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ABSTRACT

Commercial buildings account for 17% of U.S. carbon emissions, with roughly
half of that from Heating, Ventilation, and Air Conditioning (HVAC). HVAC de-
vices form a complex thermodynamic system, and while model predictive control
and reinforcement learning have been used to optimize control policies, scaling to
thousands of buildings remains a significant unsolved challenge. Most current ap-
proaches are over-optimized for specific buildings and rely on proprietary data or
hard-to-configure simulators. We present the Smart Buildings Control Suite, the
first open source interactive HVAC control benchmark with a focus on solutions
that generalize across building. It has 3 components: real-world data from 11
buildings over 6 years, a lightweight data-driven simulator for each building, and
a modular Physically Informed Neural Network (PINN) building model as a simu-
lator alternative. The buildings span multiple climates, management systems, and
sizes, and both the simulator and PINN easily transfer to new buildings, ensuring
solutions using this benchmark are robust to these factors and only reliant on fully
scalable building models. This represents a major step towards scaling HVAC op-
timization from the lab to buildings everywhere. To facilitate use, our benchmark
is compatible with the Gym standard, and our data is part of TensorFlow Datasets.

1 INTRODUCTION

Energy optimization and management in commercial buildings is a very important problem, whose
importance is only growing with time. Buildings account for 37% of all US carbon emissions, with
commercial buildings alone taking up a staggering 17% in 2023 (EIA). Reducing those emissions
by even a small percentage can have a significant effect, especially in more extreme climates. We
believe this problem is one of the most important avenues for climate sustainability research, where
even a small improvement over baseline policies can drastically reduce our carbon footprint.

In particular, HVAC systems account for 40-60% of energy use in buildings (Pérez-Lombard et al.,
2008) and roughly 15% of the world’s total energy consumption (Asim et al., 2022). Most office
buildings are equipped with advanced HVAC devices, like Variable Air Volumes (VAVs), Hot Water
Systems, Air Conditioners (ACs) and Air Handlers (AHUs) that are configured and tuned by the
engineers, manufacturers, installers, and operators to run efficiently with the device’s local control
loops (McQuiston et al., 2023). However, integrating multiple HVAC devices from diverse vendors
into a building “system” requires technicians to program fixed operating conditions for these units,
which may not always be optimal, and thus an ML model can be trained to continuously tune a small
number of setpoints to achieve greater energy efficiency and reduced carbon emission.

Optimizing HVAC control has been an active research area for decades, and yet while AI has begun
to transform many industries, to date almost all HVAC systems remain the same as they were 30
years ago: despite all the literature on the topic, no single solution has been widely adopted in
the real world. One of the most significant factors limiting progress is the absence of a reliable
public benchmark to evaluate solutions. Current efforts often rely on proprietary data and expensive
closed-source simulations. This restricts participation to those with exclusive access and makes it
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challenging to verify and compare results. Another major challenge is generalization across different
buildings. Most solutions are tailored to specific buildings and fail to generalize for two reasons:

1. Complex building models: Many approaches rely on high-fidelity simulators or models that are
difficult and time-consuming to configure for arbitrary buildings.

2. System-specific dependencies: Solutions are often tied to a particular BMS, HVAC system de-
sign, or data ontology, making them brittle and unable to adapt to the variability of other systems.

A large scale and diverse public benchmark would facilitate collaborations between institutions,
standardize research efforts, allow for wider participation, and sharpen the focus on generalizable
solutions. Much of the progress in AI has been driven by easily accessible public benchmarks, from
the ImageNet Challenge in Vision (Russakovsky et al., 2015), to the Atari57 suite in Reinforcement
learning (RL) (Badia et al., 2020), and the GLUE Benchmark in NLP (Wang et al., 2018). A similar
benchmark in HVAC control may help accelerate progress and finally lead to real-world adoption.

We present The Smart Buildings Control Suite, a diverse, high quality, fully accessible, building
control benchmark; the first of its kind. It consists of the following components:

1. Real-world historical HVAC data, collected from 11 buildings spanning 3 building management
systems from across North America, over a 6-year period.

2. A highly customizable and scalable HVAC and building simulator that can be calibrated with real
data, with configurations corresponding to each of the above buildings, as well as a pipeline for
easily onboarding and calibrating new buildings.

3. A modularized neural network architecture incorporating physical priors for building energy
modeling, as a fully data-driven, physically informed neural network (PINN) simulator alter-
native, as well as models trained to emulate each of the above buildings, and instructions for
training a model on a new building.

4. A focus on ease of use. This includes full compatibility with the OpenAI Gym stan-
dard(Brockman et al., 2016) so that a model can be trained either on offline real data or interac-
tively from the simulator or PINN backend. Our data is also available on the popular TensorFlow
Datasets platform (TFDS), and our code is open source.

This benchmark advances us towards a future where machine learning research and building opera-
tions are working in tandem to decarbonize our buildings, a crucial step for humanity to address the
climate crisis.

2 RELATED WORK

Considerable attention has been paid to HVAC control (Fong et al., 2006) in recent years (Kim et al.,
2022), and while alternative approaches exist, such as Model Predictive Control (MPC) (Taheri
et al., 2022), a growing portion of the literature has considered how RL and MPC can be lever-
aged (Yu et al., 2021; Mason & Grijalva, 2019; Yu et al., 2020; Gao & Wang, 2023; Wang et al.,
2023; Vázquez-Canteli & Nagy, 2019; Zhang et al., 2019b; Fang et al., 2022; Zhang et al., 2019b;
Goldfeder & Sipple, 2024). As mentioned above, a central requirement is an offline environment
that trains the RL agent. Several methods have been proposed, largely falling under three broad
categories. Our benchmark correspondingly has three parts, representing the state of the art of each.

Offline RL on Real Data The first approach is to train the agent directly from the historical real-
world data, without ever producing an interactive environment (Chen et al., 2020; 2023a; Blad et al.,
2022). While the real-world data is obviously of high accuracy and quality, this presents a major
challenge, since the agent cannot take actions in the real world and interact with any form of an
environment. This inability to explore severely limits its ability to improve over the baseline policy
producing the real-world data (Levine et al., 2020). Furthermore, prior to our work, there are few
public datasets available. Our dataset, with its diverse buildings and long duration, should allow for
rapid development of offline RL agents in a way not previously possible.

Data-driven Emulators Some work attempts to learn dynamics as a multivariate regression model
from real-world data (Zou et al., 2020; Zhang et al., 2019a), often using recurrent neural network
architecture (Velswamy et al., 2017; Sendra-Arranz & Gutiérrez, 2020; Zhuang et al., 2023). The
difficulty here is that data-driven models often do not generalize well outside the training distribu-
tion, especially since they are not physics-based. To overcome this limitation, PINNs incorporate

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

physical priors to enforce reasonable behavior in out-of-distribution scenarios Djeumou et al. (2022);
Wang & Dong (2023); Chen et al. (2023b); Gokhale et al. (2022); Jiang & Dong (2024), and our
PINN model builds off the state of the art in this area.

Physics-based Simulation HVAC system simulation has long been studied (Trčka & Hensen, 2010;
Riederer, 2005; Park et al., 1985; Trčka et al., 2009; Husaunndee et al., 1997; Trcka et al., 2007;
Blonsky et al., 2021). EnergyPlus (Crawley et al., 2001), a high-fidelity simulator developed by
the Department of Energy, is commonly used (Wei et al., 2017; Azuatalam et al., 2020; Zhao et al.,
2015; Wani et al., 2019; Basarkar, 2011), but suffers from scalability and configuration challenges.
To overcome the limitations of these methods, some work uses a hybrid approach (Zhao et al., 2021;
Balali et al., 2023; Goldfeder & Sipple, 2023; Zhang et al., 2023; Klanatsky et al., 2023; Drgoňa
et al., 2021), as does our simulator. What is unique about our approach is the use of a physics-
based simulator that achieves an ideal balance between speed of configuration, and fidelity to the
real world. Our simulator is lightweight enough to be configured rapidly to an arbitrary building,
easy to calibrate with data, and accurate enough to train an effective controller.

Prior Datasets While many building datasets exist (Ye et al., 2019), most have either a different
focus (Sachs et al., 2012; Urban et al., 2015; Kriechbaumer & Jacobsen, 2018; Granderson et al.,
2023), do not contain sufficient HVAC information (Miller et al., 2020; Mathew et al., 2015; Rashid
et al., 2019; Jazizadeh et al., 2018; Sartori et al., 2023), focus on residential buildings (Murray et al.,
2017; Barker et al., 2012; Meinrenken et al., 2020) or non-standard buildings (Pettit et al., 2014;
Biswas & Chandan., 2022), or are simulated (Field et al., 2010; Bakker et al., 2022). The few
datasets directly relevant (Luo et al., 2022; Heer et al., 2024) are non-interactive and come from a
single building management system. We present the first HVAC control benchmark that has high
quality real-world data from diverse sources, along with computationally cheap data-driven simu-
lation and PINN building models, allowing for both real-world grounding and interactive control
experiments.

3 OPTIMIZING ENERGY AND EMISSION IN COMMERCIAL BUILDINGS

3.1 PROBLEM FORMULATION

We frame energy optimization in buildings as a Markov Decision Process (MDP)(Garcia & Rachel-
son, 2013). We define the state of the building St at time t as a fixed length vector of measurements
from sensors on the building’s devices, such as a specific VAV’s zone air temperature, gas meter’s
flow rate, etc. The action on the building At is a fixed-length vector of device setpoints selected
by the controller at time t, such as the boiler supply water temperature setpoint, etc. The controller
observes the state St from the environment at time t, then chooses action At. The environment
responds by transitioning to the next state St+1 and returns a reward after the action, Rt+1.

