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Figure 1: TypeTele, an effective dexterous teleoperation system, enables operators to complete
various manipulation tasks by corresponding human hands with different types of robotic hands.

Abstract: Dexterous teleoperation plays a crucial role in robotic manipulation for
real-world data collection and remote robot control. Previous dexterous teleop-
eration mostly relies on hand retargeting to closely mimic human hand postures.
However, these approaches may fail to fully leverage the inherent dexterity of
dexterous hands, which can execute unique actions through their structural advan-
tages compared to human hands. To address this limitation, we propose TypeTele,
a type-guided dexterous teleoperation system, which enables dexterous hands to
perform actions that are not constrained by human motion patterns. To support this
system, we build an extensible dexterous manipulation type library to cover com-
prehensive dexterous postures used in manipulation tasks. During teleoperation,
we employ a MLLM-assisted type retrieval module to identify the most suitable
manipulation type based on the specific task and operator commands. Extensive
experiments of real-world teleoperation and imitation learning demonstrate that
the incorporation of manipulation types significantly takes full advantage of the
dexterous robot’s ability to perform diverse and complex tasks with higher suc-
cess rates. The project page is https://isee-laboratory.github.io/TypeTele.
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1 Introduction

With the development of learning-based methods and large-scale robotic datasets, dexterous robots
have become increasingly capable of performing diverse and delicate tasks [1, 2]. Teleoperation
plays a critical role in collecting real-world data, as it enables the acquisition of high-quality robotic
demonstrations under realistic observations and physically executable actions [3, 4, 5].

Previous dexterous teleoperation methods aim to control the dexterous hand by imitating human
hand postures, typically achieved by first capturing the human hand poses and retargeting them to
the dexterous hand [6, 7, 8, 5]. Most hand retargeting approaches employ optimization or inverse
dynamics techniques to preserve the spatial consistency of vectors between the wrist and predefined
keypoints (such as fingertips) in both the human and robotic hands [5, 7, 9]. However, the retarget-
ing paradigm is unable to fully utilize this dexterity of the dexterous hand, leading to difficulty in
performing both basic and complex tasks.

However, two challenges hinder the effectiveness of teleoperation in existing methods. First, the
retargeting paradigm restricts the dexterous hand to motions feasible for human hands, as it
enforces consistency between human and robotic hand postures. The fully actuated dexterous hand
can perform poses that humans cannot, but are more suitable to complete specific manipulation
tasks, as shown in the left of Fig. 2. Second, morphological differences between human and
robotic hands may lead to the unreasonable retargeting poses. Existing methods typically align
corresponding vectors between the two hands and solve for a pose in the full joint space. How-
ever, differences in kinematics often lead to unstable postures, self-collisions, or undesirable contact
directions in the robotic hand [10, 11, 12], as shown in Fig. 2.

To overcome these problems, we propose TypeTele, a type-guided dexterous teleoperation system,
which allows operators to employ appropriate dexterous manipulation types to manipulate different
objects and complete different tasks. The introduction of types offers two benefits, which address
the two aforementioned bottlenecks: 1) Introducing dexterous manipulation types enables robots to
perform actions that the human hand cannot perform. 2) Dividing dexterous actions into discrete
types improves the effectiveness and rationality of the dexterous hand postures.

To support our system, we construct a dexterous manipulation type library organized using a hier-
archical taxonomy that covers typical actions required in manipulation tasks. Each manipulation
type is annotated with corresponding stretching and contracting postures of the robotic hand, which
determines the range of executable actions within this type. Based on this library, our teleoperation
framework operates in two stages: type retrieval and action execution. For type retrieval, we propose
an MLLM (Multi-modality Large Language Model)-assisted type retrieval module that identifies the
most appropriate manipulation type based on the current task. For action execution, we design an
interpolation mapping strategy that maps the natural human hand action to the specific dexterous
manipulation type, enabling intuitive control of the robotic hand through human motion.

The experimental results demonstrate the effectiveness of our teleoperation system: 1) Our system
enables the successful execution of tasks that are unachievable using retargeting-based teleoperation
system. 2) Our system significantly improves the data collection efficiency. 3) The data collected
by our system shows higher quality, which benefits subsequent imitation learning and enhances the
performance and robustness of autonomous policies. 4) The key insight of introducing type into
teleoperation shows strong applicability to various tasks and can be applied to different systems.

2 Related Works

2.1 Dexterous Teleoperation

Teleoperation is a fundamental task for robotics[13, 14], as it not only enables remote operation of
robots but also facilitates data collection for imitation learning [15, 6, 16]. Research on teleoperation
for two-finger gripper robots primarily focuses on arm control, such as master-slave systems [17, 4]
and VR devices [18], achieving impressive performance. Compared to grippers, dexterous hands
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Figure 2: The challenges of previous retargeting-based dexterous teleoperation systems. Unachiev-
able Grasping shows poses that are physically infeasible for human hands. Unstable Grasp leads
to object dropping due to weak contact. Self-Collision indicates finger interference during motion.
Undesired Contact refers to insufficient contact between the tactile sensor surfaces and the object.

offer greater dexterity for fine-grained manipulation tasks, but they also introduce challenges in
hand pose mapping due to morphological differences between human and robotic hands [19, 20,
21, 12]. Previous methods focus on human hand pose capture and pose mapping to closely mimic
human hand postures, typically involving different hardware setups for motion capture [7, 22, 3, 8, 5]
while sharing fundamentally similar retargeting algorithms [20, 9]. These methods face two key
limitations: (1) they are limited to actions feasible for human hands and (2) pose mapping remains
challenging due to morphological differences, hindering fine manipulation tasks. In this paper, we
propose a type-guided teleoperation system to address these limitations, enabling more complex
manipulation tasks despite morphological mismatches.

