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Abstract

In this review, we aim to inspire research into001
Self-Supervised Shared Semantic Space (S5)002
multimodal learning problems. We equip non-003
expert researchers with a framework of in-004
formed modeling decisions via an extensive005
literature review, an actionable modeling check-006
list, as well as a series of novel zero-shot eval-007
uation tasks. The core idea for our S5 check-008
list lies in learning contextual multimodal in-009
teractions at various granularity levels via a010
shared Transformer encoder with a denoising011
loss term, which is also regularized by a con-012
trastive loss term to induce a semantic align-013
ment prior on the contextual embedding space.014
Essentially, we aim to model human concept015
understanding and thus learn to “put a name to016
a face”. This ultimately enables interpretable017
zero-shot S5 generalization on a variety of018
novel downstream tasks. In summary, this re-019
view provides sufficient background and ac-020
tionable strategies for training cutting-edge S5021
multimodal networks.022

1 Introduction023

There has been a lot of recent advancement in024

Transformer (Vaswani et al., 2017) architectures025

for language/vision fusion tasks (Khan et al., 2021).026

Transformer architectures can implicitly model in-027

teractions between visual and textual entities via028

the attention mechanism (Li et al., 2019b,a; Chen029

et al., 2019; Li et al., 2020b).030

Transformer-based architectures, however, have031

an inherent property of collapsed representation032

spaces. Some recent language/vision fusion mod-033

els address that with self-supervised contrastive034

pretraining objectives (Radford et al., 2021; Jia035

et al., 2021). Their most notable limitation is that036

the dual-encoder architecture prevents them from037

modeling local context interactions at multiple lev-038

els of abstraction.039

In another line of work, some models can learn040

semantic embeddings aligned across modalities at041

various contextual levels (Li et al., 2019a; Chen 042

et al., 2019), but depend on object detection for 043

visual embedding. That creates additional com- 044

putation overhead, as well as out-of-domain gen- 045

eralization issues, given that object detectors use 046

human-annotated data. 047

Some Transformer architectures (Kim et al., 048

2021; Wang et al., 2021; Ramesh et al., 2021) take 049

the best of both worlds, by using self-supervised 050

multimodal objectives for large-scale pretraining, 051

but neglect the semantic space collapse resulting 052

from Transformer architecture. That makes their 053

semantic embeddings difficult to use on a broad 054

range of tasks without extensive finetuning. 055

In this work, we review the necessary back- 056

ground literature for a non-expert research prac- 057

titioner to gain understanding of recent multimodal 058

practices and their shortcomings. We also pro- 059

pose a checklist of informed decisions for train- 060

ing S5 encoder that addresses all of the outlined 061

issues. We additionally propose novel experiments 062

to prove effectiveness of S5 models in zero-shot 063

settings. Thus, we equip the reader with actionable 064

self-supervised multimodal training strategies for 065

cutting-edge zero-shot generalization. 066

More specifically, our framework aims to pro- 067

duce and evaluate a model fulfilling the following 068

goals, in the order of importance: 069

1. encode image and text into a well-aligned se- 070

mantic representation space, also optimized 071

for uniformity; 072

2. capture both global and local context seman- 073

tic interactions (i.e., interactions on both im- 074

age/sentence and patch/token levels); 075

3. adapt well to both single and multiple modal- 076

ity downstream tasks in a zero-shot setting; 077

4. be easy to use in terms of both architecture 078

versatility and inference computation require- 079

ment. 080
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2 S5 Background081

