
Double Momentum Method for Lower-Level Constrained Bilevel Optimization

Wanli Shi 1 2 Yi Chang 1 Bin Gu 1 2

Abstract

Bilevel optimization (BO) has recently gained
prominence in many machine learning applica-
tions due to its ability to capture the nested struc-
ture inherent in these problems. Recently, many
hypergradient methods have been proposed as
effective solutions for solving large-scale prob-
lems. However, current hypergradient methods
for the lower-level constrained bilevel optimiza-
tion (LCBO) problems need very restrictive as-
sumptions, namely, where optimality conditions
satisfy the differentiability and invertibility condi-
tions and lack a solid analysis of the convergence
rate. What’s worse, existing methods require ei-
ther double-loop updates, which are sometimes
less efficient. To solve this problem, in this pa-
per, we propose a new hypergradient of LCBO
leveraging the theory of nonsmooth implicit func-
tion theorem instead of using the restrive assump-
tions. In addition, we propose a single-loop
single-timescale algorithm based on the double-
momentum method and adaptive step size method
and prove it can return a (δ, ϵ)-stationary point
with Õ(d22ϵ

−4) iterations. Experiments on two
applications demonstrate the effectiveness of our
proposed method.

1. Introduction
Bilevel optimization (BO) (Bard, 2013; Colson et al., 2007)
plays a central role in various significant machine learning
applications, including hyper-parameter optimization (Pe-
dregosa, 2016; Bergstra et al., 2011; Bertsekas, 1976; Shi
& Gu, 2021), meta-learning (Feurer et al., 2015; Franceschi
et al., 2018; Rajeswaran et al., 2019), reinforcement learning
(Hong et al., 2020; Konda & Tsitsiklis, 2000). Generally

*Equal contribution 1School of Artificial Intelligence, Jilin Uni-
versity, China 2Mohamed bin Zayed University of Artificial Intelli-
gence, UAE. Correspondence to: Bin Gu <jsgubin@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

speaking, the BO can be formulated as follows,

min
x∈X

F (x) = f(x, y∗(x)) (1)

s.t. y∗(x) = argmin
y∈Y

g(x, y),

where X and Y are convex subsets in Rd1 and Rd2 , respec-
tively. It involves a competition between two parties or two
objectives, and if one party makes its choice first, it will
affect the optimal choice of the other party.

Recently, hypergradient methods have shown great effec-
tiveness in solving various large-scale bilevel optimization
problems, where there is no constraint in the lower-level
objective, i.e., Y = Rd2 . Specifically, (Franceschi et al.,
2017; Pedregosa, 2016; Ji et al., 2021) proposed several
double-loop algorithms to solve the BO problems. They
first apply the gradient methods to approximate the solution
to the lower-level problem and then implicit differentiable
methods (Pedregosa, 2016; Ji et al., 2021) or explicit differ-
entiable methods (Franceschi et al., 2017) can be used to
approximate the gradient of the upper-level objective w.r.t
x, namely hypergradient, to update x. However, in some
real-world applications, such as in a sequential game, the
problems must be updated at the same time (Hong et al.,
2020), which makes these methods unsuitable. To solve
this problem, (Hong et al., 2020) propose a single-loop two-
timescale method, which updates y and x alternately with
stepsize ηy and ηx, respectively, designed with different
timescales as limk→∞ ηx/ηy = 0. However, due to the
nature of two-timescale updates, it incurs the sub-optimal
complexity O(ϵ−5) (Chen et al., 2021). To further improve
the efficiency, (Huang & Huang, 2021; Khanduri et al., 2021;
Chen et al., 2021; Guo et al., 2021) proposed single-loop
single-timescale methods, where ηx/ηy is a constant. These
methods have the complexity of Õ(ϵ−4) (Õ means omitting
logarithmic factors) or better (Õ(ϵ−3)) to achieve the sta-
tionary point. However, all these methods are limited to the
bilevel optimization problem with unconstrained lower-level
problems and require the upper-level objective function to
be differentiable. They cannot be directly applied when
constraints are present in the lower-level optimization, i.e.,
Y ≠ Rd2 , as the upper-level objective function is naturally
non-differentiable (Xu & Zhu, 2023).

To solve the lower-level constrained bilevel optimization
problem, recently, several methods have been proposed to

1

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

Table 1: Several representative hypergradient approximation methods for the lower-level constrained BO problem. (The last
column shows iteration numbers to find a stationary point. The gray color is used to highlight the main limitations of the
listed algorithms)

Method F (x) Loop Timescale LL. Constraint Restrictive Conditions Iterations
AiPOD (Xiao et al., 2023) Smooth Double × Affine sets Not need Õ(ϵ−4)
IG-AL (Tsaknakis et al., 2022) Nonsmooth Double × Half space Not need ×
IAPTT-GM (Liu et al., 2021) Nonsmooth Double × Convex set y∗(x) is differentiable ×
RMD-PCD (Bertrand et al., 2022) Nonsmooth Double × Norm set y∗(x) is differentiable ×
JaxOpt(Blondel et al., 2022) Nonsmooth Double × Convex set y∗(x) is differentiable ×
DMLCBO (Ours) Nonsmooth Single Single Convex set Not need Õ(d22ϵ

−4)

approximate the hypergradient, as shown in Table 1. Specif-
ically, (Xiao et al., 2023) reformulate the affine-constrained
lower-level problem into an unconstrained problem, and
then solve the new lower-level problem and use the implicit
differentiable method to approximate the hyper-gradient.
However, their convergence analysis only focuses on the
affine-constrained problem and cannot be extended to a
more general case. (Tsaknakis et al., 2022) solve the in-
ner problem with projection gradient and use the implicit
differentiable method to approximate the hyper-gradient
for the half-space-constrained BO problem. However, they
only give the asymptotic convergence analysis for this spe-
cial case. Since many methods of calculating the Jaco-
bian of the projection operators have been proposed (Mar-
tins & Astudillo, 2016; Djolonga & Krause, 2017; Blondel
et al., 2020; Niculae & Blondel, 2017; Vaiter et al., 2013;
Cherkaoui et al., 2020), the explicit or implicit methods can
also be used to approximate the hypergradient in the LCBO
problems, such as (Liu et al., 2021; Bertrand et al., 2020;
2022; Blondel et al., 2022). However, all these methods are
based on restrictive assumptions, namely, where optimal-
ity conditions satisfy the differentiability and invertibility
conditions, and lack a solid analysis of the convergence rate.
What’s worse, these methods can not be utilized to solve
the sequential game which is mentioned above. Therefore,
it is still an open challenge to design a single-loop single-
timescale method with convergence rate analysis for the
lower-level constrained bilevel optimization problems.

To overcome these problems, we propose a novel single-
loop single-timescale method with a convergence guarantee
for the lower-level constrained BO problems. Specifically,
instead of using the restive assumptions used in (Blondel
et al., 2022; Bertrand et al., 2020; 2022), we leverage the the-
ory of nonsmooth implicit function theorems (Clarke, 1990;
Bolte et al., 2021) to propose a new hypergradient of LCBO.
Then, we use the randomized smoothing and Neumann se-
ries to further approximate the hypergradient. Using this
new hypergradient approximation, we propose a single-loop
single-timescale algorithm based on the double-momentum
method and adaptive step size method to update the lower-

and upper-level variables simultaneously. Theoretically, we
prove our methods can return a (δ, ϵ)-stationary point with
Õ(d22ϵ

−4) iterations. The experimental results in two ap-
plications demonstrate the effectiveness of our proposed
method.

We summarized our contributions as follows.

1. Leveraging the theory of nonsmooth implicit function
theorems, we propose a new method to calculate the
hypergradient of LCBO without using restrictive as-
sumptions.

2. We propose a new method to approximate the hyper-
gradient based on randomized smoothing and the Neu-
mann series. Using this hypergradient approximation,
we propose a single-loop single-timescale algorithm
for the lower-level constrained BO problems.

3. Existing hypergradient-based methods for solving the
lower-level constrained BO problems usually lack
theoretical analysis on convergence rate. We prove
our methods can return a (δ, ϵ)-stationary point with
Õ(d22ϵ

−4) iterations.

4. We compare our method with several state-of-the-art
methods for the lower-level constrained BO problems
on two applications. The experimental results demon-
strate the effectiveness of our proposed method.

2. Preliminaries
Notations. Here, we give several important notations used
in this paper. ∥ · ∥ denotes the ℓ2 norm for vectors and
spectral norm for matrices. Id denotes a d-dimensional
identity matrix. A⊤ denotes transpose of matrix A. Given
a convex set X , we define a projection operation to X as
PX (x′) = argminx∈X 1/2∥x − x′∥2. coX denotes the
convex hull of the set X .

2

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

2.1. Lower-level Constrained Bilevel Optimization

In this paper, we consider the following BO problems where
the lower-level problem has convex constraints,

min
x∈Rd1

F (x) = f(x, y∗(x)) (2)

s.t. y∗(x) = argmin
y∈Y⊆Rd2

g(x, y).

Then, we introduce several mild assumptions on the Problem
(2).

Assumption 2.1. The upper-level function f(x, y) satisfies
the following conditions:

1. ∇xf(x, y) is Lf -Lipschitz continuous w.r.t. (x, y) ∈
Rd1 × Rd2 and ∇yf(x, y) is Lf -Lipschitz continuous
w.r.t (x, y) ∈ Rd1 × Rd2 , where Lf > 0 .

2. For any x ∈ Rd1 and y ∈ Rd2 , we have
∥∇yf(x, y)∥ ≤ Cfy .

Assumption 2.2. The lower-level function g(x, y) satisfies
the following conditions:

1. For any (x, y) ∈ Rd1 × Rd2 , g(x, y) is twice continu-
ously differentiable in (x, y).

2. Fix x, ∇yg(x, y) is Lg-Lipschitz continuous w.r.t y for
some Lg > 0.

3. Fix x, for any y, g(x, y) is µg-strongly-convex in y for
some µg > 0.

4. ∇2
xyg(x, y) is Lgxy-Lipschitz continuous w.r.t (x, y) ∈

Rd1 × Rd2 and ∇2
yyg(x, y) is Lgyy-Lipschitz contin-

uous w.r.t (x, y) ∈ Rd1 × Rd2 , where Lgxy > 0 and
Lgyy > 0.

5. For any (x, y) ∈ Rd1 ×Rd2 , we have ∥∇2
xyg(x, y)∥ ≤

Cgxy .

These assumptions are commonly used in bilevel optimiza-
tion problems (Ghadimi & Wang, 2018; Hong et al., 2020;
Ji et al., 2021; Chen et al., 2021; Khanduri et al., 2021; Guo
et al., 2021).

2.2. Review of Unconstrained Bilevel Optimization
Methods

For the upper-level objective, we can naturally derive the
following gradient w.r.t x using the chain rule (which is
defined as hypergradient),

∇F (x) = ∇xf(x, y
∗(x)) + (∇y∗(x))⊤∇yf(x, y

∗(x)).

The crucial problem of obtaining the hypergradient is calcu-
lating ∇y∗(x). If the lower-level problem is unconstrained,

using the implicit differentiation method and the optimal
condition ∇yg(x, y

∗(x)) = 0, it is easy to show that for a
given x ∈ Rd1 , the following equation holds (Ghadimi &
Wang, 2018; Hong et al., 2020; Ji et al., 2021; Chen et al.,
2021; Khanduri et al., 2021)

∇y∗(x) = [∇2
yyg(x, y

∗(x))]−1∇2
yxg(x, y

∗(x)). (3)

Substituting ∇y∗(x) into ∇F (x), we can obtain the hyper-
gradient. Then, we update x and y alternately using the
gradient method.

2.3. Review of Lower-Level Constrained Bilevel
Optimization Problem

For the constrained lower-level problem, one common
method is to use the projection gradient method, which
has the following optimal condition,

y∗(x) = PY(y
∗(x)− η∇yg(x, y

∗(x))), (4)

where η > 0 denotes the step-size. Recently, (Blondel
et al., 2022; Bertrand et al., 2020; 2022) assume y∗(x) and
PY(·) to be differentiable at some special points and use
the reverse method or implicit gradient method to derive the
hypergradient. However, these assumptions are relatively
strong and highly limit the usage of these methods.

3. Proposed Method
In this section, we propose a new method to approximate
the hypergradient using randomized smoothing that makes
convergence analysis possible. Then, equipped with this
hypergradient, we propose our single-loop single-timescale
method to find a stationary point of the lower-level con-
strained bilevel problem.

3.1. Hypergrdient of Lower-level Constrained Bilevel
Optimization Problem

Before we present our method to calculate the hypergradient,
we give the following definition of generalized Jacobian and
gradient (Clarke, 1990), which is important in our method.

Definition 3.1. Given a scaler-valued function F : Rn → R,
which is Lipschitz near a given point x of interest. The
generalized gradient is defined as:

∂F (x) = co{lim∇F (xi) : xi → x, xi ̸∈ S, xi ̸∈ ΩF },

where ΩF is the set of points at which F fails to be differ-
entiable and S is any other set of measure zero.