2.2 Dexterous Manipulation

Achieving autonomous and generalizable dexterous manipulation is a long-term goal for robotics
community[23, 1]. With the development of deep learning, imitation learning methods have shown
great promise to achieve this goal [24, 2, 11], with transformer-based [15, 25], diffusion-based[26,
27, 28] or Vision-Language-Action based architecture [29, 1]. However, the effectiveness of these
methods largely depends on the quality and scale of expert demonstration data [30, 31, 32]. To
address this, our system achieves higher data quality and collection efficiency, which facilitate more
effective imitation learning and improve the performance of autonomous policies.

3 Type-guided Teleoperation System
3.1 System Overview

Our system’s overview is shown in Figure 3. First, we construct a dexterous manipulation type
library, covering types required for various manipulation tasks. Then, we propose a MLLM-assisted
type retrieval module to select the most appropriate type based on the current task. We also design a
type adjustment strategy to improve versatility. Finally, during teleoperation, we use an interpolation
mapping strategy to control the dexterous action of specific type by human hand motion.

3.2 Dexterous Manipulation Type Library

Inspired by existing human grasp taxonomies that classify hand postures into distinct types to en-
compass most human manipulations [33], we design a Dexterous Manipulation Type Library,
comprising diverse dexterous types to guide dexterous postures across a wide range of teleoperation
tasks, as shown in Figure 4. The library is built upon recent taxonomies [34, 33, 35, 2, 36] and
augmented with postures specially designed for dexterous hands, which are extracted from a variety
of dexterous manipulation tasks.

To effectively cover the dexterous manipulation action space and better organize the library, we clas-
sify the dexterous manipulation types into two primary categories: single-hand types and bimanual
collaborative types, as shown in Figure 4. Single-hand types are further subdivided into grasp types
and non-grasp types. Grasp types further include two subcategories: robot-exclusive grasp types,
which support manipulation tasks that exceed human hand capabilities, and general grasp types,
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Figure 3: TypeTele includes a retrieval process using a MLLM to select manipulation types from the
library, and a teleoperation process that applies them with an interpolation-based mapping strategy.

which are derived from established human grasp taxonomies. Bimanual collaborative types are sub-
divided into symmetric and asymmetric types based on the relative positions and functional roles of
the two hands during manipulation. Our library is composed of 4 sub-categories and 30 types.

Specifically, each dexterous type is annotated with stretching and contracting postures, which cor-
respond to the natural stretching and contracting postures of the human hand. [37] Additionally, to
facilitate the autonomous retrieval of type, each dexterous type is annotated with object-centric and
posture-centric information to describe: (1) what kinds of objects and task this posture is suitable
for manipulating; (2) what the posture specifically looks like. These details are organized into ma-
nipulation attributes belonging to each dexterous type, as shown in the left of Figure 3, facilitating
type retrieval in teleoperation. More details can be found in supplementary materials.

3.3 MLLMe-assisted Type Retrieval

To facilitate teleoperation, we propose an MLLM-assisted type retrieval framework that au-
tonomously selects the most appropriate manipulation type for a given task. In this framework,
all types from the library, annotated with attribute descriptions, are converted into language prompts
for an MLLM like GPT-40 [38]. We then prompt the MLLM to sequentially reason through two
sub-questions: (1) How many steps are required to complete the task? and (2) Which type of manip-
ulation should be assigned to each hand per step? The MLLM is first guided to decompose the task
into a series of steps, infer which objects are involved in each step, and determine the interaction
method. Based on this reasoning, the MLLM infers the desired attributes of the manipulation type
for each hand, which are then used to retrieve the most suitable type from the library.

We develop a voice control program to enable hands-free interaction with the retrieval module,
freeing operators’ hands for robotic control tasks. This system utilizes Whisper [39] to transcribe
operator speech into text. The real-time captured image from the camera and the text prompt are
subsequently passed to the GPT-40 API to generate type recommendations, which are then processed
to automatically switch or adjust the corresponding control mode or joint configuration.

3.4 Type Adjustment Strategy

Our system supports type adjustment to further enhance its versatility, while our type library can
already cover most common tasks, and each type generalizes well across objects with similar geo-
metric characteristics. To enable such adjustment, the system allows users to explicitly apply offsets
to the position or orientation of specific fingertips.

Specifically, the system first obtains the initial fingertip position and orientation of the origin type
through forward kinematics. And the desired adjustment can be specified either by capturing the 6-
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Figure 4: The illustration of the dexterous manipulation library. The left side presents the hierarchi-
cal taxonomy of the library, while the right side displays examples from each category.

DOF motion of the user’s fingertip or by providing transformation values obtained through manual
input. The system then applies the offset to the fingertip pose and uses the resulting position and
orientation to compute the adjusted joint angles via inverse kinematics, formulated as:

¢ =IK(FK(q)-Ta) (D
where ¢ denotes the initial joint angles, F'K (-) represents the forward kinematics function, Ta is
the desired transformation applied to the end-effector pose, I K (-) denotes the inverse kinematics
function; and ¢’ is the resulting new joint configuration. To ensure that the adjusted type closely
matches the original pose, the system initializes the inverse kinematics solver with the joint angles
of the origin type, thereby avoiding unintended deviations or discontinuities in the resulting posture.

