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Abstract001

In this paper, we introduce Meta-Reasoning002
Prompting (MRP), a novel approach inspired003
by human meta-reasoning to enhance the flex-004
ibility and generality of large language mod-005
els (LLMs). Traditional in-context learning006
techniques, such as Tree-of-Thoughts, show007
promise but lack consistent state-of-the-art per-008
formance across diverse tasks due to their spe-009
cialized nature. MRP addresses this limitation010
by dynamically selecting and applying differ-011
ent reasoning methods based on the specific012
requirements of each task, optimizing both per-013
formance and computational efficiency. The014
MRP framework operates in two phases: ini-015
tially, the LLM selects the most appropriate016
reasoning method using task input cues and ob-017
jective descriptions of available methods; sub-018
sequently, it applies the chosen method to com-019
plete the task. This dynamic strategy mirrors020
human meta-reasoning, allowing the model to021
excel in a wide range of problem domains. We022
evaluate the effectiveness of MRP through com-023
prehensive benchmarks. The results demon-024
strate that MRP achieves or approaches state-of-025
the-art performance across these diverse tasks.026
MRP represents a significant advancement in027
enabling LLMs to autonomously select suitable028
reasoning methods, enhancing their ability to029
handle diverse and complex problem domains030
efficiently.031

1 Introduction032

Large language models (LLMs) have demonstrated033

remarkable capabilities in natural language under-034

standing and generation, showing promise in vari-035

ous reasoning tasks. However, the inherent diver-036

sity and complexity of real-world problems neces-037

sitate advanced reasoning methods that go beyond038

the capabilities of a single, static approach. Ex-039

isting in-context learning (ICL) techniques, such040

as Chain-of-Thoughts (Wei et al., 2022), Tree-of-041

Thoughts (Yao et al., 2024), Analogical Prompt-042

ing (Yasunaga et al., 2023), and Solo Performance043

Figure 1: Illustration of Meta-Reasoning Prompting
(MRP) and the difference compared to standard reason-
ing and traditional in-context learning methods.

Prompting (Wang et al., 2023), offer valuable tools 044

for enhancing reasoning but often fall short in 045

consistently achieving state-of-the-art performance 046

across different tasks. 047

These challenges highlight the need for a more 048

adaptive and flexible approach to reasoning in 049

LLMs. In human cognition, meta-reasoning refers 050

to the processes that monitor and regulate reasoning 051

and problem-solving activities, adjusting strategies 052

based on the context and specific requirements of 053

the task (Cox and Raja, 2011b,a). This adaptive 054

capability allows humans to efficiently allocate cog- 055

nitive resources, balancing the trade-offs between 056

accuracy, complexity, and computational cost. In- 057

spired by this, we propose Meta-Reasoning Prompt- 058

ing (MRP) to endow LLMs with similar adaptive 059

reasoning capabilities. 060

Meta-Reasoning Prompting is a novel frame- 061

work designed to dynamically select and apply the 062

most suitable reasoning method based on the task 063

at hand. By incorporating meta-reasoning princi- 064

ples, MRP transforms task-specific prompt engi- 065
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neering into a more general and flexible approach.066

