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Abstract

While there has been substantial progress in
developing systems to automate the process of
fact-checking, such systems still lack credibil-
ity in the eyes of the users, and thus human
fact-checkers remain the main drivers of the
process. In view of that, recently, a middle-
ground approach has emerged: to do automatic
fact-checking by verifying whether the input
claim has been previously fact-checked by pro-
fessional fact-checkers, and to return back an ar-
ticle that explains the verdict on the claim. This
is a sensible approach as people trust manual
fact-checking, and as many claims are repeated
multiple times online. Yet, a major issue when
building such kinds of systems is the small num-
ber of known input—verified claim pairs avail-
able for training. Here, we aim to bridge this
gap by making use of crowd fact-checking, i.e.,
mining claims in social media for which users
have responded with a link to a fact-checking
article. In particular, we mine a large-scale
collection of 330,000 tweets paired with a cor-
responding fact-checking article. We further
propose a new model to learn from this noisy
data based on modified self-adaptive training,
in a distant supervision scenario. Our experi-
ments on a standard test set show improvements
over the state of the art by two points absolute.

1 Introduction

The massive spread of disinformation online, espe-
cially in social media, was counter-acted by major
efforts to limit the impact of false information not
only by journalists and fact-checking organizations
but also by governments, private companies, re-
searchers, and ordinary Internet users. Such efforts
include, but are not limited to building systems
for automatic fact-checking (Thorne and Vlachos,
2018; Guo et al., 2021), rumor debunking (Zubiaga
etal., 2016a; Derczynski et al., 2017), fake news de-
tection (Ferreira, 2016; Pomerleau and Rao, 2017),
and media profiling (Baly et al., 2020; Stefanov
et al., 2020), among others.
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Figure 1: Crowd fact-checking thread on Twitter.

We study the problem of detecting previously
fact-checked claims, which is an integral part of
an end-to-end fact-checking pipeline (Hassan et al.,
2017), and also an important task on its own right as
people often repeat the same claim online (Barrén-
Cedeno et al., 2020; Vo and Lee, 2020; Shaar et al.,
2021). Unfortunately, research on this problem is
limited by data scarceness, with datasets typically
having about a 1,000 input—verified claim pairs
(Barron-Cedeno et al., 2020; Shaar et al., 2020,
2021), with the notable exception of Vo and Lee
(2020), which contains 19K claims about images
matched against 3K fact-checking articles.

We propose to bridge this gap using crowd fact-
checking to create a large collection of tweet—
article pairs, which we then label automatically
using distant supervision. An example is shown
in Figure 1, where the first two tweets discuss a
controversial claim, while the third tweet offers a
link to a corresponding fact-checking article.

Our contributions are as follows:

* we mine a large-scale collection of 330,000
tweets paired with fact-checking articles;

* we propose two distant supervision strategies
to label the dataset;

* we propose a novel approach to learn from this
data using a modified self-adaptive training;

* we demonstrate sizable improvements over
the state of the art on a standard test set.



2 Related Work

Previously Fact-Checked Claims While fake
news and mis/disinformation detection have been
studied extensively (Zubiaga et al., 2016b; Li et al.,
2016; Zubiaga et al., 2018; Martino et al., 2020;
Hardalov et al., 2021; Guo et al., 2021), the prob-
lem of detecting previously fact-checked claims
remains under-explored. Hassan et al. (2017) men-
tioned the task as a component of their end-to-end
fact-checking pipeline, but did not evaluate it in
isolation, neither did they study its contribution.

Recently, the task received more attention from
the research community. Shaar et al. (2020) col-
lected two datasets, from PolitiFact (political de-
bates) and from Snopes (tweets), of claim and
corresponding fact-checking articles. The CLEF
CheckThat! 1ab (Barrén-Cedeno et al., 2020; Shaar
et al., 2021) extended these datasets with additional
data in English and Arabic. The best-performing
systems (Pritzkau, 2021; Mihaylova et al., 2021;
Chernyavskiy et al., 2021a) used a combination
BM2S5 retrieval, semantic similarity using sentence
embeddings (Reimers and Gurevych, 2019), and
reranking. Bouziane et al. (2020) further used exter-
nal data from fact-checking datasets (Wang, 2017;
Thorne et al., 2018; Wadden et al., 2020).