3.5 Interpolation Mapping Strategy

We design an interpolation mapping strategy to intuitively control robotic dexterous hands using
human hand motions. Specifically, we first associate the stretched and contracted postures of the
human hand with the corresponding postures of the robotic hand. Given the current human hand
posture, we compute a normalized projection ratio for each fingertip position along the 3D vector
defined by the stretched and contracted positions:

(pcurrent - pstretch) ° (pconLract - pslretch) 0 1) (2)

” Pcontract — Pstretch ‘ | 2

Pratio = Chp (

where p € R? denotes the 3D fingertip position, - denotes the dot product, and clip constrains the
output within the range [0, 1]. The resulting scalar p,y, is then used to linearly interpolate between
the stretched and contracted joint angles of the robotic hand:

ecurrent = Pratio * (econtract - Hstretch) + estretcha (3)
where O.ontract and Ogireren represent the joint angles corresponding to the fully contracted and
stretched states, respectively.

3.6 Hardware and Robot Control

The hardware of our system involves the hand motion capture device, robot arm, dexterous hand and
camera. For motion capture, we use Rokoko Gloves to capture each finger’s 3 DOF position and the
controller of Meta Quest 3 for the wrist’s 6 DOF pose, following [8]. The robotic system includes
two Kinova arms (6 DOF and 7 DOF, respectively) and two LEAP Hand (16 DOF each) [40]. For
vision, a Realsense L515 LiDAR Camera captures single-view RGB-D observations of the scene.

For dexterous hand control, we use joint position PD control, where the target position is obtained
through interpolation in the mapping. For arm control, we utilize the high-frequency Cartesian
velocity control [41] interface provided by Kinova. The arm’s motion is predefined as a uniform
acceleration and deceleration motion for smoothness. The maximum translational velocity is fixed
at 20 cm/s. The rotational velocity is dynamically adjusted: it increases when the orientation error is
large, with an upper bound enforced to ensure safety. Additionally, Kalman filtering [42] is applied
to smooth the estimated velocity signals and further enhance the continuity of motion. More details
of robot control can be found in supplementary materials.
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Figure 5: The illustration of hardware system setup and the objects used in experiments.

4 Experiment

4.1 Experiment Setting and Evaluation Metrics

Tasks. We design a diverse set of tasks to evaluate the effectiveness of both our teleoperation system
and the imitation learning policy. For better comparison, we referenced prior work in task design and
adopted several existing tasks [6, 3, 8, 22]. Additionally, we introduce more challenging tasks that
are difficult to complete using previous systems, in order to demonstrate the superior performance
of our framework. Details of the tasks are provided in the supplementary materials.

Teleoperation Setting and Metrics. We compare our type-guided teleoperation system with the
retargeting-based baseline, where human hand postures are directly mapped to the robot [7, 8, 3].
Both systems share identical hardware and robot control algorithms to ensure a fair comparison.
We collected demonstration data from 10 participants with a range of experience in robotics and
teleoperation, gathering 20 successful demonstrations for each task. We record the success rate
Swuc, the total time spent of completing the data collection of one task Ty;; including the time for
failure cases, and the average demonstration duration T;, 4. for each successful demonstration.
Higher success rates and shorter durations indicate better performance [3].

Imitation Setting and Metrics. We adopt the state-of-the-art diffusion-based policy, iDP3 [27], as
our imitation learning algorithm. The policy takes a single-view 3D observation and current robot
proprioception as conditional inputs, and outputs the desired Cartesian position of the robot arm’s
end-effector and the joint angles of the dexterous hand. Observation and action horizon vary from
3-8 and 13-8 respectively, depending on task length. To evaluate the impact of teleoperation quality,
we train separate policies on datasets collected from the retargeting-based and our systems, using the
same number of demonstrations and policy hyper-parameters. Higher task success rates achieved by
a policy indicate higher-quality demonstrations and thus more effective data collection.

4.2 Comparison Results

TypeTele significantly improves the efficiency of data collection. The teleoperation results in Ta-
ble 1 show that our system achieves a shorter overall collection time, a higher task success rate, and
reduced lengths of averaged demonstration trajectory lengths. This indicates that leveraging dex-
terous manipulation types enables more convenient object manipulation and more stable grasping,
which is highly beneficial for improving teleoperation performance.

TypeTele enables the successful execution of tasks that are unachievable using retargeting-
based teleoperation system, as shown in the results for challenging tasks (the final 5 tasks) pre-
sented in Table 1. Specifically, when using scissors and spray bottles, the dexterous hand requires
accurate manipulation while maintaining a stable grasp. For using a heavy kettle, a firm grip is
necessary to counteract the object’s weight. When opening a large box or grasping two objects, the
hand must open widely to securely grasp and lift the lid or open to specific postures. These tasks
are particularly challenging for retargeting-based teleoperation systems, due to issues of unstable



grasping and undesired contacting, as mentioned in Figure 2. These results highlight the enhanced
capability of our system in handling complex and dexterous manipulation tasks.

