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Abstract

In this review, we aim to inspire research into
Self-Supervised Shared Semantic Space (S5)
multimodal learning problems. We equip non-
expert researchers with a framework of in-
formed modeling decisions via an extensive
literature review, an actionable modeling check-
list, as well as a series of novel zero-shot eval-
uation tasks. The core idea for our S5 check-
list lies in learning contextual multimodal in-
teractions at various granularity levels via a
shared Transformer encoder with a denoising
loss term, which is also regularized by a con-
trastive loss term to induce a semantic align-
ment prior on the contextual embedding space.
Essentially, we aim to model human concept
understanding and thus learn to “put a name to
a face”. This ultimately enables interpretable
zero-shot S5 generalization on a variety of
novel downstream tasks. In summary, this re-
view provides sufficient background and ac-
tionable strategies for training cutting-edge S5
multimodal networks.

1 Introduction

There has been a lot of recent advancement in
Transformer (Vaswani et al., 2017) architectures
for language/vision fusion tasks (Khan et al., 2021).
Transformer architectures can implicitly model in-
teractions between visual and textual entities via
the attention mechanism (Li et al., 2019b,a; Chen
etal., 2019; Li et al., 2020b).

Transformer-based architectures, however, have
an inherent property of collapsed representation
spaces. Some recent language/vision fusion mod-
els address that with self-supervised contrastive
pretraining objectives (Radford et al., 2021; Jia
et al., 2021). Their most notable limitation is that
the dual-encoder architecture prevents them from
modeling local context interactions at multiple lev-
els of abstraction.

In another line of work, some models can learn
semantic embeddings aligned across modalities at

various contextual levels (Li et al., 2019a; Chen
et al., 2019), but depend on object detection for
visual embedding. That creates additional com-
putation overhead, as well as out-of-domain gen-
eralization issues, given that object detectors use
human-annotated data.

Some Transformer architectures (Kim et al.,
2021; Wang et al., 2021; Ramesh et al., 2021) take
the best of both worlds, by using self-supervised
multimodal objectives for large-scale pretraining,
but neglect the semantic space collapse resulting
from Transformer architecture. That makes their
semantic embeddings difficult to use on a broad
range of tasks without extensive finetuning.

In this work, we review the necessary back-
ground literature for a non-expert research prac-
titioner to gain understanding of recent multimodal
practices and their shortcomings. We also pro-
pose a checklist of informed decisions for train-
ing S5 encoder that addresses all of the outlined
issues. We additionally propose novel experiments
to prove effectiveness of S5 models in zero-shot
settings. Thus, we equip the reader with actionable
self-supervised multimodal training strategies for
cutting-edge zero-shot generalization.

More specifically, our framework aims to pro-
duce and evaluate a model fulfilling the following
goals, in the order of importance:

1. encode image and text into a well-aligned se-
mantic representation space, also optimized
for uniformity;

2. capture both global and local context seman-
tic interactions (i.e., interactions on both im-
age/sentence and patch/token levels);

3. adapt well to both single and multiple modal-
ity downstream tasks in a zero-shot setting;

4. be easy to use in terms of both architecture
versatility and inference computation require-
ment.



2 S5 Background

In this section, we survey the recent literature re-
lated to Transformer model embedding collapse
as well as multimodal representation learning ap-
proaches. We aim to highlight the recent common
practices and their limitations, while introducing
the reader to the field.

2.1 Transformer Representation Collapse

Large-scale text Transformers are typically opti-
mized with language modeling likelihood loss, ei-
ther autoencoding, e.g. BERT (Devlin et al., 2018),
or autoregressive, e.g. GPT2 (Radford et al., 2019).
Then, for any given hidden state, the ground truth
token embedding is pushed toward that hidden
state, while all other token embeddings are pushed
away from it. Thus, every training example in ef-
fect becomes a negative example for the tokens that
are not ground truth. Given the Zipf distribution of
words in natural languages, majority of the words
will appear with a low term frequency. As a result,
most of the representations are pushed in a similar
direction in the embedding space and degrade into
a narrow cone (Gao et al., 2019). The degeneration
happens when the convex hull of the representa-
tions does not contain the origin. Gao et al. (2019)
theoretically shows that this does tend to be the case
when layer normalization is used, which happens a
lot in Transformers. This way, words with similar
frequency are likely to end up close to each other
in the representation space, despite not necessarily
having similar meaning.

