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Abstract

This paper introduces an empirical risk minimiza-
tion based approach with concomitant scaling,
which eliminates the need for tuning a robustifica-
tion parameter in the presence of heavy-tailed data.
This method leverages a new loss function that
concurrently optimizes both the mean and robusti-
fication parameters. Through this dual-parameter
optimization, the robustification parameter auto-
matically adjusts to the unknown data variance,
rendering the method self-tuning. Our approach
surpasses previous models in both computational
and asymptotic efficiency. Notably, it avoids the
reliance on cross-validation or Lepski’s method
for tuning the robustification parameter, and the
variance of our estimator attains the Cramér-Rao
lower bound, demonstrating optimal efficiency. In
essence, our approach demonstrates optimal perfor-
mance across both finite-sample and large-sample
scenarios, a feature we describe as algorithmic
adaptivity to both asymptotic and finite-sample
regimes. Numerical studies lend strong support to
our methodology. The code is available at https:
//github.com/NeXAIS/automean.

1 INTRODUCTION

The success of many statistical and learning methods heav-
ily relies on the assumption of sub-Gaussian errors [Wain-
wright, 2019]. A random variable Z is considered to have
sub-Gaussian tails if there exist constants c1 and c2 such that
P(|Z−EZ| > t) ≤ c1 exp(−c2t2) for any t ≥ 0. However,
in many practical applications, data are often collected with
a high degree of noise. For instance, in the context of gene
expression data analysis, it has been observed that certain
gene expression levels exhibit kurtoses much larger than 3,
regardless of the normalization method used [Wang et al.,

2015]. Furthermore, a recent study on functional magnetic
resonance imaging [Eklund et al., 2016] demonstrates that
the principal cause of invalid functional magnetic resonance
imaging inferences is that the data do not follow the as-
sumed Gaussian shape. It is therefore important to develop
robust and efficient statistical methods with desirable sta-
tistical performance in the presence of heavy-tailed data,
which refer to data with only finite variances.

This paper focuses on mean estimation problems with poten-
tially heavy-tailed data, which serves as the foundation for
tackling more general problems. Specifically, we consider a
generative model for data {yi, 1 ≤ i ≤ n}:

yi = µ∗ + εi, 1 ≤ i ≤ n, (1.1)

where εi ∈ R are independent and identically distributed
(i.i.d.) copies of ε, following the law F0 with zero mean
and only finite variance. Specifically, Eε∼F0

ε = 0 and
Eε∼F0

ε2 = σ2.

When estimating the mean, the sample mean estimator∑n
i=1 yi/n generally achieves only a polynomial-type

nonasymptotic confidence width [Catoni, 2012] under the
conditions where the errors have only finite variances.
Specifically, there exists a distribution F = Fn,δ for ε with
a zero mean and a variance of σ2, such that the followings
hold simultaneously:
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. In essence, the above indicates that

the convergence of the sample mean to the true mean is
notably slow when the error terms are characterized by only
finite variances.
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Catoni [2012] made an important step towards mean estima-
tion by introducing a robust estimator µ̂(τ), which depends
on a tuning parameter τ and achieves logarithmic deviation
from the true mean µ∗ with respect to 1/δ. For a sufficiently
large sample size n and optimal tuning of τ , this estimator
satisfies the following concentration inequality:

P

(
|µ̂(τ)− µ∗| ≤ cσ

√
1

n
· log

(
1

δ

))
≥ 1− 2δ (1.4)

for ∀ δ ∈
(
0, 1/2

)
, where c is some constant. Such estima-

tors are referred to as sub-Gaussian mean estimators due to
their performance equivalence to scenarios assuming sub-
Gaussian data. Catoni’s estimator is based on the empirical
risk minimization (ERM) framework and thus can be gener-
alized to various contexts [Brownlees et al., 2015, Hsu and
Sabato, 2016, Lecué and Mendelson, 2016, Fan et al., 2017,
Avella-Medina et al., 2018, Holland and Ikeda, 2019, Lugosi
and Mendelson, 2019b, Lecué and Lerasle, 2020, Sun et al.,
2020, Wang et al., 2021, Holland and Haress, 2021]. For a
recent comprehensive review, see Ke et al. [2019].

However, implementing Catoni’s estimator [Catoni, 2012]
requires careful tuning the parameter τ = τ(σ), which is
dependent on the unknown variance σ2. This process often
involves computationally intensive techniques such as cross-
validation or Lepski’s method [Catoni, 2012]. For instance,
when using the adaptive Huber estimator [Sun et al., 2020,
Avella-Medina et al., 2018] to estimate each entry of a d×d
covariance matrix, up to O(d2) tuning parameters can be
involved. Utilizing cross-validation or Lepski’s method in
such scenarios significantly escalates the computational bur-
den as d increases. To mitigate these computational barriers,
median-of-means (MoM) techniques [Devroye et al., 2016,
Lugosi and Mendelson, 2019b,a, Lecué and Lerasle, 2020]
can be used to construct robust and tuning-free estimators;
see Section 3.2. However, based on our experience, MoM
typically underperforms numerically compared to ERM-
based estimators. An asymptotic analysis reveals that the
relative efficiency of the MoM estimator, compared to a fully
efficient estimator, is only 2/π ≈ 0.64. These observations
prompt a pertinent question:

Is it possible to develop computationally and sta-
tistically effcient robust estimators for data with
finite and unknown variances?

In response, this paper introduces a robust empirical risk
minimization approach with concomitant scaling. We utilize
a new loss function that is smooth with respect to both the
mean and robustification parameters. By joint optimizing
these parameters, we prove that the resulting robustification
parameter can automatically adapt to the unknown vari-
ance, enabling the resulting mean estimator to achieve sub-
Gaussian accuracy up to logarithmic terms. Thus, our ap-
proach eliminates the need for cross-validation or Lepski’s

method for tuning, significantly enhancing the computa-
tional efficiency of robust data analysis in practical settings.
Moreover, from an asymptotic viewpoint, we establish that
our proposed estimator is asymptotically efficient, achiev-
ing the Cramér-Rao lower bound [Van der Vaart, 2000]. In
essence, our approach demonstrates optimal performance
across both finite-sample and large-sample scenarios, a fea-
ture we describe as algorithmic adaptivity to both asymp-
totic and finite-sample regimes.

Overview Section 2 introduces a novel loss function and
presents the empirical risk minimization (ERM) approach.
The theoretical properties are presented in Section 3, where
we also compare our estimator with the MoM mean estima-
tor in terms of asymptotic performance. Section 4 provides
numerical experiments. We conclude in Section 5. The sup-
plementary material collects additional results and proofs
of the main results.

Notation We summarize here the notation that will be
used throughout the paper. We use c andC to denote generic
constants which may change from line to line. For two
sequences of real numbers {an, n ≥ 1} and {bn, n ≥ 1},
an . bn or an = O(bn) denotes an ≤ Cbn for some
constant C > 0, and an & bn if bn . an. We use an ∝ bn
to denote that an & bn and an . bn. The log operator
is understood with respect to the base e. For a function
f(x, y), we use∇xf(x, y) or ∂

∂xf(x, y) to denote its partial
derivative of f(x, y) with respect to x. Let∇f(x, y) denote
the gradient of f(x, y). For a vector x ∈ Rd, ‖x‖2 denotes
its Euclidean norm. For a symmetric positive semi-definite
matrix Σ, λmax(Σ) denotes its largest eigenvalue. For any
set A, 1(A) is the indicator function of the set A.

2 A LOSS FUNCTION WITH
CONCOMITANT SCALING

This section introduces a new loss function designed to
robustly estimate the mean of distributions with only finite
variances, while also facilitating automatic tuning of the
robustification parameter. We start with the pseudo-Huber
loss [Hastie et al., 2009]:

`τ (x) = τ
√
τ2 + x2 − τ2

= τ2
√

1 + x2/τ2 − τ2, (2.1)

where τ acts as a tuning parameter. This loss function mir-
rors the behavior of the Huber loss [Huber, 1964], approx-
imating x2/2 when x2 . τ2 and transitioning to a linear
form with slope τ when x2 & τ2. We refer to τ as the
robustification parameter because it mediates the balance
between quadratic loss and least absolute deviations loss,
with the latter inducing robustness. In practice, tuning τ
often requires computationally intensive methods such as



Lepski’s method [Catoni, 2012] or cross-validation [Sun
et al., 2020].

To bypass these computationally demanding methods, our
objective is to develop a novel loss function that depends on
both the mean parameter µ and the robustification parameter
τ (or its equivalent). By jointly optimizing these parame-
ters, we can achieve an automatically tuned robustification
parameter τ̂ , which in turn leads to the corresponding self-
tuned mean estimator µ̂(τ̂). In contrast to the Huber loss
[Sun et al., 2020], the pseudo-Huber loss is a smooth func-
tion of τ , making optimization with respect to τ possible.
To motivate the new loss function, let us first consider the
estimator µ̂(τ) with τ fixed a priori:

µ̂(τ) = argmin
µ

{
1

n

n∑
i=1

`τ (yi − µ)

}
. (2.2)

Below, we provide an informal result, with its rigorous
version available in the appendix.

Theorem 2.1 (An informal result). Take τ = σ
√
n/z with

z =
√

log(1/δ), and assume n is sufficiently large. Then,
for any 0 < δ < 1, with probability at least 1− δ, we have

|µ̂(τ)− µ∗| . σ
√

log(2/δ)

n
.

The result above demonstrates that when τ = σ
√
n/z with

z =
√

log(1/δ), the estimator µ̂(τ) achieves the desired
sub-Gaussian performance. Here, the sole unknown in τ is
the standard deviation σ. In view of this, we treat σ as an
unknown parameter v, and substitute τ =

√
nv/z into the

loss function (2.1), obtaining

`(x, v) := `τ (x) =
nv2

z2

(√
1 +

x2z2

nv2
− 1

)
, (2.3)

where z acts as a confidence parameter due to its dependence
on δ as specified in the preceding theorem.

Instead of determining the optimal τ , we will identify the
optimal v, which is intuitively expected to approximate
the underlying standard deviation σ. We will use the term
robustification parameter interchangeably for both τ and
v, as they differ only by a factor. We will also refer to v as
the scale parameter. However, directly minimizing `(x, v)
with respect to v leads to meaningless solutions, specifically
v = 0 and v = +∞. To circumvent these trivial outcomes,
we we modify the loss function by dividing `(x, v) by v and
then adding a linear penalty term av. This will be referred
to as the penalized pseudo-Huber loss, which is formally
defined as follows.

Definition 2.2 (Penalized pseudo-Huber loss). The penal-

ized pseudo-Huber loss `p(x, v) is defined as:

`p(x, v) :=
`(x, v) + av2

v

=
nv

z2

(√
1 +

x2z2

nv2
− 1

)
+ av, (2.4)

where n is the sample size, z is a confidence parameter, and
a is an adjustment factor.

We thus propose to jointly optimize over µ and v by solving
the following ERM problem:

{ µ̂, v̂ } = argmin
µ, v

{ 1

n

n∑
i=1

`p(yi − µ, v)︸ ︷︷ ︸
Ln(µ,v)

}
. (2.5)

When v is fixed a priori, solving the optimization problem
above with respect to µ is equivalent to directly minimizing
the empirical pseudo-Huber loss in (2.2) with τ = v

√
n/z.

To better understand the loss function Ln(µ, v), let us first
examine its population counterpart:

L(µ, v) = ELn(µ, v)

=
nv

z2
E

(√
1 +

(y − µ)2z2

nv2
− 1

)
+ av.

We define the population oracle v∗ as the value of v that min-
imizes L(µ∗, v) when the true mean µ∗ is known a priori,
that is v∗ = argminτ L(µ∗, v), or equivalently, ensuring
the gradient of L(µ∗, v) with respect to v at v = v∗ is zero:

∇vL(µ∗, v)
∣∣
v=v∗

=

{
n

z2

(
∇vE

√
v2 +

ε2z2

n
− 1

)
+ a

}∣∣∣∣∣
v=v∗

= 0.

By switching the order of differentiation and expectation,
we derive:

E
v∗√

v2
∗ + z2ε2/n

= 1− az2

n
. (2.6)

Our first key result leverages the above characterization
of v∗ to demonstrate how v∗ automatically adapts to the
unknown standard deviation σ, thus hinting the effectiveness
of our methodology. Let σ2

x2 := E{ε21(ε2 ≤ x2)}.

Theorem 2.3 (Self-tuning property of v∗). Suppose n ≥
az2. Then, for any γ ∈ [0, 1), we have v∗ > 0 and

(1− γ)σ2
ϕτ2
∗

2a
≤ v2
∗ ≤

σ2

2a
,

where ϕ = γ/(1 − γ) and τ∗ = v∗
√
n/z. Moreover

limn→∞ v2
∗ = σ2/(2a).



The theorem above shows that when n ≥ az2, the oracle v2
∗

automatically adapts to the unknown variance, which is sand-
wiched between the scaled truncated variance σ2

ϕτ∗/(2a)
and the scaled variance σ2/(2a). By the dominated conver-
gence theorem, σ2

ϕτ2
∗

converges to σ2 as ϕτ2
∗ approaches to

→ ∞. As the sample size n grows, σ2
ϕτ2
∗

closely approx-
imates σ2, thus placing v2

∗ between (1 − γ)σ2/(2a) and
σ2/(2a). An asymptotic analysis reveals that limn→∞ v2

∗ =
σ2/(2a). Taking a = 1/2 yields limn→∞ v2

∗ = σ2, indicat-
ing that the oracle v2

∗ with a = 1/2 should approximate the
true variance. This observation suggests the optimality of
choosing a = 1/2, a choice that is assumed throughout the
rest of this paper.

Our next result establishes that the proposed empirical loss
function is jointly convex in both µ and v. This property en-
ables the application of standard first-order optimization al-
gorithms, facilitating the efficient computation of the global
optimum.

Proposition 2.4 (Joint convexity). The empirical loss func-
tion Ln(µ, v) in (2.5) is jointly convex in both µ and v.
Furthermore, if there exist at least two distinct data points,
the empirical loss function is strictly convex in both µ and
v provided that v > 0.