Our work is most similar to that of Vo and Lee
(2020), who mined 19K tweets and corresponding
fact-checked articles. Unlike them, we focus on
textual claims (they were interested in multimodal
tweets with images), we collect an order of mag-
nitude more examples, and we propose a novel
approach to learn from such noisy data directly
(while they manually checked each example).

Training with Noisy Data Levering large col-
lections of unlabeled data has been at the core of
large-scale language models, such as GPT (Rad-
ford et al., 2018, 2019), BERT (Devlin et al., 2019),
and RoBERTa (Liu et al., 2019). Recently, such
language models used noisy retrieved data (Lewis
et al., 2020; Guu et al., 2020) or active relabeling
and data augmentation (Thakur et al., 2021). More-
over, using distantly supervised data labeling is a
crucial part of the recent breakthroughs in few-shot
learning (Schick and Schiitze, 2021a,b).

Yet, there has been little work of using noisy
data for fact-checking tasks. Vo and Lee (2019) col-
lected tweets containing a link to a fact-checking
website, based on which tried to learn a fact-
checking language and to generate automatic an-

swers. You et al. (2019) used similar data from
tweets for fact-checking URL recommendations.

Unlike the above work, here we propose an au-
tomatic procedure for labeling and self-training
specifically designed for the task of detecting pre-
viously fact-checked claims.

3 Our Dataset: CrowdChecked

3.1 Dataset Collection

We use Snopes as our target fact-checking web-
site, due to its popularity among both Internet users
and researchers (Popat et al., 2016; Hanselowski
et al., 2019; Augenstein et al., 2019; Tchechmed-
jiev et al., 2019). We further use Twitter as the
source for collecting user messages, which could
contain claims and fact-checks of these claims.

Our data collection setup is similar to the one in
(Vo and Lee, 2019). First, we form a query! to se-
lect tweets that contain a link to a fact-check from
Snopes (url:snopes.com/fact-check/), which is ei-
ther a reply or a quote tweet, and not a retweet.> We
analyze in more detail the conversation structure of
these fact-checked tweets in Appendix B.1.

We then collect all tweets that match our query
in the interval from October 2017 till October 2021,
which yielded a total of 482,736 unique hits. We
further collect 148,503 reply tweets and 204,250
conversation (root) tweets.> Finally, we filter out
malformed pairs, i.e., tweets linking to themselves,
empty tweets, non-English results, tweets with no
resolved URLs in the Twitter object (‘entities’), and
tweets with broken links to the fact-checking web-
site. After cleaning the dataset, we ended up with
332,660 unique tweet—article pairs (shown in first
row in Table 4), 316,564 unique tweets, and 10,340
fact-checking articles from Snopes they could point
to. More detail about the fact-checking articles col-
lection and statistics are given in Appendix B.2 and
on Figure 2.

3.2 Comparison to Existing Datasets

Next, we compare our dataset to a closely related
dataset from the CLEF-2021 CheckThat 21 lab
Task 2A on Detecting Previously Fact-Checked
Claims in Tweets (Shaar et al., 2021), to which we
will refer as CheckThat "21 in the rest of the paper.

'We use the Twitter API v2 with academic research access.

2We exclude retweets, as they do contain no comments,
but rather share previous tweets.

3The sum of the unique replies and of the conversation
tweets is not equal to the number of fact-checking tweets, as
more than one tweet might reply to the same comment.


https://developer.twitter.com/en/products/twitter-api/academic-research

Dataset Tweets! Words Vocab

[Unique| Mean 50% Max |Unique|
CrowdChecked (Ours) | 316,564 122 11 60 114,727
CheckThat *21 1,399 175 16 62 9,007

Table 1: Statistics about our dataset vs. CheckThat *21.
{The number of unique tweets is lower compared to the
total number of tweet—article pairs, as one tweet can be
fact-checked by multiple articles.