Definition 3.2. Given a vector-valued function F : Rn →
Rm, which is Lipschitz near a given point x of interest.
Denote the set of points at which F fails to be differentiable
by ΩF and the usual m × n Jacobian matrix of partial
derivatives by JF (y) whenever y is a point at which the

3

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

necessary partial derivatives exist. The generalized Jacobian
of F at point x, denoted as ∂F (x), is the convex hull of all
m× n matrices obtained as the limit of a sequence of the
form JF (xi), where xi → x and xi ̸∈ ΩF . Symbolically,
then, one has

∂F (x) = co{lim JF (xi) : xi → x, xi ̸∈ ΩF }.

According to (Clarke, 1990), if we want to use the Jacobian
Chain Rule to calculate the generalized gradient ∂F (x) of
the LCBO, the most important thing is to ensure that y∗(x)
is Lipschitz continuous. Fortunately, under the strongly con-
vex assumption of the lower-level problem in Assumptions
2.2, we can obtain the following result.

Lemma 3.3. Under Assumptions 2.2, we have the optimal
solution to the lower-level problem is Lipschitz continuous
with constant Lg/µg .

Then, using the Jacobian Chain Rule in (Clarke, 1990) and
Lemma 3.3, we have

∂F (x) = ∇xf(x, y
∗(x)) + (∂y∗(x))⊤∇yf(x, y

∗(x)). (5)

To obtain the generalized gradient ∂F (x), the most criti-
cal point is to calculate the generalized Jacobian ∂y∗(x).
Inspired by the previous methods (Blondel et al., 2022;
Bertrand et al., 2020; 2022), we use the Corollary of
the Jacobian Chain Rule in (Clarke, 1990) to calculate
the generalized Jacobian on Eqn 4 on both sides, since
both y∗(x) and PY(z

∗) are Lipschitz continuous, where
z∗ = y∗(x)− η∇yg(x, y

∗(x)). Therefore, we can obtain

∂y∗(x)v = ∂PY(z
∗)∂ (y∗(x)− η∇yg(x, y

∗(x))) v. (6)

where v ∈ Rd1 . Using the same method, we have

∂ (y∗(x)− η∇yg(x, y
∗(x))) v = ∂y∗(x)v

− η(∇2
yxg(x, y

∗(x))−∇2
yyg(x, y

∗(x))∂y∗(x))v. (7)

Substituting Equation (7) into formula (6), we have

∂y∗(x)v =∂PY(z
∗)(∂y∗(x)v − η(∇2

yxg(x, y
∗(x))

+∇2
yyg(x, y

∗(x))∂y∗(x))v). (8)

Suppose there exist A ∈ ∂y∗(x) and H ∈ ∂PY(z
∗), which

makes the following equality hold,

Av = H ·
(
A− η∇2

yxg(x, y
∗(x))− η∇2

yyg(x, y
∗(x))A

)
v. (9)

Then, rearranging the above equality, we have[
Id2

−H ·
(
Id2

− η∇2
yyg(x, y

∗(x))
)]

A

=− ηH · ∇2
yxg(x, y

∗(x)) (10)

To solve the above equation, the challenge is to en-
sure that Id2 − H ·

(
Id2 − η∇2

yyg(x, y
∗(x))

)
is invert-

ible. Since PY(z
∗) is non-expensive, we have ∥H∥ ≤

1. Since g is strongly convex, setting η < 1/µg, we
have ∥Id2 − η∇2

yyg(x, y
∗(x))∥ < 1. Therefore, we

have ∥H ·
(
Id2

− η∇2
yyg(x, y

∗(x))
)
∥ < 1 and H(Id2

−
η∇2

yyg(x, y
∗(x))) is nonsingular. Therefore, we can obtain

A =− η
[
Id2

−H(Id2
− η∇2

yyg(x, y
∗(x)))

]−1

·H∇2
yxg(x, y

∗(x)) (11)

Then, substituting A into the generalized gradient, we can
obtain the following subset of the generalized gradient,

∂̄F (x) ={h|h = ∇xf(x, y
∗(x))− η∇2

xyg(x, y
∗(x))H⊤

·
[
Id2

− (Id2
− η∇2

yyg(x, y
∗(x))) ·H⊤]−1

· ∇yf(x, y
∗(x)), H ∈ ∂PY(z

∗)}. (12)

Obviously, we have ∂̄F (x) ⊂ ∂F (x). Note that we can find
that the hypergradient used in (Blondel et al., 2022; Bertrand
et al., 2020; 2022) can be viewed as a specific element in our
hypergradient. However, these methods need the projection
operator to be differentiable, which is impractical in most
cases. Therefore, we can conclude that our method can
obtain the hypergradient in a more general case.

After obtaining the hypergradient, our next step is to design
an algorithm to find the point x satisfying the condition

min{∥h∥ : h ∈ ∂̄F (x)} ≤ ϵ, (13)

such that x is a ϵ-Clarke stationary point (Clarke, 1990)
which satisfies the condition

min{∥h∥ : h ∈ ∂F (x)} ≤ ϵ. (14)

However, (Zhang et al., 2020) point out that finding an ϵ
stationary points in nonsmooth nonconvex optimization can
not be achieved by any finite-time algorithm given a fixed
tolerance ϵ ∈ [0, 1). This suggests the need to rethink the
definition of stationary points.

Inspired by (Zhang et al., 2020; Lin et al., 2022), we pro-
pose to consider the following δ-approximation generalized
Jacobian.

Definition 3.4. Given a point z ∈ Rd2 and δ >
0, the δ-approximation generalized Jacobian of a Lips-
chitz function of PY(·) at z is given by ∂δPY(z) :=

co
(⋃

z′∈Bδ(z)
∂PY(z

′)
)

.

The above approximation generalized Jacobian of PY(·) at
z is the convex hull of all generalized Jacobians at points
in a δ-ball around z, and it can be viewed as the exten-
sion of Goldstein subdifferential (Zhang et al., 2020; Lin
et al., 2022; Goldstein, 1977). Then, substituting ∂δPY(z)
into our hypergradient ∂̄F (x), we can obtain the following

4

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

approximation,

∂̄δF (x) ={h|h = ∇xf(x, y
∗(x))− η∇2

xyg(x, y
∗(x))H⊤

·
[
Id2

− (Id2
− η∇2

yyg(x, y
∗(x))) ·H⊤]−1

· ∇yf(x, y
∗(x)), H ∈ ∂δPY(z

∗)} (15)

Equipping with this hypergradient, even though we are un-
able to find an ϵ-stationary point, one could hope to find a
point that is close to an ϵ-stationary point. This motivates
us to adopt the following more refined notion

Definition 3.5. A point x is called (δ, ϵ)-stationary if
min

{
∥h∥ : h ∈ ∂̄δF (x)

}
≤ ϵ.

Note that if we can find a point x′ at most distance δ away
from x such that x′ is ϵ-stationary, then we know x is (δ, ϵ)-
stationary. However, the contrary is not true. We also have
the following result

Lemma 3.6. The set ∂δPY(z) converges as δ ↓ 0 as
limδ↓0 ∂δPY(z) = ∂PY(z).

This result enables an intuitive framework for transform-
ing the non-asymptotic analysis of convergence to (δ, ϵ)-
stationary points to classical asymptotic results for finding
ϵ-stationary points. Thus, we conclude that finding a (δ, ϵ)
stationary point is a reasonable optimality condition for the
lower-level constrained bilevel optimization problem.

3.2. Randomized Smoothing

Inspired by the strong ability of randomized smoothing
to deal with nonsmooth problems, in this subsection, we
use this method to handle the non-smoothness of the pro-
jection operator. Given a non-expansive projection opera-
tor (Moreau, 1965) PY(z) and uniform distribution P on a
unit ball in ℓ2-norm, we define the smoothing function as
PYδ(z) = Eu∼P[PY(z+δu)]. Then, we have the following
proposition.

Proposition 3.7. Let PYδ(z) = Eu∼P[PY(z+δu)] where P
is a uniform distribution on a unit ball in ℓ2-norm. Since that
PY is non-expansive and each element of PY is Lipschitz
continuous with constant Lp, we have PYδ(z) is differen-
tiable and 1-Lipschitz continuous with cd2Lp/δ-Lipschitz
gradient, where c > 0 is constant.

Using this randomized smoothing function to replace the
approximation generalized Jacobian in Eqn (15), we can
approximate the hypergradient as follows,

∇Fδ(x)

=∇xf(x, y
∗(x))− η∇2

xyg(x, y
∗(x))∇PYδ(z

∗)⊤

·
[
Id2 − (Id2 − η∇2

yyg(x, y
∗(x)))∇PYδ(z

∗)⊤
]−1

· ∇yf(x, y
∗(x)).

For this hypergradient estimation, we have the following
conclusion.
Lemma 3.8. Under Assumptions 2.1, 2.2, we have ∇Fδ(x)
is Lipschitz continuous w.r.t x.

Lemma 3.8 indicates that we can use the traditional analysis
framework to discuss the convergence performance using
∇Fδ(x). However, as we discussed above, our purpose is
to find the (δ, ϵ)-stationary points of LCBO. Therefore, a
new challenge arises, namely, to show the relation between
∇Fδ(x) and ∂̄δF (x). Here, we first give the relation be-
tween the δ-approximation generalized Jacobian and the
Jacobian of the randomized smoothing function as follows.
Proposition 3.9. We have ∇PYδ(z) ∈ ∂δPY(z) for any
z ∈ Rd2 .

Using this result, we have ∇Fδ(x) ∈ ∂̄δF (x). This resolves
an important question and forms the basis for analyzing our
method, which means that once we find a point satisfying
the condition ∥∇Fδ(x)∥ ≤ ϵ, then it is a (δ, ϵ)-stationary
point.

3.3. Approximation of Hypergradient

In this subsection, we discuss how to approximate the hy-
pergradient ∇Fδ(x) in an efficient method.

Since obtaining the optimal solution y∗(x) is usually time-
consuming, one proper method is to replace y∗(x) with y
as an approximation as follows,

∇fδ(x, y) = ∇xf(x, y)− η∇2
xyg(x, y)∇PYδ(z)

⊤

·
[
Id2

− (Id2
− η∇2

yyg(x, y))∇PYδ(z)
⊤]−1 ∇yf(x, y).

where z = y − η∇yg(x, y). Then, we can use the Neu-
mann series (Ghadimi & Wang, 2018; Meyer, 2000) to
efficiently approximate the matrix inverse, since we have
∥(Id2 −η∇2

yyg(x, y))∇PYδ(z)
⊤∥ < 1 if η < 1/µg . There-

fore, we can obtain the approximation of the hypergradient
as follows,

∇̄fδ(x, y) = ∇xf(x, y)− η∇2
xyg(x, y)∇PYδ(z)

⊤

·
Q−1∑
i=0

(
(Id2 − η∇2

yyg(x, y))∇PYδ(z)
⊤)i ∇yf(x, y).

In addition, since calculating ∇PYδ(z) is impractical, we
can use the following unbiased estimator of the gradient
∇PYδ(z) as a replacement,

H̄(z;u) =

d2∑
i=1

1

2δ
(PY(z + δui)− PY(z − δui))u

⊤
i ,

where ui ∼ P. Note that, in the program, we can calculate
H̄ in parallel, thereby reducing the actual running time. For
H̄(z;u), we have the following conclusion.

5

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

Lemma 3.10. We have E
[
H̄(z;u)

]
= ∇PYδ(z) and

E
[∥∥H̄(z;u)−∇PYδ(z)

∥∥2] ≤ 16
√
2πd2L

2
p.

To further reduce the complexity caused by calculating
multiple Jacobian-vector products, we can introduce an
additional stochastic layer on the finite sum. Specifi-
cally, assume we have a parameter Q > 0 and a collec-
tion of independent samples ξ̄ := {u0, · · · , uc(Q)}, where
c(Q) ∼ U {0, · · · , Q− 1}. Then, we can approximate the
gradient as follows,

∇̄fδ(x, y; ξ̄) = ∇xf(x, y)− ηQ∇2
xyg(x, y)H̄(z;u0)⊤

·
c(Q)∏
i=1

(
(Id2

− η∇2
yyg(x, y))H̄(z;ui)⊤

)
∇yf(x, y), (16)

where we have used the the convention
∏0

i=1 A = I .
We can conclude that the bias of the gradient estimator
∇̄fδ(x, y; ξ̄) decays exponentially fast with Q, as summa-
rized below:

Lemma 3.11. Under Assumptions 2.1, 2.2and Lemma
3.10, setting 1

µg
(1 − 1

4(2π)1/4
√
d2Lp

) ≤ η <
1
µg

, for any x ∈ Rd1 , y ∈ Y , we have∥∥∇fδ(x, y)− E[∇̄fδ(x, y; ξ̄)]
∥∥ ≤ CgxyCfy

µg
(1 − ηµg)

Q.

Furthermore, the variance of ∇̄fδ(x, y; ξ̄) is bounded as

E
[∥∥∇̄fδ(x, y; ξ̄)− E

[
∇̄fδ(x, y; ξ̄)

]∥∥2] ≤ σf (d2), where

σf (d2) is defined in Appendix I.