The MRP framework operates in a dynamic mech-067

anism. The LLM evaluates the task input and se-068

lects an appropriate reasoning method from a set of069

predefined methods, which is guided by objective070

descriptions and evaluations of the available meth-071

ods. Then, the selected method is then applied to072

complete the task, ensuring that the model uses the073

most effective strategy for the given problem.074

To evaluate MRP, we conducted experiments075

using multiple benchmarks. Our findings demon-076

strate that MRP not only approaches state-of-the-077

art performance across these benchmarks but also078

excels in tasks requiring a blend of different rea-079

soning strategies. Additionally, we observe that080

larger models, such as GPT-4, exhibit superior081

meta-reasoning capabilities compared to smaller082

models like GPT-3.5.083

Our key contributions are as follows:084

1. We introduce Meta-Reasoning Prompting085

(MRP), inspired by human meta-reasoning,086

to enhance the flexibility and generality of087

reasoning with LLMs.088

2. Our comprehensive empirical evidence089

demonstrates that MRP enables LLMs to090

autonomously select the most appropriate091

reasoning methods for various tasks, thereby092

improving overall performance.093

2 Meta Reasoning Prompting094

We formally introduce the Meta Reasoning Prompt-095

ing algorithm. The goal is to select the most suit-096

able reasoning method from a pool of available097

methods to process a given input, thereby enhanc-098

ing the overall reasoning performance of the model.099

Detailed prompts could be found in AppendixA.1.100

Meta Reasoning Prompting begins with an input101

x0 and a pre-trained model M . A set of reason-102

ing methods α1, α2, . . . , αn are available for se-103

lection. A reasoning pool containing descriptions104

of each reasoning method in the form of prompts105

p1, p2, . . . , pn, is utilized. Specifically, the descrip-106

tion of the method is extracted from the abstract107

of the corresponding papers. A meta reasoning108

prompt pMR is defined to guide the selection pro-109

cess. For each reasoning method αi, where i ranges110

from 1 to n, the model M is used to evaluate the111

combined prompt (pi|pMR|x0). This evaluation112

yields a score si indicating the effectiveness of the113

method αi for the given input x0.114

si = M(pi∥pMR∥x0) for i = 1, 2, . . . , n.
(1) 115

The algorithm identifies the reasoning method 116

αk that receives the highest score si by finding the 117

index k that maximizes the set s1, s2, . . . , sn. 118

k = argmax
i

{s1, s2, . . . , sn} (2) 119

Once the best reasoning method αk is deter- 120

mined, it is executed on the input x0. The model 121

M generates the final output y0 using the prompt 122

(pk|x0), which combines the description of the cho- 123

sen reasoning method with the original input. 124

y0 = αk(x0) (3) 125

Algorithm 1 Meta Reasoning Prompting

Require: Input x0, model M , reasoning meth-
ods α1, α2, . . . , αn, a set of prompts of reasoning
method descriptions p1, p2, . . . , pn, the prompt
for meta reasoning process denoted as pMR. Eval-
uation score is denoted as s1, s2, . . . , sn.

for i = 1 to n do
si = M(pi∥pMR∥x0)

end
k = argmaxi{s1, s2, . . . , sn}
Determine k for which αk is executed and reason
with the chosen method.
y0 = αk(x0)
return y0

3 Experiments 126

3.1 Setup 127

Instantiation of Meta-Reasoning Prompting 128

We instantiate MRP with seven popular in-context 129

learning methods, which also serve as our baseline 130

for comparison. We prompt descriptions for each 131

method, allowing the LLM to understand. Details 132

and prompts are available in Appendix A.1. 133

Tasks We experiment with seven diverse tasks: 134

(1) Arithmetic Reasoning: GSM8K (Cobbe et al., 135

2021), 1319 basic math questions. (2) Complex 136

Mathematical Reasoning: Game of 24 (Yao et al., 137

2024), a game using 4 numbers and basic arithmetic 138

four operations to obtain 24. (3) Creative Writ- 139

ing: Trivia Creative Writing (Trivia CW) (Wang 140

et al., 2023; Joshi et al., 2017), necessitating the 141

model to assimilate and combine heterogeneous 142
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Table 1: Experiments with GPT4: Comparison of effects on benchmarks using Meta-Reasoning Prompting versus
using other methods independently. Bold represents the best performance, and underline represents the second-best
performance.

Method GSM8K Gameof24 Trivia CW HotpotQA BigToM Code MMLU Macro Avg.

COT 0.914 0.050 0.762 0.800 0.470 0.685 0.894 0.654
TOT 0.942 0.410 0.786 0.716 0.430 0.765 0.815 0.725
Analogical 0.924 0.040 0.735 0.777 0.500 0.614 0.947 0.648
Self-Refine 0.929 0.080 0.764 0.763 0.470 0.872 0.861 0.677
SPP 0.929 0.170 0.861 0.763 0.550 0.672 0.874 0.688
STEP-BACK 0.933 0.090 0.787 0.810 0.420 0.809 0.841 0.670
SimTom 0.938 0.040 0.739 0.667 0.590 0.694 0.815 0.640
MRP (our) 0.921 0.310 0.796 0.797 0.570 0.867 0.854 0.772