All other datasets related to our task are either
smaller (Barron-Cedeno et al., 2020), come from a
different domain (Shaar et al., 2021), are not in En-
glish (Elsayed et al., 2019), or are multi-modal (Vo
and Lee, 2020).

Table 1 compares our CrowdChecked to Check-
That ’21 in terms of number of examples, length
of the tweets, and vocabulary size. Before we cal-
culated these statistics, we lowercased the text and
we removed all URLs, Twitter handlers, English
stop words, and punctuation. We can see in Table 1
that CrowdChecked contains two orders of magni-
tude more examples, slightly shorter tweets (but
the maximum length stays approximately the same,
which can be explained by the word limit of Twit-
ter), and has a vocabulary size that is an order of
magnitude larger. Note, however, that many exam-
ples in CrowdChecked are not good matches (see
Section 3.1), and thus we use distant supervision
to label them (see Section 3.3), with the resulting
dataset sizes of matching pairs shown in Table 4.

Finally, we compare the set of Snopes fact-
checking articles referenced by the crowd fact-
checkers to the ones included in the CheckThat 21
competition. We can see that the tweets in Crowd-
Checked refer to around 3.5K less articles (namely
10,340), compared to CheckThat *21, which con-
sists of 13,835 articles. A total of 8,898 articles are
present in both datasets. Since the CheckThat *21
is collected earlier, it includes less articles from re-
cent years compared to CrowdChecked, and peaks
at 2016/2017. Nevertheless, for CheckThat °21,
the number of Snopes articles included in a claim—
article pair is far less compared to our dataset (even
after filtering out the unrelated pairs), as it is capped
at the number of tweets included in that dataset
(which is 1.4K).

More detail about the process of collecting the
fact-checking articles is given in Appendix B.2.
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Figure 2: Histogram of the year of publication of the
Snopes articles included in CrowdChecked (our dataset)
vs. those in CheckThat "21.

3.3 Data Labeling (Distant Supervision)

To label our examples, we experiment with two
distant supervision approaches: (i) based on the
Jaccard similarity between the tweet and its fact-
checking article, and (ii) based on the predictions
of a model trained on CheckThat *21. We describe
these two approaches in more detail below.

Jaccard Similarity In this approach, we first pre-
process the texts by converting them to lowercase,
removing all URLs and replacing all numbers with
a single zero. Then, we tokenize the texts using the
NLTK’s Twitter tokenizer (Loper and Bird, 2002),
and we strip all handles and user mentions. The fi-
nal preprocessing step is to filter out all stop words
and punctuation (including quotes and special sym-
bols) and to stem (Porter, 1980) all tokens.

In order to obtain a numerical score for each
tweet—article pair, we calculate the Jaccard simi-
larity (jac) between the normalized tweet text and
each of the title and the subtitle from the Snopes
article (i.e., the intersection over the union of the
unique tokens). Both fields present a summary of
the fact-checked claim, and thus should include
more compressed information. Finally, we average
these two similarity values to obtain a more robust
score. Statistics are shown in Table 2.

Semi-Supervision Here, we train a Sentence-
BERT (Reimers and Gurevych, 2019) model, as de-
scribed in Section 4, using the manually annotated
data from CheckThat *21. The model shows strong
performance on the testing set of CheckThat *21
(see Table 5), and thus we expect it to have good
precision at detecting matching fact-checked pairs.
In particular, we calculate the cosine similarity be-



Range  Examples Good Pairs Good Pairs
(Jaccard) (%) Reply (%) Conv. (%)
[0.0;0.1) 62.57 5.88 0.00
[0.1;0.2) 18.98 36.36 14.29
[0.2;0.3) 10.21 46.67 50.00
[0.3;0.4) 4.17 76.47 78.57
[0.4;0.5) 2.33 92.86 92.86
[0.5;0.6) 1.08 94.12 94.12
[0.6;0.7) 0.43 80.00 80.00
[0.7;0.8) 0.11 92.31 92.31
[0.8;0.9) 0.05 91.67 92.86
[0.9;1.0] 0.02 100.00 100.00

Table 2: Proportion of examples in different bins based
on average Jaccard similarity between the tweet <> the
title/subtitle. Manual annotations of good pairs.