Algorithm 1 DMLCBO

Input: Initialize x1 ∈ X , y1 ∈ Y , v1 = ∇yg(x1, y1),
w1 = ∇̄fδ(x1, y1; ξ̄1), ηk, τ , γ, β, α, Q and η.

1: for k = 1, · · · ,K do
2: Update xk+1 = xk − ηkγ

P[1/cu,1/cl]
(
√
m2,k+G0)

wk.
3: Update yk+1 = (1 − ηk)yk + ηkPY(yk −

τ
P[1/cu,1/cl]

(
√
m1,k+G0)

vk)

4: Calculate the hyper-gradient ∇̄fδ(xk+1, yk+1; ξ̄k+1)
according to Eqn. (16).

5: Update wk+1 = (1 − α)wk +
α∇̄fδ(xk+1, yk+1; ξ̄k+1).

6: Update vk+1 = (1− β)vk + β∇yg(xk+1, yk+1).
7: end for

Output: xr where r ∈ {1, · · · ,K} is uniformly sampled.

3.4. Double-momentum Method for Lower-level
Constrained Bilevel Optimization

Equipped with the hypergradient ∇̄fδ(x, y; ξ̄), our next en-
deavor is to design a single-loop single-timescale algorithm
to solve the constrained bilevel optimization problem (2).
Our main idea is to adopt the double-momentum-based
method and adaptive step-size method developed in (Huang

& Huang, 2021; Khanduri et al., 2021; Shi et al., 2022).
Our algorithm is summarized in Algorithm 1. Since we
use the double-momentum method to solve the lower-level
constrained bilevel optimization problem, we denote our
method as DMLCBO.

Define α ∈ (0, 1) and β ∈ (0, 1). For the lower-level
problem, we can utilize the following projected gradient
method with the momentum-based gradient estimator and
adaptive step size to update y,

ŷk+1 =PY(yk − τ

P[1/cu,1/cl](
√
m1,k +G0)

vk),

yk+1 =(1− ηk)yk + ηkŷk+1,

vk+1 =(1− β)vk + β∇yg(xk, yk),

where ηk > 0, τ > 0. G0 > 0 is used to avoid to prevent
the molecule from being equal to 0. Here, we initialize v1 =
∇yg(x1, y1). Similarly, for the upper-level problem, we can
utilize the following gradient method with the momentum-
based gradient estimator and adaptive step size to update
x,

xk+1 =xk − ηkγ

P[1/cu,1/cl](
√
m2,k +G0)

wk,

wk+1 =(1− α)wk + α∇̄fδ(xk, yk; ξ̄k),

and we initialize w1 = ∇̄fδ(x1, y1; ξ̄1). Note we set
mi,k+1 = 0.99 · m1,k + 0.01 · G2, where G denotes the
gradient estimation, which is used in Adam (Kingma & Ba,
2014).

4. Convergence Analysis
In this section, we discuss the convergence performance of
our DMLCBO (All the detailed proofs are presented in our
Appendix). We follow the theoretical analysis framework
in (Huang & Huang, 2021; Huang et al., 2020; Shi et al.,
2022; Khanduri et al., 2021) (For easy understanding, we
also provide a route map of the analysis in Appendix J).

Using all the assumptions and lemmas, we can obtain the
following theorem (For ease of reading, some parameter
Settings are omitted here. The specific parameters can be
found in Appendix K.2):

Theorem 4.1. Under Assumptions 2.1, 2.2 and Lemma
3.10, with 1

µg
(1 − 1

4(2π)1/4
√
d2Lp

) ≤ η < 1
µg

, Q =

1
µgη

ln
CgxyCfyK

µg
, 0 ≤ a ≤ 2, α = c1ηk, β = c2ηk,

L0 = max(L1(
d2

δ), L2(
d2

δ)) > 1, Φ1 = E[Fδ(x1) +
10La

0cl
τµgcu

∥y1 − y∗(x1)∥2 + cl(∥w1 − ∇̄fδ(x1, y1)− R1∥2 +
∥∇yg(x1, y1)−v1∥2)], and ηk = t

(m+k)1/2
, t > 0, we have

min{∥h∥ : h ∈ ∂̄δF (xr)} ≤ 4m1/4
√
G√

Kt
+

4
√
G

(Kt)1/4
.

6

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

0 1000 2000 3000
Time (s)

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Te
st

 A
cc

ur
ac

y

DMLCBO
V-PBGD
Approx
RMD-PCD

(a) CodRNA

0 1000 2000 3000
Time (s)

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

DMLCBO
V-PBGD
Approx
RMD-PCD

(b) MNIST 6vs9

0 1000 2000 3000
Time (s)

0.50

0.52

0.54

0.56

0.58

Te
st

 A
cc

ur
ac

y

DMLCBO
V-PBGD
Approx
RMD-PCD

(c) Madelon

0 1000 2000 3000
Time (s)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

DMLCBO
V-PBGD
Approx
RMD-PCD

(d) FashionMNIST 1vs7

Figure 1: Test accuracy against training time of all the methods in data hyper-cleaning.

Table 2: Test accuracy (%) with standard variance of all the methods in data hyper-cleaning. (Higher is better.)

Datasets DMLCBO V-PBGD Approx RMD-PCD
CodRNA 80.42 ± 0.05 80.32± 0.09 77.67± 0.38 79.43± 0.07
MNIST 6vs9 94.24 ± 0.01 93.53± 0.34 92.29± 0.27 92.33± 0.29
Madelon 56.33 ± 1.83 53.91± 1.25 54.75± 1.08 55.00± 2.17
FashionMNIST 1vs7 88.85 ± 0.60 85.95± 0.60 86.03± 0.96 88.93± 0.68

where G = Φ1−Φ∗

γcl
+ 17t

4K2 (m+K)1/2+ 4
3tK2 (m+K)3/2+

(mσf (d2))t
2 ln(m+K); the range of c1,c2 γ, τ and m are

given in the appendix.

Remark 4.2. Let t = O(1), m = O(1), σf (d2) = O(d2)

and ln(m+K) = Õ(1), we have
√
G = Õ((d2

δ)a/2+
√
d2).

Thus, our proposed DMLCBO can converge to a (δ, ϵ) sta-
tionary point at the rate of Õ(((d2

δ)a/2+
√
d2)K

−1/4) with
properly choosing the hyper-parameters. Then, setting
a = 0 and min{∥h∥ : h ∈ ∂̄δF (xr)} ≤ Õ(((d2

δ)a/2 +√
d2)K

−1/4) ≤ ϵ, we have K = Õ(d22ϵ
−4). Obviously, by

setting a = 0, our method can avoid the influence of δ on
the convergence iterations (Lin et al., 2022) and obtain the
same convergence iteration number as the traditional bilevel
optimization method without the Lipschitz assumption on
the stochastic gradient estimation (Huang & Huang, 2021).
Then, since we need to approximate c(Q) × d2 Jacobian-
vector products and O(p) time to calculate the projection
in each iteration, the average computational complexity
of approximating hypergradient is O(Qd2p + d1). There-
fore, the total computational complexity of our method is
Õ((Qd2p + d1)d

2
2ϵ

−4). It is worth noting that since we
approximate d2 Jacobians in parallel, the overall execution
time of our algorithm can be significantly reduced.

5. Experiments
In this section, we compare the performance of our method
with SOTA methods for LCBO in two applications. (De-
tailed settings are given in our Appendix.)

5.1. Baselines

We compare our method with the following LCBO methods.

1. V-PBGD. The method proposed in (Shen & Chen,
2023) uses the value function method to solve the
bilevel optimization problem.

2. RMD-PCD. The method proposed in (Bertrand et al.,
2022) which uses the reverse method to calculate the
hyper-gradient.

3. Approx. The method proposed in (Pedregosa, 2016)
solves a linear optimization problem to calculate the
hypergradient.

We implement all the methods by Pytorch (Paszke et al.,
2019). Since JaxOpt (Blondel et al., 2022) is implemented
by JAX (Bradbury et al., 2018), for a fair comparison, we
use Approx with the Jacobian calculating methods in (Mar-
tins & Astudillo, 2016; Djolonga & Krause, 2017; Blondel
et al., 2020; Niculae & Blondel, 2017; Vaiter et al., 2013;
Cherkaoui et al., 2020) as a replacement of JaxOpt, which
uses the same method to calculate the hypergradient. We run
all the methods 10 times on a PC with four 1080Ti GPUs.

5.2. Applications

Data hyper-cleaning. In this experiment, we evaluate the
performance of all the methods in the application named
data hyper-cleaning. In many real-world applications, the
training set and testing set may have different distributions.
To reduce the discrepancy between the two distributions,
each data point will be given an additional importance
weight, which is called data hyper-clean. This problem

7

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

0 1000 2000 3000
Time (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

DMLCBO
V-PBGD
Approx
RMD-PCD

(a) Omniglot 5 way 5 shot

0 1000 2000 3000
Time (s)

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

DMLCBO
V-PBGD
Approx
RMD-PCD

(b) Omniglot 10 way 5 shot

0 1000 2000 3000
Time (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

DMLCBO
V-PBGD
Approx
RMD-PCD

(c) FC100 5 way 5 shot

0 1000 2000 3000
Time (s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

DMLCBO
V-PBGD
Approx
RMD-PCD

(d) FC100 10 way 5 shot

Figure 2: Test accuracy against training time of all the methods in meta-learning.

Table 3: Test accuracy (%) with standard variance in meta-learning. (Higher is better.)

Datasets Problem DMLCBO V-PBGD Approx RMD-PCD
Omniglot 5 way 5 shot 99.97 ± 0.04 95.67± 1.02 99.41± 0.25 99.69± 0.37
Omniglot 10 way 5 shot 99.81 ± 0.19 98.43± 0.16 99.57± 0.17 99.29± 0.17
FC100 5 way 5 shot 85.25 ± 0.01 78.14± 1.97 74.19± 1.35 84.75± 0.65
FC100 10 way 5 shot 86.93 ± 0.89 67.18± 0.75 69.10± 0.85 81.18± 0.39

can be formulated as

min
x∈Rd1

∑
Dval

ℓ
(
y∗(x)⊤ai, bi

)
s.t. y∗(x) = argmin

∥y∥1≤r

∑
Dtr

[σ(x)]iℓ
(
y⊤ai, bi

)
+ c∥y∥2,

where r > 0, Dtr and Dval denote the training set and
validation set respectively; (ai, bi) denotes the data point;
σ(·) := 1/(1 + exp(−·)) is the Sigmoid function; ℓ(·, ·) is
the loss function; c > 0 is the regularization parameter used
to ensure the lower-level problem to be strongly convex. In
this experiment, an additional ℓ1 is added to the lower-level
problem to ensure the sparsity of the model.

Meta-learning. Meta-learning for few-shot learning is to
learn a shared prior parameter across a distribution of tasks,
such that a simple learning step with few-shot data based
on the prior leads to a good adaptation to the task in the
distribution. In particular, the training task Ti is sampled
from distribution PT . Each task Ti is characterized by its
training data Di

tr and the test data Di
te. The upper level

is to extract features from input data and multi-class SVM
served as the base learner in the lower-level optimization to
classify the data on its extracted features. This problem can
be formulated as

min
ϕ

∑
Ti∼PT

L(y∗i (x), ϕx,Di
te) (17)

s.t. y∗i (x) = argmin
0≤yi≤Ce

1

2
y⊤i Gyi − e⊤yi

where ϕx denotes the network parameterized by x; e denotes
the vector with all elements equal to 1; G = K ⊙ (V V ⊤),

Kij = ϕ(ai)
⊤ϕ(aj), Vij =

1
k−1 if bi ̸= j otherwise Vij =

1, (aj , bj) ∈ Di
tr, and K denotes the number of classes.

5.3. Results

We have presented the test accuracy results for all methods
in Tables 2 and 3, and visualized the testing performance
as a function of training time in Figures 1 and 2. Upon
closer examination of the data presented in Tables 2 and 3,
we can find that our method achieves similar performances
in some cases and sometimes gets results better than other
methods. One possible reason is that RMD-PCD, Approx,
and V-PBGD highly depend on the solutions to the lower-
level problem. Once the approximated solution is not good
enough then they may obtain bad performance. From all
these results, we can conclude that our DMLCBO outper-
forms other methods in terms of effectiveness.

6. Conclusion
In this paper, without using the restive assumptions on
y∗(x), we propose a new method to derive the hypergra-
dient for LCBO. Then, we leverage randomized smoothing
to approximate the hypergradient. Then, using our new hy-
pergradient approximation, we propose a single-loop single-
timescale algorithm based on the double-momentum method
and adaptive step size method, which updates the lower-
and upper-level variables simultaneously. Theoretically,
we prove our methods can converge to the (δ, ϵ)-stationary
point with Õ(d22ϵ

−4). The experimental results in data hy-
percleaning and meta-learning demonstrate the effectiveness
of our proposed method.

8

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

Acknowledgements
Bin Gu was supported by the Natural Science Foundation of
China under Grant No.62076138. Yi Chang was supported
by the Natural Science Foundation of China under Grant
No.U2341229 and the National Key R&D Program of China
under Grant No.2023YFF0905400.

Impact Statement
This paper presents work on the theoretical analysis of the
bilevel optimization problem. There are many potential
societal consequences of our work, none of which we feel
must be specifically highlighted here.