In this section, we survey the recent literature re-082

lated to Transformer model embedding collapse083

as well as multimodal representation learning ap-084

proaches. We aim to highlight the recent common085

practices and their limitations, while introducing086

the reader to the field.087

2.1 Transformer Representation Collapse088

Large-scale text Transformers are typically opti-089

mized with language modeling likelihood loss, ei-090

ther autoencoding, e.g. BERT (Devlin et al., 2018),091

or autoregressive, e.g. GPT2 (Radford et al., 2019).092

Then, for any given hidden state, the ground truth093

token embedding is pushed toward that hidden094

state, while all other token embeddings are pushed095

away from it. Thus, every training example in ef-096

fect becomes a negative example for the tokens that097

are not ground truth. Given the Zipf distribution of098

words in natural languages, majority of the words099

will appear with a low term frequency. As a result,100

most of the representations are pushed in a similar101

direction in the embedding space and degrade into102

a narrow cone (Gao et al., 2019). The degeneration103

happens when the convex hull of the representa-104

tions does not contain the origin. Gao et al. (2019)105

theoretically shows that this does tend to be the case106

when layer normalization is used, which happens a107

lot in Transformers. This way, words with similar108

frequency are likely to end up close to each other109

in the representation space, despite not necessarily110

having similar meaning.111

Empirical studies of large-scale Transformers112

have corroborated this, finding that the singular113

values of their embedding spaces tend to drop off114

rapidly, with only first few components account-115

ing for majority of the embedding space variance116

(Wang et al., 2020a). It has also been shown that117

BERT embeddings are not uniformly distributed,118

as they have average cosine similarity greater than119

0 (Ethayarajh, 2019).120

More than that, it has been empirically shown121

that word frequency biases BERT embedding space122

(Li et al., 2020a), as mean l2-norm of BERT em-123

beddings is correlated with word frequency. The124

high frequency words are arranged closer to both125

the origin and each other than the lower-frequency126

words. That creates "holes" in the outer edges of127

the embedding space, where semantic meaning is128

defined poorly.129

Semantic embedding spaces can be described in130

terms of alignment and uniformity metrics (Wang 131

and Isola, 2020). Alignment is the quality of sim- 132

ilar examples mapped nearby to each other in the 133

embedding space, whereas uniformity assesses how 134

evenly the representations are distributed on a unit 135

hypershpere. Language Transformer embeddings, 136

then, suffer from excessive alignment: unrelated 137

terms are close to each other in space just due to 138

term frequency. 139

Contrastive learning objective optimizes asymp- 140

totically for the alignment and uniformity of the 141

embedding space (Wang and Isola, 2020). It has 142

been empirically shown effective for both textual 143

(Gao et al., 2021; Yan et al., 2021; Su et al., 2021) 144

and visual (Chen et al., 2020) representation learn- 145

ing. Contrastive tension loss optimizes for the sim- 146

ilarity of representations of two augmented views 147

of the same data (positive examples), while increas- 148

ing their distance with the representations of other 149

data (negative examples) in the training batch (Gao 150

et al., 2021). Even without any augmentation on 151

positive examples – without optimizing for addi- 152

tional alignment – contrastive loss can still improve 153

BERT embedding space by making it more uniform 154

(Yan et al., 2021). While previous approaches (Gao 155

et al., 2021; Yan et al., 2021) use contrastive learn- 156

ing as a finetuning objective, TaCL (Su et al., 2021) 157

successfully uses token-wise contrastive learning 158

as an additional pretraining objective together with 159

Masked Language Modeling (MLM) and Next Sen- 160

tence Prediction (NSP) denoising objectives (De- 161

vlin et al., 2018). 162

2.2 Advances in Multi-modal Learning 163

Here, we discuss the recent advances made in 164

vision/language pretraining. This section will 165

address object detection based approaches, con- 166

trastive embedding approaches, as well as current 167

mutlimodal unified Transformers. We make a spe- 168

cial effort to identify the existing limitations in 169

those approaches, with respect to our goals. 170

2.2.1 Object Detection Based Approaches 171

A lot of success in Transformer pretraining for lan- 172

guage/vision fusion relates to object detection vi- 173

sual embedding approaches. They typically use 174

an object detector, like Faster R-CNN (Ren et al., 175

2015), trained on Visual Genome data (Krishna 176

et al., 2016). 177

This line of work can be traced back to Unicoder- 178

VL (Li et al., 2019a), which pretrains a large- 179

scale denoising autoencoder using Masked Lan- 180
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guage Modeling, Masked Object Classification,181