Range Examples Good Pairs
(Cosine) (%) (%)
[-0.4;0.1) 37.83 0.00
[0.1;0.2) 16.50 6.67
[0.2;0.3) 12.28 41.46
[0.3;0.4) 10.12 36.36
[0.4;0.5) 8.58 63.16
[0.5;0.6) 6.69 70.00
[0.6;0.7) 4.47 84.21
[0.7;0.8) 2.48 96.15
[0.8;0.9) 0.97 93.10
[0.9;1.0] 0.08 100.00

Table 3: Proportion of examples in different bins based
on cosine similarity using sentence-BERT trained on
CheckThat ’21. Manual annotations of good pairs.

tween the embeddings of the fact-checked tweet
and the fields from the Snopes article. Statistics
about the scores are shown in Table 3.

3.4 Feasibility Evaluation

To evaluate the feasibility of the obtained labels, we
performed manual annotation, aiming to estimate
the number of good pairs (i.e., tweet—article pairs,
where the article fact-checks the claim in the tweet).
Our prior observations of the data suggested that
unbiased sampling from the pool of tweets was
not suitable, as it would include mostly pairs that
have very few overlapping words, which is often
an indicator that the texts are not related. Thus, we
sample the candidates for annotation based on their
Jaccard similarity, i.e., we divided the range of pos-
sible values [0;1] into 10 equally sized bins and

we sampled 15 examples from each bin, resulting
into 150 conversation-reply—tweet triples. After-
wards, the appropriateness of each reply-article and
conversation-article pair is annotated by three an-
notators independently. The annotators had a good
level of inter-annotator agreement: 0.750 for the
conversations, and 0.745 for the replies in terms of
Fleiss Kappa (Fleiss, 1971) (see Appendix C).
Tables 2 and 3 show the resulting estimates of
good pairs for both Jaccard and cosine-based la-
beling. In the case of Jaccard, we can see that the
expected number of good examples is very high
(over 90%) in the range of [0.4—1.0], and then it
drastically decreases, going to almost zero when
the similarity is less than 0.1. Similarly, for the
cosine score, we can see high number of matches
in the top 4 bins (/0.6—1.0]), albeit the number of
matches remains relatively high in the following
interval of [0.2-0.6) between 36% and 63%, and
again gets close to zero for the lower-score bins.
We analyze the distribution of the Jaccard scores in
CheckThat *21 in more detail in Appendix B.3.

4 Method

General Scheme As a base for our models, we
use Sentence-BERT (SBERT). It uses a Siamese
network trained with a Transformer (Vaswani et al.,
2017) encoder to obtain sentence-level embeddings.
We keep the base architecture proposed by Reimers
and Gurevych (2019), but we use additional fea-
tures, training tricks, and losses described in the
next sections. The input of the model is a pair of a
tweet and fact-checking article, which we encode
as follows:

» User Tweet:

[CLS] Tweet Text [SEP]

* Fact-checking article:

[CLS] Title [SEP] Subtitle [SEP] Verified
Claim [SEP]

We train the models using the Multiple Negatives
Ranking (MNR) loss (Henderson et al., 2017) (see
Eq. 1), instead of the standard cross-entropy loss,
as the datasets contain only positive (i.e., matching)
pairs. Moreover, we propose a new variant of the
MNR loss that accounts for the noise in the dataset,
as described in detail in Section 4.1.

Enriched Scheme In the enriched scheme of
the model, we adopt the pipeline proposed in the
best-performing system from the CheckThat *21
competition (Chernyavskiy et al., 2021b). Their
method consists of independent components for



assessing lexical (TE.IDF-based) and semantic
(SBERT-based) similarities. The SBERT mod-
els use the same architecture and input format as
described in the ‘General Scheme’ above. How-
ever, Chernyavskiy et al. (2021b) use an ensem-
ble of models, i.e., instead of calculating a sin-
gle similarity between the tweet and the joint ti-
tle/subtitle/verified claim, the similarities between
the tweet and the claim, the joint title/claim, and
the three together are obtained from three models,
one using on TEIDF and one using SBERT, for
each combination. These similarities are combined
via a re-ranking model (see Section 4.2. In our
experiments, the TEIDF and the model ensembles
are included only in the models with re-ranking.

