1). The effect of U tp is in-
directly and eventually transmitted to every other machine
q, via the updates generated by machines sitting between
p and q in the topology. This happens at iteration t + τ ,
for some delay τ > 1 that depends on Q and the loca-
tion of p and q in the network topology. Consequently, the



Figure 2: An Example of Partial Broadcasting.

P machines will not have the exact same parameter im-
age W, even under bulk synchronous parallel execution —
yet surprisingly, this does not empirically (Section 5) com-
promise algorithm accuracy as long as Q is not too small.
We hypothesize that this property is related to the tolerance
of ML algorithms to bounded-asynchronous execution and
random error, and we defer a formal proof to future work.

Determining the “best” topology of partial broadcasting,
i.e., which subset of machines each machine should send
message to, is a challenging issue. Previous studies (Li
et al., 2015) are mostly based on heuristics. While empir-
ically effective, these heuristics lack a mathematically for-
malizable objective. To address this issue, we propose an
optimization-oriented solution, with the goal to achieve fast
dissemination of information: the effect of updates gener-
ated at each machine should be “seen” by all other ma-
chines as quickly as possible. Formally, we aim to reduce
the delay τ . Consider a directed network with P nodes,
where epq = 1 denotes that node p sends message to node
q and epq = 0 otherwise. Let cpq denote the shortest di-
rected path from node p to q. It is easy to see that τ = |cpq|,
where |cpq| is the length of cpq . Letting E = {epq}Pp=1,q 6=p
we can find a network topology that minimizes τ by solving
this optimization problem:

minE
∑P
p=1

∑P
q 6=p |cpq|

s.t.
∑P
q 6=p epq = Q,∀p

(3)

which can be efficiently solved by using a Branch and
Bound (Land and Doig, 1960) searching of the graph struc-
ture, in conjunction with an algorithm (Williams, 2014)
finding all-pairs shortest path in directed graphs.

Mini-batch Proximal SGD/SDCA: SFB can also be used
in mini-batch proximal SGD/SDCA; every iteration, each
worker samples a mini-batch of K data points, and com-
putes K pairs of sufficient factors {(ui,vi)}Ki=1. These
K pairs are broadcast to all other workers, which recon-
struct the originating worker’s update matrix as 4W =
1
K

∑K
i=1 uiv

T
i .

Consistency Models SFB supports two consistency
models: Bulk Synchronous Parallel (BSP-SFB) and Stale
Synchronous Parallel (SSP-SFB), and we provide theoreti-
cal convergence guarantees in the next section.

• BSP-SFB: Under BSP (Dean and Ghemawat, 2008; Za-

sfb app mlr ( int J, int D, int staleness )
//SF computation function
function compute sv ( sfb app mlr ):

while ( ! converged ):
X = sample minibatch ()
foreach xi in X:

//sufficient factor ui
pred = predict ( mlr.para mat, xi )
mlr.sv list[i].write u ( pred )
//sufficient factor vi
mlr.sv list[i].write v ( xi )

commit()

Figure 3: Multiclass LR Pseudocode.

haria et al., 2012), an end-of-iteration global barrier en-
sures all workers have completed their work, and syn-
chronized their parameter copies, before proceeding to
the next iteration. BSP is a strong consistency model,
that guarantees the same computational outcome (and
thus algorithm convergence) each time.

• SSP-SFB: BSP can be sensitive to stragglers (slow
workers) (Ho et al., 2013), limiting the distributed sys-
tem to the speed of the slowest worker. Stale Syn-
chronous Parallel (SSP) (Bertsekas and Tsitsiklis, 1989;
Ho et al., 2013) communication model addresses this is-
sue, by allowing workers to advance at different rates,
provided that the difference in iteration number between
the slowest and fastest workers is no more than a user-
provided staleness s. SSP alleviates the straggler issue
while guaranteeing algorithm convergence (Ho et al.,
2013). Under SSP-SFB, each worker p tracks the num-
ber of SF pairs computed by itself, tp, versus the number
τ qp (tp) of SF pairs received from each worker q. If there
exists a worker q such that tp − τ qp (tp) > s (i.e. some
worker q is likely more than s iterations behind worker
p), then worker p pauses until q is no longer s iterations
or more behind.