Task Description | System Suc Tai  Tsingte
Pick and Place Pick up the tennis ball and place | Baseline 95.2%  579.6 8.28
it into the basket. Ours 100%  536.9 7.67
Collect and Store Collect objects on the table and Baseline 60.6% 1231.6 37.32
store them into a basket. Ours 95.2% 616.8  29.37
Handover Transfer the object from the left Baseline 80.0%  459.5 18.38
hand to the right hand. Ours 952% 2444 11.64
Pouring from Pan Grasp the handle of pan and pour | Baseline 14.2% 11494  16.42
its contents into the basket. Ours 83.0% 174.9 14.57
Use Scissors Use scissors to cut the paper strip | Baseline 0 - -
into two pieces. Ours 91.1% 161.1 5.37
Use the spray bottle to spra Baseline 0 - -
Spray Water water tovx?ar(i] the target c{)ireZtion. Ours 86.9% 1674 7.28
Use a Heavy Ketle Grasp the kg:ttle, lift it angl Baseline 0 - -
— pour water into the container. Ours 85.0% 369.4 18.47
Open a Large Box Open the lid of the large box, Baseline 0 - -
p g then pick up the items inside. Ours 95.2%  398.6 18.98
Grasp Two Objects Grasp two medium-sized objects | Baseline 0 - -
by one hand simultaneously. Ours 69.6%  488.3 21.23

Table 1: The teleoperation results compared with retargeting-based teleoperation system (baseline).
Taskl Task2 Task3 Task4 TaskS Task6 Task7 Task8 Task9

10/10  3/10 1/10 1/10 - - - - -
10/10  10/10  6/10 ~ 9/10  9/10  9/10  9/10  9/10  8/10

Table 2: Comparison with the imitation policy trained using data collected by different teleoperation.

Baseline
Ours

Task 2: Collect and Store Task 3: Handover Task 4 Puurmg from Pan Task 5:‘ Use Scissors

m-@u

Task 6: Spray Water ) Task 7: Use a Heavy Kettle Task 8: Open a Large Box Ts;sk 9: Grasp Two Objects
Figure 6: The visualization of autonomous policy execution process.

Task 1: Pick and Place

Imitation learning results demonstrate the higher quality of data collected by TypeTele. Since
demonstration quality impacts imitation learning, we compare policies trained on an equal number of
successful demonstrations from different systems. As shown in Table 2, the task order is consistent
with Table 1, and entries marked “-” denote tasks the baseline failed to complete. Evaluated 10
attempts, the policy trained on our system’s data achieves a higher success rate. This confirms the
importance of high-quality demonstrations and our system’s superior data collection capability.

4.3 Applicability of the TypeTele System

One dexterous manipulation type can be applied to various objects with similar geometric
structures or functional properties. As shown in Figure 7, the type designed for objects like
trigger sprayers and lotion pumps can generalize across different instances. And the type designed
for square-shaped and objects with thin handle can adapt to objects of varying sizes. These results
demonstrate the broad applicability of our dexterous manipulation type design.

TypeTele handles complex, long-horizon manipulation tasks involving multiple objects and
stages, as shown in the bottom of Figure 7. Its ability to select and execute the appropriate type
at each stage demonstrates strong adaptability and generalization for diverse interactions.
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Figure 7: Top: Visualization that one type can apply to various objects with similar structures or
functions. Bottom: Visualization of long horizon task involves mutlpile steps and objects.
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TypeTele is applicable to various dexterous robotic hands, as illustrated in Figure 8. We conduct
real-world manipulation experiments using the Inspire Hand, demonstrating the adaptability of our
method to diverse hardware. the detailed results are presented in Table 3 in the Appendix.

4.4 Efficiency of TypeTele System

During teleoperation, the system records data at 15 FPS using a Windows 10 PC with an Intel Core
17-14700 CPU. Inference with the imitation policy runs at 11 FPS on an NVIDIA GeForce RTX 3090
GPU. An independent control thread for the robotic arm consistently maintains a frame rate of 25
FPS during both teleoperation and inference. For the MLLM-assisted retrieval module, the average
query time is 4.8 seconds. While the retrieval step is relatively time-consuming, it occurs only
once per task, after which the teleoperator can switch among the retrieved manipulation types with
minimal latency using voice commands, keyboard input, or a foot pedal. This approach minimizing
the impact on the system’s real-time performance. Furthermore, with contextual image caching,
query latency can be reduced to under 2.4 seconds, mitigating potential bottlenecks for long-horizon
or sudden incidents. These results demonstrate TypeTele’s practical, system-wide efficiency.

4.5 Effectiveness of MLLM-assisted Retrieval Module

Experiments are conducted to evaluate the effectiveness of MLLM-assisted retrieval module. We
construct 50 test environments, including 40 single-object tasks and 10 multi-object long-horizon
tasks. A retrieval is considered successful if the retrieved manipulation type is suitable for the
current task. The success rates are 91.89% for single-object tasks and 92.00% for multi-object tasks.
This high accuracy confirms that our retrieval module can reliably identify appropriate manipulation
types for diverse tasks. The operator can also interact with the MLLM to improve performance or fix
errors. In 30 retrieval attempts conducted within severely cluttered multi-object scenes, 27 retrievals
returned the optimal type. For other 3 sub-optimal but feasible types, a single corrective prompt led
to the successful identification of the optimal grasp, confirming module’s high efficacy.