Empirical studies of large-scale Transformers
have corroborated this, finding that the singular
values of their embedding spaces tend to drop off
rapidly, with only first few components account-
ing for majority of the embedding space variance
(Wang et al., 2020a). It has also been shown that
BERT embeddings are not uniformly distributed,
as they have average cosine similarity greater than
0 (Ethayarajh, 2019).

More than that, it has been empirically shown
that word frequency biases BERT embedding space
(Li et al., 2020a), as mean [o-norm of BERT em-
beddings is correlated with word frequency. The
high frequency words are arranged closer to both
the origin and each other than the lower-frequency
words. That creates "holes" in the outer edges of
the embedding space, where semantic meaning is
defined poorly.

Semantic embedding spaces can be described in

terms of alignment and uniformity metrics (Wang
and Isola, 2020). Alignment is the quality of sim-
ilar examples mapped nearby to each other in the
embedding space, whereas uniformity assesses how
evenly the representations are distributed on a unit
hypershpere. Language Transformer embeddings,
then, suffer from excessive alignment: unrelated
terms are close to each other in space just due to
term frequency.

Contrastive learning objective optimizes asymp-
totically for the alignment and uniformity of the
embedding space (Wang and Isola, 2020). It has
been empirically shown effective for both textual
(Gao et al., 2021; Yan et al., 2021; Su et al., 2021)
and visual (Chen et al., 2020) representation learn-
ing. Contrastive tension loss optimizes for the sim-
ilarity of representations of two augmented views
of the same data (positive examples), while increas-
ing their distance with the representations of other
data (negative examples) in the training batch (Gao
et al., 2021). Even without any augmentation on
positive examples — without optimizing for addi-
tional alignment — contrastive loss can still improve
BERT embedding space by making it more uniform
(Yan et al., 2021). While previous approaches (Gao
et al., 2021; Yan et al., 2021) use contrastive learn-
ing as a finetuning objective, TaCL (Su et al., 2021)
successfully uses token-wise contrastive learning
as an additional pretraining objective together with
Masked Language Modeling (MLM) and Next Sen-
tence Prediction (NSP) denoising objectives (De-
vlin et al., 2018).

2.2 Advances in Multi-modal Learning

Here, we discuss the recent advances made in
vision/language pretraining. This section will
address object detection based approaches, con-
trastive embedding approaches, as well as current
mutlimodal unified Transformers. We make a spe-
cial effort to identify the existing limitations in
those approaches, with respect to our goals.

2.2.1 Object Detection Based Approaches

A lot of success in Transformer pretraining for lan-
guage/vision fusion relates to object detection vi-
sual embedding approaches. They typically use
an object detector, like Faster R-CNN (Ren et al.,
2015), trained on Visual Genome data (Krishna
et al., 2016).

This line of work can be traced back to Unicoder-
VL (Li et al., 2019a), which pretrains a large-
scale denoising autoencoder using Masked Lan-



guage Modeling, Masked Object Classification,
and Visual-Linguistic Matching objectives, on the
Conceptual Captions (Sharma et al., 2018) and
SBU Captions (Ordonez et al., 2011) datasets.

The Unified Vision-Language Pre-training
(VLP) (Zhou et al., 2019) improves on that by ac-
commodating a decoder in the same Transformer
stack by the means of a masking mechanism remi-
niscent to that of UniLM (Dong et al., 2019), thus
supporting both discriminative and generative ap-
plications.

UNITER (Chen et al., 2019), then, adds MS-
COCO (Lin et al., 2014) and Visual Genome (Kr-
ishna et al., 2016) to the pretraining, as well as
devising novel optimization objectives, including
Masked Language and Region Modeling, condi-
tioned on the opposite modality (i.e., if text is
corrupted, the image is left intact and vice versa).
UNITER also uses Visual-Linguistic Matching and
a novel Word-Region Alignment objective with
Optimal Transport, which explicitly encourages
fine-grained alignment between words and image
regions during pretraining.