Thus the MDP is formally described by the tuple (S,A, p,R) where the state space is continu-
ous (e.g., temperatures, flow rates, etc.) and the action space is continuous (e.g., setpoint tem-
peratures) and the transition probability p : S × S × A → [0, 1] represents the probability den-
sity of the next state St+1 from taking action At on the current state St. The reward function
R : S × A → [Rmin, Rmax] emits a scalar at each time t. The controller is acting under pol-
icy πθ(At|St) parameterized by θ that represents the probability of taking action At from state St.
The MDP formalism is broad and allows for many optimization strategies, such as RL, rule based
controls, and MPC. For an overview of approaches to learning an optimal policy, see Appendix A.

3.2 REWARD FUNCTION

The MDP formalism generally requires a single scalar reward signal, Rt(St, At) that indicates the
quality of taking action At in state St. Since this is a multi-objective optimization problem, we
define a custom feedback signal, R3C , as a weighted sum of negative cost functions for carbon
emission, energy cost, and comfort levels within the building, which we call the 3C Reward. It is
governed by the following equation:

R3C = u× C1 + v × C2 + w × C3

3
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where C1 represents normalized comfort conditions, C2 normalized energy cost and C3 normalized
carbon emission. Constants u, v, w represent operator preferences, allowing them to weigh the
relative importance of cost, comfort, and carbon consumption. R3C = 0 represents the best-case
scenario: no energy is consumed, no carbon is emitted, and all occupied zones are in setpoint bounds.
For details and equations governing how we measure and normalize these quantities, see Appendix
B.

Indoor air quality is an important dimension not represented in the 3C Reward. An additional reward
term can be added to account for it during training, and an air quality constraint can also be used at
deployment time. Appendix B further quantifies air quality as a potential reward term or constraint,
informed by the ANSI/ASHRAE Standard 62.1 standard for indoor air quality ASHRAE (2022).

Figure 1: Visualization of an Environ-
ment. Colder temperatures are blue;
warmer ones are red. Blue and red
dots inside the building indicate dif-
fusers dispensing cold and warm air,
respectively.

4 THE SMART BUILDINGS DATASET

The real-world data and interactive simulated data have the same format. Data are provided as a
series of observations, actions, and rewards. The real-world data are in the form of static historical
episodes, where actions follow the baseline policy in the building. The simulator and PINN are
interactive RL environments where actions can be taken in real-time. The data fall into the following
categories:

1. Environment Data For each building environment, the dataset contains information on all zones
and devices. This includes the name and size of each zone, and the zone, location, sensors, and
setpoints of each device.

2. Observation Data Observations consist of measurements from all devices in the building (VAV’s
zone air temperature, gas meter’s flow rate, etc.), provided at each timestep.

3. Action Data The device setpoint values that the agent wants to set, provided at each timestep
4. Reward Data Information used to calculate the reward, as expressed in cost in dollars, carbon

footprint, and comfort level of occupants, provided at each timestep

Table 1: Building Information

BUILDING FT2 FLOORS DEVICES LOCATION DURATION

SB1 93,858 2 173 MOUNTAIN VIEW, CA 4 YEARS
SB2 62,613 1 144 MOUNTAIN VIEW, CA 4 YEARS
SB3 118,086 3 281 MOUNTAIN VIEW, CA 4 YEARS
SB4 50,852 6 128 SYRACUSE, NY 2 YEARS
SB5 5,500 2 11 SYRACUSE, NY 2 YEARS
SB6 5,120 1 6 SYRACUSE, NY 2 YEARS
SB7 76,000 5 148 NEEDHAM, MA 1 YEAR
SB8 74,631 5 119 NEEDHAM, MA 1 YEAR
SB9 90,650 5 136 NEEDHAM, MA 1 YEAR
SB10 86,150 4 231 NEEDHAM, MA 1 YEAR
SB11 58,217 4 101 NEEDHAM, MA 1 YEAR

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The data is from 11 buildings across North America, spans 3 building management systems, and
was collected over a 6-year period. This diversity makes it ideal for building environment models
that scale. For information on the data format and how to access the benchmark, see Appendix C.

Data Visualization We also present a data visualization module for both viewing the real-world data
and visualizing the state of the simulator, as shown in Figure 1. Given an observation of a building
environment, our visualization module renders a two-dimensional heatmap view of the building.
This greatly aids in understanding the data and analyzing how a particular policy is behaving.

5 THE SMART BUILDINGS SIMULATOR

Our goal is to apply RL at scale to commercial buildings. For this to be feasible, we must have a
lightweight, easy to configure and calibrate simulated environment to train the agent, with high
enough fidelity to train an improved control agent. To meet these desiderata, we designed a
lightweight simulator based on finite differences approximation of heat exchange, building upon
earlier work (Goldfeder & Sipple, 2023). It utilizes tensor operations to enable GPU acceleration
with Tensorflow. We proposed a simple automated procedure to go from building floor plans to
a custom simulator in a short time, and we designed a calibration and evaluation pipeline, to use
data to fine tune the simulation to better match the real world. What follows is a description of our
implementation. For details regarding design considerations, see Appendix D.

Thermal Model for the Simulation As a template for developing simulators that represent target
buildings, we start with a general-purpose high-level thermal model for simulating office buildings,
illustrated in Figure 2. In this thermal cycle, we highlight significant energy consumers as follows.
The boiler burns natural gas to heat the water, Q̇b . Water pumps consume electricity Ẇb,p to
circulate heating water through the VAVs. The air handler fans consume electricity Ẇb,in , Ẇb,out to
circulate the air through the VAVs. A motor drives the chiller’s compressor to operate a refrigeration
cycle, consuming electricity Ẇc. In some buildings coolant is circulated through the air handlers
with pumps that consume electricity, Ẇc,p.

We selected hot water supply temperature T̂b and air handler supply temperature T̂s as agent
actions because they affect the balance of electricity and natural gas consumption, multiple device
interactions, and occupant comfort. Greater efficiencies can be achieved with these setpoints by
choosing the ideal times and values to warm up and cool down the building in the workday mornings
and evenings. Further tradeoffs include balancing the thermal load between hot water heating with
natural gas and supply air heating with electricity using the AC or heat pump units.

Finite Differences Approximation The diffusion of thermal energy in time and space of the build-
ing can be approximated using the method of Finite Differences (FD)(Sparrow, 1993; Lomax et al.,
2002), and applying an energy balance. This method divides each floor of the building into a grid
of three-dimensional control volumes (CVs) and applies thermal diffusion equations to estimate
the temperature of each CV. By assuming each floor is adiabatically isolated, we can simplify the
three spatial dimensions into a spatial two-dimensional heat transfer problem. Each CV is a nar-
row volume bounded horizontally, parameterized by ∆x2, and vertically by the floor height. The
energy balance, shown below, is applied to each discrete CV in the FD grid and consists of the fol-
lowing components: (a) the thermal exchange across each face of the four participating neighbor
CVs via conduction or convection Q1, Q2, Q3, Q4, (b) the change in internal energy over time
in the CV Mc∆T

∆t , and (c) an external energy source that enables applying local thermal energy
from the HVAC model only for those CVs that include an airflow diffuser, Qext. The equation is
Qext +Q1 +Q2 +Q3 +Q4 = Mc∆T

∆t , where M is the mass and c is the heat capacity of the CV,
∆T is the temperature change, and ∆t is the timestep interval.

The thermal exchange in (a) is calculated using Fourier’s law of steady conduction in the interior
CVs (walls and interior air), parameterized by the conductivity of the CV, and the exchange across
the exterior faces of CVs are calculated using the forced convection equation, parameterized by
the convection coefficient, which approximates winds and currents surrounding the building. The
change in internal energy (b) is parameterized by the density, and heat capacity of the CV. Finally,
the thermal energy associated with the VAV (c) is equally distributed to all associated CVs that have
a diffuser. Thermal diffusion within the building is mainly accomplished via forced or natural con-
vection currents, which can be notoriously difficult to estimate accurately. We note that heat transfer

5
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Figure 2: Thermal model for simulation. A building consists of conditioned zones, where the mean air
temperature of the zone Tz should be within upper and lower setpoints, T̂z,max and T̂z,min. Thermal power for
heating or cooling the room is supplied to each zone, Q̇s, and recirculated from the zone, Q̇r from the HVAC
system, with additional thermal exchange Q̇z from walls, doors, etc. The AHU supplies the building with air
at supply air temperature setpoint T̂s drawing fresh outside air, ṁOA, at temperatures, TOA, and returning
exhaust air ṁexhaust at temperature Texhaust to the outside using intake and exhaust fans, Ẇa,in and Ẇa,out.
A fraction of the return air can be recirculated, ṁrecirc. Central air conditioning is achieved with a chiller
and pump that join a refrigeration cycle to the supply air, consuming electrical energy for the AC compressor
Ẇc and coolant circulation, Ẇc,p. The hot water cycle consists of a boiler that maintains the supply water
temperature at Tb heated by natural gas power Q̇b, and a pump that circulates hot water through the building,
with electrical power Ẇb,p. Supply air is delivered to zones through VAVs.

using air circulation is effectively the exchange of air mass between CVs, which we approximate
by a randomized shuffling of air within thermal zones, parameterized by a shuffle probability and
radius. For further details see Appendix E.

Simulator Configuration For RL to scale to many buildings, it is critical to be able to easily and
rapidly configure the simulator to any arbitrary building. We designed a procedure that, given floor-
plans and HVAC layout information, enables generating a fully specified simulation very rapidly.
For example, on SB1, consisting of 2 floors and 173 devices, a single technician was able to config-
ure the simulator in under 3 hours. Details of this procedure are in Appendix F.