and Visual-Linguistic Matching objectives, on the182

Conceptual Captions (Sharma et al., 2018) and183

SBU Captions (Ordonez et al., 2011) datasets.184

The Unified Vision-Language Pre-training185

(VLP) (Zhou et al., 2019) improves on that by ac-186

commodating a decoder in the same Transformer187

stack by the means of a masking mechanism remi-188

niscent to that of UniLM (Dong et al., 2019), thus189

supporting both discriminative and generative ap-190

plications.191

UNITER (Chen et al., 2019), then, adds MS-192

COCO (Lin et al., 2014) and Visual Genome (Kr-193

ishna et al., 2016) to the pretraining, as well as194

devising novel optimization objectives, including195

Masked Language and Region Modeling, condi-196

tioned on the opposite modality (i.e., if text is197

corrupted, the image is left intact and vice versa).198

UNITER also uses Visual-Linguistic Matching and199

a novel Word-Region Alignment objective with200

Optimal Transport, which explicitly encourages201

fine-grained alignment between words and image202

regions during pretraining.203

Oscar (Li et al., 2020b) uses the object detec-204

tor text output to model each image/text pair in205

terms of [w, q, v] triplets, with w - textual modality206

word token embeddings, q - object detector’s tex-207

tual class tag embeddings, and v - object detector’s208

vision region embeddings. VinVL (Zhang et al.,209

2021) improves upon that with a more robust object210

detector and a modified contrastive loss.211

Despite the impressive improvements made in212

this area, the models are still constrained by us-213

ing an explicit object detection model, trained214

on a human-labeled data. This limits the object215

detector’s zero-shot generalizability and thus un-216

dermines zero-shot performance of the whole vi-217

sion/language model. Another constraint on this218

is the inference costs of object detection, in terms219

of both difficulty of use and computation overhead.220

These architectures fall short on our goals (3): ver-221

satility and (4): ease of use.222

2.2.2 Contrastive Embedding Approaches223

A more recent line of work in text/image fusion224

does away with the object detector, instead opting225

to split text and image modalities into separate en-226

coders. The representations of the two encoders are227

then optimized contrastively in a shared embedding228

space at the final layers.229

CLIP (Radford et al., 2021) is a dual-encoder230

image/text architecture. It uses ResNet-50 (He231

et al., 2016) or ViT-L/14@336px (Dosovitskiy 232

et al., 2020) as image encoder and GPT-2 (Rad- 233

ford et al., 2019) style text encoder. Both encoders 234

then project the modality embeddings into a com- 235

mon representation space via a linear projection 236

layer. The model is initialized randomly and then 237

trained contrastively by optimizing the similarity of 238

the corresponding image/text representations and 239

penalizing the similarity of the mismatching ones 240

within each batch. CLIP also uses a novel WebIm- 241

ageText (WIT) dataset, consisting of 400M (image, 242

text) pairs collected from the Internet, which has 243

a similar total word count to the GPT-2 WebText 244

(Radford et al., 2019) dataset. CLIP showcases a 245

strong zero-shot performance on the datasets with 246

a small number of labeled examples. It does not, 247

however, generalize well to the data not likely to 248

be present in WIT, such as MNIST (LeCun and 249

Cortes, 2010) data. 250

ALIGN (Jia et al., 2021) also uses the dual- 251

encoder architecture with a contrastive representa- 252

tion alignment objective. ALIGN uses EfficientNet 253

(Tan and Le, 2019) with global pooling as the im- 254

age encoder and BERT (Devlin et al., 2018) with 255

[CLS] token embedding as the text encoder. Both 256

encoders are trained from scratch. The major con- 257

tribution of that work is to scale up the image/text 258

pretraining dataset. To that end, they propose an 259

improvement over Conceptual Captions (Sharma 260

et al., 2018) data by disabling most of the filtering 261

and postprocessing of Conceptual Captions, un- 262

til they are left with 1.8B noisy image/text pairs. 263

ALIGN empirically shows that pretraining on the 264

large-scale noisy cross-modal data can still yield 265

strong performance on image/text matching and 266

retrieval. 267

The dual-encoder choice of the architecture may 268

be problematic. According to a Iki and Aizawa 269

(2021), the dual-encoder architectures, aside from 270

drastically increasing the number of parameters, 271

may also be detrimental for language modeling 272

performance. This may be explained by late-fusion 273

multimodal networks’ tendency to overfit due to 274

difference in per-modality optimization rates per 275

Wang et al. (2019). These models are suboptimal 276

with respect to our goals (1): semantic space, and 277

(2): multi-context capture. 278

2.2.3 Multimodal Transformer Approaches 279

Yet more recent works propose to use a shared 280

Transformer encoder for both text and image 281

modalities, as do we in S5 Checklist. We will bor- 282
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row and recombine ideas from these approaches in283