Oscar (Li et al., 2020b) uses the object detec-
tor text output to model each image/text pair in
terms of [w, g, v] triplets, with w - textual modality
word token embeddings, g - object detector’s tex-
tual class tag embeddings, and v - object detector’s
vision region embeddings. VinVL (Zhang et al.,
2021) improves upon that with a more robust object
detector and a modified contrastive loss.

Despite the impressive improvements made in
this area, the models are still constrained by us-
ing an explicit object detection model, trained
on a human-labeled data. This limits the object
detector’s zero-shot generalizability and thus un-
dermines zero-shot performance of the whole vi-
sion/language model. Another constraint on this
is the inference costs of object detection, in terms
of both difficulty of use and computation overhead.
These architectures fall short on our goals (3): ver-
satility and (4): ease of use.

2.2.2 Contrastive Embedding Approaches

A more recent line of work in text/image fusion
does away with the object detector, instead opting
to split text and image modalities into separate en-
coders. The representations of the two encoders are
then optimized contrastively in a shared embedding
space at the final layers.

CLIP (Radford et al., 2021) is a dual-encoder
image/text architecture. It uses ResNet-50 (He

et al.,, 2016) or ViT-L/14@336px (Dosovitskiy
et al., 2020) as image encoder and GPT-2 (Rad-
ford et al., 2019) style text encoder. Both encoders
then project the modality embeddings into a com-
mon representation space via a linear projection
layer. The model is initialized randomly and then
trained contrastively by optimizing the similarity of
the corresponding image/text representations and
penalizing the similarity of the mismatching ones
within each batch. CLIP also uses a novel Weblm-
ageText (WIT) dataset, consisting of 400M (image,
text) pairs collected from the Internet, which has
a similar total word count to the GPT-2 WebText
(Radford et al., 2019) dataset. CLIP showcases a
strong zero-shot performance on the datasets with
a small number of labeled examples. It does not,
however, generalize well to the data not likely to
be present in WIT, such as MNIST (LeCun and
Cortes, 2010) data.

ALIGN (Jia et al., 2021) also uses the dual-
encoder architecture with a contrastive representa-
tion alignment objective. ALIGN uses EfficientNet
(Tan and Le, 2019) with global pooling as the im-
age encoder and BERT (Devlin et al., 2018) with
[CLS] token embedding as the text encoder. Both
encoders are trained from scratch. The major con-
tribution of that work is to scale up the image/text
pretraining dataset. To that end, they propose an
improvement over Conceptual Captions (Sharma
et al., 2018) data by disabling most of the filtering
and postprocessing of Conceptual Captions, un-
til they are left with 1.8B noisy image/text pairs.
ALIGN empirically shows that pretraining on the
large-scale noisy cross-modal data can still yield
strong performance on image/text matching and
retrieval.

The dual-encoder choice of the architecture may
be problematic. According to a Iki and Aizawa
(2021), the dual-encoder architectures, aside from
drastically increasing the number of parameters,
may also be detrimental for language modeling
performance. This may be explained by late-fusion
multimodal networks’ tendency to overfit due to
difference in per-modality optimization rates per
Wang et al. (2019). These models are suboptimal
with respect to our goals (1): semantic space, and
(2): multi-context capture.

2.2.3 Multimodal Transformer Approaches

Yet more recent works propose to use a shared
Transformer encoder for both text and image
modalities, as do we in S5 Checklist. We will bor-



row and recombine ideas from these approaches in
formulating our checklist in later sections.

ViLT (Kim et al., 2021) is a Transformer encoder.
It uses ViT (Dosovitskiy et al., 2020) weights for
Transformer initialization. From there, it continues
to train the model on concatenated visual and text
embeddings. Both modality embedding sequences
get their own learnable [class] embedding as a pre-
fix. Following ViT, it uses a simple linear pro-
jection for 16x16 pixel image patches to produce
visual embeddings. It optimizes with Image Text
Matching using encoded text [class] embedding,
MLM on text embeddings, as well as Word Patch
Alignment with Optimal Transport on stacked en-
coded text embeddings to encoded visual embed-
dings, following the Word Region Alignment ob-
jective from UNITER (Chen et al., 2019). ViLT
uses MS-COCO, Visual Genome, SBU Captions,
and Conceptual Captions datasets for pretraining.
It produces strong results on VQA (Goyal et al.,
2017) and image retrieval (Karpathy and Fei-Fei,
2014) tasks. It is also qualitatively shown to learn
semantic alignment between text tokens and image
patches.