Simulator Calibration and Evaluation In order to calibrate the simulator using sensor data, we
must have a metric with which to evaluate our simulator’s fidelity, and an optimization method to
improve our simulator on this metric.

N -Step Evaluation We propose a novel evaluation procedure based on N -step prediction. Each
iteration of our simulator is designed to represent a five-minute interval. To evaluate the simulator,
we take a chunk of real data, consisting of N consecutive observations. We then initialize the
simulator so that its initial state matches that of the starting observation and run the simulator for
N steps, replaying the same HVAC policy as was used in the real world. We then calculate our
simulation fidelity metric, which is the mean absolute error of the temperatures in each temperature
sensor at each timestep, averaged over time. More formally, we define the Temporal Spatial Mean
Absolute Error (TS-MAE) of Z zones over N timesteps as:

ϵ =

N∑
t=1

1

N

[
1

Z

Z∑
z=1

|Treal,t,z − Tsim,t,z|
]

(1)
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Where Treal,t,z is measured zone air temperature for zone z at timestamp t, and Tsim,t,z =
1

|Cz|
∑Cz

c=1 Tt,c is mean temperature of all CVs Cz in zone z at time t.

Figure 3: Drift Over 48 hrs on Train Set Figure 4: Drift Over 24 hrs on Validation Set

Hyperparameter Calibration Once we define our simulation fidelity metric, TS-MAE, we can
minimize this error by hyperparameter tuning several physical constants and other variables using
black-box optimization methods. We chose the method outlined in Golovin et al. (2017), which
automatically chooses the most appropriate strategy from a variety of popular algorithms.

5.1 SIMULATOR CALIBRATION DEMONSTRATION

We now provide an example of our calibration procedure to tune the physical parameters and mini-
mize prediction error.

Setup We configured the simulator to match SB1, with two stories, a combined surface area of
93,858 square feet, and 170 HVAC devices. Using the configuration pipeline, we went from floor
plan blueprints to a fully configured simulator, a process that took a single technician less than three
hours to complete. To calibrate, we took SB1 data from 3 days, from Monday July 10, 2023 12:00
AM, to Thursday July 13, 2023 12:00 AM. The first 2 days were used as a train set, and the third
day as validation, as can be seen in Table 2. All times are local to the building.

Calibration Procedure We ran hyperparameter tuning for 4000 iterations to optimize the TS-MAE,
as outlined in equation 1, on the training data. We reviewed the physical constants that yielded the
lowest simulation error from calibration. Densities, heat capacities, and conductivities plausibly
matched common interior and exterior building materials. However, the external convection co-
efficient is higher than under the weather conditions and likely is compensating for the radiative
losses and gains, which were not directly simulated. For details about the hyperparameter tuning
procedure, including the parameters varied, the ranges given, and the values found, see Appendix G.

Calibration Results Table 2 shows the predictive results of our calibrated simulator, on N -step
prediction, for the train scenario, where N = 576, representing a two-day predictive window, and
the test scenario, where N = 288, representing a one day window. We calculate the TS-MAE as
defined in equation 1. We show results for the hyperparameters that best fit the train set, as well as
for an uncalibrated simulator as a baseline. The validation data was never provided to the tuning
process. Our tuning procedure drifts only 0.56◦C on average over a 24-hour validation period.

SPLIT START END CALIB. ϵ UNCALIB. ϵ

TRAIN 23-07-10 23-07-12 0.717 ◦C 1.971 ◦C
VAL. 23-07-12 23-07-13 0.566 ◦C 1.618 ◦C

Table 2: Training and test data scenarios

Visualizing Temperature Drift
Over Time Figure 3 illustrates
temperature drift over time for the
training scenario. At each timestep,
we calculate the spatial temperature
for all sensors in both the real build-
ing and simulator and present them
as side-by-side boxplot distributions for comparison. Figure 4 shows the same for the validation
scenario. Here we can see that our simulator temperature distribution maintains a minimal drift
from the real world, although it does seem less reactive to daily fluctuation patterns, which may be
due to the lack of a radiative heat transfer model.

Visualizing Spatial Errors Figure 5 illustrates the results of this predictive process over a 24-
hour period, on the validation data. It displays a heatmap of the spatial temperature difference
throughout the building, between the real world and simulator, after 24 hours of the simulator making
predictions. The ring of blue around the building indicates that our simulator is too cold on the

7
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Figure 5: Visualization of simulator
drift after 24 hours on validation data.
A heat map represents the tempera-
ture difference between the simulator
and the real world, with red indicating
the simulator is hotter, blue indicating
it is colder, and white indicating no
difference. The zones with the max
and min differences are indicated by
displaying the difference above them.

perimeter, which implies that the heat exchange with the outside is happening more rapidly than it
would in the real world. The inside of the building, at least on the first floor, contains significant
amounts of red, indicating that despite the simulator perimeter being cooler than the real world, the
inside is warmer. This implies that our thermal exchange within the building is not as rapid as that
of the real world. We suspect that this may be because our simulator does not have a radiative heat
transfer model. Lastly, there is a large amount of white in this image, indicating that for the most
part, even after 24 hours of making predictions on the validation data, our calibration process was
successful and the fidelity remains high. For more visuals of spatial errors, see Appendix H.

6 THE SMART BUILDINGS PINN MODEL

Problem Formulation Recent work developed a modularized neural network model incorporating
physical priors for building energy modeling, where different modules were designed to estimate
distinct heat transfer terms in the dynamic building system (Jiang & Dong, 2024). Building on
this foundation, we updated the model structure to focus on control optimization. We consider the
modeling task as a discrete-time dynamic system formulated in a state-space representation, with
state variables, control inputs, and disturbance variables. As a control-oriented model, the primary
focus is on managing model complexity while ensuring that its responses align with physical laws.
To balance complexity and accuracy, we simplified the heat transfer terms by dividing them into
three components: HVAC, adjacent zone, and other disturbances (e.g., outside air temperature, solar
radiation, occupancy, and time features represented as sinusoidal functions). We further incorporated
physical consistency constraints. The energy balance is expressed as:

x(t+ 1) = x(t) +
1

cM
∆Q = x(t) + fNNA

(
fNNB

(u(t))

+ fNNE
(x(t), w(t)) + fNNadj(x(t))

)
(2)

Where x represents the state variable (space air temperature), M is the mass, and c is the heat
capacity of the space. ∆Q denotes the energy change within one timestep, which includes HVAC
input and other heat transfer terms from conduction, convection, and radiation. fNNA

, fNNB
, fNNE

,
and fNNadj are separate neural network modules to learn heat transfer dynamics, respectively.

Modular Design We develop an encoder-decoder structure for each neural network module. The
encoder captures the thermal initial impact, providing a stable latent hidden state. Subsequently,
we take a measurement of the current state to correct prediction errors at each timestep. The de-
coder then predicts outputs based on disturbance variables and control inputs. Beyond that, physical
consistency is enforced through hard model parameter constraints to ensure that the control gain is
positive. For example, additional cooling should decrease the space air temperature. This constraint,
shown below, ensures that the partial derivative of the state variables to its control input is always
positive before the current timestep ∂xt

∂uk
> 0 for k < t.

From Single-zone to Multi-zone To extend our model from a single-zone to a multi-zone frame-
work, we integrated an adjacent heat transfer module to calculate conduction heat transfer based on

8
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Figure 6: SAC and DDPG returns

temperature differences between zones. A skew-symmetric matrix, developed from the graph adja-
cency matrix, was used to represent this heat transfer term, ensuring that the heat transfer between
two adjacent zones is equal in magnitude but opposite in direction.

Model Training The dataset used to train the model in these experiments was collected from SB4
between January 2023 and August 2024 and was divided into training, validation, and testing sets
in a 7:2:1 ratio. All features were normalized using a Min-Max Scaler, mapping the values to the
range [−1, 1]. To emulate a real-world training process, the size of the training data was gradually
increased, starting with seven days and extending to half a year, reflecting the progressive availability
of data over time. To prevent overfitting, k-fold cross-validation and early stopping were applied.

Model Validation A well-predicting model does not necessarily ensure correct dynamic responses.
To evaluate model performance, we use three metrics: 1) Mean Absolute Error (MAE): A standard
metric to assess model accuracy. 2) Temperature Response Violation, where at each timestep we
introduce varying levels of HVAC input from -4 kW to 4 kW to perform a sanity check. If the tem-
perature increases with additional cooling or vice versa, it is considered a temperature violation. 3)
Maximum mean discrepancy (MMD): MMD quantifies the difference between two sets of samples
by taking the maximum difference in sample averages over a kernel function. MMD evaluates the
similarity between the model’s responses and ground truth responses collected from measured data.

7 LEARNING AN IMPROVED CONTROL POLICY

Here we provide an example of training an RL Agent on the simulator to generate an improved
policy over the current rule-based baseline programmed by the building operators, using building
SB1. We demo our benchmark using SAC and DDPG, and compare the learned policy with the
baseline policy currently used in the real building. Both actor and critic are feedforward networks.
We ran hyperparameter tuning, again using the method from Golovin et. al. (Golovin et al., 2017), to
choose the dimensionality of the critic network and actor network, the batch size, the critic learning
rate and actor learning rate, and γ. The training episode lasted 14 days, and returns can be seen in
Figure 6. For details and a performance comparison between the learned policy and baseline, with a
breakdown on setpoint deviation, carbon emissions, electricity, and natural gas, see Appendix J.