Programming Interface The SFB programming inter-
face is simple; users need to provide a SF computa-
tion function to specify how to compute the sufficient
factors. To send out SF pairs (u,v), the user adds
them to a buffer object sv list, via: write u(vec u),
write v(vec v), which set i-th SF u or v to vec u or vec v.
All SF pairs are sent out at the end of an iteration, which is
signaled by commit(). Finally, in order to choose between
BSP and SSP consistency, users simply set staleness to an
appropriate value (0 for BSP, > 0 for SSP). SFB automati-
cally updates workers’ local parameter matrix using all SF
pairs — including both locally computed SF pairs added
to sv list, as well as SF pairs received from other work-
ers. Figure 3 shows SFB pseudocode for multiclass logis-



tic regression. For proximal SGD/SDCA algorithms, SFB
requires users to write an additional function, prox(mat),
which applies the proximal operator proxh(·) (or the SDCA
dual operator h∗(·)) to the parameter matrix mat.

4 COST ANALYSIS AND THEORY
We now examine the costs and convergence behav-
ior of SFB under synchronous and bounded-async (e.g.
SSP (Bertsekas and Tsitsiklis, 1989; Ho et al., 2013)) con-
sistency, and show that SFB can be preferable to full-matrix
synchronization/communication schemes.

4.1 COST ANALYSIS

Figure 4 compares the communications, space and time (to
apply updates to W) costs of peer-to-peer SFB, against full
matrix synchronization (FMS) under a client-server archi-
tecture (Chilimbi et al., 2014). For SFB with a full broad-
casting scheme, in each minibatch, every worker broad-
casts K SF pairs (u,v) to P − 1 other workers, i.e.
O(P 2K(J + D)) values are sent per iteration — linear in
matrix dimensions J,D, and quadratic in P . For SFB with
a partial broadcasting scheme, every worker communicates
SF pairs with Q < P peers, hence the communication cost
is reduced to O(PQK(J + D)). Because SF pairs can-
not be aggregated before transmission, the cost has a de-
pendency on K. In contrast, the communication cost in
FMS is O(PJD), linear in P , quadratic in matrix dimen-
sions, and independent of K. For both SFB and FMS, the
cost of storing W is O(JD) on every machine. As for the
time taken to update W per iteration, FMS costs O(PJD)
at the server (to aggregate P client update matrices) and
O(PKJD) at the P clients (to aggregate K updates into
one update matrix). By comparison, SFB bears a cost of
O(P 2KJD) under full broadcasting andO(PQKJD) un-
der partial broadcasting due to the additional overhead of
reconstructing each update matrix P or Q times.

Compared with FMS, SFB achieves communication sav-
ings by paying an extra computation cost. In a number of
practical scenarios, such a tradeoff is worthwhile. Consider
large problem scales where min(J,D) ≥ 10000, and mod-
erate minibatch sizes 1 ≤ K ≤ 100 (as studied in this pa-
per); when using a moderate number of machines (around
10-100), theO(P 2K(J+D)) communications cost of SFB
is lower than the O(PJD) cost for FMS, and the rela-
tive benefit of SFB improves as the dimensions J,D of W
grow. In data center scale computing environments with
thousands of machines, we can adopt the partial broadcast-
ing scheme. As for the time needed to apply updates to W,
it turns out that the additional cost of reconstructing each
update matrix P or Q times in SFB is negligible in practice
— we have observed in our experiments that the time spent
computing SFs, as well as communicating SFs over the net-
work, greatly dominates the cost of reconstructing update
matrices using SFs. Overall, the communication savings

dominate the added computational overhead, which we val-
idated in experiments.