References
Bard, J. F. Practical bilevel optimization: algorithms and

applications. Springer Science & Business Media, 2013.

Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. Al-
gorithms for hyper-parameter optimization. Advances in
neural information processing systems, pp. 2546–2554,
2011.

Bertrand, Q., Klopfenstein, Q., Blondel, M., Vaiter, S.,
Gramfort, A., and Salmon, J. Implicit differentiation
of lasso-type models for hyperparameter optimization.
In International Conference on Machine Learning, pp.
810–821. PMLR, 2020.

Bertrand, Q., Klopfenstein, Q., Massias, M., Blondel, M.,
Vaiter, S., Gramfort, A., Salmon, J., Chevalier, J., Nguyen,
T., Thirion, B., et al. Implicit differentiation for fast
hyperparameter selection in non-smooth convex learning.
Journal of Machine Learning Research, 23(149):1–43,
2022.

Bertsekas, D. P. On penalty and multiplier methods for
constrained minimization. SIAM Journal on Control and
Optimization, 14(2):216–235, 1976.

Blondel, M., Teboul, O., Berthet, Q., and Djolonga, J. Fast
differentiable sorting and ranking. In International Con-
ference on Machine Learning, pp. 950–959. PMLR, 2020.

Blondel, M., Berthet, Q., Cuturi, M., Frostig, R., Hoyer, S.,
Llinares-López, F., Pedregosa, F., and Vert, J.-P. Efficient
and modular implicit differentiation. Advances in Neural
Information Processing Systems, 35:5230–5242, 2022.

Bolte, J., Le, T., Pauwels, E., and Silveti-Falls, T. Nons-
mooth implicit differentiation for machine-learning and
optimization. Advances in neural information processing
systems, 34:13537–13549, 2021.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,

Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Chen, T., Sun, Y., and Yin, W. A single-timescale
stochastic bilevel optimization method. arXiv preprint
arXiv:2102.04671, 2021.

Cherkaoui, H., Sulam, J., and Moreau, T. Learning to
solve tv regularised problems with unrolled algorithms.
Advances in Neural Information Processing Systems, 33:
11513–11524, 2020.

Clarke, F. H. Optimization and nonsmooth analysis. SIAM,
1990.

Colson, B., Marcotte, P., and Savard, G. An overview of
bilevel optimization. Annals of operations research, 153
(1):235–256, 2007.

Djolonga, J. and Krause, A. Differentiable learning of
submodular models. Advances in Neural Information
Processing Systems, 30, 2017.

Feurer, M., Springenberg, J., and Hutter, F. Initializing
bayesian hyperparameter optimization via meta-learning.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 29, pp. 1128–1135, 2015.

Franceschi, L., Donini, M., Frasconi, P., and Pontil, M.
Forward and reverse gradient-based hyperparameter opti-
mization. In International Conference on Machine Learn-
ing, pp. 1165–1173. PMLR, 2017.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil,
M. Bilevel programming for hyperparameter optimiza-
tion and meta-learning. In International Conference on
Machine Learning, pp. 1568–1577. PMLR, 2018.

Ghadimi, S. and Wang, M. Approximation methods for
bilevel programming. arXiv preprint arXiv:1802.02246,
2018.

Goldstein, A. Optimization of lipschitz continuous func-
tions. Mathematical Programming, 13:14–22, 1977.

Guo, Z., Hu, Q., Zhang, L., and Yang, T. Random-
ized stochastic variance-reduced methods for multi-
task stochastic bilevel optimization. arXiv preprint
arXiv:2105.02266, 2021.

Hong, M., Wai, H.-T., Wang, Z., and Yang, Z. A two-
timescale framework for bilevel optimization: Complex-
ity analysis and application to actor-critic. arXiv preprint
arXiv:2007.05170, 2020.

Huang, F. and Huang, H. Biadam: Fast adaptive bilevel
optimization methods. arXiv preprint arXiv:2106.11396,
2021.

9

http://github.com/google/jax

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

Huang, F., Gao, S., Pei, J., and Huang, H. Acceler-
ated zeroth-order and first-order momentum methods
from mini to minimax optimization. arXiv preprint
arXiv:2008.08170, 2020.

Ji, K., Yang, J., and Liang, Y. Bilevel optimization:
Nonasymptotic analysis and faster algorithms. In In-
ternational Conference on Machine Learning (ICML),
2021.

Khanduri, P., Zeng, S., Hong, M., Wai, H.-T., Wang, Z., and
Yang, Z. A near-optimal algorithm for stochastic bilevel
optimization via double-momentum. Advances in neural
information processing systems, 34:30271–30283, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Konda, V. R. and Tsitsiklis, J. N. Actor-critic algorithms. In
Advances in neural information processing systems, pp.
1008–1014. Citeseer, 2000.

Lin, T., Zheng, Z., and Jordan, M. Gradient-free methods
for deterministic and stochastic nonsmooth nonconvex
optimization. Advances in Neural Information Processing
Systems, 35:26160–26175, 2022.

Liu, R., Liu, Y., Zeng, S., and Zhang, J. Towards gradient-
based bilevel optimization with non-convex followers
and beyond. Advances in Neural Information Processing
Systems, 34:8662–8675, 2021.

Martins, A. and Astudillo, R. From softmax to sparsemax: A
sparse model of attention and multi-label classification. In
International conference on machine learning, pp. 1614–
1623. PMLR, 2016.

Meyer, C. D. Matrix analysis and applied linear algebra,
volume 71. Siam, 2000.

Moreau, J.-J. Proximité et dualité dans un espace hilbertien.
Bulletin de la Société mathématique de France, 93:273–
299, 1965.

Niculae, V. and Blondel, M. A regularized framework for
sparse and structured neural attention. Advances in neural
information processing systems, 30, 2017.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Pedregosa, F. Hyperparameter optimization with approxi-
mate gradient. In International conference on machine
learning, pp. 737–746. PMLR, 2016.

Rajeswaran, A., Finn, C., Kakade, S., and Levine, S.
Meta-learning with implicit gradients. arXiv preprint
arXiv:1909.04630, 2019.

Shen, H. and Chen, T. On penalty-based bilevel gradient
descent method. arXiv preprint arXiv:2302.05185, 2023.

Shi, W. and Gu, B. Improved penalty method via dou-
bly stochastic gradients for bilevel hyperparameter opti-
mization. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 35(11):9621–9629, May 2021. doi:
10.1609/aaai.v35i11.17158. URL https://ojs.aaai.org/
index.php/AAAI/article/view/17158.

Shi, W., Gao, H., and Gu, B. Gradient-free method for
heavily constrained nonconvex optimization. In Inter-
national Conference on Machine Learning, pp. 19935–
19955. PMLR, 2022.

Tsaknakis, I., Khanduri, P., and Hong, M. An implicit
gradient-type method for linearly constrained bilevel
problems. In ICASSP 2022 - 2022 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pp. 5438–5442, 2022. doi: 10.1109/
ICASSP43922.2022.9747013.

Vaiter, S., Deledalle, C.-A., Peyré, G., Dossal, C., and Fadili,
J. Local behavior of sparse analysis regularization: Ap-
plications to risk estimation. Applied and Computational
Harmonic Analysis, 35(3):433–451, 2013.

Van Leeuwen, T. and Aravkin, A. Y. Variable projection
for nonsmooth problems. SIAM journal on scientific
computing, 43(5):S249–S268, 2021.

Xiao, Q., Shen, H., Yin, W., and Chen, T. Alternating pro-
jected sgd for equality-constrained bilevel optimization.
In International Conference on Artificial Intelligence and
Statistics, pp. 987–1023. PMLR, 2023.

Xu, S. and Zhu, M. Efficient gradient approximation method
for constrained bilevel optimization. arXiv preprint
arXiv:2302.01970, 2023.

Zhang, J., Lin, H., Jegelka, S., Sra, S., and Jadbabaie, A.
Complexity of finding stationary points of nonconvex
nonsmooth functions. In International Conference on
Machine Learning, pp. 11173–11182. PMLR, 2020.

10

https://ojs.aaai.org/index.php/AAAI/article/view/17158
https://ojs.aaai.org/index.php/AAAI/article/view/17158

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

Appendix

A. Experimental Setting
Data hyper-cleaning. In this experiment, we evaluate all the methods on the datasets MNIST, FashionMNIST, CodRNA,
and Madelon 1. For MNIST and FashionMNIST, we choose two classes to conduct a binary classification. In addition,
we flip 30% of the labels in the training set as the noisy data. We set r = 1 for all the datasets. For our method, we
search the step size from the set {1, 10−1, 10−2, 10−3, 10−4, 10−5}. For other methods, we search the step size from the
set {10, 1, 10−1, 10−2, 10−3, 10−4, 10−5}. Following the default setting in (Ji et al., 2021), we set Q = 3 and η = 0.5 for
our method. In addition, we set ηk = 1/

√
100 + k, c1 = 10 and c2 = 10 for our method. For V-PBGD, RMD-PCD, and

Approx, following the setting in (Pedregosa, 2016), we set the inner iteration number at 100. We run all the methods for
10000 iterations and evaluate the test accuracy for every 100 iteration. We set δ = 1e− 6.

Meta learning. In this experiment, we evaluate all the methods on the datasets Omniglot and FC100. We set C = 10. We
use a network with four convolution-ELU-Maxpooling layers to extract the features that output a R100 vector as the feature.
For our method, we search the step size from the set {1, 10−1, 10−2, 10−3, 10−4, 10−5}. For other methods, we search the
step size from the set {10, 1, 10−1, 10−2, 10−3, 10−4, 10−5}. Following the default setting in (Ji et al., 2021), we set Q = 3
and η = 0.5 for our method. In addition, we set ηk = 1/

√
100 + k, c1 = 10 and c2 = 10 for our method. For V-PBGD,

RMD-PCD, and Approx, we also set the inner iteration number at 3. We set δ = 1e− 6.

B. Ablation Study
In this section, we conduct ablation experiments on the hyper-parameters Q and η. To control the variables, we explore the
effect of each hyper-parameter while keeping the other hyper-parameters as default as shown in the experimental setups. We
search the step size of both x and y. We present the results in Tables 4, 5. We can find that increasing Q will lead to a long
training time. In addition, setting Q = 1 usually leads to the worst results, which is because setting Q = 1 means ignoring
the inverse of the Hessian matrix in our hypergradient and may not converge to our stationary point.

Table 4: Test accuracy (%) of our method with different Q in data hyper-cleaning. (Higher is better.)

Datasets Q=1 Q=3 Q=5 Q=7
CodRNA 80.25± 0.07 80.42± 0.05 80.55± 0.03 80.56 ± 0.04
MNIST 6vs9 93.65± 0.01 94.24± 0.01 94.15± 0.01 94.35 ± 0.01
Madelon 55.23± 1.22 56.33± 1.83 56.67 ± 1.24 56.23± 1.56
FashionMNIST 1vs7 88.25± 0.56 88.85 ± 0.60 88.75± 0.40 88.55± 0.33

Table 5: Test accuracy (%) of our method with different η in data hyper-cleaning. (Higher is better.)

Datasets η = 0.1 η = 0.5 η = 1
CodRNA 80.45± 0.04 80.42± 0.05 80.33± 0.06
MNIST 6vs9 94.65± 0.01 94.24± 0.01 94.35± 0.01
Madelon 56.23± 1.14 56.33± 1.83 56.23± 1.56
FashionMNIST 1vs7 88.65± 0.67 88.85± 0.60 88.67± 0.23

C. Proof of Lemma 3.3
Proof. Here, we follow the proof in (Van Leeuwen & Aravkin, 2021). For given x1 and x2, we have the corresponding
unique optimal solutions y∗(x1) and y∗(x2). For the constrained lower-level problem, we have the following optimal
conditions

0 ∈ ∇yg(x1, y
∗(x1)) + ∂δY(y

∗(x1)), 0 ∈ ∇yg(x2, y
∗(x2)) + ∂δY(y

∗(x2)) (18)

where δY(·) is the indicator function of the constriant.

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

11

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

Since g is strongly convex for any given x̃ and Y is convex, we have

µg∥y∗(x1)− y∗(x2)∥2 ≤ ⟨(∇yg(x̃, y
∗(x1)) + h1)− (∇yg(x̃, y

∗(x2)) + h2) , y
∗(x1)− y∗(x2)⟩ (19)

where h1 ∈ ∂δY(y
∗(x1)) and h2 ∈ ∂δY(y

∗(x2)). Make the particular choices h1 = −∇yg(x1, y
∗(x1)) ∈ ∂δY(y

∗(x1))
and h2 = −∇yg(x2, y

∗(x2)) ∈ ∂δY(y
∗(x2)), we have

µg∥y∗(x1)− y∗(x2)∥2

≤⟨∇yg(x̃, y
∗(x1))−∇yg(x1, y

∗(x1)), y
∗(x1)− y∗(x2)⟩

+ ⟨∇yg(x2, y
∗(x2))−∇yg(x̃, y

∗(x2)), y
∗(x1)− y∗(x2)⟩ (20)

Then, setting x̃ = x1, we have

µg∥y∗(x1)− y∗(x2)∥2

≤⟨∇yg(x2, y
∗(x2))−∇yg(x1, y

∗(x2)), y
∗(x1)− y∗(x2)⟩

≤∥∇yg(x2, y
∗(x2))−∇yg(x1, y

∗(x2))∥∥y∗(x1)− y∗(x2)∥
≤Lg∥x1 − x2∥∥y∗(x1)− y∗(x2)∥ (21)

where the last inequality is due to Assumption 2.2. Rearrange above inequality, we have

∥y∗(x1)− y∗(x2)∥ ≤ Lg

µg
∥x1 − x2∥ (22)

That completes the proof.