8 LIMITATIONS AND CONCLUSION

A current limitation is that our simulator requires additional physical model enhancements. While
our benchmark is grounded in real data, we do not have results on training a model and deploying
it on these buildings, something we leave for future work. We present a high-quality interactive
HVAC Control Suite, with an explicit focus on solutions that transfer. Our benchmark has three
parts, representing the state of the art of open source HVAC data, scalable data-driven simulation,
and physically informed dynamics models. We believe this benchmark will facilitate collaboration,
reproducibility, and progress, making an important contribution towards sustainability.

9
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A LEARNING AN OPTIMAL CONTROL POLICY

Reinforcement Learning (RL) is a branch of machine learning that attempts to train an agent to
choose the best actions to maximize the expected long-term, cumulative reward (Sutton & Barto,
2018). The set of parameters θ∗ of the optimal policy can be expressed as:

θ∗ = argmax
θ

Eτ∼πθ(τ)

[∑
t

γtR(St, At)

]

where θ is the current policy parameter, and τ is a trajectory of states, actions, and rewards over
sequential timesteps t. Over time, the agent explores the action space and learns to maximize the re-
ward over the long term for each given state. A discount factor γ reduces the value of future rewards
amplifying the value of the near-term reward. When this cycle is repeated over multiple episodes,
the agent converges on a state-action policy that maximizes the long-term reward. To converge to
the optimal policy, the agent requires many iterations to explore the policy space, making online
training directly on the real-world building inefficient, dangerous and impractical. Therefore, it is
necessary to enable offline learning, where the agent can train in an efficient sandbox environment
that adequately emulates the dynamics of the building before being deployed to the real world.

When applying RL to find an optimal policy in a complex dynamical environment such as a building,
there are generally two possible approaches. The model-free RL approach involves learning a policy
by directly following gradient signal from the reward function, similar to error backpropagation from
a loss function. This is a seemingly straightforward approach but care must be taken to accommodate
the stochastic nature of the MDP and the environment, as well as other sources of noise such as
sensor noise and delays. A variety of statistical smoothing techniques are often used, generally
leading to a slow convergence rate. This process can sometimes get stuck in local optima, oscillate
in cycles, or be too slow to keep up with a changing environment.

The alternative model-based RL process involves learning an internal model (or making use of an
existing one, such as our simulator or PINN) that predicts the likely state that will result from certain
state+action combinations. This internal model (or models) can then be used by an optimizer/learner
to explore potential policies in deeper and more sophisticated ways, sometimes even using multi-
step look-ahead and other heuristic search schemes suitable for highly rugged reward landscapes
or environments with very long-term nonlinear rewards. The learned internal model can be simple,
based only on current state and action, or deep, in that it will consider long and short term history and
other factors such as weather predictions provided by other models. Model based RL can potentially
make better use of past experiences, but in turn requires more computation and could potentially
converge prematurely on wrong strategies. Note that both model-based and mode-free RL must
allow for some off-policy exploration in order to learn the landscape, leading to the exploration-
exploitation dilemma.

Ideally, the internal model used by model-based RL systems – like pre-trained generative systems
in general – can contain knowledge that is potentially transferable across tasks. For example, once
an internal model can predict the state resulting from certain actions, it can be used for a variety of
tasks, such as heating, cooling, minimizing boiler fluctuations, or any arbitrary objective that can
be calculated on a trajectory. A dynamics model can also be used to optimize non-RL policies,
such as heuristic rule tables, decision trees, or even conventional PID controllers. We view this
kind of classical model-predictive control (MPC) as a baseline, as we hope RL agents will learn to
outperform them.

B REWARD FUNCTION DETAILS

We call our reward function the 3C Reward, because it is made up of a combination of three factors:
Comfort, Cost, and Carbon. The purpose of the reward function is to provide the agent with a
feedback signal after each action about the quality of the current and past actions performed. We
combine the different objectives as a normalized, weighted sum of maintaining comfort conditions,
electrical cost, and carbon cost:
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R3C = u× C1 + v × C2 + w × C3

where C1 represents normalized comfort conditions, C2 normalized energy cost and C3 normalized
carbon emission. Constants u, v, w represent operator preferences, allowing them to weigh the
relative importance of cost, comfort and carbon consumption.

Each value C1, C2, C3, is bounded by the range [−1, 0], where worst performance is −1 and the
ideal performance upper-bound is 0 Thus the reward function in an aggregate is formulated as an
approximate regret function, bounded in the range [-1,0], and represents an offset from the best case
where comfort conditions are perfectly maintained, without consuming energy and emitting carbon.
Each of the sub functions C1, C2, C3 will be elaborated next.

B.1 COMFORT LOSS FUNCTION (C1)

Besides zone air temperature, other factors such as ventilation, drafts, solar exposure, humidity
and air quality affect human comfort and productivity in office buildings. However, for now we
are focused solely on temperature as the indicator of the comfort level in the office buildings. As
additional sensors are deployed and the other factors are measured, they should be considered in the
definition of an enhanced comfort loss function.

Studies have shown that a relationship exists between work performance and temperature and air
quality (Deng et al., 2024). For example, in Seppanen et al. (2006), work performance was quanti-
fied as the mean time required to complete common office tasks (e.g., text processing, bookkeeping
calculations, telephone customer service calls, etc.). Performance was shown to increase gradu-
ally with temperatures increasing up to 21-22°C and decreasing at temperatures beyond 23-24°C.
Therefore, when temperatures deviate outside setpoints, the comfort loss should also be smooth and
monotonically increasing.

Thus, the following rules were selected to govern the comfort loss function:

1. Setpoints define the comfort standards, and no penalty should be applied whenever the zone
temperature is within heating and cooling setpoints.

2. Comfort is undefined when the zone is unoccupied: if the zone is unoccupied, comfort loss
is zero, regardless of zone temperature.

3. Comfort decays smoothly and monotonically as the temperatures drift from setpoints, and
occupants are tolerant to small setpoint deviations. Therefore, small setpoint deviations
should have a small comfort penalty, and the penalty should smoothly increase as the devi-
ations increase.

4. Large setpoint deviations should approach a maximum, bounded penalty, where a zone
becomes completely intolerable for its occupants.

The comfort loss function represents a bounded penalty term for occupied zones that have zone
air temperatures outside of setpoint and covers three adjacent temperature intervals: below cooling
setpoint Tz < T̂heating , inside setpoints T̂heating ≤ Tz ≤ T̂cooling, and above cooling setpoint
T̂cooling < Tz

We propose a logistic sigmoid parameterized by λ and ∆ to represent the smooth decay (increase
loss) of comfort below the heating and above the cooling setpoints. Parameter λ is a stiffness coef-
ficient that affects the slope of the decay and parameter ∆ represents the offset in ◦C from the set
point where halfway loss value (0.5) occurs. Additionally we define a step function δ(k) = 1 when
the zone has at least one occupant (k > 0), and δ(k) = 0 otherwise.
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The chart below shows the comfort loss curve with common setpoints, where the horizontal axis
represents zone air temperature and the vertical axis represents the loss. The heating and cooling
setpoints were taken from data recordings.

Figure 7: Setpoint Diagram

Finally, we compute the average of all zone comfort losses as the building’s overall comfort loss:

Live Occupant Feedback The idea of human feedback shaping the agent’s policy may be particu-
larly suitable for the smart buildings project and has been detailed in Knox and Stone 2009. While
not implemented in the initial version of the reward function, the comfort loss function can be ex-
tended with an occupant feedback signal reflecting discomfort (e.g., “too hot” or “too cold”) in a
variety of methods like Mozer 1998 (Mozer, 1998). The agent’s goal should be to minimize this type
of feedback, and the regret should be increased anytime this feedback signal is received. Suppose
one or more occupants in zone z, provided a “too cold” feedback signal, T̂heating may be increased
by a small amount from the baseline setpoint configuration, and may smoothly return to the baseline
smoothly after an appropriate delay.

Stochastic Occupancy Model The occupancy signal kz is the average number of occupants in zone
z during a timestep ti − ti−1 and is used in computing the comfort loss function described above.
Ideally, the occupancy signal is obtained from motion detection sensors or secondary indicators of
occupancy, such as wifi signals, badge swipes, calendar appointments, etc. However, a data-driven
occupancy signal was not available for the initial dataset, and the following stochastic occupancy
model is used instead.

For workdays, we would like model occupancy as a process in the zone where a max number of
occupants, kz,max arrive at random times in an arrival window [τin,start, τin,end], and depart the
zone in a departure window [τout,start, τout,end]. The arrivals and departures should occur evenly
within the intervals and the expectation of the arrival time should be at the halfway point of the
arrival interval:

E[occupant arrival time] = 1
2 (τin,end − τin,start) + τin,start

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Likewise, the expectation of the departure time should be at the halfway point of the departure
interval:

E[occupant departure time] = 1
2 (τout,end − τout,start) + τout,start

If the number of timesteps within the arrival and departure intervals is narrival and ndeparture, this
process can be modeled as a geometric distribution where each timestep and occupant is a Bernoulli
trial with probabilities:

P ( occupant arrives — occupant has not yet arrived ) = 2
narrival

and P ( occupant departs —
occupant has arrived ) = 2

ndeparture
During holidays and weekends, the zones are not occupied:

kz = 0.

B.2 ENERGY COST FUNCTION (C2)

The energy cost function C1(St) is a normalized, aggregate cost estimate from consuming electrical
and natural gas energy during one timestep. The cost function is the ratio of the actual energy used
to the maximum energy capacity that ranges between 0: no cost incurred; and 1: maximum cost
incurred.