Lastly, it was brought to our attention that our formulation
(2.5) shares similarities with the concomitant estimator by
Ronchetti and Huber [2009]:

argmin
µ,v

{
1

n

n∑
i=1

ρ

(
yi − µ
v

)
v + av

}
,

where ρ represents any loss function, and a is a user-
specified constant. A notable gap in the literature is the
lack of rigorous guidance on selecting the hyperparameter
a. Driven by the goal of developing computationally and
statistically efficient robust estimators with improved finite-
sample performance for handling potentially heavy-tailed
data, we have derived a comparable but distinct formulation,
underpinned by rigorously determined hyperparameter a
and an additional confidence parameter z. In other words,
our empirical loss function Ln is a meticulously adapted
version of the aforementioned loss function. Specifically, we
adopt the smooth pseudo-Huber loss, and set the robustifica-
tion parameter τ to τ = v

√
n/z to ensure the sub-Gaussian

performance of the mean estimator, where z is a carefully
chosen confidence parameter. Concurrently, optimal adjust-
ment factor is identified as a = 1/2.

3 THEORETICAL PROPERTIES

This section presents the self-tuning property of the esti-
mated robustification parameter, followed by the improved
finite-sample performance of the self-tuned mean estimator,
analogous to the bound in (1.4). We further show that the

proposed estimator is asymptotically efficient, thereby dis-
tinguishing it from the MoM estimator. Recall that a = 1/2.

3.1 THE SELF-TUNING PROPERTY AND
IMPROVED FINITE-SAMPLE
PERFORMANCE

To study the self-tuning property, we need an additional
constraint that v0 ≤ v ≤ V0, and consider the constrained
empirical risk minimization problem

{ µ̂, v̂ } = argmin
µ, v0≤v≤V0

{ 1

n

n∑
i=1

`p(yi − µ, v)︸ ︷︷ ︸
Ln(µ,v)

}
. (3.1)

It is important to note that when v is either 0 or∞, the loss
function is non-smooth or trivial, respectively. Moreover,
the loss function is not strongly convex in µ in either case,
and strong convexity is essential for our theoretical analysis.
Recall that τv0 = v0

√
n/z.

Theorem 3.1 (Self-tuning property). Assume that n is suf-
ficiently large. Suppose v0 < c0σ

2
τ2
v0
/2−1/στ2

v0
/2 ≤ C0σ <

V0 where c0 and C0 are some constants. For any 0 < δ < 1,
let z2 ≥ log(5/δ). Then, with probability at least 1− δ, we
have

c0σ
2
τ2
v0
/2−1/στ2

v0
/2 ≤ v̂ ≤ C0σ.

As n→∞, we have σ2
τ2
v0
/2−1/στ2

v0
/2 → σ, as guaranteed

by the dominated convergence theorem. Thus, the preceding
theorem implies that v̂ automatically adapts to the unknown
standard deviation σ. Naturally, under only the minimal as-
sumption of a bounded second moment, the scale estimator
v̂ can not estimate σ at any predictable rate. However, under
the sligntly stronger assumption that the (2 + ι)-th moment
is bounded for some ι > 0, a similar argument to the proof
of the preceding theorem shows that v̂ can estimate σ at a
predictable rate, and even at a sub-Gaussian rate if the fourth
moment exists. Equipped with this self-tuning property, we
are now ready to characterize the finite-sample property of
the self-tuned mean estimator µ̂(v̂).

Theorem 3.2 (Self-tuned mean estimators). As-
sume that n is sufficiently large. Suppose v0 <

c0

(
στ2

v0
/2−1/στ2

v0
/2 ∧ 1

)
στ2

v0
/2−1 ≤ C0σ < V0

where c0 and C0 are some universal constants. For any
0 < δ < 1, take z2 = log(n/δ). Then, with probability at
least 1− δ, we have

|µ̂(v̂)− µ∗| ≤ C · σ
√

log(n/δ)

n

where C is some constant.
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Figure 1: Comparing our self-tuned estimator with the MoM estimator in terms of adaptivity.

The above result asserts that the self-tuned mean estima-
tor µ̂ = µ̂(v̂) achieves logarithmic deviation from the true
mean µ∗ with respect to 1/δ, akin to (1.4) (up to logarith-
mic terms). This is in sharp contrast to the sample mean
estimator, which only achieves polynomial dependence on
1/δ; see (1.2) and (1.3). For practical applications, we sug-
gest choosing δ = 0.05, which corresponds to a failure
probability of 0.05 or, equivalently, a confidence level of
0.95.

3.2 ASYMPTOTIC EFFICIENCY

Our next theorem shows that our proposed estimator
achieves asymptotic efficiency.

Theorem 3.3 (Asymptotic efficiency). Fix any ι ∈ (0, 1].
Assume Eε2+ι

i <∞ and the same assumptions as in Theo-
rem 3.1. Take any z2 ≥ 2 log(n). Then

√
n (µ̂(v̂)− µ∗) N

(
0, σ2

)
.

We provide an intuitive explanation for the optimal per-
formance of our self-tuned estimator in the asymptotic
regime. Because this estimator is a self-tuned version of the
pseudo-Huber estimator in (2.2), we discuss the latter for
simplicity. As per Theorem 2.1, taking τ = σ

√
n/ log(1/δ)

guarantees the sub-Gaussian performance of µ̂(τ) in the
finite-sample regime. Meanwhile, as n approaches infin-
ity, τ = σ

√
n/ log(1/δ) also grows to infinity, causing the

pseudo-Huber loss to approach the least squares loss. This
loss corresponds to the negative log-likelihood of Gaussian
distributions, and its minimization yields an asymptotically
efficient mean estimator.

In summary, our self-tuned estimator can achieve optimal
performance in both finite-sample and large-sample regimes.
We point out that the large-sample regime is used to approx-
imate the regime when the sample size is relatively large
instead of describing the case of n = ∞. We will refer to
this ability as adaptivity to both finite-sample and large-
sample regimes, or simply adaptivity. As we will see in the

next section, the MoM estimator does not naturally possess
this adaptivity due to its discontinuous nature. Figure 1 pro-
vides a comparison between our self-tuned estimator and
the MoM estimator in terms of adaptivity.

3.3 COMPARING WITH MOM

Other than the ERM-based approach, the median-of-means
technique [Lugosi and Mendelson, 2019a] is another method
to construct robust estimators under heavy-tailed distribu-
tions. The MoM mean estimator is constructed as follows:

1. Partition [n] = {1, . . . , n} into k blocks B1, . . . ,Bk,
each with size |Bi| ≥ bn/kc ≥ 2;

2. Compute the sample mean in each block zj =∑
i∈Bj xi/|Bj |;

3. Obtain the MoM mean estimator by taking the median
of zj’s:

µ̂MoM = med(z1, . . . , zk)

where med(·) represents the median operator.

For simplicity and without loss of generality, we assume that
n is divisible by k so that each block has exactly m = n/k
elements. The following theorem is taken from Lugosi and
Mendelson [2019a].

Theorem 3.4 (Theorem 2 by Lugosi and Mendelson [2019a]
). For any δ ∈ (0, 1), if k = d8 log(1/δ)e, then, with prob-
ability at least 1− δ,

∣∣µ̂MoM − µ∗
∣∣ ≤ σ√32 log(1/δ)

n
.

The theorem above indicates that, to obtain a sub-Gaussian
mean estimator, we only need to choose k = d8 log(1/δ)e
when constructing the MoM mean estimator. Thus, the MoM
estimator is naturally tuning-free. However, in our numeri-
cal experiments, we observed that the MoM estimator often



underperforms compared to our proposed estimator. To shed
light on this observation, we adopt an asymptotic viewpoint
and calculate the relative efficiency of µ̂MoM with respect to
our estimator µ̂(τ̂). The following result is a direct conse-
quence of [Minsker, 2019, Theorem 4] and we collect the
proof in the appendix for completeness.

Proposition 3.5 (Asymptotic inefficiency of MoM estima-
tor). Fix any ι ∈ (0, 1]. Assume E|yi − µ∗|2+ι <∞. Sup-
pose k →∞ and k = o

(
nι/(1+ι)

)
, then

√
n
(
µ̂MoM − µ∗

)
 N

(
0,
π

2
σ2
)
.

We highlight that the MoM mean estimator shares the same
asymptotic property as the median estimator [Van der Vaart,
2000] due to taking the median operation in the last step, and
thus is asymptotically inefficient. In contrast, our estimator
achieves full asymptotic efficiency. The relative efficiency
er of the MoM estimator with respect to our estimator is

er

(
µ̂MoM, µ̂(v̂)

)
=

2

π
≈ 0.64.

This indicates that our proposed estimator outperforms the
MoM estimator in terms of asymptotic performance, par-
tially explaining the empirical success of our method; see
the numerical results in Section 4 for details.

Why is the MoM estimator not asymptotically effi-
cient? To achieve sub-Gaussian performance in the finite-
sample regime, the number of blocks k must be at least
d8 log(1/δ)e, as shown in the proof of Theorem 3.4 by
Lugosi and Mendelson [2019a]. In contrast, asymptotic ef-
ficiency requires the number of blocks to converge to 1,
since only in this case does the MoM estimator approach to
the sample mean. Thus, the MoM estimator can not simul-
taneously achieve optimal finite-sample performance and
asymptotic efficiency. This tension likely arises from the
estimator’s discontinuous dependency on k.

4 NUMERICAL STUDIES

This section examines numerically the finite-sample perfor-
mance of our proposed robust mean estimator when dealing
with heavy-tailed data. Throughout our numerical examples,
we take z =

√
log(n/δ) with δ = 0.05 as recommended by

Theorem 3.2. This choice guarantees that the result stated
in the theorem holds with a probability of at least 0.95.

We investigate the robustness and efficiency of our proposed
estimator under two distinct distribution settings for the
random variable y:

1. Normal distribution N (µ, σ2) with mean µ = 0 and
variance σ2 ≥ 1.

2. Skewed generalized t distribution sgt(µ, σ, λ, p, q),
where mean µ = 0, skewness λ = 0.75, standard

deviation σ =
√
q/(q − 2), shape parameter p = 2,

and shape parameter q > 2.

For each of the above settings, we generate an independent
samples of size n = 100 and compute four mean estimators:
our proposed estimator (ours), the sample mean estimator
(sample mean), the MoM mean estimator (MoM), and the
trimmed mean estimator (trimmed mean).

Figure 2 displays the α-quantile of the estimation error
‖µ̂− µ‖22, with α ranging from 0.5 to 0.99, based on 1000
simulations for both distributional settings. For Settings 1
(normal distribution) and 2 (skewed generalized t distribu-
tion), we set σ2 = 1 and q = 2.5, respectively. In the case
of normal distributions, our proposed estimator performs
almost identically to the sample mean estimator, both of
which outperform the MoM and trimmed mean estimator.
Since the sample mean estimator is optimal for Gaussian
data, this suggests that our estimator does not sacrifice statis-
tical efficiency when applied to Gaussian data. In the case of
heavy-tailed skewed generalized t distributions, the estima-
tion error of the sample mean estimator grows rapidly with
increasing α. This contrasts with the three robust estimators:
our estimator, the MoM mean estimator, and the trimmed
mean estimator. Our estimator consistently outperforms the
others in both settings.

Figure 3 examines the 99%-quantile of the estimation error
versus a distribution parameter, based on 1000 simulations.
For Gaussian data, the distribution parameter is σ, and we
vary σ from 1 to 4 in increments of 0.1. For skewed gen-
eralized t distributions, the distribution parameter is q, and
we vary q from 2.5 to 4 in increments of 0.1. For Gaussian
data, our estimator performs identically to the optimal sam-
ple mean estimator, with both outperforming the MoM and
trimmed mean estimators. In the case of skewed generalized
t distributions with q ≤ 3, all three robust mean estima-
tors either outperform or are as competitive as the sample
mean estimator. However, when q > 3, the sample mean
estimator starts to outperform both the MoM and trimmed
mean estimators. Our proposed estimator, on the other hand,
consistently outperforms all other methods across the entire
range of parameter values.

We also conduct a computational performance comparison
of our self-tuned method with pseudo-Huber loss + cross-
validation, and pseudo-Huber loss + Lepski’s method. For
cross-validation, we pick the best τ from a list of candidates
{1, 2, . . . , 100} using 10-fold cross-validation. In the case
of Lepski’s method, we follow the appendix and choose
V = 2, ρ = 1.2, and s = 50. We run 1000 simulations for
the mean estimation problem in Setting 1 with σ2 = 1 and
a sample size of n = 100. All computations are performed
on a MacBook Pro with an Apple M1 Max processor and
64 GB of memory. The runtimes for our self-tuning ap-
proach, Lepski’s method, and cross validation are 1.5, 16.7,
and 133.5 seconds, respectively. Our proposed method is
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Figure 2: The α-quantile of the estimation error (estimation error, y-axis) versus α (quantile level, x-axis) for our estimator,
the sample mean estimator, the MoM estimator, and the trimmed mean estimator.
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Figure 3: Empirical 99%-quantile of the estimation error (estimation error, y-axis) versus a distributution parameter
(parameter, x-axis) for our estimator, the sample mean estimator, the MoM estimator and the trimmed mean estimator. The
distribution parameter is σ for normal distribution and q for skewed generalized t distribution.

approximately 90× faster than cross-validation and about
10× faster than Lepski’s method.

Finally, we compare their statistical performance in both
settings while varying the distribution parameter in the same
manner as in Figure 3. The results are summarized in Fig-
ure 4 and Figure 5. In both figures, our method and cross-
validation exhibit similar performance, with both outper-
forming Lepski’s method. We suspect this is because Lep-
ski’s method depends on additional hyperparameters, and
our chosen values may not be optimally tuned. This ob-
servation also suggests that, despite its sound theoretical
underpinnings, Lepski’s method does not uniformly yield
strong empirical results.

5 CONCLUSIONS AND LIMITATIONS

In summary, the most attractive feature of our method is its
self-tuning property, incurring much lower computational
cost than cross-validation and Lepski’s method. This is par-
ticularly important for large-scale inference with a myriad of
parameters to be tuned. Statistically, our estimator is as (sta-
tistically) efficient as the sample mean estimator for normal
distributions and more efficient than popular robust alterna-
tives for asymmetric and/or heavy-tailed distributions.