SimVLM (Wang et al., 2021) is a Transformer
architecture for image-to-text tasks. It combines
BERT (Devlin et al., 2018) and ViT (Dosovitskiy
et al., 2020) approaches in a PrefixLM architecture
to model both text/image and text-only data. It
uses SentencePiece (Kudo and Richardson, 2018)
subword tokenization for text data, and first three
blocks of ResNet-152 for image patch embedding,
similar to CoAtNet (Dai et al., 2021). The model
is optimized with autoencoding loss on the prefix
sequence of image and text, as well as autoregres-
sive loss on the remaining text sequence. SimVLM
uses ALIGN data for image/text pretraining and C4
(Raffel et al., 2019) dataset for text-only examples.
SimVLM establishes a strong performance on vi-
sual question answering (Goyal et al., 2017), visual
entailment (Xie et al., 2018), and visual reasoning
(Suhr et al., 2018). SimVLM also performs bet-
ter than other vision/language approaches on the
GLUE (Wang et al., 2018) benchmark, and is even
competitive with BERT, but still falls behind the
more recent text-only models (He et al., 2020).

DALL-E (Ramesh et al., 2021) is a massive 12B
parameter architecture, aimed at autoregressively
modeling text and image tokens as a single stream
of data. It consists of a modified VQ-VAE (van den
Oord et al., 2017) visual encoder to produce a

32x32 grid of image tokens and an autoregressive
Transformer that concatenates up to 256 text em-
beddings with the 32x32 = 1024 image tokens. The
model is optimized with Expected Lowed Bound
loss in two stages, first by optimizing the image to-
ken encoder, and then learning the prior distribution
over text and image tokens. DALL-E also proposes
a novel dataset of 250M image/text pairs from the
Internet. A lot of engineering work is reported with
regard to model scale and mixed-precision training
stability. The model shows strong generalization
for combination (e.g., to display a specific text
within generated image) as well as text-guided im-
age translation, although it does struggle with zero-
shot performance on out-of-distribution datasets.
While these models do show impressive results,
it can be difficult to extract embeddings represent-
ing each modality. One possible way to do this is to
take an average-pooled embedding of all encoder
representations for the two modalities. However,
since the models’ representation spaces are not
explicitly optimized for semantic alignment, the
representations may suffer from the space collapse
issue outlined in § 2.1. These approaches do not fit
our goals (1): semantic space and (3): versatility.

3 S5 ChecKlist

In this section, we present the checklist of promis-
ing research directions for shared semantic space
multimodal learning. We will discuss the model ar-
chitecture, training objectives and datasets, as well
as specific considerations related to multimodal
learning with a unified encoder. We aim to em-
power the reader to produce cutting-edge modeling
results.

3.1 Architecture Choice

The first item on the checklist is the underlying
model architecture. Kaiser et al. (2017) find that
multimodal architectures benefit from parameter
sharing via a unified encoder. Following that, we
meet the goals (2): multi-context capture and (4):
ease of use by choosing a unified Transformer en-
coder with modality and relative position embed-
dings. The data streams are separately tokenized
and embedded. The input data format is as follows:
[CLST], t1, - - -, tr, [CLSV], vy, - - -, vn, [EOS],
for t1,--- ,tr - text tokens, vy,--- ,vn - visual
tokens, and [CLST], [CLSV] - learnable class em-
beddings for contrastive optimization. The embed-
ding and optimization procedure closely follows



ViLT (Kim et al., 2021), except the visual embed-
ding layer is not necessarily linear (more on this in
§ 3.4.1). Following SimVLM (Wang et al., 2021),
we use 2D relative attention (Parmar et al., 2018)
between the image stream embeddings.

Indeed, this S5 encoder architecture choice is
beneficial not just for simplicity. It also lets the
model learn cross-modal interactions at multiple
contextual levels (different Transformer layers). It
also alleviates overfitting issues related to potential
difference in per-modality optimization rates asso-
ciated with late-fusion multimodal networks (Wang
et al., 2019). This architecture choice also has the
advantage of preventing the model parameter count
from getting too large.