C2(St) = − actual energy cost

cost at max energy capacity

General energy cost can be calculated as the product of the mean power applied, the time interval,
and the cost per unit energy at the time of the interval, where we use W , Ẇ to represent electri-
cal/mechanical energy, and power, and Q,Q̇ to represent thermal energy and power from natural
gas. Since all four terms contain the same interval ti − ti−1, they cancel out, allowing us to use
power instead of energy. As described above, pumps, blowers, and AC/refrigeration cycles consume
electricity and water heaters/boilers consume natural gas. Therefore the total energy and cost is the
sum of each energy consumer cost used over the interval:

Where Ẇa and ˙Wa,max are the actual and max electrical power for the AC/refrigeration cycle, Ẇm

and ˙Wm,max are the actual and max electrical power for the blowers/air circulation, Ẇp and ˙Wp,max

are the actual and max pump electrical power, and Q̇g and ˙Qg,max are the actual and max thermal
power . Terms pe(t) and pg(t) are the electricity and gas price per energy incurred over the interval
at time t.

The actual power terms in the numerator are estimated from the device observations and the device’s
fixed parameters using standard HVAC energy conversions. The max power terms in the denomina-
tor are derived from device ratings, which define the maximum operating nouns of the device.

B.3 CARBON EMISSION COST FUNCTION (C3)

Similar to the energy cost function, carbon emission cost function is a function of the electrical and
natural gas power used during the interval. The carbon emission cost function C3 is a normalized,
aggregate cost estimate from the emission of carbon mass by consuming electrical and natural gas
energy during one timestep. The cost function is the ratio of the actual carbon used to the maximum
carbon emitted that ranges between 0: no emission cost incurred; and 1: maximum emission cost
incurred.

C3(St) = −actual carbon mass emitted

maximum carbon emitted
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The carbon emission cost is similar to the energy cost function described above, except that we
replace the price terms pe, pg with emission terms re, rg that convert the power to carbon emission
rates.

While the emission rate for natural gas is fairly constant, the emission rate for electricity is dependent
on the utility’s current renewable energy supply and consumer load during the interval and may
fluctuate significantly.

B.4 IMMEDIATE AND DELAYED REWARD RESPONSES

The reward function is a weighted average of maintaining temperature setpoints in occupied zones,
while minimizing energy cost, and minimizing carbon emission. Both energy and carbon emission
cost functions provide a low latency response, because actions have an almost immediate effect on
the reward. For example, lowering the supply water temperature setpoint will reduce the flow of
natural gas to the burner, bringing Q̇ down in the next step. However, the effect of increasing water
temperature on the comfort loss function may be delayed by multiple timesteps, due to the thermal
latency in the building. This thermal latency is due to inherent heat capacity and thermal resistance
within the building that has a dampening effect on diffusing heat throughout the building. This
means that some settings of u, v, w may cause undesirable effects. Experiments with the simulation
indicate that too strong weights (e.g., u+ v ≥ 0.6) toward energy cost and/or carbon emission may
lead the agent to lower the water temperature, which can cause the VAVs to increase their airflow
demand to compensate for a lower supply air temperature, since thermal energy flow is a tradeoff
between air mass flow and water heating at the VAV’s heat exchanger. Consequently, the increased
airflow demand results in a much higher, delayed electrical energy consumption by the blowers to
meet the zone airflow demand.

B.5 INDOOR AIR QUALITY

Indoor air quality is important for multiple reasons, from mitigating exposure to airborne viruses to
managing humidity. While the action space in this paper focuses on the hot water and air handler
supply temperatures, the amount of fresh air being brought into the air handler is an important factor
for air quality. Most air handler units will have a minimum amount of fresh air as specified by
a minimum outside air damper position, and the damper position is dependent on the supply air
temperature setpoint. Nevertheless, when deploying air handler policies, it is important to verify
that the building is receiving sufficient fresh air.

The ANSI/ASHRAE Standard 62.1 standard for indoor air quality ASHRAE (2022) recommends
the following equation for minimum outside airflow:

Vmin = Rp · Pz +Ra ·Az (3)

Where Rp is the rate per person, Pz is the zone population, Ra is the rate per area, and Az is the
zone area. Rp for office spaces is 5 CFM per person, but other types of spaces may require higher
rates of 10-20 CFM per person, or 30 CFM per person for infection risk management as specified
by ASHRAE Standard 241-2023 Sherman & Jones (2023). The Ra for office spaces is 0.06 CFM
per square foot, but this could similarly be increased for different space types.

There are two ways to incorporate this standard: one is by adding a reward term and the other is by
applying a constraint at deployment time, both described below.

Modified Reward and Action Space An air quality term could be added to the 3C reward to pe-
nalize states with lower outside airflow. Similar to the comfort reward term, this could use a logistic
sigmoid to represent a smooth, bounded decay, with 0.5 loss being the point where outside airflow
VOA equals the minimum standard Vmin as defined in equation 3.

R(VOA) =
1

1 + e−λ(VOA−Vmin)
(4)

Parameter λ is a stiffness coefficient that affects the slope of decay, and might have a value between
1 and 10 depending on the requirements of the deployment space.
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To better optimize the overall system, the static pressure setpoint and outside air damper position
could be added to the action space. Another way to incorporate air quality would be to add a
feasibility constraint instead of a reward term during policy learning (Chen et al., 2021).

Constraining at Deployment When deploying a learned 3C policy, one can calculate the minimum
outside airflow constraint (equation 3) using the deployment zone’s occupancy and square footage.
The outside air damper position can be set to increase when the outside airflow, as measured by
static pressure sensors, drops below this constraint. Another way to incorporate indoor air quality
would be to combine it with predictive control Wang & Dong (2023).

C DATASET FORMAT

C.1 BENCHMARK ACCESS

The data is part of Tensorflow Datasets (TFDS), and can be downloaded from [link redacted for
blind review].

The code is available at [link redacted for blind review].

C.2 DATASET FORMAT

Here, we will elaborate on the exact format of the dataset.

Having applied the RL paradigm, the data in our dataset falls under the following categories:

1. Environment Data General information about the environment, such as the number of
devices and zones, and their names and device types. This is provided once per building
environment

2. Observation Data The measurements from all devices in the building (VAV’s zone air
temperature, gas meter’s flow rate, etc.), provided at each timestep

3. Action Data The device setpoint values that the agent wants to set, provided at each
timestep

4. Reward Data Information used to calculate the reward, as expressed in energy cost in
dollars, carbon emission, and comfort level of occupants, provided at each timestep

C.3 ENVIRONMENT DATA

This is the data that provides, once per environment, details about the environment such as number
of devices or zones. There are four types of data: ZoneInfo, DeviceInfo, Floorplan, and Device
Locations.

1. ZoneInfo: The ZoneInfo defines thermal spaces or zones in the building and provides
zone-to-device association, which enables using the associated VAVs’ zone air tempera-
tures to estimate the zone’s temperature.

2. DeviceInfo: The HVAC devices in the building are defined in the DeviceInfo.
Each device exposes a map of observable fields and action fields. The
observable fields represent the observable state of the building in native units, and
the action fields are available setpoints exposed by the building that the agent may
add to its action space. Currently observable fields and action fields are
floating point values, but may be expanded to categorical values in the future.

3. Floorplan: This is a 2d matrix, where there are 4 possible values in each cell: outside air,
inside air, exterior wall, interior wall.

4. Device Locations: This is a dictionary of device names to cells in the floorplan. For each
device, the map provides the cells corresponding to the room that the device is located in.
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C.4 OBSERVATION DATA

This includes the measurements from all devices in the building (VAV’s zone air temperature, gas
meter’s flow rate, etc.), provided at each timestep. This data is given as a matrix of TxM, where
there are T timesteps and M measurements per timestep. A list of T timestamps is provided, as well
as a list of M measurement names, defining the rows and columns of the matrix.

C.5 ACTION DATA

This consists of the device setpoint values that the agent wants to set, provided at each timestep.
This data is given as a matrix of TxS, where there are T timesteps and S setpoints per timestep. A
list of T timestamps is provided, as well as a list of S setpoint names, defining the rows and columns
of the matrix.

C.6 REWARD DATA

This includes information used to calculate the reward, as expressed in cost in dollars, carbon foot-
print, and comfort level of occupants, provided at each timestep The reward data is further divided
into two categories:

1. RewardInfo: The values that are used as inputs to calculate the reward

2. RewardResponse: Containing the scalar reward signal obtained by passing the above
functions into our 3C reward function

The building updates the RewardInfo at each timestep and provides the reward function necessary
inputs to compute the 3C Reward Function. The data contained in theRewardInfo is bounded by
the step’s interval from start timestamp to end timestamp in UTC. The RewardInfo has
mean energy rate estimates (i.e. power in Watts) that can be treated as constants over the interval.
Given the interval and a constant rate value over the interval, the reported power in Watts can be
easily converted into energy in kWh. The RewardInfo contains maps of three types of specialized
data structures:

• The ZoneRewardInfo provides information about the zone air temperature measure-
ments, temperature setpoints, airflow rate and setpoint, and average occupancy for the
timestep. Each instance is indexed by its unique zone ID.

• The AirHandlerRewardInfo describes the combined electrical power in W use of the
intake/exhaust blowers, and the electrical power in W of the refrigeration cycle. Since a
building may have more than one air handler, the air handler objects are values in a map
keyed by the air handlers’ device IDs.

• The BoilerRewardInfo contains the average electrical power in W used by the pumps
to circulate water through the building, and the average natural gas power in W used to heat
the water in the boiler. Since there may be more than one hot water cycle in the building,
each ZoneRewardInfo is placed into a map keyed by the hot water device’s ID.

The reward function converts the current RewardInfo into the RewardResponse for the same
interval as the RewardInfo. The agent’s reward signal is agent reward value. Since the
reward returned to the agent is a function of multiple factors, it is useful for analysis to show the
individual components,m such as carbon mass emitted, and the electrical and gas costs for the step.