formulating our checklist in later sections.284

ViLT (Kim et al., 2021) is a Transformer encoder.285

It uses ViT (Dosovitskiy et al., 2020) weights for286

Transformer initialization. From there, it continues287

to train the model on concatenated visual and text288

embeddings. Both modality embedding sequences289

get their own learnable [class] embedding as a pre-290

fix. Following ViT, it uses a simple linear pro-291

jection for 16x16 pixel image patches to produce292

visual embeddings. It optimizes with Image Text293

Matching using encoded text [class] embedding,294

MLM on text embeddings, as well as Word Patch295

Alignment with Optimal Transport on stacked en-296

coded text embeddings to encoded visual embed-297

dings, following the Word Region Alignment ob-298

jective from UNITER (Chen et al., 2019). ViLT299

uses MS-COCO, Visual Genome, SBU Captions,300

and Conceptual Captions datasets for pretraining.301

It produces strong results on VQA (Goyal et al.,302

2017) and image retrieval (Karpathy and Fei-Fei,303

2014) tasks. It is also qualitatively shown to learn304

semantic alignment between text tokens and image305

patches.306

SimVLM (Wang et al., 2021) is a Transformer307

architecture for image-to-text tasks. It combines308

BERT (Devlin et al., 2018) and ViT (Dosovitskiy309

et al., 2020) approaches in a PrefixLM architecture310

to model both text/image and text-only data. It311

uses SentencePiece (Kudo and Richardson, 2018)312

subword tokenization for text data, and first three313

blocks of ResNet-152 for image patch embedding,314

similar to CoAtNet (Dai et al., 2021). The model315

is optimized with autoencoding loss on the prefix316

sequence of image and text, as well as autoregres-317

sive loss on the remaining text sequence. SimVLM318

uses ALIGN data for image/text pretraining and C4319

(Raffel et al., 2019) dataset for text-only examples.320

SimVLM establishes a strong performance on vi-321

sual question answering (Goyal et al., 2017), visual322

entailment (Xie et al., 2018), and visual reasoning323

(Suhr et al., 2018). SimVLM also performs bet-324

ter than other vision/language approaches on the325

GLUE (Wang et al., 2018) benchmark, and is even326

competitive with BERT, but still falls behind the327

more recent text-only models (He et al., 2020).328

DALL-E (Ramesh et al., 2021) is a massive 12B329

parameter architecture, aimed at autoregressively330

modeling text and image tokens as a single stream331

of data. It consists of a modified VQ-VAE (van den332

Oord et al., 2017) visual encoder to produce a333

32x32 grid of image tokens and an autoregressive 334

Transformer that concatenates up to 256 text em- 335

beddings with the 32x32 = 1024 image tokens. The 336

model is optimized with Expected Lowed Bound 337

loss in two stages, first by optimizing the image to- 338

ken encoder, and then learning the prior distribution 339

over text and image tokens. DALL-E also proposes 340

a novel dataset of 250M image/text pairs from the 341

Internet. A lot of engineering work is reported with 342

regard to model scale and mixed-precision training 343

stability. The model shows strong generalization 344

for combination (e.g., to display a specific text 345

within generated image) as well as text-guided im- 346

age translation, although it does struggle with zero- 347

shot performance on out-of-distribution datasets. 348

While these models do show impressive results, 349

it can be difficult to extract embeddings represent- 350

ing each modality. One possible way to do this is to 351

take an average-pooled embedding of all encoder 352

representations for the two modalities. However, 353

since the models’ representation spaces are not 354

explicitly optimized for semantic alignment, the 355

representations may suffer from the space collapse 356

issue outlined in § 2.1. These approaches do not fit 357

our goals (1): semantic space and (3): versatility. 358

3 S5 Checklist 359

In this section, we present the checklist of promis- 360

ing research directions for shared semantic space 361

multimodal learning. We will discuss the model ar- 362

chitecture, training objectives and datasets, as well 363

as specific considerations related to multimodal 364

learning with a unified encoder. We aim to em- 365

power the reader to produce cutting-edge modeling 366

results. 367

3.1 Architecture Choice 368

The first item on the checklist is the underlying 369

model architecture. Kaiser et al. (2017) find that 370

multimodal architectures benefit from parameter 371

sharing via a unified encoder. Following that, we 372

meet the goals (2): multi-context capture and (4): 373

ease of use by choosing a unified Transformer en- 374

coder with modality and relative position embed- 375

dings. The data streams are separately tokenized 376

and embedded. The input data format is as follows: 377

[CLST], t1, · · · , tL, [CLSV], v1, · · · , vN , [EOS], 378

for t1, · · · , tL - text tokens, v1, · · · , vN - visual 379

tokens, and [CLST], [CLSV] - learnable class em- 380

beddings for contrastive optimization. The embed- 381

ding and optimization procedure closely follows 382
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ViLT (Kim et al., 2021), except the visual embed-383

ding layer is not necessarily linear (more on this in384

§ 3.4.1). Following SimVLM (Wang et al., 2021),385

we use 2D relative attention (Parmar et al., 2018)386

between the image stream embeddings.387

Indeed, this S5 encoder architecture choice is388

beneficial not just for simplicity. It also lets the389

model learn cross-modal interactions at multiple390

contextual levels (different Transformer layers). It391

also alleviates overfitting issues related to potential392

difference in per-modality optimization rates asso-393

ciated with late-fusion multimodal networks (Wang394

et al., 2019). This architecture choice also has the395

advantage of preventing the model parameter count396

from getting too large.397

3.2 Training Objective398

The second item we need to check off is optimiza-
tion objective. In order to meet goal (3): versatility,
we use both image-only, text-only, and text-image
data examples in training. In order to meet goals
(1): semantic space, and (2): multi-context cap-
ture, the model optimizes for both contextual infor-
mation as well as the shared representation space
alignment. Our learning objective is as follows:

L = λLDenoise + (1− λ)LContrast

, with LDenoise being the modality-specific denois-399

ing term to capture contextual information, and400

LContrast - contrastive term to optimize the seman-401

tic representation space, with hyperparameter λ.402

Such a combination of contrastive and denoising403

terms has been used successfully in pretraining of404

TaCL (Su et al., 2021), albeit for text only. More405

details on potential denoising and contrastive task406

fusion mechanisms are in § 3.4.2. We explore addi-407

tional S5 checklist options for the two loss terms408

in more details below.409

3.2.1 Denoising Term410

When learning the contextual information from the411

data, we have several checklist options to consider412

for different modalities.413

Text-Only data has been shown to benefit from414

following denoising objectives: Masked Language415

Modeling (Devlin et al., 2018), Span Corruption416

(Joshi et al., 2019; Raffel et al., 2019), Sequence417

Permutation (Lewis et al., 2019), as well as Gap-418

Sentence Generation (Zhang et al., 2019), which419

is essentially Span Corruption directed by the420

ROUGE1-F1 (Lin, 2004) score. The expectation is421

that Span Corruption will outperform others, since422

it has been shown to do well on both generation and 423

understanding tasks (Raffel et al., 2019), and that 424

task-agnostic objective is sufficient for most cases 425

(Rothe et al., 2021), which reduces the incremen- 426

tal value offered by the GSG objective. We thus 427

select Span Corruption as the promising candidate 428

for text-only data. 429

Image-Only data has less literature, with current 430

trends (Dosovitskiy et al., 2020; Chen et al., 2021) 431

focusing on Masked Patch Prediction (MPP). MPP 432

corrupts 50% of the patch embeddings by either re- 433

placing them with a learnable [MASK] embedding 434

(80%), a random other patch embedding (10%), or 435

keeps them the same (10%). This reconstruction 436

loss mimics the MLM objective for text data. We 437

select MPP as a promising candidate. We also use 438

Span Corruption success in NLP to motivate fur- 439

ther research into masking spans of multiple image 440

patches, perhaps with more sophisticated visual 441

embedding strategies as presented in § 3.4.1. 442

Text-Image data has been shown to benefit from 443

conditional Masked Language and Patch Modeling 444

per UNITER (Chen et al., 2019). We don’t expect 445

to use Span Corruption here, since we shall remove 446

the assumption that image description must have 447

significant syntactic structure; that will allow us to 448

use large-scale noisy data for pretraining (Jia et al., 449

2021). Since we do not have class labels for image 450

patches, we use UNITER’s Masked Region Fea- 451

ture Regression (MRFR) variant of Masked Region 452

Modeling. Per UNITER and ViLT we also add a 453

Word-Region Alignment with Optimal Transport 454

objective on text embeddings in relation to image 455

embeddings, further encouraging the alignment at 456

patch/token level. 457

3.2.2 Contrastive Term 458

This term aims to optimize the Transformer 459

model’s semantic space properties by improving 460

alignment between positive examples, while in- 461

creasing distance between negative examples in 462

each batch. We overview a few checklist options 463

with regard to this objective. 464

Modality Embedding is the first choice in 465

multimodal contrastive learning. That can be 466

done either as an average-pool of all encoded 467

modality token embeddings, per SBERT (Reimers 468

and Gurevych, 2019), or as [CLSV] and [CLST] 469

embedding outputs. The modality embedding will 470

be used for calculating contrastive loss between 471

positive/negative example pairs. 472

473
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Augmentation Strategies are used to form pos-474

itive data examples. Positive text-only pairs are475

formed with Dropout, Token Deletion, and Feature476

Deletion (Yan et al., 2021). Positive image-only477

pairs are formed with Cropping and Color Distor-478

tion (Chen et al., 2020). Text-image data is already479

paired; the positive examples are then implicitly480

formed by modality transfer without any explicit481

augmentation.482

Contrastive Tension is an extensively used483

method of contrastive optimization. The NT-Xent484

(Chen et al., 2020) is used to compute the batch485

loss for unimodal pairs:486

LCUniMode = −E

[
log

exp(sim(hi,h
+
i )/τ)∑N

j=1 exp(sim(hi,h
+
j )/τ)