Shuffling and Temperature Additionally, we
adopt a temperature parameter (7) in the MNR
loss. We also make it trainable in order to stabilize
the training process as suggested in (Chernyavskiy
et al., 2021a). This forces the loss to focus on
the most complex and important examples in the
batch. Moreover, this effect is amplified after each
epoch by an additional data shuffling that composes
batches from several groups of the most similar ex-
amples. This shuffling, in turn, increases the tem-
perature significance. The nearest neighbors form-
ing the groups are found using the model predic-
tions. More detail can be found in (Chernyavskiy
etal., 2021b).

4.1 Training with Noisy Data

Self-Adaptive Training To account for possible
noise in the distantly supervised data, we modify
the training process and apply a self-adaptive train-
ing (Huang et al., 2020). We iteratively refurbish
the labels y using the predictions of the current
model starting after an epoch of choice, which is a
hyper-parameter:

Yoy +(1-a)- g,

where 3" is the current refurbished label (y, = y
initially), ¢ is the model prediction, and « is a
momentum hyper-parameter (we set « to 0.9).

Since the MNR loss operates with positive pairs
only (it does not operate with labels), to implement
this approach, we had to modify the loss function.
Let {¢;, v; }1..m be the batch of input pairs, where
m is the batch size, C,V € R™*" are the ma-
trices of embeddings for the tweets and for the
fact-checking articles (h is the embeddings’ hidden
size), and C, V are normalized to the unit hyper-
sphere (we use cosine similarity), then:

ey

If we set y; = 1, then Eq. 1 resembles the MNR
loss definition. The parameter T is the temperature,
discussed in Section 4 Shuffling and Temperature.

Weighting In the self-adaptive training approach,
Huang et al. (2020) introduce weights w; =
max;e (1, 1} tij, where ¢; is the corrected one-hot
encoded target vector in a classification task with
L classes. The goal is to ensure that noisy labels
will have a lower influence on the training process
compared to correct labels. Instead of a classifi-
cation task with one-hot target vectors ¢; ;, here
we have real targets y; . Therefore, we take these
probabilities as weights: w; = y; . After applying
both modifications with the addition of labels and
weights, the impact of each training example is
proportional to the square of the corrected label,
i.e,in Eq. 1y is now squared.

4.2 Re-ranking

Re-ranking has shown major improvements for de-
tecting previously fact-checked claims (Shaar et al.,
2020, 2021; Mihaylova et al., 2021; Chernyavskiy
et al., 2021b), and thus we include it as part of our
model. In particular, we adopt the re-ranking pro-
cedure from Chernyavskiy et al. (2021b). It uses
a LambdaMART (Wu et al., 2010) model. The in-
puts are the reciprocal ranks (position in the ranked
list of claims) and the predicted relevance scores
(2 factors) based on the scores of the TF.IDF and
S-BERT models (2 models), between the tweet and
the claim, claim+title, and claim+title+subtitle (3
combinations), for a total of 12 features in the en-
semble and 4 in the single model.

S Experiments

In this section, we describe our experimental setup
and we present our experimental results. The train-
ing procedure and the hyper-parameters are dis-
cussed in Appendix A, and the baseline models are
in Appendix D.1.

5.1 Experimental Setup

Datasets Table 4 shows statistics about the data
split sizes for CrowdChecked and CheckThat *21.
We use these splits in our experiments, albeit some-
times mixed together.



Dataset Data Split | Threshold Tweet-Article

Pairs

Train - 332,660

Train 0.30 27,387

0.40 12,555

CrowdChecked Jaccard 0.50 4,953
(Our Dataset)

0.50 48,845

Train 0.60 26,588

Cosine 0.70 11,734

0.80 3,496

Train - 999

CheckThat 21  Dev* - 199

Test - 202

Table 4: Statistics about our collected datasets in terms
of tweet—Aaticle pairs. Each subset is used for training.