The data is again stored as matrices, one of RewardInfo and one of RewardResponse. The Re-
wardInfo matrix is dimension TxR, where T is the number of timesteps and R the number of factors
used to calculate the reward, again with a list of T timesteps and R ids that determine which device
and meter each column refers to. Similarly, the RewardResponse is Dimension TxC, where T is
timesteps as before, and C is the number of reward function constants + 1 for the scalar reward
itself.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D SIMULATOR DESIGN CONSIDERATIONS

A fundamental trade-off when designing a simulator is speed versus fidelity, as depicted in Figure 8.
Fidelity is the simulator’s ability to reproduce the building’s true dynamics that affect the optimiza-
tion process. Speed refers to both simulator configuration time, i.e., the time required to configure a
simulator for a target building, and the agent training time, i.e., the time necessary for the agent to
optimize its policy using the simulator.

Every building is unique, due to its physical layout, equipment, and location. Fully customizing
a high-fidelity simulation to a specific target building requires nearly exhaustive knowledge of the
building structure, materials, location, etc., some of which are unknowable, especially for legacy
office buildings. This requires manual “guesstimation” which can erode the accuracy promised
by high-fidelity simulation. In general, the configuration time required for high-fidelity simulations
limits their utility for deploying RL-based optimization to many buildings. High-fidelity simulations
also are affected by computational demand and long execution times.

Alternatively, we propose a fast, low-to-medium-fidelity simulation model that was useful in ad-
dressing various design decisions, such as the reward function, the modeling of different algorithms.
and for end-to-end testing. The simulation is built on a 2D finite-difference (FD) grid that models
thermal diffusion, and a simplified HVAC model that generates or removes heat on special “diffuser”
CV in the FD grid. While the uncalibrated simulator is of low-to-medium fidelity, the key additional
factor is data. We collect recorded observations from the target building under baseline control, and
use that data to calibrate the simulator, by adjusting the simulator’s physical parameters to mini-
mize difference between real and simulated data. We believe this approach hits the sweet spot in this
tradeoff, enabling scalability while maintaining a high enough level of fidelity to train an improved
policy.

Figure 8: Simulation Fidelity vs. Execution
Speed. The ideal operating point for training RL
agents for energy and emission efficiency is a
tradeoff between fidelity, depicted as 1 minus a
normalized error ϵ between simulation and real,
and execution speed, as measured by the number
of training steps per second. Additional consid-
eration also includes the time to configure a cus-
tom simulator for the target building. While many
approaches tend to favor high fidelity over execu-
tion, speed, our approach argues a low-to-medium
fidelity that has a medium-to-high speed is most
suitable for training an RL agent.

Thus, a simulator models the physical system dynamics of the building, devices, and external
weather conditions, and can train the control agent interactively, if the following desiderata are
achieved:

1. The simulation must produce the same observation dimensionality as the actual real build-
ing. In other words, each device-measurement present in the real building must also be
present in the simulation.

2. The simulation must accept the same actions (device-setpoints) as the real building.

3. The simulation must return the reward input data described above (zone air temperatures,
energy use, and carbon emission).

4. The simulation must propagate, estimate, and compute the thermal dynamics of the actual
real building and generate a state update at each timestep.

5. The simulation must model the dynamics of the HVAC system in the building, including
thermostat response, setpoints, boiler, air conditioning, water circulation, and air circula-
tion. This includes altering the HVAC model in response to a setpoint change in an action
request.
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6. The time required to recalculate a timestep must be short enough to train a viable agent in
a reasonable amount of time. For example, if a new agent should be trained in under three
days (259,200 seconds), requiring 500,000 steps, the average time required to update the
building should be 0.5 seconds or less.

7. The simulator must be configurable to a target building with minimal manual effort.
We believe our simulation system meets all of these listed requirements.

E DERIVATION FOR TENSORIZED FINITE DIFFERENCE (FD) EQUATIONS

This appendix describes the method of calculating the flow of heat and the resulting temperatures
throughout the building.

E.1 ASSEMBLING THE ENERGY BALANCE

The fundamental energy balance for a general-purpose closed body is formulated in Equation 6. The
first term represents the effects of non-stationary heat dissipation or heat absorption over time over
volume of the body. Q represents the energy absorbed or released per unit volume and is a function
of the mass and heat capacity of the body. The second term represents thermal flux over the surface
of the body, where n is the unit normal vector of the surface S and F is the specific energy absorbed
or released through the surface. Common modes of thermal flux include conduction, convection,
and radiation. The right side of the equation represents the total energy absorbed by the body across
the system boundary, or via an external source or sink.

d

dt

∫
V (t)

QdV +

∮
S(t)

n · FdS =

∫
V (t)

PdV (5)

To enable computation, we divide the body into small discrete units, called Control Volumes (CV),
and iteratively calculate temperature on each on each CV using the method of Finite Differences
(FD).

We model three modes of heat transfer into each CV: forced convection, conduction, and external
source.

Forced convection Qconv is based on energy exchange by moving air (or any other fluid, in general),
and conduction, Qcond is the exchange of energy through solid objects, such as walls. External
sources (or sinks) Qx represent the heating or cooling from external devices, such as electric heating
coils, diffusers, etc.

Each CV has the capacity to absorb heat over time, which is expressed as dU
dt , governed by its heat

capacity, c.

These factors allow us to construct an energy balance equation that conserves energy Qin −Qout =
dU
dt .

We assume that the ceilings and floors are adiabatic, fully insulated, not allowing any heat exchange.
This reduces the problem to a 2D problem, with 3D control volumes that can only exchange energy
laterally.

Our FD objective is to solve for the temperature at each CV within the building, which presents N
unknowns and N equations, where N is the number of CVs in the FD grid.

Rather than creating separate spacial cases in the FD equations for exterior, boundary, and interior
CVs, we would like to create a single equation that can be computed across the entire grid. This
equation can then be tensorized using the Tensorflow matrix library, and accelerated with GPUs or
TPUs.

We label each four interacting surfaces of the CV: left = 1, right = 3, bottom = 2, and top = 4.

Then, for a discrete unit of time ∆t we specify energy exchange across the surfaces as
Q1, Q2, Q3, Q4 and adopt the arbitrary, but consistent convention that energy flows into surfaces
1 and 2, and out of surfaces 3, and 4. (Of course, energy can flow the other direction too, but that
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will be indicates with a negative value.) Our convention also assumes that external energy flows into
the CV.

That allows us to construct the energy balance as:

Qx +Qcond
1 +Qconv

1 +Qcond
2 +Qconv

2 −Qcond
3 −Qconv

3 −Qcond
4 −Qconv

4 =
dU

dt
(6)

E.2 COMPUTING HEAT TRANSFER VIA CONDUCTION, CONVECTION, AND THERMAL
ABSORPTION

We apply the Fourier’s Law of conduction, illustrated in Figure 9, which is the rate of transfer in
Watts:

Q̇cond = −kA

L

dT

dt
(7)

Which is approximated over the discrete CV as:

Q̇cond ≈ −kA

L

∆T

∆t
(8)

Figure 9: Conduction Heat Transfer

Where k is the thermal conductivity of the material, A is the flux area perpendicular to the flow of
heat, L is the distance traveled through the material, ∆T is the temperature difference in the source
and sink, and ∆t is a discrete timestep interval.

We can remove the dot (time derivative) by multiplying by discrete unit time, and converting thermal
power (energy per unit time) into energy:

Qcond ≈ −kA

L

∆T

∆t
× 1 = −kA

L
∆T (9)

Let’s orient the conductivity equation along the horizontal (u) and the vertical directions (v).

For the horizontal heat transfer:

Qcond
1,3 = −kvz

u
∆T (D.5) (10)

And for vertical heat transfer:

Qcond
2,4 = −kuz

v
∆T (11)

Where z is the 3rd dimension size, which is the distance from the floor to the ceiling, and A = vz
and A = uz for horizontal and vertical flux surface areas.

This is good for modeling heat exchange through solid objects, but we also need to model the heat
exchanges from the outside across the boundary to the interior via forced air convection (i.e., wind).
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For convection, we’ll apply Newton’s Law of Cooling, illustrated in Figure 10 for modeling heat
transfer via forced air currents across a surface A, perpendicular to the flow of heat as:

Qcond = −hA∆T (12)

The negative sign in Equations 7 - 12 are due to the fact that energy flows in the direction opposite
of the temperature gradient, ∆T , i.e., from high to low.

Here, h is the convection coefficient and is a function of the amount of air blowing over the exterior
surface of the wall.

Figure 10: Convection Heat Transfer

We define the three types of CVs:

1. Exterior CVs are CVs that represent the outside weather conditions, such as T∞ , which
are note calculated by the FD calculator, just specified by the current input conditions.

2. Interior CVs are CVs where all four sides are adjacent to non-exterior CVs (Figure 11).

3. Boundary CVs are CVs that share one or two faces with exterior CVs and one two or
three faces with interior CVs. These CVs require special handling, since they represent the
transfer of energy between the outside and the inside of the building. Boundary CVs that
share two sides with the exterior are Corner CVs (Figure 12) and boundary CVs that share
only one side with an exterior CV are Edge CVs (Figure 13).

Figure 11: Interior Control Volumes
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Figure 12: Boundary Corner Control Volumes

Figure 13: Boundary Edge Control Volumes

The temperatures that are estimated in FD represent the center of the control volume, or its mean. In
the case of convection, the temperatures at the exterior surface of the wall us unknown and have to
be calculated. Therefore, the center of the Edge CV represents the surface temperature and is split
halfway between the outside and inside, where the volume of an edge CV is half of the mass of an
interior CV. Similarly, an corner CV is cut in half in both directions, and is one quarter the volume
ov an interior CV.

Since we are assuming rectangular CVs, note that v = v1 = v3, and u = u2 = u4.