]
487

, with hi,h
+
i - positive pair embeddings, and τ488

- hyperprameter, N - batch size. For multimodal489

pairs, the loss is adapted (Radford et al., 2021; Jia490

et al., 2021) as follows:491

LCCrossMode = LImg2Txt + LTxt2Img492

, such that493

LImg2Txt = −E

[
log

exp(x⊤
i yi/σ)∑N

j=1 exp(x
⊤
i yj/σ)

]
494

495

LTxt2Img = −E

[
log

exp(y⊤
i xi/σ)∑N

j=1 exp(y
⊤
i xj/σ)

]
496

, with xi,yi - matching text/image pairs, σ - hyper-497

parameter, and N - batch size.498

Alignment and Uniformity metrics can also be
directly used to optimize the semantic embedding
space per Wang and Isola (2020). Thus, we also
check the following contrastive loss formulation:

LContrast = αLAlign + βLUniform

, with α, β - hyperparameters, and

LAlign = E[
∥∥hi − h+

i

∥∥2
2
]

LUniform = logE[exp(−t ∥hi − hj∥22)], t > 0

, with hi,h
+
i - embeddings for positive examples,499

t - hyperparameter. This way, LAlign directly mini-500

mizes l2 distance between matching examples en-501

suring alignment, and LUniform reduces the Gaus-502

sian potential of the batch ensuring uniformity503

(Wang and Isola, 2020).504

Dataset Scale
Objects365 (Shao et al., 2019) 2M
ImageNet-21K (Ridnik et al., 2021) 14.2M
Graph-RISE (Juan et al., 2019) 260M
JFT-300M (Sun et al., 2017) 300M
3.5B Instagram (Mahajan et al., 2018) 3.5B
MS-COCO (Lin et al., 2014) 120K
SBU Captions (Ordonez et al., 2011) 1M
Conceptual Captions (Sharma et al., 2018) 3.3M
Conceptual 12M (Changpinyo et al., 2021) 12M
DALL-E (Ramesh et al., 2021) 250M
WebImageText (Radford et al., 2021) 400M
ALIGN (Jia et al., 2021) 1.8B

Table 1: A summary of the datasets from the literature
for image-only (top portion) and text-image (bottom
portion) tasks. Note that Conceptual 12M, DALL-E,
and ALIGN are all supersets of Conceptual Captions.
Scale denotes the number of examples.

3.3 Training Data 505

To optimize for goals (1): semantic space and (3): 506

versatility, we check using both single and multi- 507

modal data examples in pretraining. We expect 508

the pretraining dataset to be large enough to avoid 509

overfitting, but also unbiased enough to allow for a 510

generalizable semantic embedding space. 511

For text-only data, C4 (Raffel et al., 2019) has 512

been the prevalent choice. However, the C4 data, 513

as it was originally presented, contains multiple 514

levels of bias (Dodge et al., 2021). For one, it has 515

an ethnic negative sentiment bias (most notably 516

against Arab identities), which may lead to direct 517

negative bias against ethnic identities on down- 518

stream tasks. C4 also contains exclusion bias based 519

on race (against Black and Hispanic authors) and 520

sexual identity (against LGBTQ+ communities), 521

brought on by the block-word filtering applied to 522

Common Crawl data. This exclusion is a form 523

of allocation harms, and may exacerbate the cur- 524

rent racial inequality as well as stigmatization of 525

LGBTQ+ identities, depriving those groups of ben- 526

efits of technology and handicapping real-world 527

downstream performance of the model. 528

While subdomain sampling and filter relaxation 529

can be useful for de-biasing C4, those approaches 530

are not sufficient to meet the task by itself per 531

Dodge et al. (2021). This issue, although unknown, 532

may also be present in image-only and text-image 533

datasets, summarized in Table 1. To train an unbi- 534

ased S5 encoder and, more importantly, to ensure 535
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an equitable distribution of technological benefits536