Limitation One limitation of this study lies in its scope.
We focus primarily on robust mean estimation, as it repre-
sents the simplest setting and already involves substantial
technical complexity. Nonetheless, our approach has the po-
tential to be extended to more general problems, including
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Figure 4: The α-quantile of the estimation error (estimation error, y-axis) versus α (quantile level, x-axis) for our estimator,
cross validation and Lepski’s method.
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Figure 5: The empirical 99%-quantile of the estimation error (estimation error, y-axis) versus a distributution parameter
(parameter, x-axis) for our estimator, cross validation and Lepski’s method.

regression and matrix estimation.
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A BASIC FACTS

This section collects some basic facts concerning the loss function. First, as we state in Section 2, the pseudo-Huber loss
(2.1) exhibits behavior similar to the Huber loss [Huber, 1964], approximating x2/2 when x2 . τ2 and resembling a straight
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line with slope τ when x2 & τ2. To see this, some algebra yields{
ε2−2(1+ε)

2ε2 x2 ≤ `τ (x) ≤ x2

2 , if x2 ≤ τ2 · 4(1 + ε)/ε2,
τ |x|
1+ε ≤ `τ (x) ≤ τ |x|, if x2 > τ2 · 4(1 + ε)/ε2.

Second, we give the first-order derivatives and the Hessian matrix for the empirical loss function. Let τ = v
√
n/z throughout

the appendix. Recall that our empirical loss function is

Ln(µ, v) =
1

n

n∑
i=1

`p(yi − µ, v) =
1

n

n∑
i=1

{√
n

z

√
nv2

z2
+ (yi − µ)2 −

( n
z2
− a
)
v

}

=
1

n

n∑
i=1

{√
n

z

(√
τ2 + (yi − µ)2 − τ

)
+ a · τ

z
√
n

}
.

The first-order and second-order derivatives of Ln(µ, v) are

∇µLn(µ, v) = − 1

n

n∑
i=1

yi − µ
v
√

1 + z2(yi − µ)2/(nv2)
= −
√
n

z
· 1

n

n∑
i=1

yi − µ√
τ2 + (yi − µ)2

,

∇vLn(µ, v) =
1

n

n∑
i=1

n/z2√
1 + z2(yi − µ)2/(nv2)

−
( n
z2
− a
)

=
n

z2
· 1

n

n∑
i=1

(
τ√

τ2 + (yi − µ)2
− 1

)
+ a

where a = 1/2. The Hessian matrix is

H(µ, v) =


√
n
z

1
n

∑n
i=1

τ2(
τ2+(yi−µ)2

)3/2 n
z2

1
n

∑n
i=1

τ(yi−µ)
(τ2+(yi−µ)2)3/2

n
z2

1
n

∑n
i=1

τ(yi−µ)
(τ2+(yi−µ)2)3/2

n3/2

z3
1
n

∑n
i=1

(yi−µ)2

(τ2+(yi−µ)2)3/2

 .
We need the following fact for proofs in the later sections.

Fact. Suppose E(εi) = 0. Then, ∣∣∣∣∣E
(

τεi√
τ2 + ε2

i

)∣∣∣∣∣ ≤ σ2

2τ
.

Proof. Since E(εi) = 0, we have∣∣∣∣∣E
(

τεi√
τ2 + ε2

i

)∣∣∣∣∣ = τ ·

∣∣∣∣∣E
(

εi/τ√
1 + ε2

i /τ
2

)∣∣∣∣∣
= τ ·

∣∣∣∣∣∣E
εi/τ

(√
1 + ε2

i /τ
2 − 1

)
√

1 + ε2
i /τ

2

∣∣∣∣∣∣
≤ τ · E

∣∣∣∣∣ ε2
i /(2τ

2)√
1 + ε2

i /τ
2

∣∣∣∣∣
≤ σ2

2τ
.



Algorithm 1 An alternating gradient descent algorithm.
Input: µinit, vinit, v0, V0, η1, η2, (y1, . . . , yn)
for k = 0, 1, . . . until convergence do
µk+1 = µk − η1∇µLn(µk, vk)
ṽk+1 = vk − η2∇τLn(µk+1, vk) and vk+1 = min{max{ṽk+1, v0}, V0}

end for
Output: µ̂ = µk+1, v̂ = vk+1

B AN ALTERNATING GRADIENT DESCENT ALGORITHM

This section presents an alternating gradient descent algorithm to optimize (3.1). The algorithm generates the solution
sequence {(µk, vk) : k ≥ 0} with the initialization (µ0, v0) = (µinit, vinit). At the working solution (µk, vk) for any k ≥ 0,
the (k + 1)-th iteration involves the following two steps:

1. µk+1 = µk − η1∇µLn(µk, vk),

2. ṽk+1 = vk − η2∇τLn(µk+1, vk) and vk+1 = min{max{ṽk+1, v0}, V0},

where η1 and η2 are the learning rates and

∇µLn(µ, v) = − 1

n

n∑
i=1

yi − µ
v
√

1 + z2(yi − µ)2/(nv2)
,

∇vLn(µ, v) =
1

n

n∑
i=1

n/z2√
1 + z2(yi − µ)2/(nv2)

−
( n
z2
− a
)
.

The above two steps are repeated until convergence. The algorithm routine is summarized in Algorithm 1. The learning rates
η1 and η2 can be chosen adaptively in practice. In our experiments, we utilize alternating gradient descent with the Barzilai
and Borwein method and backtracking line search.

C COMPARING WITH LEPSKI’S METHOD

We compare our method with Lepski’s method. Specifically, we employ Lepski’s method to tune the robustification parameter
v and, consequently τ = v

√
n/z, in the empirical pseudo-Huber loss:

Lhn(µ, v) :=
1

n

n∑
i=1

(
τ
√
τ2 + (yi − µ)2 − τ2

)
.

Lepski’s method proceeds as follows. Let vmax be an upper bound for σ, and τmax = vmax
√
n/z with z =

√
log(1/δ). Let

n be sufficiently large. Then with probability at least 1− δ, we have

|µ̃(vmax)− µ∗| ≤ 6vmax

√
log(4/δ)

n
=: ε(vmax, δ),

where µ̃(vmax) = argminµ Ln(µ, vmax). Let us by convention set ε(vmax, 0) = +∞. Clearly, ε(vmax, δ) is homogeneous
in the sense that

ε(vmax, δ) = B(δ)vmax, where B(δ) = 6

√
log(4/δ)

n
.

For some parameters V ∈ R, ρ > 1, and s ∈ N, we choose the following probability measure V for vmax

V(vmax) =

{
1/(2s+ 1), if vmax = V ρk, k ∈ Z, |k| ≤ s,
0, otherwise.



For any vmax such that ε(vmax, δV(vmax)) <∞, consider the confidence interval

I(vmax) = µ̃(vmax) + ε(vmax, δ V(vmax))× [−1, 1],

where

ε(vmax, δ V(vmax)) = 6vmax

√
log(4/δ) + log(2s+ 1)

n

if vmax = V ρk for any k ∈ Z and |k| ≤ s. We set I(vmax) = R when ε(vmax, δV(vmax)) = +∞.

Let us consider the non-decreasing family of closed intervals

J(v1) =
⋂
{I(vmax) : vmax ≥ v1} , v1 ∈ R+.

In this definition, we can restrict the intersection to the support of V , since otherwise I(vmax) = R. Lepski’s method picks
the center point of the intersection ⋂

{J(v1) : v1 ∈ R+, J(v1) 6= ∅}

to be the final estimator µ̂Lepski. Then the following result is due to Catoni [2012].

Proposition C.1. Suppose | log(σ/V )| ≤ 2s log(ρ). Then with probability at least 1− δ

|µ̂Lepski − µ∗| ≤ 12ρσ

√
log(4/δ) + log(2s+ 1)

n
.

If we take the grid fine enough such that s = n, then the upper bound above reduces to

12ρσ

√
log(4/δ) + log(2n+ 1)

n
,

which agrees with deviation bound for our proposed estimator, up to polylogarithmic factors. Therefore, our proposed
estimator is comparable to Lepski’s method in terms of the deviation upper bound. Computationally, our estimator is
self-tuned and thus computationally more efficient than Lepski’s method; detailed numerical results can be found in Section
4.

D PROOFS FOR SECTION 2

D.1 PROOFS FOR THEOREM 2.3

Proof of Theorem 2.3. We prove first the finite-sample result and then the asymptotic result. Recall that τ∗ = v∗
√
n/z.

Proving the finite-sample result. On one side, if v∗ = 0 and by the definition of v∗, v∗ satisfies

1− az2

n
= E

√
nv∗√

nv2
∗ + z2ε2

= 0,

which is a contradiction. Thus v∗ > 0. Using the convexity of 1/
√

1 + x for x > −1 and Jensen’s inequality acquires

1− az2

n
= E

√
nv∗√

nv2
∗ + z2ε2

= E
1√

1 + z2ε2/(nv2
∗)
≥ 1√

1 + z2σ2/(nv2
∗)
≥ 1− z2σ2

2nv2
∗
,

where the last inequality uses the inequality (1 + x)−1/2 ≥ 1− x/2, i.e., Lemma H.4 (i) with r = −1/2. This implies

v2
∗ ≤

σ2

2a
.



On the other side, using the concavity of
√
x, we obtain, for any γ ∈ [0, 1), that

1− az2

n
= E

√
nv∗√

nv2
∗ + z2ε2

= E
1√

1 + σ2z2ε2/(nv2
∗)

≤

√
E
(

1

1 + z2ε2/(nv2
∗)

)

≤

√
E
{(

1− (1− γ)
z2ε2

nv2
∗

)
1

(
z2ε2

nv2
∗
≤ γ

1− γ

)
+

1

1 + z2ε2/(nv2
∗)

1

(
z2ε2

nv2
∗
>

γ

1− γ

)}

≤

√
1− (1− γ)E

{
z2ε2

nv2
∗

1

(
z2ε2

nv2
∗
≤ γ

1− γ

)}

≤

√
1− (1− γ)

E {ε21 (ε2 ≤ γτ2
∗ /(1− γ))}

nv2
∗/z

2
, (D.1)

where the second inequality uses Lemma D.1, that is,

(1 + x)−1 ≤ 1− (1− γ)x, for any x ∈
[
0,

γ

1− γ

]
.

Taking square on both sides of inequality (D.1) and using the fact that n ≥ az2 together with Lemma H.4 (i) with r = 2,
aka (1 + x)2 ≥ 1 + 2x for x ≥ −1, we obtain

1− 2az2

n
≤
(

1− az2

n

)2

≤ 1− (1− γ)
E{ε21(ε2 ≤ γτ2

∗ /(1− γ))}
nv2
∗/z

2
,

or equivalently

v2
∗ ≥

σ2
ϕτ2
∗

2a
,

where ϕ = γ/(1− γ). Combining the upper bound and the lower bound for v2
∗ completes the proof for the finite-sample

result.

Proving the asymptotic result. The above derivation implies that v∗ < ∞ for any a > 0. By the definition of v∗, we
obtain

az2

n
= 1− E

1√
1 + z2ε2/(nv2

∗)
. (D.2)

We must have nv2
∗/z

2 →∞. Otherwise assume

lim sup
n→∞

nv2
∗/z

2 ≤M <∞.

Taking n→∞, the left hand side of the above equality goes to 0 while the right hand is lower bounded as

1− E
1√

1 + ε2/M
≥ 1−

√
E
(

1

1 + ε2/M

)

≥ 1−
√

1− E {ε21(ε2 ≤M)}
2M

≥ 1−
√

1

2
> 0,

where the first two inequalities follow from the same arguments in deriving (D.1) but with γ = 1/2, and the third inequality
uses the fact that

E{ε21(ε2 ≤M)} ≤M.



This is a contradiction. Thus nv2
∗/z

2 →∞. Multiplying both sides of the above equality by n, taking n→∞, and using
the dominated convergence theorem, we obtain

az2 = lim
n→∞

E

(
n ·
√

1 + z2ε2/(nv2
∗)− 1√

1 + z2ε2/(nv2
∗)

)

= lim
n→∞

E

(
n · 1√

1 + z2ε2/(nv2
∗)
·
√

1 + z2ε2/(nv2
∗)− 1

z2ε2/(2nv2
∗)

· z
2ε2

2nv2
∗

)

=
Ez2ε2

2 limn→∞ v2
∗
,

and thus limn→∞ v2
∗ = σ2/(2a). This proves the asymptotic result.

D.2 PROOF OF PROPOSITION 2.4

Proof of Proposition 2.4. The convexity proof consists of two steps: (1) proving that Ln(µ, v) is jointly convex in µ and v;
(2) proving that Ln(µ, v) is strictly convex, provided that there are at least two distinct data points.

To show that Ln(µ, v) = n−1
∑n
i=1 `

p(yi − µ, v) in (2.5) is jointly convex in µ and v, it suffices to show that each
`p(yi − µ, v) is jointly convex in µ and v. Recall that τ = v

√
n/z. The Hessian matrix of `p(yi − µ, v) is

Hi(µ, v) =

√
n

z
· 1(
τ2 + (yi − µ)2

)3/2 [ τ2 (
√
n/z) τ(yi − µ)

(
√
n/z) τ(yi − µ) (

√
n/z)2 (yi − µ)2

]
� 0,

and thus positive semi-definite. Therefore, Ln(µ, v) is jointly convex in µ and v.

We proceed to show (2). Because the Hessian matrix H(µ, v) of Ln(µ, v) satisfies H(µ, v) = n−1
∑n
i=1Hi(µ, v) and

each Hi(µ, v) is positive semi-definite, we only need to show that H(µ, v) is of full rank. Without generality, assume that
y1 6= y2. Then

H1(µ, v) +H2(µ, v) =

√
n

z
·

2∑
i=1

1(
τ2 + (yi − µ)2

)3/2 [ τ2 (
√
n/z) τ(yi − µ)

(
√
n/z) τ(yi − µ) (

√
n/z)2 (yi − µ)2

]
.

Some algebra yields

det (H1(µ, v) +H2(µ, v)) =
n2τ2

z4
· (y1 − y2)2

(τ2 + (y1 − µ)2)3/2(τ2 + (y2 − µ)2)3/2
6= 0

for any τ > 0 (v > 0), and µ ∈ R, provided that y1 6= y2. Therefore, H1(µ, v) + H2(µ, v) is of full rank and thus is
H(µ, τ), provided v > 0, µ ∈ R, and y1 6= y2.

D.3 SUPPORTING LEMMAS

Lemma D.1. Let 0 ≤ γ < 1. For any 0 ≤ x ≤ γ/(1− γ), we have

(1 + x)−1 ≤ 1− (1− γ)x.