information from multiple domains internally. (4)143

Multi-Hop Reasoning: HotpotQA, (Yang et al.,144

2018), requiring models to connect pieces of infor-145

mation from multiple documents to answer a ques-146

tion. (5) Social Reasoning: BigToM (Gandhi et al.,147

2024), to evaluate social situations understanding148

and the theory of mind. (6) Computer Code: Code149

Readability (Code) (Puri et al., 2021), to enhance150

the readability of given code snippets. (7) STEM:151

MMLU (Hendrycks et al., 2020), Physics, Chem-152

istry, Biology, and Math problems of high school153

domain. To prevent any method from skewing the154

results due to exceptional performance on a spe-155

cific task, we reported both the arithmetic mean156

accuracy and the harmonic mean accuracy of each157

method across all benchmarks.158

Details about the dataset and its construction are159

provided in Appendix A.2.160

Models We used gpt-3.5-turbo1 and gpt-4-turbo2161

with identical prompts to compare the effect of162

model size on meta-reasoning ability.163

Baseline Methods We select seven popular rea-164

soning methods as baselines rather than standard165

input-output. These methods include: (1) Chain-166

of-Thoughts: breaking down problems into a se-167

ries of coherent reasoning steps (Wei et al., 2022).168

(2) Tree-of-Thoughts: exploring multiple reason-169

ing paths and self-evaluating choices to solve com-170

plex problems (Yao et al., 2024). (3) Analogical171

prompting: self-generating few-shots based on172

past experiences and related problems (Yasunaga173

et al., 2023). (4) Self-Refine: self-evaluating174

for refinement and continuously improving the175

output (Madaan et al., 2024). (5) Solo Perfor-176

mance Prompting: simulating multiple personas177

to collaboratively solve complex tasks (Wang et al.,178

1Azure OpenAI, Model Name: gpt-35-turbo, API Version:
0301

2Azure OpenAI, Model Name: gpt-4, API Version: 1106-
Preview

2023). (6) Step-Back Prompting: abstract high- 179

level concepts and principles to guide the reason- 180

ing process (Zheng et al., 2023). (7) SimToM: 181

enabling perspective-taking to understand the char- 182

acter’s beliefs and goals (Wilf et al., 2023) 183

3.2 Main Results 184

Meta-Reasoning Prompting performs best on 185

comprehensive tasks As shown in table 1, MRP 186

consistently exhibits robust performance across 187

multiple benchmarks. MRP achieves the second- 188

best in 4 of 7 tasks, including Gameof24, Trivi- 189

aQA, BigToM and Code. This impressive perfor- 190

mance across a wide range of tasks demonstrates 191

MRP’s ability to effectively select and apply ap- 192

propriate reasoning methods tailored to the spe- 193

cific requirements of each task. In terms of overall 194

performance, MRP attains the highest across the 195

7 tasks, with an average of 0.772. In contrast, al- 196

though TOT excels in certain tasks such as GSM8K 197

and Gameof24, it performs less impressively in 198

others. We observe noticeable performance gaps 199

compared with MRP in tasks such as BigToM (0.43 200

VS 0.57) and Code (0.765 VS 0.867). This consis- 201

tent excellence across all benchmarks underscores 202

MRP’s omnipotence, demonstrating its ability to 203

maintain impressive performance across diverse 204

task domains. 205

Meta-reasoning capability is influenced by the 206

base model capability As illustrated in Ap- 207

pendix C table 3 in the appendix, while the perfor- 208

mance with GPT-4 is satisfactory, the experimental 209

results with GPT-3.5 indicate that the effectiveness 210

of MRP is suboptimal. This suggests that the poten- 211

tial of MRP shows some consistency across smaller- 212

scale basic language models (LLMs), but does not 213

fully realize its potential. This consistency can be 214

attributed to the fact that in a more advanced LLM, 215

such as GPT-4, MRP can leverage the model’s full 216

capabilities, whereas in a base model like GPT-3.5, 217
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Figure 2: (a) Comparison of methods on different benchmarks reveals that guiding LLM to dynamically choose
the appropriate reasoning method enables MRP to achieve consistently better performance across all tasks. (b)
The arithmetic and harmonic average performances of applying a specific reasoning approach to all benchmarks
demonstrate that MRP consistently excels in overall evaluation.