4.2 CONVERGENCE ANALYSIS

We study the convergence of minibatch SGD under full
broadcasting SFB (with extensions to proximal-SGD,
SDCA being a topic for future study). Since SFB is a
peer-to-peer decentralized computation model, we need to
show that parameter copies on different workers converge
to the same limiting point without a centralized coordina-
tion, even under delays in communication due to bounded
asynchronous execution. In this respect, we differ from
analyses of centralized parameter server systems (Ho et al.,
2013), which instead show convergence of global parame-
ters on the central server.

We wish to solve the optimization problem minW

∑M
m=1

fm(W), where M is the number of training data mini-
batches, and fm corresponds to the loss function on the
m-th minibatch. Assume the training data minibatches
{1, ...,M} are divided into P disjoint subsets {S1, ..., SP }
with |Sp| denoting the number of minibatches in Sp. De-
note F =

∑M
m=1 fm as the total loss, and for p = 1, . . . , P ,

Fp :=
∑
j∈Sp

fj is the loss on Sp (on the p-th machine).

Consider a distributed system with P machines. Each ma-
chine p keeps a local variable Wp and the training data in
Sp. At each iteration, machine p draws one minibatch Ip
uniformly at random from partition Sp, and computes the
partial gradient

∑
j∈Ip ∇fj(Wp). Each machine updates

its local variable by accumulating partial updates from all
machines. Denote ηc as the learning rate at c-th iteration
on every machine. The partial update generated by ma-
chine p at its c-th iteration is denoted as Up(Wc

p, I
c
p) =

−ηc|Sp|
∑
j∈Icp
∇fj(Wc

p). Note that Icp is random and the
factor |Sp| is to restore unbiasedness in expectation. Then
the local update rule of machine p is

Wc
p = W0 +

∑P
q=1

∑τq
p (c)

t=0 Uq(W
t
q, I

t
q)

0 ≤ (c− 1)− τ qp (c) ≤ s
(4)

where W0 is the common initializer for all P machines,
and τ qp (c) is the number of iterations machine q has trans-
mitted to machine p when machine p conducts its c-th it-
eration. Clearly, τpp (c) = c. Note that we also require
τ qp (c) ≤ c − 1, i.e., machine p will not use any partial
updates of machine q that are too fast forward. This is to
avoid correlation in the theoretical analysis. Hence, ma-
chine p (at its c-th iteration) accumulates updates generated
by machine q up to iteration τ qp (c), which is restricted to be
at most s iterations behind. This formulation, in which s
is the maximum “staleness” allowed between any update
and any worker, covers bulk synchronous parallel (BSP)
full broadcasting (s = 0) and bounded-asynchronous full
broadcasting (s > 0). The following standard assumptions
are needed for our analysis:



Computational Model Total comms, per iter W storage per machine W update time, per iter
SFB (peer-to-peer, full broad-
casting)

O(P 2K(J +D)) O(JD) O(P 2KJD)

SFB (peer-to-peer, partial
broadcasting)

O(PQK(J +D)) O(JD) O(PQKJD)

FMS (client-server (Chilimbi
et al., 2014))

O(PJD) O(JD) O(PJD) at server,
O(PKJD) at clients

Figure 4: Cost of using SFB versus FMS.K is minibatch size, J,D are dimensions of W, and P is the number of workers.

Assumption 1. (1) For all j, fj is continuously differen-
tiable and F is bounded from below; (2)∇F ,∇Fp are Lip-
schitz continuous with constants LF and Lp, respectively,
and let L =

∑P
p=1 Lp; (3) There exists B, σ2 such that

for all p and c, we have (almost surely) ‖Wc
p‖ ≤ B and

E‖ |Sp|
∑
j∈Ip ∇fj(W)−∇Fp(W) ‖22 ≤ σ2.