3.2 Training Objective

The second item we need to check off is optimiza-
tion objective. In order to meet goal (3): versatility,
we use both image-only, text-only, and text-image
data examples in training. In order to meet goals
(1): semantic space, and (2): multi-context cap-
ture, the model optimizes for both contextual infor-
mation as well as the shared representation space
alignment. Our learning objective is as follows:

L= )\ACDenoise + (1 - )\)EC(mtrast

, With £ penoise being the modality-specific denois-
ing term to capture contextual information, and
LContrast - contrastive term to optimize the seman-
tic representation space, with hyperparameter \.
Such a combination of contrastive and denoising
terms has been used successfully in pretraining of
TaCL (Su et al., 2021), albeit for text only. More
details on potential denoising and contrastive task
fusion mechanisms are in § 3.4.2. We explore addi-
tional S5 checklist options for the two loss terms
in more details below.

3.2.1 Denoising Term

When learning the contextual information from the
data, we have several checklist options to consider
for different modalities.

Text-Only data has been shown to benefit from
following denoising objectives: Masked Language
Modeling (Devlin et al., 2018), Span Corruption
(Joshi et al., 2019; Raffel et al., 2019), Sequence
Permutation (Lewis et al., 2019), as well as Gap-
Sentence Generation (Zhang et al., 2019), which
is essentially Span Corruption directed by the
ROUGEI1-F1 (Lin, 2004) score. The expectation is
that Span Corruption will outperform others, since

it has been shown to do well on both generation and
understanding tasks (Raffel et al., 2019), and that
task-agnostic objective is sufficient for most cases
(Rothe et al., 2021), which reduces the incremen-
tal value offered by the GSG objective. We thus
select Span Corruption as the promising candidate
for text-only data.

Image-Only data has less literature, with current
trends (Dosovitskiy et al., 2020; Chen et al., 2021)
focusing on Masked Patch Prediction (MPP). MPP
corrupts 50% of the patch embeddings by either re-
placing them with a learnable [MASK] embedding
(80%), a random other patch embedding (10%), or
keeps them the same (10%). This reconstruction
loss mimics the MLM objective for text data. We
select MPP as a promising candidate. We also use
Span Corruption success in NLP to motivate fur-
ther research into masking spans of multiple image
patches, perhaps with more sophisticated visual
embedding strategies as presented in § 3.4.1.

Text-Image data has been shown to benefit from
conditional Masked Language and Patch Modeling
per UNITER (Chen et al., 2019). We don’t expect
to use Span Corruption here, since we shall remove
the assumption that image description must have
significant syntactic structure; that will allow us to
use large-scale noisy data for pretraining (Jia et al.,
2021). Since we do not have class labels for image
patches, we use UNITER’s Masked Region Fea-
ture Regression (MRFR) variant of Masked Region
Modeling. Per UNITER and ViLT we also add a
Word-Region Alignment with Optimal Transport
objective on text embeddings in relation to image
embeddings, further encouraging the alignment at
patch/token level.

3.2.2 Contrastive Term

This term aims to optimize the Transformer
model’s semantic space properties by improving
alignment between positive examples, while in-
creasing distance between negative examples in
each batch. We overview a few checklist options
with regard to this objective.

Modality Embedding is the first choice in
multimodal contrastive learning. That can be
done either as an average-pool of all encoded
modality token embeddings, per SBERT (Reimers
and Gurevych, 2019), or as [CLSV] and [CLST]
embedding outputs. The modality embedding will
be used for calculating contrastive loss between
positive/negative example pairs.



Augmentation Strategies are used to form pos-
itive data examples. Positive text-only pairs are
formed with Dropout, Token Deletion, and Feature
Deletion (Yan et al., 2021). Positive image-only
pairs are formed with Cropping and Color Distor-
tion (Chen et al., 2020). Text-image data is already
paired; the positive examples are then implicitly
formed by modality transfer without any explicit
augmentation.