D. Proof of Lemma 3.6
Proof. First, we show that the limit exists. By Lipschitzness of the projection operator and Jenson inequality, we know that
∂δPY(z) lies in a bounded ball with radius 1. For any sequence of δk with δk ↓ 0, we know that ∂δk+1

PY(z) ⊂ ∂δkPY(z).
Therefore, the limit exists by the monotone convergence theorem.

Next, we show that limδ↓0 ∂δPY(z) = ∂PY(z). According to the Proposition 2.6.2 in (Clarke, 1990), we have

∂PY(z) =
⋂
δ>0

⋃
z′∈Bδ(z)

∂PY(z
′). (23)

Then, using the fact

⋃
z′∈Bδ(z)

∂PY(z
′) ⊆ co

 ⋃
z′∈Bδ(z)

∂PY(z
′)

 = ∂δPY(z), (24)

we have ∂PY(z) ⊆ limδ↓0 ∂δPY(z).

Using the upper semicontinuous of ∂PY(z) at z (Clarke, 1990), we have that for any ϵ > 0, there exists δ > 0 such that⋃
z′∈Bδ(z)

∂PY(z
′) ⊆ ∂PY(z) + ϵB (25)

Then, by convexity of ∂PY(z) and ϵB, we know that their Minknowski sum ∂PY(z)+ϵB isconvex. Therefore, we conclude
that for any ϵ > 0, there exists δ > 0 such that

∂δPY(z) = co

 ⋃
z′∈Bδ(z)

∂PY(z
′)

 ⊆ ∂PY(z) + ϵB (26)

Therefore, we have limδ↓0 ∂δPY(z) ⊆ ∂PY(z). Finally, we obtain limδ↓0 ∂δPY(z) = ∂PY(z).

12

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

E. Proof of Proposition 3.7
Proof. Let u ∈ Rd denote a random variable distributed uniformly on B1(0). Since PY(·) is 1-Lipschitz, we have

∥PYδ(z)− PY(z)∥ = ∥E[PY(z + δu)− PY(z)]∥ ≤ δ · 1 · E[∥u∥] = δ (27)

Since PY(z) is 1-Lipschitz, we have

∥PYδ(z)− PYδ(z
′)∥ = ∥E[PY(z + δu)− PY(z

′ + δu)]∥ ≤ ∥E[∥z − z′∥]∥ = ∥z − z′∥ (28)

For the Jacobian matrix, we have

∇PYδ(z) =

(∇P1
Yδ(z))

⊤

...
(∇Pd2

Yδ(z))
⊤

 (29)

For each element ∇Pi
Yδ(z), (i ∈ [1, · · · , d2]), according to Theorem 3.1 in (Lin et al., 2022), we have ∇Pi

Yδ(z) =
E[∇Pi

Y(z + δu)]. Therefore, we can easily obtain ∇PYδ(z) = E[∇PY(z + δu)]. Then, according to (Lin et al., 2022), we
have

∥∇PYδ(z)−∇PYδ(z
′)∥ ≤ ∥∇PYδ(z)−∇PYδ(z

′)∥F =

(
d2∑
i=1

∥∇Pi
Yδ(z)−∇Pi

Yδ(z
′)∥2

)1/2

≤

(
d2∑
i=1

(
cLp

√
d2

δ
∥z − z′∥)2

)1/2

=
cd2Lp

δ
∥z − z′∥ (30)

where c > 0 is a constant.

F. Proof of Proposition 3.9
Proof. According to Theorem 3.1 in (Lin et al., 2022), for each element ∇Pi

Yδ(z) in ∇PYδ(z), we have ∇Pi
Yδ(z) ∈

∂δPi
Y(z). Therefore, we have ∇PYδ(z) ∈ ∂δPY(z)

G. Lipschitz Continuousness of ∇Fδ(x)

Here, we prove ∇Fδ(x) is Lipschitz continuous. We first give several useful lemmas.

Lemma G.1. (Lipschitz continuous of the approximation of hypergradient on x and y.) Under Assumptions 2.1, 2.2,
∇fδ(x, y) is Lipschitz continuous on y ∈ Y and x ∈ X , respectively, such that we have

∥∇fδ(x, y1)−∇fδ(x, y2)∥ ≤ L1(
d2
δ
)∥y1 − y2∥ (31)

∥∇fδ(x1, y)−∇fδ(x2, y)∥ ≤ L2(
d2
δ
)∥x1 − x2∥ (32)

where L1(
d2

δ) = Lf +
LgxyCfy

µg
+

CgxyCfy

µg
(cd2

δ + η cd2

δ Lg) + CgxyCfy
1

ηµ2
g
(cd2

δ + η cd2

δ Lg)(1− ηµg) +
Lgyy

µ2
g

+
Cgxy

µg
Lf

and L2(
d2

δ) = Lf +
LgxyCfy

µg
+

CgxyCfy

µg
η cd2

δ Lg + CgxyCfy

(
η 1
µ2
g

cd2

δ Lg(1− ηµg) +
Lgyy

µ2
g

)
+

Cgxy

µg
Lf

13

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

Proof. Using the definition of ∇fδ(x, y), z1 = y1 −∇yg(x, y1) and z2 = y2 −∇yg(x, y2), we have

∥∇fδ(x, y1)−∇fδ(x, y2)∥

=∥∇xf(x, y1)− η∇2
xyg(x, y1)∇PYδ(z1)

⊤ [(Id2
− (Id2

− η∇2
yyg(x, y1))∇PYδ(z1)

⊤]−1 ∇yf(x, y1)

−∇xf(x, y2) + η∇2
xyg(x, y2)∇PYδ(z2)

⊤ [(Id2 − (Id2 − η∇2
yyg(x, y2))∇PYδ(z2)

⊤]−1 ∇yf(x, y2)∥
≤∥∇xf(x, y1)−∇f(x, y2)∥

+ η∥∇2
xyg(x, y2)−∇2

xyg(x, y1)∥∥∇PYδ(z2)∥∥
[
Id2 − (Id2 − η∇2

yyg(x, y2))∇PYδ(z2)
⊤]−1 ∥∥∇yf(x, y2)∥

+ η∥∇2
xyg(x, y1)∥∥∇PYδ(z2)−∇PYδ(z1)∥∥

[
Id2 − (Id2 − η∇2

yyg(x, y2))∇PYδ(z2)
⊤]−1 ∥∥∇yf(x, y2)∥

+ η∥∇2
xyg(x, y1)∥∥∇PYδ(z1)∥∥

[
Id2

− (Id2
− η∇2

yyg(x, y2))∇PYδ(z2)
⊤]−1

−
[
Id2

− (Id2
− η∇2

yyg(x, y1))∇PYδ(z1)
⊤]−1 ∥∥∇yf(x, y2)∥

+ η∥∇2
xyg(x, y1)∥∥∇PYδ(z1)∥∥

[
Id2 − (Id2 − η∇2

yyg(x, y1))∇PYδ(z1)
⊤]−1 ∥∥∇yf(x, y2)−∇yf(x, y1)∥ (33)

We have

∥∇xf(x, y1)−∇xf(x, y2)∥ ≤ Lf∥y1 − y2∥, (34)
∥∇yf(x, y1)−∇yf(x, y2)∥ ≤ Lf∥y1 − y2∥, (35)

∥∇2
xyg(x, y2)−∇2

xyg(x, y1)∥ ≤ Lgxy∥y2 − y1∥, (36)

∥∇PYδ(z1)∥ ≤ 1, ∥∇f(x, y2)∥ ≤ Cfy, ∥∇2
xyg(x, y1)∥ ≤ Cgxy (37)

Since ∥(Id2
− η∇2

yyg(x, y2))∇PYδ(z2)
⊤∥ ≤ ∥∇PYδ(z2)∥∥Id2

− η∇2
yyg(x, y2)∥ ≤ 1− ηµg ≤ 1 we have

∥
[
Id2

− (Id2
− η∇2

yyg(x, y2))∇PYδ(z2)
⊤]−1 ∥

≤ 1

1− ∥(Id2
− η∇2

yyg(x, y2))∇PYδ(z2)⊤∥

≤ 1

ηµg
(38)

∥∇PYδ(z2)−∇PYδ(z1)∥

≤cd2
δ

∥z2 − z1∥

=
cd2
δ

∥y2 − η∇yg(x, y2)− y1 + η∇yg(x, y1)∥

≤cd2
δ

∥y2 − y1∥+ η
cd2
δ

∥∇yg(x, y1)− η∇yg(x, y2)∥

≤(
cd2
δ

+ η
cd2
δ

Lg)∥y2 − y1∥ (39)

Using the inequality ∥H−1
2 −H−1

1 ∥ ≤ ∥H−1
1 (H1 −H2)H

−1
2 ∥ ≤ ∥H−1

1 ∥∥H1 −H2∥∥H−1
2 ∥, we have

∥
[
Id2 − (Id2 − η∇2

yyg(x, y2))∇PYδ(z2)
⊤]−1 −

[
Id2 − (Id2 − η∇2

yyg(x, y1))∇PYδ(z1)
⊤]−1 ∥

≤ 1

η2µ2
g

∥(Id2
− η∇2

yyg(x, y2))∇PYδ(z2)
⊤ − (Id2

− η∇2
yyg(x, y1))∇PYδ(z1)

⊤∥

≤ 1

η2µ2
g

∥∇PYδ(z2)−∇PYδ(z1)∥∥Id2
− η∇2

yyg(x, y2)∥

+
1

η2µ2
g

∥∇PYδ(z1)∥∥Id2
− η∇2

yyg(x, y2)− Id2
+ η∇2

yyg(x, y1)∥

≤
(

1

η2µ2
g

(
cd2
δ

+ η
cd2
δ

Lg)(1− ηµg) +
Lgyy

ηµ2
g

)
∥y2 − y1∥ (40)

14

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

Therefore, using the above inequalities, we obtain

∥∇fδ(x, y1)−∇fδ(x, y2∇fδ(x, y))∥

≤Lf +
LgxyCfy

µg
+

CgxyCfy

µg
(
cd2
δ

+ η
cd2
δ

Lg)

+ CgxyCfy

(
1

ηµ2
g

(
cd2
δ

+ η
cd2
δ

Lg)(1− ηµg) +
Lgyy

µ2
g

)
+

Cgxy

µg
Lf∥y2 − y1∥ (41)

For the second statement, let z1 = y −∇yg(x1, y) and z2 = y −∇yg(x2, y), we have

∥∇fδ(x1, y)−∇fδ(x2, y)∥

=∥∇xf(x1, y)− η∇2
xyg(x1, y)∇PYδ(z1)

⊤ [Id2 − (Id2 − η∇2
yyg(x1, y))∇PYδ(z1)

⊤]−1 ∇yf(x1, y)

−∇xf(x2, y) + η∇2
xyg(x2, y)∇PYδ(z2)

⊤ [Id2
− (Id2

− η∇2
yyg(x2, y))∇PYδ(z2)

⊤]−1 ∇yf(x2, y)∥
≤∥∇xf(x1, y)−∇f(x2, y)∥

+ η∥∇2
xyg(x2, y)−∇2

xyg(x1, y)∥∥∇PYδ(z2)∥∥
[
Id2

− (Id2
− η∇2

yyg(x2, y))∇PYδ(z2)
⊤]−1 ∥∥∇yf(x2, y)∥

+ η∥∇2
xyg(x1, y)∥∥∇PYδ(z2)−∇PYδ(z1)∥∥

[
Id2

− (Id2
− η∇2

yyg(x2, y))∇PYδ(z2)
⊤]−1 ∥∥∇yf(x2, y)∥

+ η∥∇2
xyg(x1, y)∥∥∇PYδ(z1)∥∥

[
Id2 − (Id2 − η∇2

yyg(x2, y))∇PYδ(z2)
⊤]−1

−
[
Id2 − (Id2 − η∇2

yyg(x1, y))∇PYδ(z1)
⊤]−1 ∥∥∇yf(x2, y)∥

+ η∥∇2
xyg(x1, y)∥∥∇PYδ(z1)∥∥

[
Id2

− (Id2
− η∇2

yyg(x1, y))∇PYδ(z1)
⊤]−1 ∥∥∇yf(x2, y)−∇yf(x1, y)∥ (42)

We have

∥∇xf(x1, y)−∇xf(x2, y)∥ ≤ Lf∥x2 − x1∥ (43)
∥∇yf(x1, y)−∇yf(x2, y)∥ ≤ Lf∥x2 − x1∥ (44)

∥∇2
xyg(x2, y)−∇2

xyg(x1, y)∥ ≤ Lgxy∥x2 − x1∥ (45)

∥∇PYδ(z2)−∇PYδ(z1)∥

≤cd2
δ

∥z2 − z1∥

=
cd2
δ

∥y − η∇yg(x2, y)− y + η∇yg(x1, y)∥

≤η
cd2
δ

∥∇yg(x1, y)− η∇yg(x2, y)∥

≤η
cd2
δ

Lg∥x1 − x2∥ (46)

∥
[
Id2 − (Id2 − η∇2

yyg(x2, y))∇PYδ(z2)
⊤]−1 −

[
Id2 − (Id2 − η∇2

yyg(x1, y))∇PYδ(z1)
⊤]−1 ∥

≤ 1

η2µ2
g

∥(Id2
− η∇2

yyg(x1, y))∇PYδ(z1)
⊤ − (Id2

− η∇2
yyg(x2, y))∇PYδ(z2)

⊤∥

≤ 1

η2µ2
g

∥∇PYδ(z1)−∇PYδ(z2)∥∥Id2
− η∇2

yyg(x1, y)∥

+
1

η2µ2
g

∥∇PYδ(z2)∥∥Id2
− η∇2

yyg(x1, y)− Id2
+ η∇2

yyg(x2, y)∥

≤
(

1

ηµ2
g

cd2
δ

Lg(1− ηµg) +
Lgyy

ηµ2
g

)
∥x1 − x2∥ (47)

15

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

Therefore, we have

∥∇fδ(x1, y)−∇fδ(x2, y)∥

≤
(
Lf +

LgxyCfy

µg
+

CgxyCfy

µg
η
cd2
δ

Lg + CgxyCfy

(
η
1

µ2
g

cd2
δ

Lg(1− ηµg) +
Lgyy

µ2
g

)
+

Cgxy

µg
Lf

)
∥x1 − x2∥ (48)

G.1. Proof of Lemma 3.8

Here we first give a detailed version of Lemma 3.8 and then give the proof.