Our analysis is based on the following auxiliary update

Wc = W0 +
∑P
q=1

∑c−1
t=0 Uq(W

t
q, I

t
q), (5)

Compare to the local update (4) on machine p, essentially
this auxiliary update accumulates all c − 1 updates gener-
ated by all machines, instead of the τ qp (c) updates that ma-
chine p has access to. We show that all local machine pa-
rameter sequences are asymptotically consistent with this
auxiliary sequence:

Theorem 1. Let {Wc
p}, p = 1, . . . , P , and {Wc} be the

local sequences and the auxiliary sequence generated by
SFB for problem (P) (with h ≡ 0), respectively. Under

Assumption 1 and set the learning rate ηc = O(
√

1
Lσ2Psc ),

then we have

• lim inf
c→∞

E‖∇F (Wc)‖ = 0, hence there exists a subse-

quence of∇F (Wc) that almost surely vanishes;
• lim
c→∞

maxp ‖Wc−Wc
p‖ = 0, i.e. the maximal disagree-

ment between all local sequences and the auxiliary se-
quence converges to 0 (almost surely);

• There exists a common subsequence of {Wc
p} and

{Wc} that converges almost surely to a stationary
point of F , with the rate min

c≤C
E‖
∑P
p=1∇Fp(Wc

p)‖22 ≤

O

(√
Lσ2Ps
C

)
Intuitively, Theorem 1 says that, given a properly-chosen
learning rate, all local worker parameters {Wc

p} eventu-
ally converge to stationary points (i.e. local minima) of the
objective function F , despite the fact that SF transmission
can be delayed by up to s iterations. Thus, SFB learning
is robust even under bounded-asynchronous communica-
tion (such as SSP). Our analysis differs from (Bertsekas
and Tsitsiklis, 1989) in two ways: (1) Bertsekas and Tsit-
siklis (1989) explicitly maintains a consensus model which
would require transmitting the parameter matrix among
worker machines — a communication bottleneck that we
were able to avoid; (2) we allow subsampling in each
worker machine. Accordingly, our theoretical guarantee

is probabilistic, instead of the deterministic one in (Bert-
sekas and Tsitsiklis, 1989). In future work, we intend
to extend the analysis to partial broadcasting under BSP
and bounded-asynchronous execution. Partial broadcasting
presents additional challenges, because updates are only
sent to a subset of machines (rather than every machine).

5 EXPERIMENTS
We demonstrate how four popular models can be efficiently
learnt using SFB: (1) multiclass logistic regression (MLR)
and distance metric learning (DML)4 based on SGD; (2)
sparse coding (SC) based on proximal SGD; (3) `2 reg-
ularized multiclass logistic regression (L2-MLR) based on
SDCA. For baselines, we compared with (a) Spark (Zaharia
et al., 2012) for MLR and L2-MLR, and (b) full matrix syn-
chronization (FMS) implemented on open-source parame-
ter servers (Ho et al., 2013; Li et al., 2014) for all four mod-
els. In certain experiments, we made a comparison with
the distributed (L2-)MLR system proposed in (Gopal and
Yang, 2013). In FMS, workers send update matrices to the
central server, which then sends up-to-date parameter ma-
trices to workers5. Due to data sparsity, both the update
matrices and sufficient factors are sparse; we use this fact
to reduce communication and computation costs. The ex-
periments were performed on a cluster where each machine
has 64 2.1GHz AMD cores, 128G memory, and a 10Gbps
network interface. Unless otherwise noted, 12 machines
were used. Some experiments were conducted on 28 ma-
chines.

Datasets and Experimental Setup We used two datasets
for our experiments: (1) ImageNet (Deng et al., 2009) ILS-
FRC2012 dataset, which contains 1.2 million images from
1000 categories; the images are represented with LLC fea-
tures (Wang et al., 2010), whose dimensionality is 172k.
(2) Wikipedia (Partalas et al., 2015) dataset, which con-
tains 2.4 million documents from 325k categories; docu-
ments are represented with term frequency, inverse docu-
ment frequency (tf-idf), with a dimensionality of 20k. We
ran MLR, DML, SC, L2-MLR on the Wikipedia, Ima-

4For DML, we use the parametrization proposed in (Wein-
berger et al., 2005), which is a linear projection matrix L ∈ Rd×k,
where d is the feature dimension and k is the latent dimension.