Contrastive Tension is an extensively used
method of contrastive optimization. The NT-Xent
(Chen et al., 2020) is used to compute the batch
loss for unimodal pairs:

exp(sim(h;,

£CUm'Mode =-E log N ( ( )/ )
=1 exp(sim(hi, h ) /7)

, with h;, hj - positive pair embeddings, and 7

- hyperprameter, IV - batch size. For multimodal
pairs, the loss is adapted (Radford et al., 2021; Jia
et al., 2021) as follows:

ECC’rossMode = ‘C'ImgQT;L’t + ET;ttQImg

, such that
[ T
exp(x,; yi/o
L[mgQT:pt = -K log N ( : lT/ )
2 j=1 exp(@; Yj/0) |
i T
exp(y, x;/o
£T:ct21mg =-KE log N ( : 7:|—/ )
Zj:l exp(y; ©;/0) |
, with x;, y; - matching text/image pairs, o - hyper-

parameter, and N - batch size.

Alignment and Uniformity metrics can also be
directly used to optimize the semantic embedding
space per Wang and Isola (2020). Thus, we also
check the following contrastive loss formulation:

Lcontrast = aLAlign + BEUmfm"m

, with a, 8 - hyperparameters, and

2

L atign = E[th - h’j—HQ]
EUniform = IOgE[eXp(_t th - hJHg)L t>0
, with h;, h;L - embeddings for positive examples,

t - hyperparameter. This way, £ 4; ¢y, directly mini-
mizes [o distance between matching examples en-
suring alignment, and L7y form reduces the Gaus-
sian potential of the batch ensuring uniformity
(Wang and Isola, 2020).

Dataset Scale
Objects365 (Shao et al., 2019) 2M
ImageNet-21K (Ridnik et al., 2021) 14.2M
Graph-RISE (Juan et al., 2019) 260M
JFT-300M (Sun et al., 2017) 300M
3.5B Instagram (Mahajan et al., 2018) 3.5B
MS-COCO (Lin et al., 2014) 120K
SBU Captions (Ordonez et al., 2011) 1M
Conceptual Captions (Sharma et al., 2018) 3.3M
Conceptual 12M (Changpinyo et al., 2021) 12M
DALL-E (Ramesh et al., 2021) 250M
WeblmageText (Radford et al., 2021) 400M
ALIGN (Jia et al., 2021) 1.8B

Table 1: A summary of the datasets from the literature
for image-only (top portion) and text-image (bottom
portion) tasks. Note that Conceptual 12M, DALL-E,
and ALIGN are all supersets of Conceptual Captions.
Scale denotes the number of examples.

3.3 Training Data

To optimize for goals (1): semantic space and (3):
versatility, we check using both single and multi-
modal data examples in pretraining. We expect
the pretraining dataset to be large enough to avoid
overfitting, but also unbiased enough to allow for a
generalizable semantic embedding space.

For text-only data, C4 (Raffel et al., 2019) has
been the prevalent choice. However, the C4 data,
as it was originally presented, contains multiple
levels of bias (Dodge et al., 2021). For one, it has
an ethnic negative sentiment bias (most notably
against Arab identities), which may lead to direct
negative bias against ethnic identities on down-
stream tasks. C4 also contains exclusion bias based
on race (against Black and Hispanic authors) and
sexual identity (against LGBTQ+ communities),
brought on by the block-word filtering applied to
Common Crawl data. This exclusion is a form
of allocation harms, and may exacerbate the cur-
rent racial inequality as well as stigmatization of
LGBTQ+ identities, depriving those groups of ben-
efits of technology and handicapping real-world
downstream performance of the model.

While subdomain sampling and filter relaxation
can be useful for de-biasing C4, those approaches
are not sufficient to meet the task by itself per
Dodge et al. (2021). This issue, although unknown,
may also be present in image-only and text-image
datasets, summarized in Table 1. To train an unbi-
ased S5 encoder and, more importantly, to ensure



an equitable distribution of technological benefits
in society, we urge the need for additional data
cleaning research to produce unbiased large-scale
pretraining corpora.

3.4 Special Considerations

Along with introducing multiple data modes and a
mix of denoising and contrastive objectives, there
will be additional challenges associated with the
work. Here, we identify a checklist of choices
related to visual embedding construction and multi-
domain multi-task optimization.