Lemma G.2. (Lipschitz continous of ∇Fδ(x).) Under Assumptions 2.1, 2.2 and Lemma 3.10, we have ∇Fδ(x) is Lipschitz
continuous w.r.t x, such that

∥∇Fδ(x1)−∇Fδ(x2)∥ ≤ LFδ
(
d2
δ
)∥x1 − x2∥ (49)

where LFδ
(d2

δ) =
Lg

µg
L1(

d2

δ) + L2(
d2

δ), L1(
d2

δ) = Lf +
LgxyCfy

µg
+

CgxyCfy

µg
(cd2

δ + η cd2

δ Lg) + CgxyCfy(
1

ηµ2
g
(cd2

δ +

η cd2

δ Lg)(1− ηµg)+
Lgyy

µ2
g
)+

Cgxy

µg
Lf and L2(

d2

δ) = Lf +
LgxyCfy

µg
+

CgxyCfy

µg
η cd2

δ Lg +CgxyCfy(η
1
µ2
g

cd2

δ Lg(1− ηµg)+
Lgyy

µ2
g
) +

Cgxy

µg
Lf .

Proof. We have

∥∇Fδ(x1)−∇Fδ(x2)∥
=∥∇fδ(x1, y

∗(x1))−∇fδ(x2, y
∗(x2))∥

≤∥∇fδ(x1, y
∗(x1))−∇fδ(x1, y

∗(x2))∥+ ∥fδ(x1, y
∗(x2))− fδ(x2, y

∗(x2))∥ (50)

For the first term, we have

∥∇fδ(x1, y
∗(x1))−∇fδ(x1, y

∗(x2))∥ ≤ L1(
d2
δ
)∥y∗(x1)− y∗(x2)∥ ≤ Lg

µg
L1(

d2
δ
)∥x1 − x2∥ (51)

Thus, we have

∥∇Fδ(x1)−∇Fδ(x2)∥ ≤
(
L2(

d2
δ
) +

Lg

µg
L1(

d2
δ
)

)
∥x1 − x2∥ (52)

H. Proof of Lemma 3.10
Proof. By the definition of H̄ , we have

H̄ =

d2∑
i=1

1

2δ
(PY(z + δui)− PY(z − δui))u

⊤
i =


∑d2

i=1
1
2δ

(
P1
Y(z + δui)− P1

Y(z − δui)
)
u⊤
i

...∑d2

i=1
1
2δ

(
Pd2

Y (z + δui)− Pd2

Y (z − δui)
)
u⊤
i

 (53)

According to (Lin et al., 2022), for each element H̄j =
∑d2

i=1
1
2δ

(
Pj
Y(z + δui)− Pj

Y(z − δui)
)
u⊤
i , we have

E[
1

d2

d2∑
i=1

d2
2δ

(
Pj
Y(z + δui)− Pj

Y(z − δui)
)
u⊤
i] = ∇Pj

Yδ(z). (54)

16

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

Therefore, we have E[H̄] = ∇PYδ(z). According to (Lin et al., 2022), we have
Eui

[∥d2

2δ

(
Pj
Y(z + δui)− Pj

Y(z − δui)
)
u⊤
i ∥2] ≤ 16

√
2πd2L

2
p. Then, we have

E[∥H̄∥2]

≤E[∥H̄∥2F] = E[
d2∑
j=1

∥H̄j∥2] =
d2∑
j=1

E[∥H̄j∥2]

=

d2∑
j=1

E

∥∥∥∥∥ 1

d2

d2∑
i=1

d2
2δ

(
Pj
Y(z + δui)− Pj

Y(z − δui)
)
u⊤
i

∥∥∥∥∥
2


≤
d2∑
j=1

1

d22

d2∑
i=1

Eui

[∥∥∥∥d22δ (Pj
Y(z + δui)− Pj

Y(z − δui)
)
u⊤
i

∥∥∥∥2
]

≤d2 ·
1

d22
d2 · 16

√
2πd2L

2
p

=16
√
2πd2L

2
p (55)

That completes the proof.

I. Proof of Lemma 3.11
Proof. For convenience, define Ḡyy = Q

∏c(Q)
i=1

(
(Id2

− η∇2
yyg(x, y))H̄(z;ui)⊤

)
and Gyy =[

Id2
− (Id2

− η∇2
yyg(x, y))∇PYδ(z)

⊤]−1
. We set η < 1

µg
We have

Eξ̄[∇̄fδ(x, y; ξ̄)] = ∇xf(x, y)− η∇2
xyg(x, y)∇PYδ(z)

⊤E
[
Ḡyy

]
∇yf(x, y) (56)

We have

∥∥∇fδ(x, y)− E[∇̄fδ(x, y; ξ̄)]
∥∥

=
∥∥η∇2

xyg(x, y)∂zPYδ(z)
⊤ {E [Ḡyy

]
−Gyy

}
∇yf(x, y)

∥∥
≤ηCgxyCfy

∥∥E [Ḡyy

]
−Gyy

∥∥ (57)

where the third inequality is due to the non-expansive of the projector operation.

Due to the independency of u, c(Q), we have

E
[
Ḡyy

]
=E

Q c(Q)∏
i=1

(
(Id2

− η∇2
yyg(x, y))H̄(z;ui)⊤

)
=QEc(Q)

Eu

c(Q)∏
i=1

(
(Id2

− η∇2
yyg(x, y))H̄(z;ui)⊤

)
=QEc(Q)

[
(Id2

− η∇2
yyg(x, y))∇PYδ(z)

⊤]c(Q)

=

Q−1∑
i=0

[
(Id2

− η∇2
yyg(x, y))∇PYδ(z)

⊤]i (58)

17

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

In addition, we have

Gyy

=
[
Id2

− (Id2
− η∇2

yyg(x, y))∇PYδ(z)
⊤]−1

=

∞∑
i=0

[
(Id2

− η∇2
yyg(x, y))∇PYδ(z)

⊤]i
=E

Q c(Q)∏
i=1

(
(Id2 − η∇2

yyg(x, y))H̄(z;ui)⊤
)+

∞∑
i=Q

[
(Id2 − η∇2

yyg(x, y))∇PYδ(z)
⊤]i

(59)

where z = y − η∇yg(x, y), which implies that

∥∥E [Ḡyy

]
− Ḡyy

∥∥
=

∥∥∥∥∥∥[(Id2
− (Id2

− η∇2
yyg(x, y))∇PYδ(z)

⊤]−1 − E

Q c(Q)∏
i=1

(
(Id2

− η∇2
yyg(x, y; ζ

i))H̄(z;ui)⊤
)∥∥∥∥∥∥

≤
∞∑

i=Q

∥∥(Id2
− η∇2

yyg(x, y))∇PYδ(z)
⊤∥∥i

≤
∞∑

i=Q

∥∥Id2
− η∇2

yyg(x, y))
∥∥i ∥∇PYδ(z)∥i

≤ 1

ηµg
(1− ηµg)

Q (60)

Thus, we have

∥∥∇fδ(x, y)− E[∇̄fδ(x, y; ξ̄)]
∥∥ ≤ CgxyCfy

µg
(1− ηµg)

Q (61)

Then, we prove the bound on the variance. we have

E
[∥∥∇̄fδ(x, y; ξ̄)− E

[
∇̄fδ(x, y; ξ̄)

]∥∥2]
=E

[∥∥η∇2
xyg(x, y)H̄(z;u0)⊤Ḡyy∇yf(x, y)− η∇2

xyg(x, y)∇PYδ(z)
⊤E[Ḡyy]∇yf(x, y)

∥∥2]
≤2η2

∥∥∇2
xyg(x, y)

∥∥2 E [∥∥H̄(z;u0)−∇PYδ(z)
∥∥2]E [∥∥Ḡyy

∥∥2] ∥∇yf(x, y)∥2

+ 2η2 ∥∇xyg(x, y)∥2 ∥∇PYδ(z)∥2 E
[∥∥Ḡyy − E[Ḡyy]

∥∥2] ∥∇yf(x, y)∥2 (62)

For the first term in the above inequality, we have

E
[∥∥H̄(z;u0)−∇PYδ(z)

∥∥2] ≤ 32
√
2πd2L

2
p + 2 (63)

18

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

For E[∥Ḡyy∥2], we have

E[∥Ḡyy∥2] =
Q−1∑
q=0

E

∥∥∥∥∥
q∏

i=1

(
(Id2

− η∇2
yyg(x, y))H̄(z;ui)⊤

)∥∥∥∥∥
2


≤
Q−1∑
q=0

((1− ηµg)4(2π)
1/4
√
d2Lp)

2q

≤ 1

1− (1− ηµg)216
√
2πd2L2

p

(64)

where the last inequality is obtained by setting 1
µg

(1− 1
4(2π)1/4

√
d2Lp

) ≤ η < 1
µg

.

We can also derive that ∥∥E [Ḡyy

]∥∥
=∥

Q−1∑
i=0

[
(Id2

− η∇2
yyg(x, y))∇PYδ(z)

⊤]i ∥
≤

Q−1∑
i=0

∥(Id2 − η∇2
yyg(x, y))∇PYδ(z)

⊤∥i

≤
Q−1∑
i=0

(1− ηµg)
i

≤ 1

ηµg
(65)

Then, we have

E
[
∥Gyy − E[Gyy]∥2

]
≤ 2

1− (1− ηµg)216
√
2πd2L2

p

+
2

η2µ2
g

(66)

Therefore, combining the above inequalities, we can bound the variance as follows,

E
[∥∥∇̄f(x, y; ξ̄)− E

[
∇̄f(x, y; ξ̄)

]∥∥2] ≤ σf (d2) (67)

where σf (d2) = 2η2C2
gxy(32

√
2πd2L

2
p+2)C2

fy
1

1−(1−ηµg)216
√
2πd2L2

p

+2η2C2
gxy(

2
1−(1−ηµg)216

√
2πd2L2

p

+ 2
η2µ2

g
)C2

fy That

completes the proof.

J. Route Map of Our Convergence Analysis
Here we give a simple route map of our convergence analysis.

K. Deriving the Convergence Metric
In this section, we give a detailed analysis to derive the metric. Based on the Lipshitz continuous of ∇Fδ(x), we have the
following lemma,

Lemma K.1. Under Assumptions 2.1, 2.2 and Lemma 3.10, we have

∥∇Fδ(xk)− wk∥2 ≤ 2L2
1(
d2
δ
)∥y∗(xk)− yk∥2 + 2∥∇fδ(xk, yk)− wk∥2. (68)

19

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

Figure 3: Route map of convergence analysis.