Since outside temperatures and HVAC responses vary, we have a non-stationary thermal system
where the flow of energy through the CVs that is not constant. This requires us to evaluate the
right-hand term in Equation 6 that allows the volume to absorb or dissipate heat over time, which is
governed by the mass m = ρV = ρuvz, heat capacity c and rate of change of temperature dT

dt .

dU

dt
= cm

dT

dt
= cρV

dT

dt
= cρuvz

dT

dt
(13)

Equation 13 can be approximated over the small differential CV as:

dU

dt
≈ cρuvz

Ti,j − T
(−)
i,j

∆t
(14)
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where T (−)
i,j is the temperature if the i, j CV at the previous timestep and the timestep interval is ∆t,

which can be treated as a fixed parameter.

E.3 SOLVING FOR THE TEMPERATURE AT EACH CV

To enable accelerating the calculation using tensor operations, we would like to define a single
equation for all CV that do not require (a) conditionals, (b) for loops, or (c) referencing neighboring
CVs. That objective will require the construction of a few auxiliary matrices, and every CV will
have convection and conduction components that may be disabled with zero-valued convection and
conduction coefficients as appropriate.

Combining the Energy Balance in Equation 5 with the conduction and convection equations (Equa-
tions 10-13) we can include all terms for all faces on the i, j CV. Our goal is to solve for Ti,j which
can then be run over multiple sweeps to convergence.

Qx − k1vz
Ti,j − Ti−1,j

u
− h1vz(Ti,j − T∞)− k2uz

Ti,j − Ti,j−1

v2
− h2vz(Ti,j − T∞)+

+k3vz
Ti+1,j − Ti,j

u3
+ h3vz(T∞ − Ti,j) + k4uz

Ti,j+1 − Ti,j

v4
+ h4vz(T∞ − Ti,j) =

=
cρuvz

∆t

(
Ti,j − T

(−)
i,j

) (15)

Next, we want to solve for temperature Ti,j by rearranging the terms, which provides a single equa-
tion that can be used to calculate CV temperatures for both boundary and interior CVs.

Ti,j =
Qx + vz

[
k1

u Ti−1,j + h1T∞ + k3

u Ti+1,j + h3T∞
]
+ uz

[
k2

v Ti,j−1 + h2T∞ + k4

v Ti,j+1 + h4T∞
]
+ cρuvz

∆t T
(−)
i,j

vz
[
k1

u + h1 +
k3

u + h3

]
+ uz

[
k2

v + h2 +
k4

v + h4

]
+ cρuvz

∆t
(16)

E.4 TENSORIZING THE TEMPERATURE ESTIMATE

Equation 16 can be used iterative, but to exploit the acceleration from matrix operations on GPUs
and TPUs using the TensorFlow Library, we’ll want to reshape the equation slightly for a single
tensor pipeline that doesn’t iterate over individual CVs.

Furthermore, we can avoid referencing neighboring temperatures (Ti−1,j , Ti+1,j , Ti,j−1, Ti,j+1) in
the pipeline by creating four *shifted* temperature Tensors, T1 = shift(T, 3), T3 = shift(T,LEFT),
T2 = shift(T,UP), T4 = shift(T,DOWN).

We can also frame oriented conductivity as a Tensors left K1, right K3, below K2, above K4, where:

k1,i,j =

{
ki,j CVs at i, j and i− 1, j are interior or boundary
0 otherwise (17)

k3,i,j =

{
ki,j CVs at i, j and i+ 1, j are interior or boundary
0 otherwise (18)

k2,i,j =

{
ki,j CVs at i, j and i, j − 1 are interior or boundary
0 otherwise (19)

k4,i,j =

{
ki,j CVs at i, j and i, j + 1 are interior or boundary
0 otherwise (20)

Note that the conductivity matrix K is a fixed input parameter for the building.
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Applying the same reasoning, we can generate four oriented convection Tensors, H1, H2, H3, H4

as:

h1,i,j =

{
h CV at i, j is boundary and CV at i− 1, j is exterior
0 otherwise (21)

h3,i,j =

{
h CV at i, j is boundary and CV at i+ 1, j is exterior
0 otherwise (22)

h2,i,j =

{
h CV at i, j is boundary and CV at i, j + 1 is exterior
0 otherwise (23)

h4,i,j =

{
h CV at i, j is boundary and CV at i, j − 1 is exterior
0 otherwise (24)

Note that h is a time-dependent constant that represents the amount of airflow over the surface of
the building, assumed to be uniformly applied on all exterior walls of the building.

Finally, we classify each boundary CV as TOP-LEFT CORNER, TOP-RIGHT CORNER,
BOTTOM-LEFT CORNER, BOTTOM-RIGHT CORNER or LEFT EDGE, RIGHT EDGE, TOP
EDGE, or BOTTOM EDGE in order to form Tensors U and V , which are the CV widths and heights.

ui,j =

{
∆x
2 CV at i, j is BOUNDARY and ANY CORNER or TOP or BOTTOM EDGE

∆x otherwise
(25)

vi,j =

{
∆x
2 CV at i, j is BOUNDARY and ANY CORNER or LEFT or RIGHT EDGE

∆x otherwise
(26)

where ∆x is the fixed horizontal and vertical dimension of an INTERIOR CV.

Now we can complete the Tensor expression of the FD equation:

T =
[
Qx + V z

[
K1U

−1T1 +H1T∞ +K3U
−1T3 +H3T∞

]
+ Uz

[
K2V

−1T2 +H2T∞ +K4V
−1T4 +H4T∞

]
+ CPUV z

∆t T (−)
]
·[

V z
[
K1U

−1 +H1 +K3U
−1 +H3

]
+ Uz

[
K2V

−1 +H2 +K4V
−1 +H4

]
+ CPUV z

∆t

]−1

For each timestep, we execute Equation E.4 as single-step tensor operations until convergence,
where the maximum change across all CVs between current and last iteration is less then a con-
servative lower threshold, ϵ ≤ 0.01◦C

F SIMULATOR CONFIGURATION PROCEDURE DETAILS

To configure the simulator, we require two type of information on the building:

1. Floorplan blueprints. This includes the size and shapes of rooms and walls for each floor.
2. HVAC metadata. This includes each device, its name, location, setpoints, fixed parameters,

and purpose.

We preprocess the detailed floorplan blueprints of the building and extract a grid that gives us an ap-
proximate placement of walls and how rooms are divided. This is done via the following procedure:

1. Using threshold t, binarize the floorplan image into a grid of 0s and 1s.
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2. Find and replace any large features that need to be removed (such as doors, a compass, etc)

3. Iteratively apply standard binary morphology operations (erosion and dilation) to the image
to remove noise from background, while preserving the walls.

4. Resize the image, such that each pixel represents exactly one control volume

5. Run a connected components search to determine which control volumes are exterior to the
building, and mark them accordingly

6. Run a DFS over the grid, and reduce every wall we encounter to be only a single control
volume thick in the case of interior wall, and double for exterior wall

Figure 14: Before and after images of the floorplan preprocessing algorithm

We also employ a simple user interface to label the location of each HVAC device on the floorplan
grid. This information is passed into our simulator, and a custom simulator for the new building, with
roughly accurate HVAC and floor layout information, is created. This allows us to then calibrate this
simulator using the real world data, which will now match the simulator in terms of device names
and locations.

We tested this pipeline on SB1, which consisted of two floors with combined surface area of 93,858
square feet, and has 173 HVAC devices. Given floorplans and HVAC layout information, a single
technician was able to generate a fully specified simulation in under three hours. This customized
simulator matched the real building in every device, room, and structure.
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G CALIBRATION HYPERPARAMETER TUNING DETAILS

The hyperparameter tuning was performed over a seven day period on 200 CPUs.
Table 3: Thermal properties that were set by the calibration process, with min/max bounds and
selected values.

HYPERPARAMETER MIN MAX BEST

CONVECTION COEFFICIENT (W/m2/K) 5 800 357
EXTERIOR CV CONDUCTIVITY (W/m/K) 0.01 1 0.83
EXTERIOR CV DENSITY (kg/m3) 0 3000 2359
EXTERIOR CV HEAT CAPACITY (J/Kg/K) 100 2500 2499
INTERIOR WALL CV CONDUCTIVITY (W/m/K) 5 800 5
INTERIOR WALL CV DENSITY (kg/m3) 0.5 1500 1500
INTERIOR WALL CV HEAT CAPACITY (J/Kg/K) 500 1500 1499
SWAP PROB 0 1 0.003
SWAP RADIUS 0 50 50

H ADDITIONAL SPATIAL ERROR VISUALIZATIONS

Here we present some other visuals that may be enlightening.

Figure 15: Visualization of simulator drift after only a single hour, on the validation data. As can be
clearly seen, at this point there is almost no error.
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Figure 16: Visualization of simulator drift after only a single hour, on the train data. Again, there is
almost no error.

Figure 17: Visualization of simulator drift after one day, on the train data.

Figure 18: Visualization of simulator drift after two days, on the train data. Interestingly, this looks
better than it did after only one day.
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I ADDITIONAL MODNN DETAILS

I.1 DETAILED MODNN MODEL STRUCTURE

In the ModNN model, a Gated Recurrent Unit (GRU) module is used to capture the highly nonlinear
relationships between disturbance variable inputs and heat gains, while a Fully Connected (FC)
neural network module captures the HVAC input. Notably, the HVAC input in this study is air-side,
allowing it to be directly added to the disturbance variables. However, this module can be extended
to accommodate different HVAC systems. For instance, a radiation-based HVAC system would
require a Recurrent Neural Network (RNN) module to consider the heat lagging effects.