Proof of Lemma D.1. To prove the lemma, it suffices to show, for any γ ∈ [0, 1), that

1 ≤ (1 + x)− (1− γ)x(1 + x), ∀ 0 ≤ x ≤ γ

1− γ
,

which is equivalently to

x

(
x− γ

1− γ

)
≤ 0, ∀ 0 ≤ x ≤ γ

1− γ
.

The above inequality always holds, and this completes the proof.



E RESULTS AND PROOFS FOR THE FIXED v CASE

This section presents the theoretical results concerning the minimizer of the empirical penalized pseudo-Huber loss in (2.5)
with v fixed, aka Theorem E.2 and Corollary E.4, and their proofs. Corollary E.4 is a rigorous version of the informal result,
aka Theorem 2.1, in Section 2.

E.1 RESULTS FOR THE FIXED v CASE

With an abuse of notation, we use µ̂(v) to denote the minimizer of the empirical penalized pseudo-Huber loss in (2.5) with
v fixed. Recall that we have used µ̂(τ) to denote the minimizer of the empirical pseudo-Huber loss in (2.2), and µ̂(v) is
equivalent to µ̂(τ) with τ = v

√
n/z. We begin by examining the theoretical properties of µ̂(v). We require the following

locally strong convexity assumption, which will be verified later in this subsection.

Assumption E.1 (Locally strong convexity in µ). The empirical Hessian matrix is locally strongly convex with respect to µ
such that, for any µ ∈ Br(µ∗) := {µ : |µ− µ∗| ≤ r},

inf
µ∈Br(µ∗)

〈∇µLn(µ, v)−∇µLn(µ∗, v), µ− µ∗〉
|µ− µ∗|2

≥ κ` > 0

where r > 0 is a local radius parameter.

Theorem E.2. For any 0 < δ < 1, let v > 0 be fixed and z2 = log(1/δ). Assume Assumption E.1 holds with any
r ≥ r0(κ`) := κ−1

`

(
σ/(
√

2v) + 1
)2 √

log(2/δ)/n. Then, with probability at least 1− δ, we have

|µ̂(v)− µ∗| < 1

κ`

(
σ√
2v

+ 1

)2
√

log(2/δ)

n
=
C

κ`

√
log(2/δ)

n
,

where C = (σ/(
√

2v) + 1)2 only depends on v and σ.

The above theorem states that under the assumption of locally strong convexity, µ̂(v) achieves a sub-Gaussian deviation
bound when the data have only bounded variances. In particular, if we choose v = σ in the theorem, we obtain

|µ̂(σ)− µ∗| ≤ 1

κ`

(σ
σ

+ 1
)2
√

log(2/δ)

n
≤ 4

κ`

√
log(2/δ)

n
.

Assumption E.1 essentially requires the loss function to exhibit curvature in a small neighborhood Br(µ∗), while the
penalized loss (2.4) transitions from a quadratic function to a linear function roughly at |x| = τ ∝

√
n. Quadratic functions

always have curvature, so intuitively, Assumption E.1 holds as long as

√
n & r ≥ r0(κ`) ∝

√
1

n
.

The condition above is automatically guaranteed when n is sufficiently large. Choosing r to be the smallest r0(κ`) results
in Assumption E.1 being at its weakest. In other words, in this scenario, the empirical loss function only needs to exhibit
curvature in a diminishing neighborhood of µ∗, approximately with a radius of

√
1/n. The following lemma rigorously

proves this claim.

Lemma E.3. Suppose v ≥ v0. For any 0 < δ < 1, let n ≥ C max
{
z2(σ2 + r2)/v2

0 , log(1/δ)
}

for some absolute constant
C. Then, with probability at least 1− δ, Assumption E.1 with κ` = 1/(2v) and any local radius r ≥ r0(κ`) = r0(1/(2v))
holds uniformly over v ≥ v0 > 0.

The first sample complexity condition, n ≥ Cz2(σ2+r2)/v2
0 , arises from the requirement that τ2

v0 := v2
0n/z

2 ≥ C(σ2+r2).
Because the robustification parameter τ2

v0 = v2
0n/z

2 determines the size of the quadratic region, this requirement is minimal
in the sense that Assumption E.1 can hold only when τ2

v is larger than r2 plus the noise variance σ2. As argued before,
Assumption E.1 holds with any r such that

√
n & r &

√
1/n. For example, we can take r ∝ σ to be a constant, and this will

not worsen the sample complexity condition. Finally, by combining Lemma E.3 and Theorem E.2, we obtain the following
result.



Corollary E.4. Suppose v ≥ v0. For any 0 < δ < 1, let n ≥ C max
{

(r2 + σ2)/v2
0 , 1
}

log(1/δ) for some universal
constant C, where r ≥ 2r0(1/(2v)). Take z2 = log(1/δ). Then, for any v ≥ v0, with probability at least 1− δ, we have

|µ̂(v)− µ∗| ≤ 2v

(
σ√
2v

+ 1

)2
√

log(4/δ)

n
. v

√
1 + log(1/δ)

n
.

This section collects proofs for Theorem E.2, Lemma E.3, and Corollary E.4. Recall that τ = v
√
n/z, and the gradients

with respect to µ and v are

∇µLn(µ, v) = − 1

n

n∑
i=1

yi − µ
v
√

1 + z2(yi − µ)2/(nv2)
= −
√
n

z
· 1

n

n∑
i=1

yi − µ√
τ2 + (yi − µ)2

,

∇vLn(µ, v) =
1

n

n∑
i=1

n/z2√
1 + z2(yi − µ)2/(nv2)

−
( n
z2
− a
)

=
n

z2
· 1

n

n∑
i=1

(
τ√

τ2 + (yi − µ)2
− 1

)
+ a.

E.2 PROOF OF THEOREM E.2

Proof of Theorem E.2. Because µ̂(v) is the stationary point of Ln(µ, v), we have

∂

∂µ
Ln(µ̂(v), v) = − 1

n

n∑
i=1

yi − µ̂(v)

v
√

1 + z2(yi − µ̂(v))2/(nv2)
= −
√
n

z
· 1

n

n∑
i=1

yi − µ̂(v)√
τ2 + (yi − µ̂(v))2

= 0.

Let ∆ = µ̂(v)− µ. We first assume that |∆| := |µ̂(v)− µ∗| ≤ r0 ≤ r. Using Assumption E.1 obtains

κ`|µ̂(v)− µ∗|2 ≤
〈
∂

∂µ
Ln(µ̂(v), v)− ∂

∂µ
Ln(µ∗, v), µ̂(v)− µ∗

〉
≤

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣ |µ̂(v)− µ∗| ,

or equivalently

κ`|µ̂(v)− µ∗| ≤

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣ .
Applying Lemma E.5 with the fact that

∣∣E (τεi/(τ2 + ε2
i )

1/2
)∣∣ ≤ σ2/(2τ), we obtain with probability at least 1− 2δ that

κ`|µ̂(v)− µ∗| ≤

∣∣∣∣∣
√
n

τ

1

n

n∑
i=1

τεi

z
√
τ2 + ε2

i

∣∣∣∣∣ ≤
√
n

zτ

(
σ

√
2 log(1/δ)

n
+
τ log(1/δ)

3n
+
σ2

2τ

)
,

or equivalently

κ`|µ̂(v)− µ∗| ≤

√
2 log(1/δ)

z2τ2/σ2
+

log(1/δ)

3z
√
n

+

√
nσ2

2zτ2
.

Since τ = v
√
n/z, we have

κ`|µ̂(v)− µ∗| ≤

(√
2σ

v
+

√
log(1/δ)

3z

)√
log(1/δ)

n
+

1

2
· σ

2

v2
· z√

n
.

Taking z =
√

log(1/δ) then yields

κ`|µ̂(v)− µ∗| ≤

(√
2σ

v
+

√
log(1/δ)

3
√

log(1/δ)

)√
log(1/δ)

n
+

1

2
· σ

2

v2
·
√

log(1/δ)

n

≤

(√
2σ

v
+

1

3
+

1

2
· σ

2

v2

)√
log(1/δ)

n

<

(
1 +

σ√
2v

)2
√

log(1/δ)

n



for any δ ∈ (0, 1/2). Moving κ` to the right hand side and using a change of variable 2δ → δ, we obtain

|µ̂(v)− µ∗| < 1

κ`
·
(

1 +
σ√
2v

)2
√

log(2/δ)

n

= r0 ≤ r.

This completes the proof, provided that |∆| ≤ r0.

Lasty, we show that |∆| ≤ r0 must hold. If not, we shall construct an intermediate solution between µ∗ and µ̂(v), denoted by
µη = µ∗ + η(µ̂(v)− µ∗), such that |µη − µ∗| = r0. Specifically, we can choose some η ∈ (0, 1) such that |µη − µ∗| = r0.
We then repeat the above calculation and obtain

|µ̂(v)− µ∗| ≤ 1

κ`
·

(√
2σ

v
+

1

3
+

1

2
· σ

2

v2

)√
log(2/δ)

n

< r0 =
1

κ`
·
(

1 +
σ√
2v

)2
√

log(2/δ)

n

which is a contradiction. Therefore, it must hold that |∆| ≤ r0.

E.3 PROOF OF LEMMA E.3

Proof of Lemma E.3. We first prove that, with probability at least 1 − δ, Assumption E.1 with κ` = 1/(2v) and radius
r holds for any fixed v ≥ v0. Recall that τ = v

√
n/z. For notational simplicity, let ∆ = µ − µ∗ and τv0 = v0

√
n/z. It

follows that

〈∇µLn(µ, v)−∇µLn(µ∗, v), ∆〉 =

〈
1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

− 1√
n

n∑
i=1

yi − µ
z
√
τ2 + (yi − µ)2

, ∆

〉

=
1√
n

n∑
i=1

τ2

z(τ2 + (yi − µ̃)2)3/2
∆2,

where µ̃ is some convex combination of µ∗ and µ, that is, µ̃ = (1− λ)µ∗ + λµ for some λ ∈ [0, 1]. Obviously, we have
|µ̃ − µ∗| = λ|∆| ≤ |∆| ≤ r. Since (yi − µ̃)2 ≤ 2ε2

i + 2λ2∆2 ≤ 2ε2
i + 2∆2 ≤ 2ε2

i + 2r2 the above displayed equality
implies that, with probability at least 1− δ,

inf
µ∈Br(µ∗)

〈∇µLn(µ, v)−∇µLn(µ∗, v), µ− µ∗〉
|µ− µ∗|2

≥
√
n

z
· 1

n

n∑
i=1

τ2

(τ2 + 2r2 + 2ε2
i )

3/2

=

√
n

z
· τ2

(τ2 + 2r2)3/2
· 1

n

n∑
i=1

(τ2 + 2r2)3/2

(τ2 + 2r2 + 2ε2
i )

3/2

≥
√
n

z
· τ2

(τ2 + 2r2)3/2
·

(
E

(τ2
v0 + 2r2)3/2

(τ2
v0 + 2r2 + 2ε2

i )
3/2
−
√

log(1/δ)

2n

)

=

√
n

z
· τ2

(τ2 + 2r2)3/2
·

(
I−
√

log(1/δ)

2n

)
, (E.1)

where the last inequality uses Lemma E.6.



It remains to lower bound I. Using the convexity of 1/(1 + x)3/2 and Jensen’s inequality, we obtain

1

n

n∑
i=1

E
(τ2
v0 + 2r2)3/2

(τ2
v0 + 2r2 + 2ε2

i )
3/2

= E
(τ2
v0 + 2r2)3/2

(τ2
v0 + 2r2 + 2ε2

i )
3/2

= E
1

(1 + 2ε2
i /(τ

2
v0 + 2r2))3/2

≥ 1

(1 + 2σ2/(τ2
v0 + 2r2))3/2

=
(τ2
v0 + 2r2)3/2

(τ2
v0 + 2r2 + 2σ2)3/2

.

Plugging the above lower bound into (E.1) and using the facts

τ3

(τ2 + 2r2)3/2
≥

τ3
v0

(τ2
v0 + 2r2)3/2

for τv0 ≥ τ and
τ3

(τ2 + 2r2)3/2
≤ 1,

we obtain with probability at least 1− δ

inf
µ∈Br(µ∗)

〈∇µLn(µ)−∇µLn(µ∗), µ− µ∗〉
|µ− µ∗|2

≥
√
n

z
· τ2

(τ2 + 2r2)3/2
·

(
(τ2
v0 + 2r2)3/2

(τ2
v0 + 2r2 + 2σ2)3/2

−
√

log(1/δ)

2n

)

≥
√
n

zτ
· τ3

(τ2 + 2r2)3/2
·

(
(τ2
v0 + 2r2)3/2

(τ2
v0 + 2r2 + 2σ2)3/2

−
√

log(1/δ)

2n

)

=

√
n

zτ

(
τ3

(τ2 + 2r2)3/2
·

(τ2
v0 + 2r2)3/2

(τ2
v0 + 2r2 + 2σ2)3/2

− τ3

(τ2 + 2r2)3/2
·
√

log(1/δ)

2n

)

≥
√
n

zτ

(
1

(1 + (2r2 + 2σ2)/τ2
v0)3/2

−
√

log(1/δ)

2n

)

=
1

v

(
1

(1 + (2r2 + 2σ2)/τ2
v0)3/2

−
√

log(1/δ)

2n

)

≥ 1

2v

provided τ2
v0 ≥ 4r2 + 4σ2 and n ≥ C log(1/δ) for some large enough absolute constant C.

Lastly, the above result holds uniformly over v ≥ v0 with probability at least 1 − δ since the probability event does not
depend on v.

E.4 PROOF OF COROLLARY E.4

Proof of Corollary E.4. Recall z =
√

log(1/δ) and

r ≥ 2v

(
σ√
2v

+ 1

)2
√

log(2/δ)

n
.

If n ≥ C max
{

(r2 + σ2)/v2
0 , 1
}

log(1/δ), which is guaranteed by the conditions of the corollary, then Lemma E.3 implies
that, with probability at least 1− δ, Assumption E.1 holds with κ` = 1/(2v) and radius r uniformly over v ≥ v0. Denote
this probability event by E . If Assumption E.1 holds, then by Theorem E.2, we have

P

(
|µ̂(v)− µ∗| ≤ 2v

(
σ√
2v

+ 1

)2
√

log(2/δ)

n

∣∣∣∣ E
)
≥ 1− δ.