in society, we urge the need for additional data537

cleaning research to produce unbiased large-scale538

pretraining corpora.539

3.4 Special Considerations540

Along with introducing multiple data modes and a541

mix of denoising and contrastive objectives, there542

will be additional challenges associated with the543

work. Here, we identify a checklist of choices544

related to visual embedding construction and multi-545

domain multi-task optimization.546

3.4.1 Visual Embeddings547

In the previous vision/language works, visual em-548

beddings were constructed by encoding the result549

of an object detector. For our checklist, we opti-550

mize for goals (3): versatility and (4): ease of use551

by moving away from object detectors. We discuss552

the potential embedding approaches below, in the553

order of increasing complexity.554

Linear Projection is the most straightforward555

way to obtain image pixel patch embeddings (Doso-556

vitskiy et al., 2020; Kim et al., 2021; Chen et al.,557

2021). This results in quicker image embedding558

computation, and an overall increased inference559

performance. This may be a viable option, but560

it may not capture the necessary image contexts.561

Also, a linear patch embedding layer may lead to562

subtle but detrimental instability and heightened563

sensitivity to optimizer choice during training; that564

can be alleviated, but not completely resolved for565

large learning rates, with freezing the linear visual566

patch embedding layer (Chen et al., 2021).567

Convolutional Layers is another choice of im-568

age encoder. This encoder could be the first 3569

layers of a ResNet (He et al., 2016), per Wang et al.570

(2021), or 3 MBConv (Sandler et al., 2018) layers,571

per Dai et al. (2021). This approach will allow the572

model to leverage the translation equivalence prop-573

erty of convolutional embeddings. This is shown574

to improve generalization under datasets of limited575

size (Mohamed et al., 2020), as well as increasing576

training stability and peak performance of vision577

transformers (Xiao et al., 2021).578

VQ-VAE (van den Oord et al., 2017) visual em-579

beddings rely on learning a codebook of discrete580

tokens for each image patch, using an encoder, a581

quantizer, and a decoder. The codebook is opti-582

mized by minimizing the original image reconstruc-583

tion loss from decoding the quantized representa-584

tions. DALL-E (Ramesh et al., 2021) learns such585

codebook with pixel-wise reconstruction loss on a 586

very large dataset. PeCo (Dong et al., 2021) instead 587

demonstrates effectiveness of perceptual image re- 588

construction loss on a much smaller ImageNet-1K 589

(Deng et al., 2009) data, using ViT-B as per Chen 590

et al. (2021) to minimize the l2 distance of original 591

versus reconstructed image representations at dif- 592

ferent layers of the ViT-B model. Such perceptual 593

codebook tokens are demonstrated to carry high 594

semantic meaning, as opposed to the low-level con- 595

tents learned with pixel-wise reconstruction loss. 596

3.4.2 Multi-Domain Multi-Task Optimization 597

The proposed model aims to optimize both denois- 598

ing and contrastive loss functions simultaneously, 599

a multi-task learning (MTL) problem as defined by 600

Ruder (2017). Although a long-standing paradigm, 601

the static gradient weighting mentioned in § 3.2 602

is not necessarily optimal, due to dynamic nature 603

of the multimodal gradient imbalance during train- 604

ing (Wang et al., 2019). Another concern is the 605

diversity of data domains we aim to optimize: text- 606

only, image-only, and text/image, as motivated by 607

goal (3): versatility. We will use this section to 608

discuss alternative optimization strategies for our 609

multi-task and multi-domain problem. 610

Cascaded Learning is an MTL strategy where 611

each model layer is optimized for a distinct, pro- 612

gressively more complex task. Søgaard and Gold- 613

berg (2016) show that syntactic chunking su- 614

pervised at higher layers of BiLSTM benefits 615

from POS tagging supervised at the lower layers. 616

Hashimoto et al. (2016) extend that result to more 617

tasks and show that both low- and high- level tasks 618

benefit from cascaded learning at the corresponding 619

layers. This strategy may be especially applicable 620

to Transformer models, as they tend to learn in- 621

creasingly complex structural properties of both 622

text (Jawahar et al., 2019) and image (Raghu et al., 623

2021) data in deeper layers. However, this strategy 624

also requires domain expertise to devise the correct 625

hierarchy of tasks in multimodal context. 626

Dynamic Gradient Reweighting is an MTL 627

strategy where weights for linear combination of 628

gradients change dynamically throughout the train- 629

ing process. Kendall et al. (2017) propose an 630

uncertainty-based method to assign lower weights 631

to noisier task gradients. Since it is not always 632

clear which task is primary and which is auxil- 633

iary (as is the case with our objective), Sener and 634

Koltun (2018) propose to instead find a Pareto- 635

optimal weighting of gradients, such that no other 636
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weighting improves all tasks. In multimodal con-637