Figure 19: Diagram of Detailed ModNN Model Structure.

The integrated heat transfer terms will go through another FC module to model the dynamics of
zone air mass and heat capacity. The output represents the temperature change per timestep, which
is recursively added to the previous timestep’s temperature for future predictions.

I.2 MODEL PERFORMANCE

As shown in Figure 20, the gray line represents the predicted space air temperature, which closely
matches the measured data, achieving an MAE of 0.3 ◦C for 24-hour predictions. To demonstrate
that the proposed model can not only predict accurately but also capture the impact of changes in
control input (HVAC power), we conducted a sanity check. In this test, the colored lines, from blue
to red, represents the intentionally adjusted HVAC inputs from 4 kW to -4 kW. The response of the
PI-ModNN model adhered to physical principles: additional heating resulted in an increase in space
air temperature, while additional cooling led to a decrease. This confirms that the model reliably
responds to variations in control input, which is essential for enabling a reinforcement learning (RL)
agent to explore and optimize control actions.

We also compared the MMD of the LSTM and ModNN models, as illustrated in Figure 21. The
X-axis represents one-step HVAC load changes (negative values indicate increased cooling, posi-
tive values indicate reduced cooling), and the Y-axis shows the corresponding changes in space air
temperature. Each scatter point reflects data under varying weather and occupancy conditions.

From the black points (ground truth), we observe a clear decreasing trend in space air temperature
as the cooling load increases. The ModNN model, represented by blue points, captures a similar
trend. However, the LSTM model, depicted by red points, shows an incorrect trend where the space
air temperature increases with additional cooling. This discrepancy is further highlighted by the
difference in distributions between the ground truth (black contour plot) and the LSTM model (red
contour plot). The MMD of the LSTM model to the ground truth is 0.14, which is significantly
higher than the MMD of the ModNN model to the ground truth (0.05).
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Figure 20: PI-ModNN model performance.

Figure 21: Maximum mean discrepancy of LSTM and ModNN.

I.3 CONTROL OPTIMIZATION BASED ON PI-MODNN

Based on the proposed model, we applied optimal control to evaluate the potential for energy sav-
ings. The green line represents the baseline scenario, where unnecessary cooling occurred in the
early morning. In contrast, the red line shows the results of the optimal control strategy. As shown,
the HVAC system remains off during the early morning hours to allow the space air temperature free
floating, and the space temperature consistently stays close to the upper comfort limit. This strategy
achieves significant energy savings, reducing air-side energy consumption by over 64%.
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Figure 22: Optimal Control for an Energy Saving Case Study.

We then applied the same approach to a flexibility case study, aiming to shift energy consumption
from peak hours to off-peak hours while maintaining thermal comfort. The overall results for one
month are shown below. In the figure, the red box indicates the baseline case, and the blue box
represents the optimal control results, with the gray shaded area marking the peak hours. The space
temperature was generally well maintained, and peak demand was reduced through pre-cooling.
However, some temperature violations were observed due to the shifted load. This suggests that
future work could incorporate hard constraints or fine-tune the balance parameters to better manage
the trade-off between load shifting and comfort.

Figure 23: Optimal Control for an Load Shifting Case Study.
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I.4 ADJACENT MATRIX FOR MULTIZONE DYNAMIC MODELING

To extend the single-zone model to a multi-zone framework, we developed a conduction heat trans-
fer model to capture interactions between adjacent zones. A skew-symmetric matrix is used to
represent temperature differences between adjacent zones, as shown in the figure. Based on the heat
conduction equation:

Q =
kA∆(Ti − Tj)

l
:= fNNadj

(Ti − Tj)

Where q represents heat transfer through conduction, k is the thermal conductivity of the material,
A is the cross-sectional area, Ti and Tj are the space air temperatures of the adjacent zones, and l is
the thickness of the wall.

Figure 24: Adjacency Matrix for Extending from Single-Zone to Multi-Zone.

This heat transfer term is learned using another FC layer and then integrated with the other heat
transfer terms to predict the next step’s space air temperature.

I.5 DATA STRUCTURE

The input dimension of the encoder is
(Dstate +Ddis +Dadj +Dhvac)×B × Len,

where Dstate, Ddis, Dadj, and Dhvac are the feature dimensions of the state variables (the number of
zones), disturbance variable, number of adjacent zones, and control variables, respectively. B is the
batch size, and Len is the length of the encoder.

The input dimension of the decoder is
(Ddis +Dadj +Dhvac)×B × Lde,

since the future indoor air temperature is unknown at timestep t. Thus, the input dimension for the
decoder excludes Dstate.
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The output dimension is

1×B × Lde.

The input vector can be formulated as shown below:

Here, we define wk
t ∈ RDisturbance×batch×(Len+Lde)×D as the disturbance vector, where t is the timestep

and k is the feature category. The control input term is represented as

uk
t ∈ R1×batch(Len+Lde)×1

and the state variable, representing space air temperature in building dynamics modeling, is given
by

xk
t ∈ R1×batch×(Len+1)×1.

We further clarify the abbreviations for k used in this matrix:
- solar: global solar radiation

- time: time information

- TOA: outside air temperature

- Occ: occupant number

I.6 HYPERPARAMETERS

We summarized all the hyperparameters used in this study as shown below. The input vector can be
formulated as shown below:
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J SIMULATOR SAC AGENT TRAINING DETAILS AND PERFORMANCE
ANALYSIS

We will now go into more details on the simulator RL agent training and performance as compared
to the baseline.

Each agent was trained on a single CPU. We restricted the action space to supply air and water
temperature setpoints. For the observation space, we found that providing the agent with the dozens
of temperature sensors was too much noisy information and not useful. Instead, we provided the
agent with a histogram, grouping temperatures into 1◦ Celsius bins, ranging from 12◦ to 30◦, and
calculating the frequency of each bin. The tallies are then normalized and provided as part of the
observation. This led to much better performance.

Our reward function is a weighted, linear combination of the normalized carbon footprint, cost, and
comfort levels within the building. While an 8% improvement over the baseline on this scalar reward
is significant, we can see the improvements of the SAC agent over the baseline even more clearly
when we break down these factors further into physical measures.

For this analysis, we break down the reward into four components that contribute to it, and see
how the learned policy compares with the baseline. The components are: setpoint deviation, carbon
emissions, electrical energy, and natural gas energy.
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Figure 25: Setpoint Deviation Performance as a function of outside air temperature, which evaluates
how well the agent meets comfort conditions compared to the baseline. It is measured as the average
number of ◦C above or below setpoint for all zones in the building. For each outside air degree
increment, we include the number of observations for baseline and agent, the percentage change as
(baseline - agent) / baseline, and its associated p-score.

Above we display how the baseline and agent compare when it comes to setpoint deviation, the
comfort component of the reward function. We show the distribution of deviations grouped by
outside air temperatures. While both policies have very minimal setpoint deviation to begin with,
the agent strictly improves over the baseline here.

Figure 26: Carbon Emission measures how the agent performs compared to the baseline in terms of
the amount of greenhouse gas released from consuming natural gas and electricity. C is combined
mass (kgC, or kg Carbon) emitted by non-renewable electricity and natural gas. For each outside
air degree increment, we include the number of observations for baseline and agent, the percentage
change as (baseline - agent) / baseline, and its associated p-score.
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The carbon performance of the agent, as compared with the baseline, is impressive as well. In the
temperature range 14◦C to 18 ◦C, the agent is strictly better, and while it is slightly worse for the
warmer temperatures, clearly it is a net improvement over the baseline.

Figure 27: Electrical Energy Performance measured in energy units (kWh) over a fixed interval
for both the agent and the baseline policies. For each outside air degree increment, we include the
number of observations for baseline and agent, the percentage change as (baseline - agent) / baseline,
and its associated p-score.

Once again, when it comes to electric performance, the SAC agent is almost strictly better under all
temperature ranges.

Figure 28: Natural Gas Performance measured in energy units (therm) over a fixed interval for both
the agent and the baseline policies. For each outside air degree increment, we include the number
of observations for baseline and agent, the percentage change as (baseline - agent) / baseline, and its
associated p-score.
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Interestingly, the agent converged on a policy that reduced overall carbon emission while increasing
natural gas consumption. This is due to the fact that electricity is generated from non-renewable
sources and per unit energy, is significantly more expensive than gas.

40


	Introduction
	Related Work
	Optimizing Energy and Emission in Commercial Buildings
	Problem Formulation
	Reward Function

	The Smart Buildings Dataset
	The Smart Buildings Simulator
	Simulator Calibration Demonstration

	The Smart Buildings PINN Model
	Learning an Improved Control Policy
	Limitations and Conclusion
	Ethics Statement
	Reproducibility Statement
	Learning an Optimal Control Policy
	Reward Function Details
	Comfort Loss Function (C1)
	Energy Cost Function (C2)
	Carbon Emission Cost Function (C3)
	Immediate and delayed reward responses
	Indoor Air Quality

	Dataset Format
	Benchmark Access
	Dataset Format
	Environment Data
	Observation Data
	Action Data
	Reward Data

	Simulator Design Considerations
	Derivation for Tensorized Finite Difference (FD) Equations
	Assembling the Energy Balance
	Computing heat transfer via conduction, convection, and thermal absorption
	Solving for the temperature at each CV
	Tensorizing the temperature estimate

	Simulator Configuration Procedure Details
	Calibration Hyperparameter Tuning Details
	Additional Spatial Error Visualizations
	Additional ModNN Details
	Detailed ModNN Model Structure
	Model Performance
	Control Optimization based on PI-ModNN
	Adjacent Matrix for Multizone Dynamic Modeling
	Data Structure
	Hyperparameters

	Simulator SAC Agent Training Details and Performance Analysis