5 Conclusion

We believe that achieving effective teleoperation for the data collection of delicate dexterous manip-
ulation task is important in the robotic learning communities. In this paper, we propose Typetele, a
novel dexterous teleoperation system with the insight that introducing types into teleoperation. To
support this system, we build a dexterous manipulation library, comprising various types required for
common dexterous tasks. During the teleoperation, a MLLM-assisted type retrieval module is pro-
posed to select the suitable type for current task. And a interpolation mapping is used to control the
dexterous hand by human hand motion. The extensive experiments show that our system not only
enables tasks previously unachievable by teleoperation, but also greatly improves data collection
efficiency and quality, thereby enhancing imitation learning and autonomous policy performance.



6 Limitations

The primary limitation of our system is its difficulty with highly dexterous in-hand manipulations,
such as pen spinning, which require a high level of finger-level dexterity. This could potentially
be addressed by incorporating learning-based methods. Integrating learning-based approaches with
our dexterous manipulation types presents a promising avenue for future research. Furthermore, in
specific situations requiring the adjustment module, its use introduces a temporal overhead to the
task execution. This could be mitigated by simplifying the adjustment interaction mechanism or
by developing an automated fine-tuning process based on visual feedback. Lastly, the Dexterous
Manipulation Type Library will need to be adapted for different dexterous hands and expanded to
include more types.
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Supplementary Materials

8 TypeTele System Details

8.1 Dexterous Manipulation Type Library

Visualization of Type Library

We construct a dexterous manipulation type library using the taxonomy, based on prior grasp type
work [34, 33, 35, 2, 36], and extending it based on the structure of dexterous hands [40] and manip-
ulation tasks. The visualization of the library is illustrated in Figure 9.

Bimanual Type §

¢ &F &

Double-Hand Side ~ Double-Hand Side Double-Hand Double-Hand Top ~ Double-Hand Top Kettle Double-
Grasp Wrap Grasp Spherical Grasp Grasp and Bottom Grasp Hand Grasp

Four-Finger
Grasp Converge Grasp,/

Four-Finger
Parallel Pinch

2

-

Three-Finger Load-  Curved Handle Two-Finger Pinch Two-Finger Hold

1

i

]

i

'

i

i

i

:

i

Grasp Bearing Wrap Grasp Grasp Grasp Grasp 1
i

]

% i

€ i
A\ )

i

v )

b :

o |

i

Bowl-Shaped Writing Grasp Four-Finger Flat Index-Press-top |
)

Grasp

=

Index Press Support Grasp Convex Knob Three-Finger Hool

Index-Press-front ~ Thumb Side Grasp

Figure 9: Visualization of Dexterous Manipulation Type Library.

Annotation Information of Dexterous Manipulation Types

Each manipulation type is annotated with descriptive information to characterize its posture and
functionality, which facilitates retrieval. The annotated attributes include: hand posture, manipula-
ble object categories, contact parts on the object, the geometry of these parts, grasp direction, and
intended manipulation purpose. Examples of the annotated information are shown in Figure 10.

8.2 MLLM-assisted Type Retrieval Module

We employ GPT-40 [38] to retrieve the most suitable dexterous type for current task. The details of
prompts are as following:
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Double-Hand Spherical Grasp Four-Finger Parallel Pinch Four-Finger Spread Grasp
Posture: Both hands wrap 0 Posture: Palm fully open with 8 Posture: Four fingers are spread (!
around and closely cover thumb stretched opposite to and parallel, then converge to y

the surface of the object. other fingers; fingertips curl grip irregular objects or rims.
Objects: basketball, football downward to pinch object. i Objects: mug, bowling
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Inrtention: lift Inrtention: grasp, use Inrtention: grasp, use

Figure 10: Visualization of the annotations examples of types in the library.

System Prompt:

You are a robotic manipulation expert. When given a user goal and an image
of tools or ingredients, your job is to:

(1) Decompose the task into clear manipulation steps.

(2) Assign a suitable grasping type for each hand (left/right) in every
step based on the provided grasp type library.

(3) Format your response in this structured way:

The task is divided into N steps:

Step 1: [describe the subtask]

Step 2: [describe the subtask]

The types in each step are:

Step 1: Left type: [grasp type name] Right type: [grasp type namel

Step 2: Left type: [grasp type name] Right type: [grasp type namel

User Command: I want to [describe the whole task].

Example of Output

User Command

I want to prepare a pancake with tomato sauce and a glass of water for
breakfast.

GPT-40

The task is divided into 3 steps:
Step 1: Pick up the pan with the pancake using the right hand, and hold and
squeeze the tomato sauce bottle using the left hand to apply sauce.

Step 2: Keep holding the pan with the right hand, and use a spatula with
the left hand to transfer the pancake into the bowl.

Step 3: Hold the water pitcher with the left hand and the cup with the
right hand, then pour water into the cup.

The types in each step are:

Step 1:

Left type: Thick Cylinder Grasp (for squeezing the sauce bottle)

Right type: Three-Finger Load-Bearing Wrap Grasp (for lifting the pan by
the handle)

Step 2:
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Left type: Three-Finger Wrap Grasp (for using the spatula)

Right type: Three-Finger Load-Bearing Wrap Grasp (continue holding the pan)
Step 3:

Left type: Curved Handle Grasp (for holding the pitcher)

Right type: Thick Cylinder Grasp (for holding the glass)

8.3 Kinesthetic Teach Module

Although the types provided in our type library can handle the most of everyday applications, we
offer a teaching mode for the creation of new type for special cases and unique user needs. This
allows users without robotics expertise to intuitively and conveniently create dexterous types.