Thus

P

(
|µ̂(v)− µ∗| > 2v

(
σ√
2v

+ 1

)2
√

log(2/δ)

n

)

= P

(
|µ̂(v)− µ∗| > 2v

(
σ√
2v

+ 1

)2
√

log(2/δ)

n
, E

)

+ P

(
|µ̂(v)− µ∗| > 2v

(
σ√
2v

+ 1

)2
√

log(2/δ)

n
, Ec

)

≤ P

(
|µ̂(v)− µ∗| > 2v

(
σ√
2v

+ 1

)2
√

log(2/δ)

n

∣∣∣∣ E
)

+ P (Ec)

≤ 2δ.

Then with probability at least 1− 2δ, we have

|µ̂(v)− µ∗| ≤ 2v

(
σ√
2v

+ 1

)2
√

log(2/δ)

n
.

Using a change of variable 2δ → δ finishes the proof.

E.5 SUPPORTING LEMMAS

This subsection collects two supporting lemmas that are used earlier in this section.

Lemma E.5. Let εi be i.i.d. random variables such that Eεi = 0 and Eε2
i = 1. For any 0 < δ < 1, with probability at least

1− 2δ, we have ∣∣∣∣∣ 1n
n∑
i=1

τεi√
τ2 + ε2

i

− E
τεi√
τ2 + ε2

i

∣∣∣∣∣ ≤ σ
√

2 log(1/δ)

n
+
τ log(1/δ)

3n
.

Proof of Lemma E.5. The random variables Zi := τψτ (εi) = τεi/(τ
2 + ε2

i )
1/2 with µz = EZi and σ2

z = var(Zi) are
bounded i.i.d. random variables such that

|Zi| =
∣∣∣τεi/(τ2 + ε2

i )
1/2
∣∣∣ ≤ |εi| ∧ τ ≤ τ,

|µz| = |EZi| =
∣∣∣E(τεi/(τ2 + ε2

i )
1/2
)∣∣∣ ≤ σ2

2τ
,

EZ2
i = E

(
τ2ε2

i

τ2 + ε2
i

)
≤ σ2,

σ2
z := var(Zi) = E

(
τεi/(τ

2 + ε2
i )

1/2 − µz
)2

= E
(

τ2ε2
i

τ2 + ε2
i

)
− µ2

z ≤ σ2.

For third and higher order absolute moments, we have

E|Zi|k = E

∣∣∣∣∣ τεi√
τ2 + ε2

i

∣∣∣∣∣
k

≤ σ2τk−2 ≤ k!

2
σ2(τ/3)k−2, for all integers k ≥ 3.

Using Lemma H.2 with v = nσ2 and c = τ/3, we have for any t > 0

P

(∣∣∣∣∣
n∑
i=1

τεi√
τ2 + ε2

i

−
n∑
i=1

E
τεi√
τ2 + ε2

i

∣∣∣∣∣ ≥ √2nσ2t+
τt

3

)
≤ 2 exp (−t) .



Taking t = log(1/δ) acquires that for any 0 < δ < 1

P

(∣∣∣∣∣ 1n
n∑
i=1

τεi√
τ2 + ε2

i

− 1

n

n∑
i=1

E
τεi√
τ2 + ε2

i

∣∣∣∣∣ ≤ σ
√

2 log(1/δ)

n
+
τ log(1/δ)

3n

)
≥ 1− 2δ.

This completes the proof.

Lemma E.6. For any 0 < δ < 1, with probability at least 1− δ,

1

n

n∑
i=1

τ3

(τ2 + ε2
i )

3/2
− E

τ3

(τ2 + ε2
i )

3/2
≥ −

√
log(1/δ)

2n
.

Moreover, with probability at least 1− δ, it holds uniformly over τ ≥ τv0 ≥ 0 that

1

n

n∑
i=1

τ3

(τ2 + ε2
i )

3/2
≥ E

τ3
v0

(τ2
v0 + ε2

i )
3/2
−
√

log(1/δ)

2n
.

Proof of Lemma E.6. The random variables Zi = Zi(τ) := τ3/(τ2 +ε2
i )

3/2 with µz = EZi and σ2
z = var(Zi) are bounded

i.i.d. random variables such that

0 ≤ Zi = τ3/(τ2 + ε2
i )

3/2 ≤ 1.

Therefore, using Lemma H.1 with v = n acquires that for any t > 0

P

(
n∑
i=1

τ3

(τ2 + ε2
i )

3/2
−

n∑
i=1

E
(

τ3

(τ2 + ε2
i )

3/2

)
≤ −

√
nt

2

)
≤ exp(−t).

Taking t = log(1/δ) acquires that for any 0 < δ < 1

P

(
1

n

n∑
i=1

τ3

(τ2 + ε2
i )

3/2
− 1

n

n∑
i=1

E
(

τ3

(τ2 + ε2
i )

3/2

)
> −

√
log(1/δ)

2n

)
> 1− δ.

The second result follows from the fact that Zi(τ) is an increasing function of τ . Specifically, we have with probability at
least 1− δ

1

n

n∑
i=1

τ3

(τ2 + ε2
i )

3/2
≥ 1

n

n∑
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τ3
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(τ2
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−
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.

This finishes the proof.

F PROOFS FOR THE SELF-TUNED CASE

This section collects the proofs for Theorems 3.1 and 3.2.



F.1 PROOF OF THEOREM 3.1

Proof of Theorem 3.1. Recall that τ = v
√
n/z. For simplicity, let τ̂ = v̂

√
n/z. Define the profile loss Lpro

n (v) as

Lpro
n (v) := Ln(µ̂(v), v) = min

µ
Ln(µ, v).

Then it is convex and its first-order gradient is

∇Lpro
n (v) = ∇Ln(µ̂(v), v) =

∂

∂v
µ̂(v) · ∂

∂µ
Ln(µ, v)

∣∣∣
µ=µ̂(v)

+
∂

∂v
Ln(µ, v)

∣∣∣
µ=µ̂(v)

=
∂

∂v
Ln(µ̂(v), v), (F.1)

where we use the fact that ∂/∂µLn(µ, v)|µ=µ̂(v) = 0, implied by the stationarity of µ̂(v).

Assuming that the constraint is inactive. We first assume that the constraint is not active for any stationary point v̂,
that is, any stationary point v̂ is an interior point of [v0, V0], aka v̂ ∈ (v0, V0). By the joint convexity of Ln(µ, v) and the
convexity of Lpro

n (v), (µ̂(v̂), v̂) and v̂ are stationary points of Ln(µ, v) and Ln(µ̂(v), v), respectively. Thus we have

∂

∂µ
Ln(µ, v)

∣∣∣
(µ,v)=(µ̂(v̂),v̂)

= −
√
n

z
· 1

n

n∑
i=1

yi − µ̂(v̂)√
τ̂2 + (yi − µ̂(v̂))2

= 0,

∂

∂v
Ln(µ, v)

∣∣∣
(µ,v)=(µ̂(v̂),v̂)

=
n

z2
· 1

n

n∑
i=1

τ̂√
τ̂2 + (yi − µ̂(v̂))2

−
( n
z2
− a
)

= 0,

∇Lpro
n (v)

∣∣∣
v=v̂

= ∇Ln(µ̂(v̂), v̂)
∣∣∣
v=v̂

=
∂

∂v
Ln(µ̂(v), v)

∣∣∣
v=v̂

=
∂

∂v
Ln(µ, v)

∣∣∣
(µ,v)=(µ̂(v̂),v̂)

= 0,

where the first two equalities are on partial derivatives of Ln(µ, v) and the last one is on the derivative of the profile loss
Lpro
n (v) ≡ Ln(µ̂(v), v).

Recall that τ =
√
nv/z. Let f(τ) = z2∇Lpro

n (v)/n, that is,

f(τ) =
1

n

n∑
i=1

τ√
τ2 + (yi − µ̂(v))2

−
(

1− az2

n

)
.

In other words, τ̂ =
√
nv̂/z satisfies f(τ̂) = 0. Assuming that the conststraint is inactive, we split the proof into two steps.

Step 1: Proving v̂ ≤ C0σ for some universal constant C0. We will employ the method of proof by contradiction.
Assume that there exists some v such that

v > (1 + ε)
√
r2 + σ2 and ∇Lpro

v (v) = 0;

or equivalently, there exists some τ such that

τ > (1 + ε)
√
r2 + σ2

√
n/z =: τ̄ and f(τ) = 0, (F.2)

where ε and r are to be determined later. Let τv0 = v0
√
n/z. Then, provided n is large enough, Lemma E.3 implies that

Assumption E.1 with κ` = 1/(2v) and local radius r ≥ r0(κ`) holds uniformly over v ≥ v0 conditional on the following
event

E1 :=

{
1

n

n∑
i=1

(τ2
v0 + 2r2)3/2

(τ2
v0 + 2r2 + 2ε2

i )
3/2
− 1

n

n∑
i=1

E
(τ2
v0 + 2r2)3/2

(τ2
v0 + 2r2 + 2ε2

i )
3/2
≥ −

√
log(1/δ)

2n

}
.

Conditional on the intersection of event E1 and the following event

E2 :=

{
sup

v∈[v0,V0]

∣∣∣∣∣ 1n
n∑
i=1

εi√
τ2 + ε2

i

∣∣∣∣∣ ≤ C · V0

v0
· log(n/δ)

n

}
,



where z .
√

log(n/δ) and C is some constant, and following the proof of Theorem E.2, for any fixed v and thus fixed
τ = v

√
n/z, we have

κ`|µ̂(v)− µ∗| ≤

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣ .
Thus, for any v such that v0 ∨ v̄0 := v0 ∨ (1 + ε)

√
r2 + σ2 < v < V0, we have on E2 that

sup
v0∨v̄0<v<V0

κ`(v) |µ̂(v)− µ∗| ≤ sup
v∈[v0,V0]

κ`(v) |µ̂(v)− µ∗|

≤ sup
v∈[v0,V0]

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣
≤ C · V0

v0
· log(n/δ)

z
√
n

,

which, by Lemma E.3, yields

sup
v∈[v0,V0]

|µ̂(v)− µ∗| ≤ 2C · V
2
0

v0
· log(n/δ)

z
√
n

=: r. (F.3)

The above r can be further refined by using the finer lower bound v̄0 of v instead of v0, but we use v0 for simplicity. Let
∆ = µ∗ − µ̂(v), and we have |∆| ≤ r. Let the event E3 be

E3 :=

{
1

n

n∑
i=1

√
τ̄2 + 2(r2 + ε2

i )− τ̄√
τ̄2 + 2(r2 + ε2

i )
− E

(√
τ̄2 + 2(r2 + ε2

i )− τ̄√
τ̄2 + 2(r2 + ε2

i )

)
≤
√

log(1/δ)2(r2 + σ2)

nτ̄2
+

log(1/δ)

3n

}
.

Thus on the event E1 ∩ E2 ∩ E3 and using the fact that 1− 1/
√

1 + x is an increasing function, we have

f(τ) =
az2

n
− 1

n

n∑
i=1

√
τ2 + (∆ + εi)2 − τ√
τ2 + (∆ + εi)2

≥ az2

n
− 1

n

n∑
i=1

√
τ2 + 2(r2 + ε2

i )− τ√
τ2 + 2(r2 + ε2

i )

>
az2

n
− 1

n

n∑
i=1

√
τ̄2 + 2(r2 + ε2

i )− τ̄√
τ̄2 + 2(r2 + ε2

i )
(τ < τ̄ )

≥ az2

n
−

{
E

(√
τ̄2 + 2(r2 + ε2

i )− τ̄√
τ̄2 + 2(r2 + ε2

i )

)
+

1

n

n∑
i=1

√
τ̄2 + 2(r2 + ε2

i )− τ̄√
τ̄2 + 2(r2 + ε2

i )
− E

(√
τ̄2 + 2(r2 + ε2

i )− τ̄√
τ̄2 + 2(r2 + ε2

i )

)}

≥ az2

n
−

(
r2 + σ2

τ̄2
+

√
log(1/δ) · 2(r2 + σ2)

nτ̄2
+

log(1/δ)

3n

)

=
z2

n

(
a− log(1/δ)

3z2

)
−

(
r2 + σ2

r2 + σ2

z2

(1 + ε)2n
+

√
r2 + σ2

r2 + σ2

2z2 log(1/δ)

(1 + ε)2n2

)
(Definition of τ̄ )

≥ (a− 1/3)z2

n
−

(
r2 + σ2

r2 + σ2

z2

(1 + ε)2n
+

√
r2 + σ2

r2 + σ2

2z4

(1 + ε)2n2

)
(z2 ≥ log(1/δ))

≥ (a− 1/3)z2

n
− z2

n
·

(
1

(1 + ε)2
+

√
2

(1 + ε)2

)

=
z2

n

(
a− 1

3
− 1

(1 + ε)2
−

√
2

(1 + ε)2

)
≥ 0,

provided that

1

1 + ε
≤
√

1 + 2(a− 1/3)− 1√
2

,



or equivalently

ε ≥
√

4a+ 2/3 + 2/3 +
√

2− 2a

2(a− 1/3)
=: ε(a).

In other words, conditional on the event E1 ∩ E2 ∩ E3 and taking ε ≥ ε(a), f(τ) > 0 for τ > τ̄ := (1 + ε)
√
r2 + σ2

√
n/z.

This contradicts with (F.2), and thus

τ̂ ≤ (1 + ε)
√
r2 + σ2

√
n/z.

If a = 1/2 and conditional on the same event, the above holds with

ε = 9 ≥ ε (1/2) .

If n is large enough such that 12σ ≥ 10
√
r2 + σ2, then conditional on the event E1 ∩ E2 ∩ E3, we have

v0 ≤ v̂ ≤ C0σ,

where C0 = 12.

Step 2: Proving v̂ ≥ c0
σ2
τ2v0

/2−1

στ2v0
/2

for some universal constant c0. We will again employ the method of proof by

contradiction. Let

g(τ) :=

(
1

n

n∑
i=1

τ2√
τ2 + (∆ + εi)2

)2

−
(

1− az2

n

)2

.