The first group (CrowdChecked) is the data splits
obtained from distant supervision. As the positive
pairs are annotated with distant supervision and not
by humans, we only include the examples as part
of the training set. Each shown split is obtained
using a different similarity measure (Jaccard or Co-
sine) or threshold (see Section 3.3). From the total
number of 332,660 collected tweet—claim pairs in
CrowdChecked, we end up with subsets of sizes
between 3.5K and 49K examples.

The second group describes the CheckThat *21
dataset. We preserve the original training, develop-
ment, and testing splits. In each of our experiments,
we validate and test on the corresponding subsets
from the CheckThat *21, while the training set can
be a mix with CrowdChecked.

Metrics For our evaluation, we adopt the ranking
measures used in the CheckThat 21 competition.
In particular, we calculate the Mean Reciprocal
Rank (MRR), Mean Average Precision (MAP@K)
and Precision@XK, for K € {1,3,5,10}. All the
models are optimized for MAP@35, as was in the
CLEF-2021 CheckThat! lab subtask 2A.

5.2 Experimental Results

Below, we present experiments that (i) aim to ana-
lyze the impact of training with the distantly super-
vised data from CrowdChecked, and (i) to further
improve the state-of-the-art (SOTA) results using
modeling techniques to better leverage the noisy
data points (see Section 4). In all our experiments,
we evaluate the model on the development and on

“Shaar et al. (2021) lists 200, but there is one duplicate
row in the development set.

Model MRR P@1 MAP@5
Baselines (CheckThat °21)

Retrieval (Shaar et al., 2021) 76.1 70.3 74.9
SBERT (CheckThat *21)  79.96 74.59 79.20
CrowdChecked (Our Dataset)

SBERT (jac > 0.30) 81.50 76.40 80.84
SBERT (cos > 0.50) 81.58 7591 81.05
(Pre-train) CrowdChecked, (Fine-tune) CheckThat °21
SBERT (jac > 0.30, Seq)  83.76 78.88 83.11
SBERT (cos > 0.50, Seq) 82.26 77.06 81.41

(Mix) CrowdChecked and CheckThat ’21
SBERT (jac > 0.30, Mix) 83.04 78.55
SBERT (cos > 0.50, Mix) 82.12 76.57

82.30
81.38

Table 5: Evaluation on the CheckThat *21 testing set. In
parenthesis is name of the training split, i.e., Jaccard or
Cosine selection strategy, (Seq) first training on Crowd-
Checked and then on CheckThat 21, (Mix) mixing the
data from the two. The highest results are in bold.

the testing sets from CheckThat 21 (see Table 4),
and we train on a mix with CrowdChecked. The re-
ported results for each experiment (for each metric)
are averaged over three runs using different seeds.

Data Efficiency Our goal here is to evaluate the
impact of using distantly supervised data from
CrowdChecked. In particular, we train an SBERT
baseline, as described in Section 4, using four
different training datasets: (i) the training data
from CheckThat *21, (ii) training data from Crowd-
Checked, (iii) pre-training on data from Crowd-
Checked and then fine-tuning on CheckThat °21,
(iv) mixing the data from both datasets.

Table 5 shows the results grouped based on train-
ing data used. In each group, we include the two
best-performing models. We see that all SBERT
models outperform the Retrieval baseline by 4—8
points absolute in terms of MAP@5. Interestingly,
training only on distantly supervised data is enough
to outperform the SBERT trained on the Check-
That *21 dataset by more than 1.5 MAP@5 points
absolute. Moreover, the performance of both data
labeling strategies (i.e., Jaccard and Cosine) is rel-
atively close, suggesting comparable amount of
noise in the two datasets.

Next, we train on combined data from the two
datasets. Unsurprisingly, both mixing the data and
training on the two datasets sequentially (first on
CrowdChecked and then on CheckThat *21) yields
additional improvement compared to training on
a single dataset. Moreover, we observe the best
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Figure 3: MAP @S5 for different thresholds and distant
supervision approaches. Jaccard, Cosine models are
trained only on CrowdChecked, (Seq) and (Mix) — also
on CheckThat *21.