Proof. We have

∥∇Fδ(xk)− wk∥2

=∥∇fδ(xk, y
∗(xk))−∇fδ(xk, yk) +∇fδ(xk, yk)− wk∥2

≤2∥∇fδ(xk, y
∗(xk))−∇fδ(xk, yk)∥2 + 2∥∇fδ(xk, yk)− wk∥2

≤2L2
1(
d2
δ
)∥y∗(xk)− yk∥2 + 2∥∇fδ(xk, yk)− wk∥2 (69)

K.1. Usefull Lemmas in Convergence Rate

Lemma K.2. (Descent on the function value.) Under Assumptions 2.1, 2.2, and Lemma 3.8, let Fδ(x) be an approximation
function of F (x) and have the gradient ∇Fδ(xk), and γηk ≤ 1

2LFδ
(
d2
δ)cl

, we have

Fδ(xk+1) ≤ Fδ(xk) + ηkγcl∥∇Fδ(xk)− wk∥2 −
ηk
2γcl

∥x̃k+1 − xk∥2 (70)

Proof. Due to the smoothness of Fδ and let x̃k+1 = xk − γ
P[1/cu,1/cl]

(
√
m2,k+G0)

wk, we have

Fδ(xk+1)

≤Fδ(xk) +∇Fδ(xk)
⊤(xk+1 − xk) +

1

2
LFδ

(
d2
δ
)∥xk+1 − xk∥2

=Fδ(xk) + ηk∇Fδ(xk)
⊤(x̃k+1 − xk) +

1

2
LFδ

(
d2
δ
)∥ηk(x̃k+1 − xk)∥2

=Fδ(xk) + ηk⟨wk, x̃k+1 − xk⟩+ ηk⟨∇Fδ(xk)− wk, x̃k+1 − xk⟩+
η2k
2
LFδ

(
d2
δ
)∥x̃k+1 − xk∥2 (71)

In our algorithm, we have x̃k+1 = xk− γ
P[1/cu,1/cl]

(
√
m2,k+G0)

wk = argminx∈Rd1
1
2∥x−xk+

γ
P[1/cu,1/cl]

(
√
m2,k+G0)

wk∥2.

20

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

We have the following optimal condition,

⟨x̃k+1 − xk +
γ

P[1/cu,1/cl](
√
m2,k +G0)

wk, x− x̃k+1⟩ ≥ 0, x ∈ Rd1 (72)

Set x = xk, we can obtain

γcl⟨wk, x̃k+1 − xk⟩ ≤ −∥x̃k+1 − xk∥2 (73)

Thus, we have

⟨wk, x̃k+1 − xk⟩ ≤ − 1

γcl
∥x̃k+1 − xk∥2 (74)

In addition, we can obtain

⟨∇Fδ(xk)− wk, x̃k+1 − xk⟩
≤∥∇Fδ(xk)− wk∥2∥x̃k+1 − xk∥2

≤γcl∥∇Fδ(xk)− wk∥2 +
1

4γcl
∥x̃k+1 − xk∥2 (75)

Then, setting γ ≤ 1

2LFδ
(
d2
δ)clηk

, we can derive

Fδ(xk+1)

≤Fδ(xk) + ηkγcl∥∇Fδ(xk)− wk∥2 +
ηk
4γcl

∥x̃k+1 − xk∥2 −
ηk
γcl

∥x̃k+1 − xk∥2 +
η2k
2
LFδ

(
d2
δ
)∥x̃k+1 − xk∥2

≤Fδ(xk) + ηkγcl∥∇Fδ(xk)− wk∥2 −
ηk
2γcl

∥x̃k+1 − xk∥2 (76)

Lemma K.3. (Error between the updates of y and the optimal solution y∗) Under Assumptions 2.1, 2.2, let ỹk+1 =
PY(yk − τ

P[1/cu,1/cl]
(
√
m1,k+G0)

vk) and ηk ≤ 1, τ ≤ 1
6Lgcu

, we have

∥yk+1 − y∗(xk+1)∥2

≤(1− ηkτµgcu
4

)∥y∗(xk)− yk∥2 +
25ηkτcu
6µg

∥∇yg(xk, yk)− vk∥2 −
3ηk
4

∥ỹk+1 − yk∥2 +
25L2

yηk

6τµgcu
∥xk − x̃k+1∥2

(77)

Proof. Define ỹk+1 = PY(yk − τ
P[1/cu,1/cl]

(
√
m1,k+G0)

vk). We have yk+1 = (1− ηk)yk + ηkỹk+1.

According to the strong convexity of g, we have

g(xk, y)

≥g(xk, yk) + ⟨∇yg(xk, yk), y − yk⟩+
µg

2
∥y − yk∥2

=g(xk, yk) + ⟨vk, y − ỹk+1⟩+ ⟨∇yg(xk, yk)− vk, y − ỹk+1⟩+ ⟨∇yg(xk, yk), ỹk+1 − yk⟩+
µg

2
∥y − yk∥2 (78)

According to the smoothness of g, we have

g(xk, ỹk+1) ≤ g(xk, yk) + ⟨∇yg(xk, yk), ỹk+1 − yk⟩+
Lg

2
∥ỹk+1 − yk∥2 (79)

Then, combining the above inequalities, we have

g(xk, y) ≥ g(xk, ỹk+1)−
Lg

2
∥ỹk+1 − yk∥2 + ⟨vk, y − ỹk+1⟩+ ⟨∇yg(xk, yk)− vk, y − ỹk+1⟩+

µg

2
∥y − yk∥2 (80)

21

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

In our Algorithm 1, we have

ỹk+1 =PY

(
yk − τ

P[1/cu,1/cl](
√
m1,k +G0)

vk

)
= argmin

y∈Y

1

2

∥∥∥∥y − yk +
τ

P[1/cu,1/cl](
√
m1,k +G0)

vk

∥∥∥∥2 . (81)

Since Y is a convex set and the function 1
2

∥∥∥∥y − yk + τ

P[1/cu,1/cl]
(
√

∥vk∥)
vk

∥∥∥∥2 is convex, we have〈
ỹk+1 − yk +

τ

P[1/cu,1/cl](
√
m1,k +G0)

vk, y − ỹk+1

〉
≥ 0, y ∈ Y (82)

Then we have

τcu⟨vk, y − ỹk+1⟩ ≥ ⟨ỹk+1 − yk, ỹk+1 − y⟩ (83)

Then we have

g(xk, y)

≥g(xk, ỹk+1)−
Lg

2
∥ỹk+1 − yk∥2 +

µg

2
∥y − yk∥2 + ⟨∇yg(xk, yk)− vk, y − ỹk+1⟩+

1

τcu
⟨ỹk+1 − yk, ỹk+1 − y⟩ (84)

Let y = y∗(xk). Since g(xk, y
∗(xk)) ≤ g(xk, ỹk+1), we have

g(xk, ỹk+1) ≥ g(xk, y
∗(xk))

≥g(xk, ỹk+1)−
Lg

2
∥ỹk+1 − yk∥2 +

µg

2
∥y∗(xk)− yk∥2 + ⟨∇yg(xk, yk)− vk, y

∗(xk)− ỹk+1⟩

+
1

τcu
∥ỹk+1 − yk∥2 +

1

τcu
⟨ỹk+1 − yk, yk − y∗(xk)⟩ (85)

In addition, we have

⟨∇yg(xk, yk)− vk, y
∗(xk)− ỹk+1⟩

=⟨∇yg(xk, yk)− vk, y
∗(xk)− yk⟩+ ⟨∇yg(xk, yk)− vk, yk − ỹk+1⟩

≥ − ∥∇yg(xk, yk)− vk∥∥y∗(xk)− yk∥ − ∥∇yg(xk, yk)− vk∥∥yk − ỹk+1∥

≥ − 1

µg
∥∇yg(xk, yk)− vk∥2 −

µg

4
∥y∗(xk)− yk∥2 −

1

µg
∥∇yg(xk, yk)− vk∥2 −

µg

4
∥yk − ỹk+1∥2

≥− 2

µg
∥∇yg(xk, yk)− vk∥2 −

µg

4
∥y∗(xk)− yk∥2 −

µg

4
∥yk − ỹk+1∥2 (86)

The first inequality is due to ⟨a, b⟩ ≥ −∥a∥∥b∥ and the second inequality is due to the Young’s inequality. We also have

∥yk+1 − y∗(xk)∥2

≤∥yk + ηk(ỹk+1 − yk)− y∗(xk)∥2

=∥yk − y∗(xk)∥2 + η2k∥ỹk+1 − yk∥2 + 2ηk⟨ỹk+1 − yk, yk − y∗(xk)⟩ (87)

Therefore, we have

⟨ỹk+1 − yk, yk − y∗(xk)⟩ ≥
1

2ηk
(∥yk+1 − y∗(xk)∥2 − ∥yk − y∗(xk)∥2 − η2k∥ỹk+1 − yk∥2) (88)

Then, we have

0 ≥− Lg

2
∥ỹk+1 − yk∥2 +

µg

2
∥y∗(xk)− yk∥2 +

1

τcu
∥ỹk+1 − yk∥2

− 2

µg
∥∇yg(xk, yk)− vk∥2 −

µg

4
∥y∗(xk)− yk∥2 −

µg

4
∥yk − ỹk+1∥2

+
1

2ηkτcu
(∥yk+1 − y∗(xk)∥2 − ∥yk − y∗(xk)∥2 − η2k∥ỹk+1 − yk∥2) (89)

22

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

Hence we have

∥yk+1 − y∗(xk)∥2

≤2ηkτcu(
Lg

2
− 1

τcu
+

µg

4
+

ηk
2τcu

)∥ỹk+1 − yk∥2 + (1− µgηkτcu
2

)∥y∗(xk)− yk∥2 +
4ηkτcu
µg

∥∇yg(xk, yk)− vk∥2

≤(1− µgηkτcu
2

)∥y∗(xk)− yk∥2 +
4ηkτcu
µg

∥∇yg(xk, yk)− vk∥2 − 2ηkτcu(
1

2τcu
− 3Lg

4
)∥ỹk+1 − yk∥2

≤(1− µgηkτcu
2

)∥y∗(xk)− yk∥2 +
4ηkτcu
µg

∥∇yg(xk, yk)− vk∥2 −
3ηk
4

∥ỹk+1 − yk∥2 (90)

using ηk ≤ 1, µg ≤ Lg and τ ≤ 1
6Lgcu

.

Then, we have

∥yk+1 − y∗(xk+1)∥2

=∥yk+1 − y∗(xk) + y∗(xk)− y∗(xk+1)∥2

≤(1 +
ηkτµgcu

4
)∥yk+1 − y∗(xk)∥2 + (1 +

4

ηkτµgcu
)∥y∗(xk)− y∗(xk+1)∥2

≤(1 +
ηkτµgcu

4
)∥yk+1 − y∗(xk)∥2 + (1 +

4

ηkτµgcu
)L2

y∥xk − xk+1∥2

≤(1 +
ηkτµgcu

4
)(1− µgηkτcu

2
)∥y∗(xk)− yk∥2 + (1 +

ηkτµgcu
4

)
4ηkτcu
µg

∥∇yg(xk, yk)− vk∥2

− (1 +
ηkτµgcu

4
)
3ηk
4

∥ỹk+1 − yk∥2 + (1 +
4

ηkτµgcu
)L2

y∥xk − xk+1∥2 (91)

Since ηk ≤ 1, µg ≤ Lg and τ ≤ 1
6Lgcu

, we have τ ≤ 1
6Lgcu

≤ 1
6µgcu

and ηk ≤ 1 ≤ 1
6τLgcu

. Then, we can obtain

(1 +
ηkτµgcu

4
)(1− µgηkτcu

2
) =1− µgηkτcu

2
+

ηkτµgcu
4

−
η2kτ

2µ2
gc

2
u

8
≤ 1− ηkτµgcu

4
(92)

−(1 +
ηkτµgcu

4
)
3ηk
4

≤− 3ηk
4

(93)

(1 +
ηkτµgcu

4
)
4ηkτcu
µg

≤25ηkτcu
6µg

(94)

(1 +
4

ηkτµgcu
)L2

y ≤
25L2

y

6ηkτµgcu
(95)

Finally, we can obtain

∥yk+1 − y∗(xk+1)∥2

≤(1− ηkτµgcu
4

)∥y∗(xk)− yk∥2 +
25ηkτcu
6µg

∥∇yg(xk, yk)− vk∥2

− 3ηk
4

∥ỹk+1 − yk∥2 +
25L2

y

6ηkτµgcu
∥xk − xk+1∥2

≤(1− ηkτµgcu
4

)∥y∗(xk)− yk∥2 +
25ηkτcu
6µg

∥∇yg(xk, yk)− vk∥2

− 3ηk
4

∥ỹk+1 − yk∥2 +
25L2

yηk

6τµgcu
∥xk − x̃k+1∥2 (96)

Lemma K.4. (Descent in the gradient estimation error.(Huang & Huang, 2021)) Under Assumptions 2.1, 2.2, and Lemma

23

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

3.11, if α ∈ (0, 1) and β ∈ (0, 1), we have

E[∥∇fδ(xk+1, yk+1) +Rk+1 − wk+1∥2]

≤(1− α)E[∥∇fδ(xk, yk) +Rk − wk∥2] + α2σf (d2) +
3

α
(∥Rk∥2 + ∥Rk+1∥2) +

3

α
L2
0η

2
k(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2)

(97)

E[∥∇g(xk+1, yk+1)− vk+1∥2]

≤(1− β)E[∥∇g(xk, yk)− vk∥2] +
2L2

g

β
η2k(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2) (98)

where L0 = max(L1(
d2

δ), L2(
d2

δ)).

K.2. Proof of the Convergence Rate in Theorem 4.1

Here we first give a detailed version of Theorem 4.1 and then present the proof.