3.4.1 Visual Embeddings

In the previous vision/language works, visual em-
beddings were constructed by encoding the result
of an object detector. For our checklist, we opti-
mize for goals (3): versatility and (4): ease of use
by moving away from object detectors. We discuss
the potential embedding approaches below, in the
order of increasing complexity.

Linear Projection is the most straightforward
way to obtain image pixel patch embeddings (Doso-
vitskiy et al., 2020; Kim et al., 2021; Chen et al.,
2021). This results in quicker image embedding
computation, and an overall increased inference
performance. This may be a viable option, but
it may not capture the necessary image contexts.
Also, a linear patch embedding layer may lead to
subtle but detrimental instability and heightened
sensitivity to optimizer choice during training; that
can be alleviated, but not completely resolved for
large learning rates, with freezing the linear visual
patch embedding layer (Chen et al., 2021).

Convolutional Layers is another choice of im-
age encoder. This encoder could be the first 3
layers of a ResNet (He et al., 2016), per Wang et al.
(2021), or 3 MBConv (Sandler et al., 2018) layers,
per Dai et al. (2021). This approach will allow the
model to leverage the translation equivalence prop-
erty of convolutional embeddings. This is shown
to improve generalization under datasets of limited
size (Mohamed et al., 2020), as well as increasing
training stability and peak performance of vision
transformers (Xiao et al., 2021).

VQ-VAE (van den Oord et al., 2017) visual em-
beddings rely on learning a codebook of discrete
tokens for each image patch, using an encoder, a
quantizer, and a decoder. The codebook is opti-
mized by minimizing the original image reconstruc-
tion loss from decoding the quantized representa-
tions. DALL-E (Ramesh et al., 2021) learns such

codebook with pixel-wise reconstruction loss on a
very large dataset. PeCo (Dong et al., 2021) instead
demonstrates effectiveness of perceptual image re-
construction loss on a much smaller ImageNet-1K
(Deng et al., 2009) data, using ViT-B as per Chen
et al. (2021) to minimize the 5 distance of original
versus reconstructed image representations at dif-
ferent layers of the ViT-B model. Such perceptual
codebook tokens are demonstrated to carry high
semantic meaning, as opposed to the low-level con-
tents learned with pixel-wise reconstruction loss.

3.4.2 Multi-Domain Multi-Task Optimization

The proposed model aims to optimize both denois-
ing and contrastive loss functions simultaneously,
a multi-task learning (MTL) problem as defined by
Ruder (2017). Although a long-standing paradigm,
the static gradient weighting mentioned in § 3.2
is not necessarily optimal, due to dynamic nature
of the multimodal gradient imbalance during train-
ing (Wang et al., 2019). Another concern is the
diversity of data domains we aim to optimize: text-
only, image-only, and text/image, as motivated by
goal (3): versatility. We will use this section to
discuss alternative optimization strategies for our
multi-task and multi-domain problem.

Cascaded Learning is an MTL strategy where
each model layer is optimized for a distinct, pro-
gressively more complex task. Sggaard and Gold-
berg (2016) show that syntactic chunking su-
pervised at higher layers of BiLSTM benefits
from POS tagging supervised at the lower layers.
Hashimoto et al. (2016) extend that result to more
tasks and show that both low- and high- level tasks
benefit from cascaded learning at the corresponding
layers. This strategy may be especially applicable
to Transformer models, as they tend to learn in-
creasingly complex structural properties of both
text (Jawahar et al., 2019) and image (Raghu et al.,
2021) data in deeper layers. Howeyver, this strategy
also requires domain expertise to devise the correct
hierarchy of tasks in multimodal context.

Dynamic Gradient Reweighting is an MTL
strategy where weights for linear combination of
gradients change dynamically throughout the train-
ing process. Kendall et al. (2017) propose an
uncertainty-based method to assign lower weights
to noisier task gradients. Since it is not always
clear which task is primary and which is auxil-
iary (as is the case with our objective), Sener and
Koltun (2018) propose to instead find a Pareto-
optimal weighting of gradients, such that no other



weighting improves all tasks. In multimodal con-
text, Wang et al. (2019) propose introducing and
updating an overfitting prior to model optimiza-
tion. They do so by training for several iterations,
estimating the overfitting on each modality, and
then re-training the iterations this time using the
overfitting prior to weigh the gradient combination.