the impact of MRP is constrained by the model’s218

inherent limitations.219

4 Related Works220

4.1 Endowing LLMs with Multiple Reasoning221

Methods222

Independent reasoning methods have been proven223

to improve LLM performance from different224

perspectives but fail to meet integrated prob-225

lems (Madaan et al., 2024; Wilf et al., 2023; Zheng226

et al., 2023; Sahoo et al., 2024; Suzgun and Kalai,227

2024; Chen et al., 2024; Besta et al., 2024). More228

recently, more researchers have begun to consider229

adapting LLMs to various reasoning methods. X-230

of-Thoughts improves the success rate of LLM231

on arithmetic problems by integrating three meth-232

ods (Liu et al., 2023). It proposes a trial-and-233

error iterative mechanism that allows LLM to au-234

tonomously repeat attempts to find a final solution.235

Yuan et al. fine-tune smaller models with a well-236

prepared dataset inspired by preference learning237

to achieve reasoning power comparable to a larger238

model (Yuan et al., 2024). It presents a problem-239

method coupled dataset and shows how to improve240

the model’s grasp of inference skills at the data241

level. However, there is still a lack of research242

to explore the meta-reasoning ability of LLMs to243

choose reasoning methods.244

4.2 Meta Reasoning245

Meta-reasoning is a crucial cognitive process in hu-246

man intelligence, involving the recognition and in-247

terpretation of reasoning to select optimal methods248

based on past experiences (Griffiths et al., 2019).249

In artificial intelligence, it refers to efficiently250

deploying computational resources for informed251

decision-making in specific situations (Cox and252

Raja, 2011a,b). Recently, some works develop rout- 253

ing or buffer systems to improve performance, us- 254

ing supervised learning algorithms (Shnitzer et al., 255

2023), reward model-based techniques, and other 256

methods (Hari and Thomson, 2023; Lu et al., 2024; 257

Wang et al., 2024). Hu et al. created a benchmark 258

to evaluate these methods’ effectiveness (Hu et al.). 259

Zeng et al. noted the neglect of meta-reasoning in 260

independent LLMs and proposed a benchmark to 261

evaluate reasoning rationality (Zeng et al., 2024). 262

In (Yang et al., 2024), the authors introduce a meta- 263

buffer to store a series of high-level thoughts dis- 264

tilled from problem-solving processes across vari- 265

ous tasks. This approach aligns with the inherent 266

logic of meta reasoning. However, MRP achieves 267

simple and efficient meta-cognitive effects by di- 268

rectly unleashing the meta reasoning capabilities of 269

LLM through prompts, without introducing com- 270

plex mechanisms. 271

5 Conclusions 272

This paper introduces Meta-Reasoning Prompting 273

(MRP), a novel approach inspired by human meta- 274

reasoning to enhance the flexibility and generality 275

of reasoning with large language models (LLMs). 276

Guided by MRP, an LLM dynamically selects 277

and applies the most suitable reasoning method 278

for each task. Our experiments demonstrate that 279

MRP achieves near state-of-the-art performance 280

across diverse benchmarks, achieving the highest 281

comprehensive weighted accuracy across all tasks. 282

This adaptability underscores the promise of meta- 283

reasoning prompting in enhancing LLMs’ general 284

reasoning capabilities. Future research could ex- 285

plore using MRP to construct instruction -tuning 286

datasets, further boosting the general reasoning 287

abilities of LLMs. 288
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6 Limitations289