We implemented the teaching mode using admittance control and motor backdrivability. The for-
mula for admittance control is as follows:

Mi(t) + Ba(t) + Kz(t) = Fexu(t) “)

In this equation, x(¢) denotes the position of the control output, Z(¢) and Z(t) represent the velocity
and acceleration respectively, and F.y(t) is the external force applied to the robot’s end-effector.
The parameters M, B, and K correspond to the virtual mass, damping, and stiffness, respectively.

Here, we estimate the external force using the current magnitude and positional deviation of the
dexterous hand’s motors. We also incorporate the motor’s velocity information to give the motion a
certain degree of inertia, making the teaching process smoother.

8.4 Robot Control

To enhance the control fidelity and operational fluidity of the robotic arms during both teleoperation
and imitation learning inference, we implemented several key methodological improvements:

(1) Multi-threaded Device Communication: We have adopted a multi-threaded approach for de-
vice communication. Each distinct data stream — including RGB-D imagery, cartesian poses of the
two end-effectors, and joint angles of the two robotic hands — is managed by an independent thread.
This architecture ensures that when the main thread requires specific information, it can be provided
instantaneously, thereby circumventing delays typically associated with data acquisition operations.

(2) Uniformly Accelerated Motion for Velocity Control: For both translational and rotational
velocity control, we have applied uniformly accelerated motion profiles. This strategy guarantees
that velocity changes are smooth and devoid of abrupt transitions. Consequently, the robotic arm’s
movements are exceptionally fluid, and this approach also mitigates jitter stemming from natural
human hand tremors or sensor inaccuracies.

(3) Dynamic Speed Control for Rotation: A dynamic speed control scheme has been implemented
for rotational movements. When the current orientation is significantly distant from the target orien-
tation, the rotational speed will be increased, enabling the robotic arm to rapidly converge towards
the desired direction. Conversely, as the current orientation approaches the target, the rotational
speed will be reduced. This allows the operator to perform precise, fine-grained rotational adjust-
ments.

(4) Dedicated Asynchronous Robot Control Thread: The robotic arms are controlled by a dedi-
cated, separate thread, ensuring asynchronous operation. The main thread focuses solely on trans-
mitting the target pose to this robot control thread. Subsequently, the robot control thread governs
the robotic arms at a consistent control frequency. This approach guarantees stable and smooth
robotic arm control, even when the main thread’s frame rate fluctuates or varies, such as during
transitions between teleoperation and imitation learning inference with their differing frame rates.
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8.5 Details of Imitation Learning

We adopt a diffusion-based imitation policy to learn from expert demonstration data, following [27].
The observation input consists of single-view point clouds z; € R¥*3 and robot proprioceptive
inputs z;,, € RP. Specifically, we randomly downsample N = 4096 points from the raw depth maps.
The proprioceptive input (p = 44) includes the Cartesian poses of both robot arms and the joint
angles of the two dexterous hands.

The point clouds are encoded using a pyramid convolutional encoder [27], while the proprioceptive
inputs are processed via a multilayer perceptron (MLP). We define the observation horizon as ¢, and
the action horizon as t,. In our setup, we adopt a fixed total horizon length of ¢, + ¢, — 1 = 15. For
tasks requiring longer-term reasoning or delayed consequences, we use longer observation horizons
(e.g.,t, = 6 or 8) and shorter action horizons (e.g., t, = 10 or 8), while for reactive or short-horizon
tasks, we opt for shorter observations (e.g., t, = 3 or 4) and correspondingly longer action horizons.
This enables a flexible temporal encoding of task-relevant information, tailored to the nature of each
behavior. All features are used as conditional inputs to predict the noise associated with the robot
action a € R« where k, denotes the action dimension specific to the task. The training objective
minimizes the denoising score matching loss, formulated as:

£ =Fayenion |l€ = eolant)]’] 5)

where € ~ N (0, 1) is the Gaussian noise. The network ey is trained to predict the added noise given
the noisy action a; and the timestep t. We employ DDIM [43] for inference sampling.

o\ — AT (at —/1 ;(%tee(at,t)> /1= - eola, t) (6)

where &;—1 and &, are the cumulative noise schedule coefficients at time steps ¢ — 1 and ¢, respec-
tively.

9 Experiments Details

9.1 Details of Tasks

Task 1: Pick and Place. Task 1 is a fundamental task that requires picking up a tennis ball on the
table and placing it into a basket.

Task 2: Collect and Store. Task 2 focuses on the integrated capabilities of the system. Task 2
requires collecting three objects from the table and placing them into the basket in the following
order: doll, broom, and basketball. For TypeTele, the operator can use voice commands to switch
types for objects with different geometric shape during teleoperation.

Task 3: Handover. Task 3 evaluates the system’s bimanual coordination capabilities and grasp
robustness. In this task, the left hand is required to pick up a can from a stand and then hand it over
to the right hand.

Task 4: Pouring from Pan. Task 4 requires stably grasping a pan and then pouring the contents
of the pan into the basket. The difficulty of this task lies in the need for the hand to firmly grip the
pan’s handle to prevent tilting or dropping during the pouring process.

Task 5: Use Scissors. In Task 5, the right hand is required to hold a strip of paper while the left
hand uses a pair of scissors to cut through it. The task is considered successful if the lower part of
the paper strip is completely severed in a single cut.

Task 6: Spray Water. Task 6 requires grasping a spray bottle and then pressing the trigger to spray
water. The task is considered successful if a stream of water is sprayed out.