text, Wang et al. (2019) propose introducing and638

updating an overfitting prior to model optimiza-639

tion. They do so by training for several iterations,640

estimating the overfitting on each modality, and641

then re-training the iterations this time using the642

overfitting prior to weigh the gradient combination.643

Differentiable Data Selection is a data re-644

sampling approach to overcome data imbalance.645

The general paradigm is to use a held-out set646

to train and update a scorer network, which se-647

lects the data to be sampled for main model train-648

ing. The main model and scorer are trained with649

bilevel optimization. Reinforcement learning is650

used to update the scorer weights. Wang et al.651

(2020b) propose a scorer update reward using co-652

sine similarity of main model’s gradients on held-653

out set. Wu et al. (2021) expose a flaw in gradient654

similarity approach, as it breaks down on highly655

self-correlated domains, and instead propose an656

uncertainty-based scorer reward, achieving perfor-657

mance improvements on multilingual and multi-658

domain tasks. This strategy can be particularly659

useful to determine the batch data composition for660

our multi-modal task.661

4 S5 Evaluation662

S5 Framework aims to produce an encoder opti-663

mized for an aligned and uniform semantic space.664

Cosine similarity, measuring representation prox-665

imity in linear space, then directly measures seman-666

tic alignment as well as reflects embedding inter-667

pretability. Thus, a strong performance on zero-668

shot tasks with cosine similarity is a direct success669

criterion of this work. We will review zero-shot670

evaluation methods from the multimodal literature671

and further adapt them to be suitable for cosine672

similarity, thus proposing novel tasks.673

Zero-Shot Retrieval is used by ViLT (Kim et al.,674

2021) on MSCOCO and Flickr30k (Karpathy and675

Fei-Fei, 2014). We further constrain the task to676

formulate a novel experiment: interpretable zero-677

shot retrieval with Approximate Nearest Neighbor678

(ANN) search (Andoni et al., 2018) and cosine sim-679

ilarity. Without any additional training, we use680

ANN + cosine similarity to evaluate multimodal681

retrieval with S5 embeddings. This task better sim-682

ulates the real-world applications of the system:683

both ANN and cosine similarity are common re-684

trieval optimizations used in the industry, and the685

domain-specific data is often in short supply. Co-686

sine similarity also allows us to perform retrieval 687

in an interpretable way. 688

Zero-Shot Cross-Modal Transfer is used by 689

SimVLM (Wang et al., 2021) on SNLI-VE (Xie 690

et al., 2018). We further constrain the task by train- 691

ing an MLP layer on top of the frozen S5 encoder 692

on text-only NLI data. This way, if our text and im- 693

age embeddings are properly aligned in the shared 694

space, we should achieve zero-shot transfer by eval- 695

uating the model on text-image entailment data 696

without a drop in performance. 697

Zero-Shot Semantic Similarity is used by 698

Reimers and Gurevych (2019), Gao et al. (2021), 699

and Yan et al. (2021) to evaluate performance 700

of self-supervised language training on SentEval 701

(Conneau and Kiela, 2018) datasets. We propose to 702

crowdsource a novel text/image dataset comprised 703

of text-image pairs with semantic similarity score 704

on the scale 0-5. Following Reimers and Gurevych 705

(2019), we use Spearman coefficient to calculate 706

the correlation between cosine similarity of data 707

embeddings and ground truth similarity score. As- 708

suming an equivalent data quality, we compare 709

results to similar zero-shot evaluation on SentE- 710

val, aiming to not see a significant performance 711

discrepancy on uni-modal versus cross-modal data. 712

5 Conclusion 713

Textual concept representation, as robust as it may 714

become from Web-scale data, is still incomplete on 715

its own. Only via incorporating mutlimodal infor- 716

mation can machine intelligence advance towards 717

human intelligence (Bisk et al., 2020), the ultimate 718

goal of our work. In this review, we present a 719

framework consisting of the necessary background 720

literature, an informed research decisions checklist, 721

and a few novel zero-shot experiments aimed at 722

improving S5 multimodal learning. We hope this 723

work is useful in cultivating interest regarding the 724

promising multi-modal learning directions. 725

A limitation of our unified-encoder approach is 726

the computation cost associated with increasing 727

input lengths and batch sizes. The input sequence 728

length increase will come from concatenating the 729

per-modality tokens. The batch size increase will 730

come from contrastive learning objective; current 731

Transformer vision/language models use batch size 732

of 4,096 (Wang et al., 2021; Kim et al., 2021). 733

These issues warrant further exploration of efficient 734

attention mechanisms (Tay et al., 2020). 735
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