Our study investigates the meta-reasoning mech-290

anisms of LLMs by dynamically selecting suit-291

able methods to enhance their performance across292

various reasoning tasks without introducing new293

knowledge or training efforts. Currently, Meta-294

Reasoning Prompting (MRP) selects the highest-295

scoring method for each task. However, drawing296

from human cognitive processes, tackling complex297

problems often involves combining multiple rea-298

soning methods. Future research will explore mech-299

anisms such as Top-Probability (Top-P) or Top-K300

to allow models to ensemble relevant methods, po-301

tentially achieving better performance.302

Our experimental results indicate that the meta-303

reasoning ability of LLMs is influenced by the ca-304

pabilities of the models themselves. For instance,305

GPT-4’s meta-reasoning prompting shows signifi-306

cantly greater improvement compared to GPT-3.5,307

which aligns with our expectations. Nonetheless,308

we can further enhance the smaller model’s meta-309

reasoning capabilities through instruction tuning in310

future work.311

Due to space constraints and limited resources,312

our experiments primarily tested the most repre-313

sentative LLMs (GPT-4 and GPT-3.5). We did not314

fully cover the performance of other open-source315

or closed-source models. However, we believe that316

the experimental results on these representative317

LLMs provide sufficient insights and implications.318
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Table 2: Dataset Split and Number of Examples

Domain Dataset Split Number of Examples

Arithmetic Reasoning GSM8K Test 1319
Complex Mathematical Reasoning Game of 24 Test 100

Creative Writing Trivia Creative Writing Test 100
Multi-hop Reasoning HotpotQA Test 300

Social Reasoning BigTOM Dev 100
Computer Code Code Readability Test 300

STEM MMLU Dev 151

Table 3: Experiments with GPT3.5: Comparison of effects on benchmarks using Meta-Reasoning Prompting versus
using other methods independently. Bold represents the best performance, and underline represents the second-best
performance.

Method GSM8K Gameof24 Trivia
CW

HotpotQA BigToM Code MMLU Avg.

COT 0.831 0.030 0.414 0.187 0.610 0.578 0.675 0.416
TOT 0.810 0.100 0.155 0.360 0.430 0.797 0.735 0.352
Self-Refine 0.716 0.030 0.213 0.167 0.650 0.796 0.543 0.372
SPP 0.823 0.160 0.536 0.217 0.540 0.684 0.689 0.469
STEP-BACK 0.817 0.010 0.536 0.190 0.570 0.642 0.788 0.452
SimTom 0.586 0.040 0.240 0.177 0.460 0.599 0.503 0.315
MRP (our) 0.781 0.050 0.346 0.187 0.600 0.759 0.722 0.433

A.2 Dataset Details468

Table 2 shows the split and number of examples469

used for evaluations in GSM8K, Game of 24, Trivia470

Creative Writing, HotpotQA, BigTOM, Code Read-471

ability and MMLU. The dataset sizes of GSM8K,472

Gameof24, Trivia Creative Writing are consistent473

with the size used in the references. And consid-474

ering cost, we tested a random 100-300 sample of475

data from HotpotQA, BigTOM, and Code Read-476

ability and MMLU. Despite of the economic con-477

sideration, we found that on this data scale, MRP478

has achieved significant results.479

A.3 Source Prompts of Other In-Context480

Learning Methods Used in This Paper481

Figure 4: Prompt of COT

Figure 5: Prompt of Sim-Tom Prompting
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Figure 6: Prompt of TOT

Figure 7: Prompt of Analogical Prompting

Figure 8: Prompt of SELF-REFINE

Figure 9: Prompt of STEP-BACK Prompting

8



Figure 10: Prompt of SPP Prompting

Figure 11: Prompt of SPP Prompting

B META REASONING PROMPTING 482

IN SIMPLE TASKS 483

From the experimental results (see figure 12), it can 484

be seen that MRP and other methods show equal 485

competitiveness on GSM8K, the accuracy of all 486

the reasoning methods is above 90%, but the dif- 487

ferentiation between the accuracy of each method 488

is not very high, it can be seen that when the task 489

is simpler, it is harder for MRP to reflect its own 490

advantages, but MRP method is better than each 491

method on the more difficult and comprehensive 492

But the MRP method is significantly better than the 493

other methods in the more difficult and comprehen- 494

sive tasks. 495
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Figure 12: Performance of seven reasoning methods on
GSM8K benchmark

C Experiments with GPT3.5496

Table 3 demonstrates the results of GPT3.5 under497

the same experimental conditions as before. When498

using GPT3.5 as the basic model, MRP performed499

poorly. Through Error analysis, we found that the500

main reasons included Scoring Error, Self-opinion,501

Factual Error and Reasoning Error.502
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