Theorem K.5. Under Assumptions 2.1, 2.2 and Lemma 3.10, with 1
µg

(1 − 1
4(2π)1/4

√
d2Lp

) ≤ η < 1
µg

, Q =

1
µgη

ln
CgxyCfyK

µg
, 0 ≤ a ≤ 2, 0 < γ ≤ min

 1
L2−a

0

, 1

2LFδ
(
d2
δ)clηk

, 1

4cl

(
125La

0L2
ycl

3τ2µ2
gc2u

+(2
3L

2
0+

6µ2
gL2

g

125L2
0
)cl

) , 2m1/2

9t

, 0 <

τ ≤ min

 1
6Lgcu

,
15La

0

2µgcu

(
2
3L

2
0+

6µ2
gL2

g

125L2
0

)
, m ≥ max{t2, c21t2, c22t2}, α = c1ηk, β = c2ηk, 9

2γ ≤ c1 ≤ m1/2

t ,

125L2
0

3µ2
g

≤ c2 ≤ m1/2

t , L0 = max(L1(
d2

δ), L2(
d2

δ)) > 1, Φ1 = E[Fδ(x1)+
10La

0cl
τµgcu

∥y1−y∗(x1)∥2+cl(∥w1−∇̄fδ(x1, y1)−
R1∥2 + ∥∇yg(x1, y1)− v1∥2)], and ηk = t

(m+k)1/2
, t > 0, we have

1

K

K∑
k=1

E[
1

2
∥∇Fδ(xk)∥] ≤

2m1/4
√
G√

Kt
+

2
√
G

(Kt)1/4
. (99)

where G = Φ1−Φ∗

γcl
+ 17t

4K2 (m+K)1/2 + 4
3tK2 (m+K)3/2 + (mσf (d2))t

2 ln(m+K).

Proof. Setting ηk = t
(m+k)1/2

and m ≥ t2, we have ηk ≤ 1. Due to m ≥ (c1t)
2, we have α = c1ηk ≤ c1t

m1/2 ≤ 1 . Due to

m ≥ (c2t)
2, we have β = c2ηk ≤ c2t

m1/2 ≤ 1. Also, we have c1, c2 ≤ m1/2

t . Then using the above lemmas, we have

E[∥∇fδ(xk+1, yk+1) +Rk+1 − wk+1∥2]− E[∥∇fδ(xk, yk) +Rk − wk∥2]

≤− αE[∥∇fδ(xk, yk) +Rk − wk∥2] + α2σf (d2) +
3

α
(∥Rk∥2 + ∥Rk+1∥2)

+
3

α
L2
0η

2
k(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2)

≤− c1ηkE[∥∇fδ(xk, yk) +Rk − wk∥2] + c21η
2
kσf (d2) +

3

c1ηk
(∥Rk∥2 + ∥Rk+1∥2)

+
3

c1
L2
0ηk(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2)

≤− 9

2
γηkE[∥∇fδ(xk, yk) +Rk − wk∥2] +

m

t2
η2kσf (d2) +

2

3ηk
(∥Rk∥2 + ∥Rk+1∥2)

+
2

3
L2
0ηk(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2) (100)

24

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

where the last inequality holds by 9
2γ ≤ c1 ≤ m1/2

t .

E[∥∇g(xk+1, yk+1)− vk+1∥2]− E[∥∇g(xk, yk)− wk∥2]

≤− βE[∥∇g(xk, yk)− vk∥2] +
2L2

g

β
η2k(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2)

≤− c2ηkE[∥∇g(xk, yk)− vk∥2] +
2L2

g

c2
ηk(∥x̃k − xk+1∥2 + ∥ỹk − yk+1∥2)

≤− 125L2
0

3µ2
g

ηkE[∥∇g(xk, yk)− vk∥2] +
6µ2

gL
2
g

125L2
0

ηk(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2) (101)

where the last inequality hold by 125L2
0

3µ2
g

≤ c2 ≤ m1/2

t .

In addition, we have

Fδ(xk+1)− Fδ(xk)

≤ηkγcl

(
2L2

1(
d2
δ
)∥y∗(xk)− yk∥2 + 2∥∇fδ(xk, yk)− wk∥2

)
− ηk

2γcl
∥x̃k+1 − xk∥2

≤2ηkγclL
2
0∥y∗(xk)− yk∥2 + 2ηkγcl∥∇fδ(xk, yk)− wk∥2 −

ηk
2γcl

∥x̃k+1 − xk∥2

≤2ηkγclL
2
0∥y∗(xk)− yk∥2 + 4ηkγcl∥∇fδ(xk, yk)− wk −Rk∥2 + 4ηkγcl∥Rk∥2 −

ηk
2γcl

∥x̃k+1 − xk∥2 (102)

We can also have

∥yk+1 − y∗(xk+1)∥2 − ∥y∗(xk)− yk∥2

≤− ηkτµgcu
4

∥y∗(xk)− yk∥2 +
25ηkτcu
6µg

∥∇yg(xk, yk)− vk∥2

− 3ηk
4

∥ỹk+1 − yk∥2 +
25L2

yηk

6τµgcu
∥xk − x̃k+1∥2 (103)

Then, we define a Lyapunov function, for any k ≥ 1,

Φk+1

=E[Fδ(xk+1) +
10La

0cl
τµgcu

∥yk+1 − y∗(xk+1)∥2 + cl(∥wk+1 − ∇̄fδ(xk+1, yk+1)−Rk+1∥2

+ ∥∇yg(xk+1, yk+1)− vk+1∥2)] (104)

25

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

We have

Φk+1 − Φk

=E[Fδ(xk+1)− Fδ(xk)] +
10La

0cl
τµcu

E[∥yk+1 − y∗(xk+1)∥2 − ∥yk − y∗(xk)∥2]

+ clE[∥wk+1 − ∇̄f(xk+1, yk+1)−Rk+1∥2 − ∥wk − ∇̄f(xk, yk)−Rk∥2]
+ clE[∥∇yg(xk+1, yk+1)− vk+1∥2 − ∥∇yg(xk, yk)− vk∥2]

≤2ηkγclL
2
0∥y∗(xk)− yk∥2 + 4ηkγcl∥∇fδ(xk, yk)− wk −Rk∥2 + 4ηkγcl∥Rk∥2 −

ηk
2γcl

∥x̃k+1 − xk∥2

+
10La

0cl
τµgcu

(−ηkτµgcu
4

∥y∗(xk)− yk∥2 +
25ηkτcu
6µg

∥∇yg(xk, yk)− vk∥2 −
3ηk
4

∥ỹk+1 − yk∥2 +
25L2

yηk

6τµgcu
∥xk − x̃k+1∥2)

+ cl(−
9

2
γηkE[∥∇fδ(xk, yk) +Rk − wk∥2] +

m

t2
η2kσf (d2) +

2

3ηk
(∥Rk∥2 + ∥Rk+1∥2)

+
2

3
L2
0ηk(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2))

+ cl(−
125L2

0

3µ2
g

ηkE[∥∇g(xk, yk)− vk∥2] +
6µ2

gL
2
g

125L2
0

ηk(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2))

≤(2ηkγclL
2
0 −

5La
0clηk
2

)∥y∗(xk)− yk∥2 + (4ηkγcl −
9clγ

2
ηk)∥∇fδ(xk, yk)− wk −Rk∥2

+ (
125La

0clηk
3µ2

g

− cl
125L2

0

3µ2
g

ηk)∥∇yg(xk, yk)− vk∥2

+

(
− ηk
2γcl

+
125La

0L
2
yclηk

3τ2µ2
gc

2
u

+ (
2

3
L2
0 +

6µ2
gL

2
g

125L2
0

)ηkcl

)
∥x̃k+1 − xk∥2

+

(
−15La

0clηk
2τµgcu

+ (
2

3
L2
0 +

6µ2
gL

2
g

125L2
0

)ηkcl

)
∥ỹk+1 − yk∥2

+ 4ηkγcl∥Rk∥2 +
2γcl
3ηk

(∥Rk∥2 + ∥Rk+1∥2) +
m

t2
γclη

2
kσf (d2)

≤− L2
0γclηk
2

∥y∗(xk)− yk∥2 −
γcl
2

ηk∥∇fδ(xk, yk)− wk −Rk∥2

− ηk
4γcl

∥x̃k+1 − xk∥2 + 4ηkγcl∥Rk∥2 +
2γcl
3ηk

(∥Rk∥2 + ∥Rk+1∥2)

+
m

t2
γclη

2
kσf (d2)

(105)

where the last inequality is due to 0 ≤ a ≤ 2,γ ≤ min{ 1
L2−a

0

, 1

4cl

(
125La

0L2
ycl

3τ2µ2
gc2u

+(2
3L

2
0+

6µ2
gL2

g

125L2
0
)cl

) , 2m1/2

9t }, 0 < τ ≤

15La
0

2µgcu

(
2
3L

2
0+

6µ2
gL2

g

125L2
0

) and L0 > 1.

Then, rearranging the above inequality, we have

γclηk
4

(
2L2

0∥y∗(xk)− yk∥2 + 2∥∇fδ(xk, yk)− wk −Rk∥2 + ∥Rk∥2 +
1

γ2c2l
∥x̃k+1 − xk∥2

)
≤17

4
ηkγcl∥Rk∥2 +

2γcl
3ηk

(∥Rk∥2 + ∥Rk+1∥2) +
m

t2
γclη

2
kσf (d2) + Φk − Φk+1 (106)

Taking the average over k = 1, · · · ,K on both sides and using ηk ≥ ηK , Q = 1
µgη

ln
CgxyCfyK

µg
, ηk = t

(m+k)1/2
and

26

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

Φ1 = E[Fδ(x1) +
10La

0cl
τµgcu

∥y1 − y∗(x1)∥2 + cl(∥w1 − ∇̄fδ(x1, yk+1)−R1∥2 + ∥∇yg(x1, y1)− v1∥2)], we have

1

K

K∑
k=1

E[
1

4

(
2L2

0∥y∗(xk)− yk∥2 + 2∥∇fδ(xk, yk)− wk −Rk∥2 + ∥Rk∥2 +
1

γ2c2l
∥x̃k+1 − xk∥2

)
]

≤ 1

KηK

(
Φ1 − Φ∗

γcl
+

17

4K2

K∑
k=1

ηk +
4

3K2

K∑
k=1

1

ηk
+ (

m

t2
σf (d2))

K∑
k=1

η2k

)

≤ (m+K)1/2

Kt

(
Φ1 − Φ∗

γcl
+

17t

4K2
(m+K)1/2 +

4

3tK2
(m+K)3/2 + (mσf (d2))t

2 ln(m+K)

)
(107)

According to the Jesen’s inequality, we have

1

K

K∑
k=1

E[
1

2

(√
2L2

0∥y∗(xk)− yk∥+
√
2∥∇fδ(xk, yk)− wk −Rk∥+ ∥Rk∥+

1

γcl
∥x̃k+1 − xk∥

)
]

≤

(
4

K

K∑
k=1

1

4

(
2L2

0∥y∗(xk)− yk∥2 + 2∥∇fδ(xk, yk)− wk −Rk∥2 + ∥Rk∥2 +
1

γ2c2l
∥x̃k+1 − xk∥2

))1/2

≤2(m+K)1/4√
Kt

√
Φ1 − Φ∗

γcl
+

17t

4K2
(m+K)1/2 +

4

3tK2
(m+K)3/2 + (mσf (d2))t2 ln(m+K)

≤2m1/4
√
G√

Kt
+

2
√
G

(Kt)1/4
(108)

where G = Φ1−Φ∗

γcl
+ 17t

4K2 (m+K)1/2 + 4
3tK2 (m+K)3/2 + (mσf (d2))t

2 ln(m+K).

Let G (xk,∇Fδ(xk), γ̂) =
1
γ̂ (xk − PX (xk − γ̂∇Fδ(xk)))

∥∇Fδ(xk)∥
=∥G (xk,∇Fδ(xk), γ̂) ∥
≤∥G (xk,∇Fδ(xk), γ̂)− G(xt, wk, γ̂)∥+ ∥G(xt, wk, γ̂)∥
≤∥∇Fδ(xk)− wk∥+ ∥G(xt, wk, γ̂)∥

≤∥wk −∇f(xk, yk)−Rk∥+ ∥Rk∥2 + L0∥y∗(xk)− yk∥+
1

γcl
∥xk − x̃k+1∥. (109)

Finally, we can obtain

1

K

K∑
k=1

E[
1

2
∥∇Fδ(xk)∥] ≤

2m1/4
√
G√

Kt
+

2
√
G

(Kt)1/4
. (110)

Since the random count r ∈ {1, ·,K} is uniformly sampled, we have

E[
1

2
∥∇Fδ(xr)∥] =

1

K

K∑
k=1

E[
1

2
∥∇Fδ(xk)∥] ≤

2m1/4
√
G√

Kt
+

2
√
G

(Kt)1/4
. (111)

By Proposition 3.9, we have ∇Fδ(xr) ∈ ∂̄δF (xr). This implies that

min{∥h∥ : h ∈ ∂̄δF (xr)} ≤ E[∥∇Fδ(xr)∥] ≤
4m1/4

√
G√

Kt
+

4
√
G

(Kt)1/4
. (112)

That completes the proof.

27