Task 7: Use a Heavy Kettle. Task 7 evaluates the ability to operate under extreme weight. This
task requires firmly gripping the handle of a watering kettle, lifting it, and then pouring water into a
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bowl. A large water balloon is placed inside the kettle, bringing the total weight to over 2kg, which
poses a significant challenge for maintaining a stable grasp.

Task 8: Opening a Large Box. Task 8§ evaluates the ability to manipulate objects of significant size.
In this task, the left hand is used to open a large box, followed by the right hand retrieving the object
contained within. The short side of the box measures 15cm, demanding both a wide grasp span and
precise force control.

Task 9: Grasp Two Objects. Task 9 aims to fully leverage the dexterity of the dexterous hand. This
task requires using one hand to grasp two objects, first a water cup and then a cylinder. Both objects
have a minimum diameter of 8cm, making it highly challenging to maintain a stable, simultaneous
grasp with a single hand.

9.2 Additional Experiments

To further substantiate the capabilities and versatility of our proposed system, we conducted a series
of supplementary teleoperation experiments. For a more comprehensive comparison within our
original experimental setup, we introduced an additional retargeting-based baseline, AnyTeleop [7],
which utilizes an optimization-based approach, evaluating it alongside the existing baseline ARCap
[8], which employs an Inverse Kinematics (IK) methodology. Both are representative and prominent
open-source baselines. To ensure a fair and rigorous evaluation, we strictly adhered to the official
configurations of these baselines, employing their prescribed optimization and control parameters.

To assess the adaptability of our method to different hardware, we established a new experimental
environment. This setup featured an Inspire Hand integrated with a Unitree G1 robot as the hardware
platform, while using an Apple Vision Pro for motion capture. In this new context, we benchmarked
our method against Open-television [6], a prominent retargeting framework developed for the Vision
Pro, using its prescribed configuration to maintain comparative integrity.

Task LEAP Hand Inspire Hand
Success (%) T T;ingle (S) ~L Success (%)T Tsingle (S) J/

TypeTele [8] [7] | TypeTele [8] [7] TypeTele [6] | TypeTele [6]
Pick and Place 100 95.2 30 7.67 8.28 12.1 100 100 7.78 7.93
Collect and Store 95.2 60.6 — 29.4 37.3 - - - - -
Handover 95.2 80.0 30 11.6 184 21.1 100 100 16.9 17.3
Pouring from Pan 83.0 142 - 14.6 164 - 100 90 9.23 9.50
Use Scissors 91.1 - - 5.37 - - 100 80 9.56 12.5
Spray Water 86.9 - - 7.28 - - 100 90 6.25 6.33
Use a Heavy Kettle 85.0 - - 18.5 - - - - - -
Open a Large Box 95.2 - - 19.0 - - 100 60 7.04 9.42
Grasp Two Objects 69.6 - - 21.2 - - - - - -
Insert Stick 100 30 40 14.7 20.1  29.7 100 50 17.3 20.7
Press the Pump 60 - - 6.87 - - - - - -
Lift Blackboard 90 30 30 9.38 103 10.2 100 90 6.79 6.85
Error Recover 80 50 42.1 69.2
Package Sorting 100 40 37.2 41.1

Table 3: Performance evaluation on additional teleoperation experiments involving new tasks, addi-
tional baselines, and a different hardware setup.

Place the cylinder on the square box.

Furthermore, to demonstrate the generality of our system, we expanded the scope of our evaluation
to include five additional and distinct teleoperation tasks. Insert Stick: This task requires picking up
a thin stick from a pen holder and inserting it firmly into a piece of plasticine nearby. The difficulty
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of this task lies in the slender nature of the stick, which makes it challenging to grasp stably. Further-
more, the stick is prone to being dropped during insertion due to the resistance from the plasticine.
Press the Pump: This task requires pressing a pump bottle with a single hand. The task is consid-
ered successful if the pump dispenses liquid. Lift Blackboard: This task requires lifting a small
whiteboard standing on the table with one hand. The task is deemed successful if the whiteboard is
held for five seconds without being dropped. Error Recovery: This task involves an object-stacking
scenario, requiring the placement of a cylinder on top of two stacked cuboids. During the process of
placing the cylinder, the top cuboid is intentionally knocked over. The recovery sequence requires
the system to restore the fallen cuboid to its original position, and finally re-attempt the placement
of the cylinder, as shown in Figure 11. This task presents a significant challenge to the response
time of TypeTele, as the operator must issue a new voice command to the MLLM for type switching
after the error occurs, which consumes additional time. Package Sorting: In this task, a total of
six cubes and cylinders are presented to the teleoperator in a random sequence. The objective is
to promptly sort these objects into their designated bins. The task is considered successful if all
objects are sorted correctly without any being dropped during the process. This task evaluates the
type switching speed of the TypeTele system.

The experimental results are summarized in Table 3. For each additional experiment, a total of ten
independent trials were conducted in order to measure both the task success rate and the average
demonstration duration T;,, 4. for each successful attempt. The symbol “~ denotes that the task
could not be completed. Specifically, a task was considered unachievable if, after multiple teleoper-
ators attempted it for 30 minutes, no successful trials were observed or all successful trials signifi-
cantly exceeded the predefined time constraints. For short-duration tasks, the time limit was set to
3 minutes, while for long-duration tasks, the limit was 8 minutes. In such cases, the corresponding
table entries are denoted by the symbol “-”, indicating that the task could not be completed.