Assume there exists some v such that

v < c and
∂

∂v
Ln(µ̂(v), v) = 0;

or equivalently, assume there exists some τ such that

τ < c
√
n/z =: τ and g(τ) = 0. (F.4)

It is impossible that c ≤ v0 because any stationary point v is in (v0, V0). Thus c > v0. Let ∆ = µ̂(v) − µ∗. Then on the
event E1 ∩ E2, using the facts that

√
x is a concave function and 1/

√
1 + y/x is an increasing function of x, we have

1

n

n∑
i=1

τ2√
τ2 + (∆ + εi)2

=
1

n

n∑
i=1

1√
1 + (∆ + εi)2/τ2

≤ 1

n

n∑
i=1

1√
1 + (∆ + εi)2/τ2

≤

√√√√ 1

n

n∑
i=1

1

1 + (∆ + εi)2/τ2

≤

√√√√ 1

n

n∑
i=1

1

1 + τ−2(∆ + εi)2 · 1 ((∆ + εi)2 ≤ τ2)

≤

√√√√1− 1

n
· 1

2τ2

n∑
i=1

(∆ + εi)2 · 1 ((∆ + εi)2 ≤ τ2).

By the proof from step 1, we have on the event E1 ∩ E2 that

sup
v∈[v0,V0]

|µ̂(v)− µ∗| ≤ r,



where r is defined in (F.3). Then

g(τ) ≤ 1− 1

n
· 1

2τ2

n∑
i=1

(∆ + εi)
2 · 1

(
(∆ + εi)

2 ≤ τ2
)
−
(

1− az2

n

)2

<
2az2

n
− 1

n
· 1

2τ2

n∑
i=1

(∆ + εi)
2 · 1

(
(∆ + εi)

2 ≤ τ2
)

(as long as az2/n > 0)

≤ 2az2

n
− 1

n
· 1

2τ2

n∑
i=1

(
ε2
i + 2∆εi

)
· 1
(
ε2
i ≤

τ2

2
− r2

)

≤ 2az2

n
− 1

2τ2

(
1

n

n∑
i=1

ε2
i 1

(
ε2
i ≤

τ2

2
− r2

)
− 2

n

n∑
i=1

r|εi|1
(
ε2
i ≤

τ2

2
− r2
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=
2az2

n
− 1

2τ2
(I− 2r · II) .

Define the probability event E4 as

E4 := E41 ∩ E42,

where

E41 =:

{
1

n

n∑
i=1

ε2
i 1

(
ε2
i ≤

τ2

2
− r2

)
≥ Eε2

i 1

(
ε2
i ≤

τ2

2
− r2

)
− σ τ2

2

√
τ2 log(1/δ)

n
− τ2 log(1/δ)

6n

}
and

E42 =:

 1

n

n∑
i=1

|εi|1
(
ε2
i ≤

τ2

2
− r2

)
≤ E|εi|1

(
ε2
i ≤

τ2

2
− r2

)
+

√
2σ2

τ2/2 log(1/δ)

n
+
τ log(1/δ)

3
√

2n

 .

If n is sufficiently large such that

r2 ≤ ε0 .
(

log n+ log(1/δ)

z
√
n

)2

≤ 1 and

r

τ2

σ2
τ2/2 +

√
2σ2

τ2/2 log(1/δ)

n
+
τ log(1/δ)

3
√

2n

 ≤ 1

12

log(1/δ)

n
,

then conditional on E4, we have

I ≥ Eε2
i 1

(
ε2
i ≤

τ2

2
− r2

)
− σ τ2

2

√
τ2 log(1/δ)

n
− τ2 log(1/δ)

6n
and

II ≤ E|εi|1
(
ε2
i ≤

τ2

2
− r2

)
+

√
2σ2

τ2/2 log(1/δ)

n
+
τ log(1/δ)

3
√

2n
.



Thus conditional on E4 we have

g(τ) <
2az2

n
− 1

2τ2
(I− 2r · II)

≤ 2az2

n
− 1

2τ2

(
Eε2

i 1

(
ε2
i ≤
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2
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)
− στ2/2

√
τ2 log(1/δ)
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− τ2 log(1/δ)
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)

+
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(
ε2
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2
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)
+

√
2σ2

τ2/2 log(1/δ)

n
+
τ log(1/δ)

3
√
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≤ 2az2
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−
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2τ2

+
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√
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2τ
√
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+
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12n
+
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σ2
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√
2σ2

τ2/2 log(1/δ)

n
+
τ log(1/δ)

3
√
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n

(
2a+

log(1/δ)

z2
· 1

6

)
−
σ2
τ2/2−ε0
2τ2

+
στ2/2

√
log(1/δ)

2τ
√
n

=
z2

2n

(
4a+

log(1/δ)

z2
· 1

3
−
σ2
τ2/2−ε0
c2

+
στ2/2

c
·
√

log(1/δ)

z

)
(τ = c

√
n/z)
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2n

(
4a+

1

3
−
σ2
τ2/2−ε0
c2

+
στ2/2

c

)
(z2 ≥ log(1/δ))

≤ 0,

for any c such that

c ≤
στ2/2

2(4a+ 1/3)


√√√√1 +

4(4a+ 1/3)σ2
τ2/2−ε0

σ2
τ2/2

− 1

 ,

In other words, conditional on the event E1 ∩ E2 ∩ E4 and taking any c satisfying the above inequality, we have

g(τ) < 0 for any τ < τ = c
√
n/z.

This is a contradiction. Thus, τ̂ ≥ τ = c
√
n/z, or equivalently v̂ ≥ c > v0. Using the inequality

√
1 + x− 1 ≥ 1(x ≥ 3) +

x

3
1(0 ≤ x < 3) ≥ x

3
∧ 1 ∀ x ≥ 0,

we obtain

στ2/2

2(4a+ 1/3)


√√√√1 +

4(4a+ 1/3)σ2
τ2/2−ε0

σ2
τ2/2

− 1


=

3στ2
v0
/2

14


√√√√1 +

28σ2
τ2/2−ε0

3σ2
τ2/2

− 1

 (a = 1/2)

≥
3στ2/2

14

(
28σ2

τ2/2−ε0
9σ2

τ2/2

∧ 1

)

=
2σ2

τ2/2−ε0
3στ2/2

∧
3στ2/2

14

≥ 1

5

(
στ2/2−1

στ2/2
∧ 1

)
στ2/2−1

≥ 1

5

(
στ2

v0
/2−1

στ2
v0
/2
∧ 1

)
στ2
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/2−1

≥
σ2
τ2
v0
/2−1

5στ2
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/2



Therefore we can take c = 5−1σ2
τ2
v0
/2−1/στ2

v0
/2. Thus on the event E1 ∩ E2 ∩ E4, we have

v̂ ≥ c := c0σ
2
τ2
v0
/2−1/στ2

v0
/2,

where c0 = 1/5 is a universal constant. This finishes the proof of step 2.

Proving that the constraint is inactive. If v̂ 6∈ (v0, V0), then v̂ ∈ {v0, V0}. Suppose v̂ = v0, then v̂ = v0 < c. Recall
that τv0 = v0

√
n/z. Then we must have f(τv0) ≥ 0, and thus g(τv0) ≥ 0. However, conditional on the probability event

E1 ∩ E2 ∩ E4, repeating the above analysis in step 2 obtains g(τv0) < 0. This is a contradiction. Therefore v̂ 6= v0. Similarly,
conditional on probability event E1 ∩ E2 ∩ E3, we can obtain v̂ 6= V0. Therefore, conditional on the probability event
E1 ∩ E2 ∩ E3 ∩ E4, the constraint must be inactive, aka v̂ ∈ (v0, V0).

Using the first result of Lemma E.6 with τ2 and ε2
i replaced by τ2

v0 + 2r2 and 2ε2
i respectively, Lemma F.1, Lemma F.2 with

τ2 and w2
i replaced by τ̄2 and 2(r2 + ε2

i ) respectively, and Lemma F.3, we obtain

P(E1) ≥ 1− δ, P(E2) ≥ 1− δ, P(E3) ≥ 1− δ, P(E4) ≥ 1− 2δ,

and thus

P(E1 ∩ E2 ∩ E3 ∩ E4) ≥ 1− 5δ.

Putting the above results together, and using Lemmas F.1 and F.3, we obtain with probability at least 1− 5δ that

c0σ
2
τ2
v0
/2−1/στ2

v0
/2 ≤ v̂ ≤ C0σ.

Using a change of variable 5δ → δ completes the proof.

F.2 PROOF OF THEOREM 3.2

Proof of Theorem 3.2. On the probability event E1∩E2∩E3∩E4 where Ek’s are defined the same as in the proof of Theorem
3.1, we have

c0σ
2
τ2
v0
/2−1/στ2

v0
/2 ≤ v̂ ≤ C0σ.

Following the proof of Theorem E.2, for any fixed v and thus τ , we have

κ`|µ̂(v)− µ∗| ≤

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣ .
For any v such that c′0στ2

v0
/2−1 ≤ v ≤ C0σ where c′0 = c0σ

2
τ2
v0
/2−1/σ

2
τ2
v0
/2 and any z > 0, using Lemma F.1 but with v0

and V0 replaced by c′0στ2
v0
/2−1 and C0σ respectively, we obtain with probability at least 1− δ

sup
v∈[c′0στ2v0

/2−1, C0σ]

κ`(v) |µ̂(v)− µ∗| ≤ sup
v∈[c′0στ2v0

/2−1, C0σ]

κ`(v) |µ̂(v)− µ∗|

≤ sup
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∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣
≤ σ

c′0στ2
v0
/2−1

√
2 log(n/δ)

n
+

1

z

log(n/δ)√
n

+
σ2

2c′20 σ
2
τ2
v0
/2−1

z√
n

+
3(C0σ − c′0στ2

v0
/2−1)

στ2
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/2−1

1

z
√
n
,

which yields

sup
v∈[c′0στ2v0

/2−1, C0σ]

|µ̂(v)− µ∗| ≤ Cσ log(n/δ) ∨ z2 ∨ 1

z
√
n

,



where C is some constant only depending on σ/στ2
v0
/2−1, c′0, and C0. Putting the above pieces together and if log(1/δ) ≤

z2 ≤ log(n/δ), we obtain with probability at least 1− 6δ that

|µ̂(v̂)− µ∗| ≤ sup
v∈[c′0στ2v0

/2−1, C0σ]

|µ̂(v)− µ∗| ≤ C · σ log(n/δ) ∨ 1

z
√
n

.

Using a change of variable 6δ → δ and then setting z = log(n/δ) gives

|µ̂(v̂)− µ∗| ≤ sup
v∈[c′0στ2v0

/2−1, C0σ]

|µ̂(v)− µ∗| ≤ C · σ
√

log(n/δ)

n

with a lightly different constant C, provided that log(n/δ) ≥ 1, aka n ≥ eδ. This completes the proof.

F.3 SUPPORTING LEMMAS

We collect supporting lemmas, aka Lemmas F.1, F.2, and F.3, in this subsection.

Lemma F.1. Let 0 < δ < 1. Suppose σ . V0 and z .
√

log(n/δ). Then, with probability at least 1− δ, we have

sup
v∈[v0,V0]

∣∣∣∣∣ 1n
n∑
i=1

εi√
τ2 + ε2

i

∣∣∣∣∣ ≤ C · V0

v0
· log(n/δ)

n

where C is some constant.

Proof of Lemma F.1. To prove the uniform bound over [v0, V0], we adopt a covering argument. For any 0 < ε ≤ 1, there
exists an ε-cover N of [v0, V0] such that |N | ≤ 3(V0 − v0)/ε. Let τw = w

√
n/z. Then for every v ∈ [v0, V0], there exists a
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For II, we have
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z
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n
.

For III, using the inequality ∣∣∣∣∣ x√
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− x√
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2 |τw| ∧ |τ |

,



we obtain

III ≤
√
n

z
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≤
√
n

z
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2v0
.

We then bound I. For any fixed τw, applying Lemma E.5 with the fact that
∣∣E (τwεi/(τ2

w + ε2
i )

1/2
)∣∣ ≤ σ2/(2τw), we obtain

with probability at least 1− 2δ∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2
w + ε2

i

− E

[
1√
n

n∑
i=1

εi

z
√
τ2
w + ε2

i

]∣∣∣∣∣ ≤
√
n

zτw

(
σ

√
2 log(1/δ)

n
+
τw log(1/δ)

n

)

≤ σ

zτv0

√
2 log(1/δ) +

1

z

log(1/δ)√
n

where τv0 = v0
√
n/z. Therefore, putting above pieces together and using the union bound, we obtain with probability at

least 1− 6ε−1(V0 − v0)δ

sup
v∈[v0,V0]

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣ ≤ sup
w∈N

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2
w + ε2

i

− E

[
1√
n

n∑
i=1

εi

z
√
τ2
w + ε2

i

]∣∣∣∣∣
+

zσ2

2v2
0

√
n

+

√
n

z
· ε

2v0

≤ σ

v0

√
2 log(1/δ)

n
+

1

z

log(1/δ)√
n

+
σ2

2v2
0

z√
n

+

√
n

z
· ε

2v0
.

Taking ε = 6(V0 − v0)/n, we obtain with probability at least 1− nδ

sup
v∈[v0,V0]

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣ ≤ σ

v0

√
2 log(1/δ)

n
+

1

z

log(1/δ)√
n

+
σ2

2v2
0

z√
n

+
3(V0 − v0)

v0

1

z
√
n
.

Thus with probability at least 1− δ, we have

sup
v∈[v0,V0]

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣ ≤ σ

v0

√
2 log(n/δ)

n
+

1

z

log(n/δ)√
n

+
σ2

2v2
0

z√
n

+
3(V0 − v0)

v0

1

z
√
n

≤ C · V0

v0
· log(n/δ)

z
√
n

provided z .
√

log(n/δ), where C is a constant only depending on σ2/(v0V0). When v0 and V0 are taken symmetrically
around 1, v0V0 is close to 1. Multiplying both sides by z/

√
n finishes the proof.

Lemma F.2. Let wi be i.i.d. copies of w. For any 0 < δ < 1, with probability at least 1− δ

1

n

n∑
i=1

√
τ2 + w2

i − τ√
τ2 + w2

i

− E

(√
τ2 + w2

i − τ√
τ2 + w2

i

)
≤
√

log(1/δ)Ew2
i

nτ2
+

log(1/δ)

3n
.

Proof of Lemma F.2. The random variables

Zi = Zi(τ) :=

√
τ2 + w2

i − τ√
τ2 + w2

i

=

√
1 + w2

i /τ
2 − 1√

1 + w2
i /τ

2

with µz = EZi and σ2
z = var(Zi) are bounded i.i.d. random variables such that

0 ≤ Zi ≤ 1 ∧ w2
i

2τ2
.