5This has the same communication complexity as (Chilimbi
et al., 2014), which sends SFs from workers to servers, but sends
matrices from servers to workers; the latter matrix transmission
dominates the total cost.
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Figure 5: Convergence time versus model size for MLR, DML, SC, L2-MLR (left to right), under BSP.
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Figure 6: MLR objective vs runtime (left), #samples vs runtime (middle), objective vs #samples (right).

geNet, ImageNet, Wikipedia datasets respectively, and the
parameter matrices contained up to 6.5b, 8.6b, 8.6b, 6.5b
entries (the largest latent dimension for DML and largest
dictionary size for SC were both 50k). The tradeoff param-
eters in SC and L2-MLR were set to 0.001 and 0.1. We
tuned the minibatch size, and found that K = 100 was
near-ideal for all experiments. All experiments used the
same constant learning rate (tuned in the range [10−5, 1]).
Unless otherwise stated, a full broadcasting scheme is used
for most experiments.

Convergence Speed and Quality Figure 5 shows the
time taken to reach a fixed objective value, for different
model sizes, using BSP consistency (SSP results are in
the supplement), on 12 machines. SFB converges faster
than FMS, as well as Spark v1.3.16. This is because SFB
has lower communication costs, hence a greater propor-
tion of running time gets spent on computation rather than
network waiting. This is shown in Figure 6, which plots
data samples processed per second7 (throughput) and algo-
rithm progress per sample for MLR, under BSP consistency
(SSP results are in the supplement) and varying minibatch
sizes. The middle graph shows that SFB processes far more
samples per second than FMS, while the rightmost graph
shows that SFB and FMS produce exactly the same algo-
rithm progress per sample under BSP. For this experiment,
minibatch sizes between K = 10 and 100 performed the
best as indicated by the leftmost graph. We point out that
larger model sizes should further improve SFB’s advantage
over FMS, because SFB has linear communications cost in
the matrix dimensions, whereas FMS has quadratic costs.
Under a large model size (e.g., 325k classes in MLR), the
communication cost becomes the bottleneck in FMS and
causes prolonged network waiting time and parameter syn-
chronization delays, while the cost is moderate in SFB.

6Spark is about 2x slower than PS (Ho et al., 2013) based C++
implementation of FMS, due to JVM and RDD overheads.

7We use samples per second instead of iterations, so different
minibatch sizes can be compared.

We also evaluated SFB on 28 machines, under BSP and
full broadcasting (Q=27). On MLR (325k classes), SFB
took 2.46 hours to converge while FMS took 10.77 hours.
On L2-MLR (325k classes), the convergence time of SFB
is 2.14 hours while that of FMS is 9.31 hours.

We made a comparison with the distributed (L2-)MLR sys-
tem proposed by (Gopal and Yang, 2013) on 12 machines.
On MLR (325k classes), Gopal and Yang (2013) took 31.7
hours to converge while SFB took 4.5 hours. To converge
on L2-MLR (325k classes), Gopal and Yang (2013) took
28.3 hours while SFB took 3.7 hours.

Scalability In all experiments that follow, we set the
number of (L2-)MLR classes, DML latent dimension, SC
dictionary size to 325k, 50k, 50k. Figure 7 shows SFB scal-
ability with varying machines under BSP (SSP results are
in the supplement), for MLR, DML, SC, L2-MLR, on 12
machines. In general, we observed close to linear (ideal)
speedup, with a slight drop at 12 machines. On 28 ma-
chines, for MLR and L2-MLR, SFB achieved 17.4x and
15.7x speedup over one machine respectively.