The experimental results unequivocally demonstrate the superior performance of our proposed
method compared to all baselines, achieving consistently higher success rates while reducing task
completion times. A more detailed analysis comparing the two dexterous manipulators offers fur-
ther insight into our method’s advantages. The LEAP Hand, possessing a greater number of Degrees
of Freedom (DoF) than the Inspire Hand, inherently presents a more significant control challenge.
This complexity proved detrimental to the baseline retargeting approach, under which the lower-DoF
Inspire Hand successfully completed 8 tasks, whereas the more dexterous LEAP Hand completed
only 6. This finding suggests that the baseline framework struggles to harness the capabilities of
high-DoF systems. In stark contrast, our method effectively leverages the Leap Hand’s advanced
dexterity, enabling it to successfully complete a total of 14 tasks. This significant performance delta
underscores our method’s ability to unlock the full potential of high-DoF manipulators, translating
their complex kinematic capabilities into tangible task success where conventional methods falter.

The reasons for task failure are diverse, stemming from both software and hardware limitations.
In Collect and Store, the Inspire Hand’s size proved inadequate for grasping a basketball with a
single hand, as its physical dimensions and grasping envelope were insufficient to encompass the
basketball. In Pouring from Pan, the baseline system failed to utilize the finger base for effective
gripping of the pan’s handle. This inadequacy led to slippage and rotation of the pan during the
pouring motion, ultimately resulting in the dropping of either its contents or the pan itself. In Use
Scissors, task demanded significant closure, which was a challenge for the baseline as it exhibited
poor force modulation. This difficulty, combined with unstable manipulation control, resulted in
frequent dropping of the scissors, thereby preventing task success. In Spray Water, the baseline
encountered difficulties in reaching the spray bottle’s trigger and lacked the precision required to
apply force to press it, resulting in multiple failed attempts despite repeated trials. In Use a Heavy
Kettle, the Inspire Hand successfully gripped the kettle but was unable to lift it due to the excessive
weight, beyond the payload capacity of the Unitree G1 robot’s arm. For the LEAP Hand, the baseline
could not maintain a firm grip on the kettle’s handle, causing it to slip or remain immobile, whereas
the TypeTele system performed successfully by ensuring a firm hold, even under maximum load. In
Open a Large Box, the Inspire Hand was pushed to its physical limits, with the baseline struggling
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to apply sufficient force, leading to damage to the hand’s linkages in some cases. The LEAP Hand,
constrained by retargeting paradigm, was unable to extend its fingers sufficiently to grasp both sides
of the box, leading to task failure. The Grasp Two Objects task was not achievable with the Inspire
Hand due to its limited DoF and size constraints, while the LEAP Hand baseline struggled to grasp
two relatively large objects, a task that is also non-trivial for the human hand. Despite attempts at
wrapping and pinching, the baseline failed to successfully manipulate the objects. In Insert Stick,
the primary failure arose from the stick’s tendency to drop or not be securely inserted into plasticine.
In Press the Pump, the Inspire Hand’s low DoF prevented simultaneous grasping and actuation,
while the LEAP Hand baseline could not leverage lateral DoF, leading to failed attempts and dropped
objects. In Lift Blackboard, the baseline failed because the fingers could not achieve a sufficient
surface contact with the whiteboard, resulting in slippage during the lifting or holding process.
Detailed videos are available on our project webpage: https://isee-laboratory.github.io/TypeTele.

The last two tasks were designed to validate the efficiency and responsiveness of TypeTele. In
Error Recover, while our approach necessitates an extra voice command post-error, incurring a few
seconds of overhead, this is compensated for by the overall improvement in task execution efficiency.
As a result, our method’s final completion time was significantly shorter than the baseline’s. In
Package Sorting, the operator performs an initial one-time Type retrieval, allowing all subsequent
Type switching to occur with minimal delay. Consequently, the introduction of Type did not increase
the task completion time but did significantly boost the success rate.

9.3 User Study

We conducted additional experiments to further evaluate our teleoperation system through a user
study involving five participants with varying levels of prior teleoperation experience. Each partic-
ipant was instructed to complete an identical task (grasping the handle of a frying pan) using both
the TypeTele system and a retargeting-based baseline. In order to mitigate the influence of learning
effects, three participants used the TypeTele first, while the remaining two began with the baseline,
and none were informed which system was the TypeTele and which was the baseline. Each system
was tested in five trials per participant, during which we recorded Success Rate and Average Time
per Success. The Average Time per Success is calculated by dividing the total time spent across all
trials by the number of successful trials. This metric reflects the average amount of time required to
obtain a single successful execution, capturing both task efficiency and failure overhead.

After completing all the tests, each participant completed a questionnaire that evaluated both systems
in four dimensions: accuracy, responsiveness, ease of use, and user confidence. Each dimension
was rated on a scale of 0-10. We then computed the average score for each dimension across all
participants for both systems. The results are as follows:
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Figure 12: Results of User Study.
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Experimental results demonstrate that the TypeTele system significantly outperforms the retargeting-
based baseline across both objective and subjective measures. On average, TypeTele achieved a task
success rate of 88%, compared to only 20% for the baseline. Participants also completed tasks faster
using TypeTele. Subjective ratings further support these findings: TypeTele received higher scores
across all four dimensions—accuracy (9.4 vs 3.4), responsiveness (8.6 vs 5.4), ease of use (8.4 vs
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4.8), and user confidence (9.4 vs 3.4). These results indicate that TypeTele not only improves task
performance but also delivers a more satisfying and trustworthy user experience.
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