Moreover we have

EZ2
i ≤

Ew2
i

2τ2
, σ2

z := var(Zi) ≤
Ew2

i

2τ2
.



For third and higher order absolute moments, we have

E|Zi|k ≤
Ew2

i

2τ2
≤ k!

2
· Ew

2
i

2τ2
·
(

1

3

)k−2

, for all integers k ≥ 3.

Therefore, using Lemma H.2 with v = nEw2
i /(2τ

2) and c = 1/3 acquires that for any t > 0

P

(
n∑
i=1

(1 + w2
i /τ

2)1/2 − 1

(1 + w2
i /τ

2)1/2
−

n∑
i=1

E
(

(1 + w2
i /τ

2)1/2 − 1

(1 + w2
i /τ

2)1/2

)
≥ −

√
tnEw2

i

τ2
− t

3

)
≤ exp(−t).

Taking t = log(1/δ) acquires that for any 0 < δ < 1

P

(
1

n

n∑
i=1

(1 + w2
i /τ

2)1/2 − 1

(1 + w2
i /τ

2)1/2
− E

(
(1 + w2

i /τ
2)1/2 − 1

(1 + w2
i /τ

2)1/2

)
> −

√
log(1/δ)Ew2

i

nτ2
− log(1/δ)

3n

)
> 1− δ.

This finishes the proof.

Lemma F.3. For any 0 < δ < 1, we have with probability at least 1− δ that

1

n

n∑
i=1

ε2
i 1

(
ε2
i ≤

τ2

2
− r2

)
≥ 1

n

n∑
i=1

Eε2
i 1

(
ε2
i ≤

τ2

2
− r2

)
− στ2/2

√
τ2 log(1/δ)

n
− τ2 log(1/δ)

6n
.

For any 0 < δ < 1, we have with probability at least 1− δ that

1

n

n∑
i=1

|εi|1
(
ε2
i ≤

τ2

2
− r2

)
≤ 1

n

n∑
i=1

E|εi|1
(
ε2
i ≤

τ2

2
− r2

)
+

√
2σ2

τ2/2 log(1/δ)

n
+
τ log(1/δ)

3
√

2n
.

Consequently, we have, with probability at least 1− 2δ, the above two inequalities hold simultaneously.

Proof of Lemma F.3. We prove the first two results and the last result directly follows from first two.

First result. Let Zi = ε2
i 1
(
ε2
i ≤ τ2/2− r2

)
. The random variables Zi with µz = EZi and σ2

z = var(Zi) are bounded
i.i.d. random variables such that

|Zi| =
∣∣ε2
i 1
(
ε2
i ≤ τ2/2− r2

)∣∣ ≤ τ2/2,

|µz| = |EZi| =
∣∣E (ε2

i 1
(
ε2
i ≤ τ2/2− r2

))∣∣ ≤ σ2
τ2/2,

EZ2
i = E

(
ε4
i 1
(
ε2
i ≤ τ2/2− r2

))
≤ τ2σ2

τ2/2/2,

σ2
z := var(Zi) = E

(
Zi − µz

)2 ≤ τ2σ2
τ2/2/2.

For third and higher order absolute moments, we have

E|Zi|k = E
∣∣ε2
i 1
(
ε2
i ≤ τ2/2− r2

)∣∣k ≤ τ2σ2
τ2/2

2

(
τ2

2

)k−2

≤ k!

2

τ2σ2
τ2/2

2

(
τ2

6

)k−2

, for all integers k ≥ 3.

Using Lemma H.2 with v = nτ2σ2
τ2/2/2 and c = τ2/6, we have for any t > 0

P

(
n∑
i=1

ε2
i 1

(
ε2
i ≤

τ2

2
− r2

)
−

n∑
i=1

Eε2
i 1

(
ε2
i ≤

τ2

2
− r2

)
≤ −

√
nτ2σ2

τ2/2t−
τ2t

6

)
≤ exp (−t) .

Taking t = log(1/δ) acquires the desired result.



Second result. With an abuse of notation, let Zi = |εi|1
(
ε2
i ≤ τ2/2− r2

)
. The random variables Zi with µz = EZi and

σ2
z = var(Zi) are bounded i.i.d. random variables such that

|Zi| =
∣∣εi1 (ε2

i ≤ τ2/2− r2
)∣∣ ≤ τ/√2,

|µz| = |EZi| =
∣∣E (|εi|1 (ε2

i ≤ τ2/2− r2
))∣∣ ≤ √2σ2

τ2/2/τ ,

EZ2
i = E

(
ε2
i 1
(
ε2
i ≤ τ2/2− r2

))
≤ σ2

τ2/2,

σ2
z := var(Zi) = E

(
Zi − µz

)2 ≤ σ2
τ2/2.

For third and higher order absolute moments, we have

E|Zi|k = E
∣∣|εi|1 (ε2

i ≤ τ2/2− r2
)∣∣k ≤ σ2

τ2/2

(
τ√
2

)k−2

≤ k!

2
σ2
τ2/2

(
τ

3
√

2

)k−2

, for all integers k ≥ 3.

Using Lemma H.2 with v = nσ2
τ2/2 and c = τ/(3

√
2), we have for any t > 0

P

(
n∑
i=1

|εi|1
(
ε2
i ≤

τ2

2
− r2

)
−

n∑
i=1

E|εi|1
(
ε2
i ≤

τ2

2
− r2

)
≥
√

2nσ2
τ2/2t+

τt

3
√

2

)
≤ exp (−t) .

Taking t = log(1/δ) acquires the desired result.

G PROOFS FOR SECTIONS 3.2 AND 3.3

This section collects proofs for results in Sections 3.2 and 3.3. We first prove Proposition 3.5.

G.1 PROOF OF PROPOSITION 3.5

Proof of Proposition 3.5. First, the MoM estimator µ̂MoM = M(z1, . . . , zk) is equivalent to

argmin

k∑
j=1

|zj − µ| .

For any x ∈ R, let `(x) = |x| and define L(x) = E`′(x+ Z) where Z ∼ N (0, 1) and

`′(x) =


1, if x > 0,

0, if x = 0,

−1, otherwise.

If the assumptions of Theorem 4 of Minsker [2019] are satisfied, we obtain, after some algebra, that

√
n
(
µ̂MoM − µ∗

)
 N

(
0,

E(`′(Z))2

(L′(0))2

)
.

Some algebra derives that

E(`′(Z))2

(L′(0))2
=
πσ2

2
.

It remains to check the assumptions there. Assumptions (1), (4), and (5) trivially hold. Assumption (2) can be verified by
using the following Berry-Esseen bound.

Fact G.1. Let y1, . . . , ym be i.i.d. random copies of y with mean µ, variance σ2 and E|y − µ|2+ι <∞ for some ι ∈ (0, 1].
Then there exists an absolute constant C such that

sup
t∈R

∣∣∣∣P(√mȳ − µ
σ
≤ t
)
− Φ(t)

∣∣∣∣ ≤ C E|y − µ|2+ι

σ2+ιmι/2
.

It remains to check Assumption (3). Because g(m) . m−ι/2,
√
kg(m) .

√
km−ι/2 → 0 if k = o(nι/(1+ι)) as n→∞.

Thus Assumption (3) holds if k = o(nι/(1+ι)) and k →∞. This completes the proof.



G.2 PROOF OF THEOREM 3.3

In this subsection, we state and prove a stronger result of Theorem 3.3, aka Theorem G.2. Theorem 3.3 can then be proved
following the same proof under the assumption that E|εi|2+ι <∞ for any prefixed 0 < ι ≤ 1.

Theorem G.2. Assume the same assumptions as in Theorem 3.1. Take z2 ≥ 2 log(n). If Eε4
i <∞, then

√
n

[
µ̂− µ∗
v̂ − v∗

]
 N (0,Σ) , where Σ =

[
σ2 σ Eε3

i /2
σ Eε3

i /2 (σ2Eε4
i − σ6)/4

]
.

Proof of Theorem G.2. Now we are ready to analyze the self-tuned mean estimator µ̂ = µ̂(v̂). For any δ ∈ (0, 1), following
the proof of Theorem 3.1, we obtain with probability at least 1− δ that

|µ̂(v̂)− µ∗| ≤ sup
v∈[v0,V0]

|µ̂(v)− µ∗| ≤ 2C · V
2
0

v0
· log(n/δ)

z
√
n

.

Taking z2 ≥ log(n/δ) with δ = 1/n in the above inequality, we obtain µ̂→ µ∗ in probability. Theorem G.3 implies that
v̂ → σ in probability. Thus we have ‖θ̂ − θ∗‖2 → 0 in probability, where

θ̂ = (µ̂, v̂)T, and θ∗ = (µ∗, σ)T.

Using the Taylor’s theorem for vector-valued functions, we obtain

∇Ln(θ̂) = 0 = ∇Ln(θ∗) +Hn(θ∗)(θ̂ − θ∗) +
R2(θ)

2

(
θ̂ − θ∗

)⊗2
,

where ⊗ indicates the tensor product. Let τσ = σ
√
n/z. We say that Xn and Yn are asymptotically equivalent, denoted as

Xn ' Yn, if both Xn and Yn converge in distribution to some same random variable/vector Z. Rearranging, we obtain

√
n
(
θ̂ − θ∗

)
' [Hn(θ∗)]

−1 (−√n∇Ln(θ∗)
)

=

√nz · 1
n

∑n
i=1

τ2
σ

(τ2
σ+ε2i )

3/2
n
z2 ·

1
n

∑n
i=1

τσεi
(τ2
σ+ε2i )

3/2

n
z2 ·

1
n

∑n
i=1

τσεi
(τ2
σ+ε2i )

3/2
n3/2

z3 ·
1
n

∑n
i=1

ε3i
(τ2
σ+ε2i )

3/2

−1

 √
n · 1

n

∑n
i=1

τσεi
σ
√
τ2
σ+ε2i

√
n · nz2

1
n

∑n
i=1

√
1+ε2i /τ

2
σ−1√

1+ε2i /τ
2
σ

−
√
n · a


'
[
σ 0
0 σ3

] √
n · 1

n

∑n
i=1

τσεi
σ
√
τ2
σ+ε2i

√
n · nz2

1
n

∑n
i=1

√
1+ε2i /τ

2
σ−1√

1+ε2i /τ
2
σ

−
√
n · a


=

[
σ 0
0 σ3

] [
I
II

]
,

where the second ' uses the fact that

Hn(θ∗)
a.s.−→

[
1
σ 0
0 1

σ3

]
.

We proceed to derive the asymptotic property of (I, II)T. For I, we have

I =
√
n ·

(
1

n

n∑
i=1

τσεi

σ
√
τ2
σ + ε2

i

− E

[
τσεi

σ
√
τ2
σ + ε2

i

])
+
√
n · E

[
τσεi

σ
√
τ2
σ + ε2

i

]

 N

(
0, lim
n→∞

var

[
τσεi

σ
√
τ2
σ + ε2

i

])
+ lim
n→∞

√
n · E

[
τσεi

σ
√
τ2
σ + ε2

i

]
.



It remains to calculate

lim
n→∞

E

( √
nτσεi√
τ2
σ + ε2

i

)
and lim

n→∞
var

[
τεi√
τ2
σ + ε2

i

]
.

For the former term, if there exists some 0 < ι ≤ 1 such that E|εi|2+ι <∞, using the fact that Eεi = 0, we have∣∣∣∣∣E
( √

nτσεi√
τ2
σ + ε2

i

)∣∣∣∣∣ =
√
nτσ ·

∣∣∣∣∣E
{
−εi/τσ√
1 + ε2

i /τ
2
σ

}∣∣∣∣∣ =
√
nτσ ·

∣∣∣∣∣∣E
τ
−1
σ εi

(√
1 + ε2

i /τ
2
σ − 1

)
√

1 + ε2
i /τ

2
σ


∣∣∣∣∣∣

≤
√
nτσ
2
· E

∣∣∣∣∣ ε3
i /τ

3
σ√

1 + ε2
i /τ

2
σ

∣∣∣∣∣ ≤
√
nτσ
2
· E|εi|

2+ι

τ2+ι
σ

≤
√
nE|εi|2+ι

2τ1+ι
σ

→ 0, (G.1)

where the first inequality uses Lemma H.4 (ii) with r = 1/2, that is,
√

1 + x ≤ 1 + x/2 for x ≥ −1. For the second term,
we have

lim
n→∞

var

[
τσεi√
τ2
σ + ε2

i

]
= lim
n→∞

E
[
τ2
σε

2
i

τ2
σ + ε2

i

]
= σ2,

by the dominated convergence theorem. Thus

I N (0, 1).

For II, recall a = 1/2 and using the facts that

lim
n→∞

n

z2
· E

(√
1 + ε2

i /τ
2
σ − 1√

1 + ε2
i /τ

2
σ

)
= lim
n→∞

n

2τ2
σz
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1√

1 + ε2
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2
σ

·
√

1 + ε2
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2
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1/(2τ2
σ)

)
=

1

2
,

lim
n→∞

√
n ·

(
n

z2
· E

(√
1 + ε2

i /τ
2
σ − 1√

1 + ε2
i /τ

2
σ

)
− 1

2

)
= 0,

we have

II =
√
n · n

z2
· 1

n

n∑
i=1

√
1 + ε2
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2
σ − 1√

1 + ε2
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2
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−
√
n · 1

2

'
√
n · 1

n

n∑
i=1

(
n

z2
·
√

1 + ε2
i /τ

2
σ − 1√

1 + ε2
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2
σ

− E

(
n
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·
√
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2
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2
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·
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1 + ε2
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2
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1 + ε2
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2
σ
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.

If Eε4
i <∞, then

lim
n→∞

var

(
n

z2
·
√

1 + ε2
i /τ

2
σ − 1√

1 + ε2
i /τ

2
σ

)
=

Eε4
i

4σ4
− 1

4
,

and thus II ' N
(
0, (Eε4

i /σ
4 − 1)/4

)
. For the cross covariance, we have

lim
n→∞
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σ
√
τ2
σ + ε2
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2
σ − 1√

1 + ε2
i /τ

2
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.



Thus

√
n (θ̂ − θ∗) N (0,Σ),

where

Σ =

[
σ 0
0 σ3

] [
1 Eε3

i /(2σ
3)

Eε3
i /(2σ

3) (Eε4
i /σ

4 − 1)/4

] [
σ 0
0 σ3

]
=

[
σ2 σEε3

i /2
σEε3

i /2 (σ2Eε4
i − σ6)/4

]
.