Computation Time vs Network Waiting Time Figure
8 shows the total computation and network time required
for SFB and FMS to converge, across a range of SSP stale-
ness values8 — in general, higher communication cost and
lower staleness induce more network waiting. For all stal-
eness values, SFB requires far less network waiting (be-
cause SFs are much smaller than full matrices in FMS).
Computation time for SFB is slightly longer than FMS be-
cause (1) update matrices must be reconstructed on each
SFB worker, and (2) SFB requires a few more iterations for
convergence, because peer-to-peer communication causes
a slightly more parameter inconsistency under staleness.
Overall, the SFB reduction in network waiting time re-
mains far greater than the added computation time, and
outperforms FMS in total time. For both FMS and SFB,

8The Spark implementation does not easily permit this time
breakdown, so we omit it.
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Figure 7: SFB scalability with varying machines under BSP, for MLR, DML, SC, L2-MLR (left to right).
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Figure 8: Computation vs network waiting time for MLR, DML, SC, L2-MLR (left to right).
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Figure 9: Convergence time versus Q in partial broadcast-
ing for MLR (left) and L2-MLR (right), under BSP.

the shortest convergence times are achieved at moderate
staleness values, confirming the importance of bounded-
asynchronous communication.

Partial Broadcasting On 12 machines, we studied in
partial broadcasting how the parameter Q, which is the
number of peers to which each machine sends messages,
affects the convergence speed of SFB. Figure 9 shows the
convergence time of SFB on MLR and L2-MLR versus
varying Q, under BSP (SSP results are given in supple-
ments). First, we observed that SFB under partial broad-
casting (PB) with Q < 11 converges to the same objective
value as under full broadcasting (FB) where Q = 11. This
provides empirical justification that PB preserves correct-
ness and convergence of algorithms. Second, we noted that
the convergence time of PB is affected by Q. As observed
in this figure, a smaller Q incurs longer convergence time.
This is because a smaller Q is more likely to cause the pa-
rameter copies on different workers to be out of synchro-
nization and degrade iteration quality. However, as long as
Q is not too small, the convergence speed of PB is compa-
rable with FB. As shown in the figure, for Q ≥ 4, the con-
vergence time of PB is very close to FB. This demonstrates
that using PB, we can reduce the communication cost from
O(P 2) to O(PQ) with slight sacrifice of the convergence
speed.

6 RELATED WORKS

A number of system and algorithmic solutions have been
proposed to reduce communication cost in distributed ML.
On the system side, Dean et al. (2012) proposed to re-

duce communication overhead by reducing the frequency
of parameter/gradient exchanges between workers and the
server. Li et al. (2014) used filters to select “important”
parameters/updates for transmission to reduce the number
of data entries to be communicated. On the algorithm side,
Tsianos et al. (2012) studied the tradeoffs between commu-
nication and computation in distributed dual averaging and
distributed stochastic dual coordinate ascent respectively.
Shamir et al. (2014) proposed an approximate Newton-
type method to achieve communication efficiency in dis-
tributed optimization. SFB is orthogonal to these existing
approaches and be potentially combined with them to fur-
ther reduce communication cost.

Peer-to-peer, decentralized architectures have been investi-
gated in other distributed ML frameworks (Li et al., 2015).
Our SFB system also adopts such an architecture, but with
the specific purpose of supporting the SFB computation
model, which is not explored by existing peer-to-peer ML
frameworks.

7 CONCLUSIONS

In this paper, we identify the sufficient factor property of
a large set of matrix-parametrized models: when these
models are optimized with stochastic gradient descent or
stochastic dual coordinate ascent, the update matrices are
of low-rank. Leveraging this property, we propose a suffi-
cient factor broadcasting strategy to efficiently handle the
learning of these models with low communication cost. A
partial broadcasting scheme is investigated to alleviate the
overhead of full broadcasting. We analyze the cost and
convergence property of SFB, whose communication ef-
ficiency is demonstrated in empirical evaluations.
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