Differentiable Data Selection is a data re-
sampling approach to overcome data imbalance.
The general paradigm is to use a held-out set
to train and update a scorer network, which se-
lects the data to be sampled for main model train-
ing. The main model and scorer are trained with
bilevel optimization. Reinforcement learning is
used to update the scorer weights. Wang et al.
(2020b) propose a scorer update reward using co-
sine similarity of main model’s gradients on held-
out set. Wu et al. (2021) expose a flaw in gradient
similarity approach, as it breaks down on highly
self-correlated domains, and instead propose an
uncertainty-based scorer reward, achieving perfor-
mance improvements on multilingual and multi-
domain tasks. This strategy can be particularly
useful to determine the batch data composition for
our multi-modal task.

4 S5 Evaluation

S5 Framework aims to produce an encoder opti-
mized for an aligned and uniform semantic space.
Cosine similarity, measuring representation prox-
imity in linear space, then directly measures seman-
tic alignment as well as reflects embedding inter-
pretability. Thus, a strong performance on zero-
shot tasks with cosine similarity is a direct success
criterion of this work. We will review zero-shot
evaluation methods from the multimodal literature
and further adapt them to be suitable for cosine
similarity, thus proposing novel tasks.

Zero-Shot Retrieval is used by ViLT (Kim et al.,
2021) on MSCOCO and Flickr30k (Karpathy and
Fei-Fei, 2014). We further constrain the task to
formulate a novel experiment: interpretable zero-
shot retrieval with Approximate Nearest Neighbor
(ANN) search (Andoni et al., 2018) and cosine sim-
ilarity. Without any additional training, we use
ANN + cosine similarity to evaluate multimodal
retrieval with S5 embeddings. This task better sim-
ulates the real-world applications of the system:
both ANN and cosine similarity are common re-
trieval optimizations used in the industry, and the
domain-specific data is often in short supply. Co-

sine similarity also allows us to perform retrieval
in an interpretable way.

Zero-Shot Cross-Modal Transfer is used by
SimVLM (Wang et al., 2021) on SNLI-VE (Xie
et al., 2018). We further constrain the task by train-
ing an MLP layer on top of the frozen S5 encoder
on text-only NLI data. This way, if our text and im-
age embeddings are properly aligned in the shared
space, we should achieve zero-shot transfer by eval-
uating the model on text-image entailment data
without a drop in performance.

Zero-Shot Semantic Similarity is used by
Reimers and Gurevych (2019), Gao et al. (2021),
and Yan et al. (2021) to evaluate performance
of self-supervised language training on SentEval
(Conneau and Kiela, 2018) datasets. We propose to
crowdsource a novel text/image dataset comprised
of text-image pairs with semantic similarity score
on the scale 0-5. Following Reimers and Gurevych
(2019), we use Spearman coefficient to calculate
the correlation between cosine similarity of data
embeddings and ground truth similarity score. As-
suming an equivalent data quality, we compare
results to similar zero-shot evaluation on SentE-
val, aiming to not see a significant performance
discrepancy on uni-modal versus cross-modal data.

5 Conclusion

Textual concept representation, as robust as it may
become from Web-scale data, is still incomplete on
its own. Only via incorporating mutlimodal infor-
mation can machine intelligence advance towards
human intelligence (Bisk et al., 2020), the ultimate
goal of our work. In this review, we present a
framework consisting of the necessary background
literature, an informed research decisions checklist,
and a few novel zero-shot experiments aimed at
improving S5 multimodal learning. We hope this
work is useful in cultivating interest regarding the
promising multi-modal learning directions.

A limitation of our unified-encoder approach is
the computation cost associated with increasing
input lengths and batch sizes. The input sequence
length increase will come from concatenating the
per-modality tokens. The batch size increase will
come from contrastive learning objective; current
Transformer vision/language models use batch size
of 4,096 (Wang et al., 2021; Kim et al., 2021).
These issues warrant further exploration of efficient
attention mechanisms (Tay et al., 2020).
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