Therefore, for µ̂ only, we have

√
n (µ̂− µ∗) N (0, σ2).

G.3 CONSISTENCY OF v̂

This subsection proves that v̂ is a consistent estimator of σ. Recall that

∇vLn(µ, v) =
n

z2
· 1

n

n∑
i=1

(
τ√

τ2 + (yi − µ)2
− 1

)
+ a

where a = 1/2. We emphasize that the following proof only needs the second moment assumption σ2 = Eε2
i <∞.

Theorem G.3 (Consistency of v̂). Assume the same assumptions as in Theorem 3.1. Take z2 ≥ log(n). Then

v̂ −→ σ in probability.

Proof of Theorem G.3. By the proof of Theorem 3.1, we obtain with probability at least 1− δ that the following two results
hold simultaneously:

sup
v∈[v0,V0]

|µ̂(v)− µ∗| ≤ 2C · V
2
0

v0
· log(n/δ)

z
√
n

=: r, (G.2)

v0 < c0στ2
v0
−1 ≤ v̂ ≤ C0σ < V0, (G.3)

provided that z2 ≥ log(5/δ) and n is large enough. Therefore, the constraint in the optimization problem (3.1) is not active,
and thus

∇vLn(µ̂, v̂) = 0.

Using Lemma G.4 together with the equality above, we obtain with probability at least 1− δ that

c0
V 3

0

|v̂ − σ|2 ≤ c0
v̂3 ∨ σ3

|v̂ − σ|2 ≤ ρ`|v̂ − σ|2

≤ 〈∇vLn(µ̂, v̂)−∇vLn(µ̂, σ), v̂ − σ〉
≤ |∇vLn(µ̂, σ)| |v̂ − σ|

≤

∣∣∣∣∣ nz2
· 1

n

n∑
i=1

(
τσ√

τ2
σ + (yi − µ̂)2

− 1

)
+ a

∣∣∣∣∣ |v̂ − σ| .



Plugging (G.2) into the above inequality and canceling |v̂ − σ| on both sides, we obtain with probability at least 1− 2δ that

c0
V 3

0

|v̂ − σ| ≤

∣∣∣∣∣ nz2
· 1

n

n∑
i=1

(
τσ√
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· 1
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− 1

)
+ a
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=

n
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· sup
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τσ√
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σ + (yi − µ)2

− 1
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+
az2
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≤ n
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· sup
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i=1
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1− τσ√

τ2
σ + (yi − µ)2

)
− E

(
1− τσ√

τ2
σ + (yi − µ)2
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+
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· sup
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(

1− τσ√
τ2
σ + (yi − µ)2

)
− az2

n

∣∣∣∣∣
=: I + II.

It remains to bound terms I and II. We start with term II. Let r2
i = (yi − µ)2. We have

II =
n

z2
· sup
µ∈Br(µ∗)

∣∣∣∣∣E
(
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2
σ

)}
=: II1 ∨ II2.

In order to bound II, we bound II1 and II2 respectively. For term II1, using Lemma H.4 (ii), aka (1 + x)r ≤ 1 + rx for
x ≥ −1 and r ∈ (0, 1), and a = 1/2, we have

II1 = sup
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(
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}
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2τ2
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2
(a = 1/2)

≤ r

σ

(
1 +

r

2σ

)
≤ 2r

σ

if n is large enough such that r ≤ 2σ. To bound II2, we need Lemma D.1. Specifically, for any 0 ≤ γ < 1, we have

(1 + x)−1 ≤ 1− (1− γ)x, for any 0 ≤ x ≤ γ

1− γ
.



Using this result, we obtain

E
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σ
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+
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≤
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(Lemma D.1)

≤

√
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τ2
σ

1

(
r2
i

τ2
σ
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≤
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≤ γ
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,

where the first inequality uses the concavity of
√
x, the third inequality uses Lemma D.1, and the last inequality uses the

inequality that (1 + x)−1 ≤ 1− x/2 for x ∈ [0, 1], aka Lemma H.4 (iii) with r = −1, provided that

(1− γ)E
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Thus term II2 can be bounded as
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{
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2
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σ
. (a = 1/2)

Combining the upper bound for II1 and II2 and using the fact that, we obtain

II ≤ max{II1, II2} ≤
γ

2
+

2r

σ
→ 0,

if γ = γ(n)→ 0.

We proceed to bound I. Recall that

I =
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· sup
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)∣∣∣∣∣ .
For any 0 < ε ≤ 2r, there exists an ε-cover N ⊆ Br(µ∗) of Br(µ∗) such that |N | ≤ 6r/ε. Then for any µ ∈ Br(µ∗) there



exists a ω ∈ N such that |ω − µ| ≤ γ, and∣∣∣∣∣ 1n
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= I1 + I2 + I3.

For I1, using Lemma F.2 acquires with probability at least 1− 2δ that

I1 ≤

√
E(yi − ω)2 log(1/δ)

nτ2
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+
log(1/δ)

3n
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provided r2 ≤ σ2. Let

g(x) = − 1

n
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τ√
τ2 + (x+ εi)2

.

Using the mean value theorem and the inequality that |x/(1 + x2)3/2| ≤ 1/2, we obtain
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,

where x̃ is some convex combination of x and y. Then we have

I2 =

∣∣∣∣∣ 1n
n∑
i=1

(∆̃ + εi)/τσ

(1 + (∆̃ + εi)2/τ2
σ)3/2

· ∆µ −∆ω

τσ

∣∣∣∣∣ ≤ ε

2τσ

where ∆̃ is some convex combination of ∆w = µ∗ − w and ∆µ = µ∗ − µ. For II3, a similar argument for bounding II2
yields
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,



where the last inequality uses Jensen’s inequality, i.e. E|∆̃ + εi| ≤
√

E(∆̃ + ε2
i ) ≤

√
2(r2 + σ2). Putting the above pieces

together and using the union bound, we obtain with probability at least 1− 12ε−1rδ
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provided that

2
√
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Putting above results together, we obtain with probability at least 1− (12r/ε+ 2)δ that
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≤
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Let C ′ = 24CV 2
0 /v0. Therefore, taking ε = 1/

√
n, δ = 1/log n, and z2 ≥ log(n), we obtain with probability at least

1−
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(√
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log n
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+ 2

log n

that

|v̂ − σ| .

√
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Therefore v̂ → σ in probability. This finishes the proof.

G.4 LOCAL STRONG CONVEXITY IN v

In this section, we first present the local strong convexity of the empirical loss function with respect to v uniformly over a
neighborhood of µ∗.

Lemma G.4 (Local strong convexity in v). Let Br(µ∗) = {µ : |µ− µ∗| ≤ r}. Assume r = r(n) = o(1). Let 0 < δ < 1
and n is sufficiently large. Take $ such that max{$r

√
n,$} → 0 and $

√
n→∞. Then, with probability at least 1− δ,

we have

inf
µ∈Br(µ∗)

〈∇vLn(µ, v)−∇vLn(µ, v∗), v − σ〉
|v − σ|2

≥ ρ` =
σ2
c$2n/(4z2)

2(v3 ∨ σ3)
≥ c0
v3 ∨ σ3

,

where c and c0 are some constants.

Proof of Lemma G.4. Recall τ = v
√
n/z. For notational simplicity, write τσ = σ

√
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√
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and ∆ = µ∗ − µ. It follows that
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where τ̃ is some convex combination of τ and τσ , that is τ̃ = (1−λ)τσ+λτ for some λ ∈ [0, 1]. Because τ3x2/(τ2 +x2)3/2

is an increasing function of τ , if τ$ ≤ τ ∨ τσ , we have
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Thus
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It remains to lower bound I and upper bound II. We start with I. Let f(x) = x/(1 + x)3/2 which satisfies

f(x) ≥

{
εx x ≤ cε
0 x > cε,
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$/4, then we have

inf
µ∈Br(µ∗)

(
E

τ3
$(yi − µ)2

(τ2
$ + (yi − µ)2)3/2

)
= inf
µ∈Br(µ∗)

E

(
τ2
$Z

(1 + Z)
3/2

)
≥ ε · inf

µ∈Br(µ∗)
E
[
(y − µ)21((y − µ)2 ≤ cετ2

$)
]

≥ ε · inf
µ∈Br(µ∗)

E
[
(y − µ)21(ε2 ≤ cετ2

$/2− r2)
]

≥ ε · inf
µ∈Br(µ∗)

(
E
[
(∆2 + ε2)1

(
ε2 ≤ cετ

2
$

4

)]
− 8∆σ2

cετ2
$

)
≥ ε ·

(
E
[
ε21

(
ε2 ≤ cετ

2
$

4

)]
− 8rσ2

cετ2
$

)
.

We then proceed with II. For any 0 < γ ≤ 2r, there exists an γ-cover N of Br(µ∗) such that |N | ≤ 6r/γ. Then for any
µ ∈ Br(µ∗) there exists an ω ∈ N such that |ω − µ| ≤ γ, and thus by Lemma G.5 we have∣∣∣∣∣ 1n
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For II1, Lemma G.5 implies with probability at least 1− 2δ
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where ∆̃ is some convex combination of ∆w = µ∗ − w and ∆µ = µ∗ − µ. For II3, we have
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where the last inequality uses Jensen’s inequality. Putting the above pieces together and using the union bound, we obtain
with probability at least 1− 12γ−1rδ

II ≤ sup
ω∈N

∣∣∣∣∣ 1n
n∑
i=1

τ3
$(yi − ω)2

(τ2
$ + (yi − ω)2)3/2

− E
τ3
$(yi − ω)2

(τ2
$ + (yi − ω)2)3/2

∣∣∣∣∣+
τ$γ√

3
+ γ
√
r2 + σ2

≤
√

2τ2
$(r2 + σ2) log(1/δ)

3n
+
τ2
$ log(1/δ)

3
√

3n
+
τ$γ√

3
+ γ
√
r2 + σ2

=
√
r2 + σ2

(√
2$2 log(1/δ)

3z2
+ γ

)
+
$2 log(1/δ)

3
√

3z2
+
$γ
√
n√

3
.

Combining the bounds for I and II yields with probability at least 1− δ
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For example, we can pick $ such that

max{$r
√
n,$} → 0 and $

√
n→∞

as n→∞. This completes the proof.

G.5 SUPPORTING LEMMAS

This subsection proves a supporting lemma that is used prove Lemma G.4.

Lemma G.5. Let wi be i.i.d. copies of w. For any 0 < δ < 1, we have
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n∑
i=1

τ3w2
i

(τ2 + w2
i )

3/2
− E

τ3w2
i

(τ2 + w2
i )

3/2
≥ −

√
2τ2Ew2

i log(1/δ)

3n
− τ2 log(1/δ)

3
√

3n
, with prob. 1− δ,∣∣∣∣∣ 1n

n∑
i=1

τ3w2
i

(τ2 + w2
i )

3/2
− E

τ3w2
i

(τ2 + w2
i )

3/2

∣∣∣∣∣ ≤
√

2τ2Ew2
i log(1/δ)

3n
+
τ2 log(1/δ)

3
√

3n
, with prob. 1− 2δ.

Proof of Lemma G.5. We only prove the first result and the second result follows similarly. The random variables Zi =
Zi(τ) := τ3w2
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3/2 with µz = EZi and σ2
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For third and higher order absolute moments, we have
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Therefore, using Lemma H.2 with v = nτ2 Ew2
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P

(
1

n

n∑
i=1

τ3w2
i

(τ2 + w2
i )

3/2
− 1

n

n∑
i=1

E
(

τ3w2
i

(τ2 + ε2
i )

3/2

)
> −

√
2τ2Ew2

i log(1/δ)

3n
− τ2 log(1/δ)

3
√

3n

)
> 1− δ.

This finishes the proof.

H PRELIMINARY LEMMAS

This section collects preliminary lemmas that are frequently used in the proofs for the main results and supporting lemmas.
We first collect the Hoeffding’s inequality and then present a form of Bernstein’s inequality. We omit their proofs and refer
interested readers to Boucheron et al. [2013].

Lemma H.1 (Hoeffding’s inequality). Let Z1, . . . , Zn be independent real-valued random variables such that a ≤ Zi ≤ b
almost surely. Let Sn =

∑n
i=1(Zi − EZi) and v = n(b− a)2. Then for all t ≥ 0,

P
(
Sn ≥

√
vt/2

)
≤ e−t, P

(
Sn ≤ −

√
vt/2

)
≤ e−t, P

(
|Sn| ≥

√
vt/2

)
≤ 2e−t.



Lemma H.2 (Bernstein’s inequality). Let Z1, . . . , Zn be independent real-valued random variables such that

n∑
i=1

EZ2
i ≤ v,

n∑
i=1

E|Zi|k ≤
k!

2
vck−2 for all k ≥ 3.

If Sn =
∑n
i=1(Zi − EZi), then for all t ≥ 0,

P
(
Sn ≥

√
2vt+ ct

)
≤ e−t, P

(
Sn ≤ −(

√
2vt+ ct)

)
≤ e−t, P

(
|Sn| ≥

√
2vt+ ct

)
≤ 2e−t.

Proof of Lemma H.2. This lemma involves a two-sided extension of Theorem 2.10 by Boucheron et al. [2013]. The proof
follows from a similar argument used in the proof of Theorem 2.10, and thus is omitted.

Our third lemma concerns the localized Bregman divergence for convex functions. It was first established in Fan et al. [2018].
For any loss function L, define the Bregman divergence and the symmetric Bregman divergence as

DL(β1, β2) = L(β1)− L(β2)− 〈∇L(β2), β1 − β2〉,
Ds
L(β1, β2) = DL(β1, β2) +DL(β2, β1).

Lemma H.3. For any βη = β∗ + η(β − β∗) with η ∈ (0, 1] and any convex loss function L, we have

Ds
L(βη, β

∗) ≤ ηDs
L(β, β∗).

Our forth lemma in this section concerns three basic inequalities that are frequently used in the proofs.

Lemma H.4. The following inequalities hold:

(i) (1 + x)r ≥ 1 + rx for x ≥ −1 and r ∈ R \ (0, 1);

(ii) (1 + x)r ≤ 1 + rx for x ≥ −1 and r ∈ (0, 1);

(iii) (1 + x)r ≤ 1 + (2r − 1)x for x ∈ [0, 1] and r ∈ R \ (0, 1).
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