Model MAP@5
Dev Test

DIPS (Mihaylova et al., 2021) 93.6 78.7
NLytics (Pritzkau, 2021) - 799
Aschern (Chernyavskiy et al., 2021b) 94.2 88.2
SBERT (jac > 0.30, Mix) 90.0 82.3
+ shuffling & trainable temp. 92.4 82.6
+ self-adaptive training (Eq. 1)  92.6 83.6

+ loss weights 92.7 84.3

+ TEIDF + Re-ranking 93.1 89.7

+ TEIDF + Re-ranking (ens.) 94.8 90.3

Table 6: Results on CheckThat °21 (dev and test). We
compare our model and its components (added sequen-
tially) to the state of the art. The best results are in bold.

result when the model is first pre-trained on the
(Jaccard > 0.3) subset of CrowdChecked, and then
fine-tuned on CheckThat *21. This combination
gains 2 points absolute in terms of MRR, P@1, and
MAP@5, compared to SBERT (CrowdChecked)
and 4 points compared to SBERT (CheckThat ’21).
Nevertheless, we must note that pre-training with
the Cosine similarly (cos > 0.50) did not yield
such sizable improvements as the ones when using
Jaccard. We attribute this, on one hand, to the more
expected noise in the data according to our manual
annotations (see Section 3.4), and on the other, to
the fact that these examples are annotated by a
similar model, so they are presumably easy for it.
Further, we analyze the effects of choosing dif-
ferent thresholds for the distant supervision ap-
proaches. Figure 3 shows the change of MAP@5

for each data labeling strategy. On the left part of
the figure, in the interval [0.3-0.5], are shown the
results of the Jaccard-based data labeling strategy,
and on the right ([0.5-0.8]) — the Cosine strategy.
Once again, the models trained on the data selected
using Jaccard similarity perform similarly or better
as the SBERT (CheckThat ’21) model (blue solid
line). On the other hand, the Cosine-based selection
outperforms the baseline only in small thresholds <
0.6. These observations are in favor of the hypothe-
sis that the highly ranked pairs from the fine-tuned
SBERT model are easy examples, and do not bring
much signal to the model over the CheckThat *21
data, whereas the Jaccard ranked ones significantly
improve the model’s performance. Nonetheless, we
see similar performance when training with data
from the lowest two thresholds for the two simi-
larities (without data mixing), which suggests that
these subsets have similar characteristics.

Adding more distantly supervised data is benefi-
cial for the model, regardless of the strategy. The
only exception is the drop in performance when
we decrease the Jaccard threshold from 0.5 to 0.4.
We attribute this to the quality of the data in that
bracket, as the examples with lower similarity are
expected to add more noise, however the results
improve drastically at the next threshold (adding x2
more examples). The latter suggests that the model
was able to generalize better from the new data.
There is no such drop in the Cosine strategy. We
explain this with expectation that noise increases
proportionally to the decrease in model confidence.

Finally, we report the performance of each model
both on the development and testing sets in Ap-
pendix D.2, Tables 9 and 10.

Modeling Noisy Data We explore the effects
of the proposed changes to the SBERT training
approach: (i) shuffling and training temperature,
(i) data-related modification of the MNR loss for
self-adaptive training with weights. We use the
(jac > 0.30, mix) approach in our experiments, as
the baseline SBERT models achieved the highest
scores on the development set (Table 9). In Table 6,
we ablate each of these modifications by adding
them iteratively to the baseline SBERT model.
First, we can see that adding a special shuffling
procedure and a trainable temperature (7) improves
the MAP@5 by 2 points on the dev set and 0.3 on
the test set. Next, we see a sizable improvement
of 1 point MAP@S5 on the test set, when using
the self-adaptive training with MNR loss. More-



over, an additional 0.7 points comes from adding
weights to the loss, arriving at 84.3 MAP@5. These
weights allow the model to give higher importance
to the less noisy data during the training process.
Here, we must note that for these two ablations the
improvements on the development set are diminish-
ing. We attribute this to its small size (199 exam-
ples) and the high values of MAP@S5. Finally, note
that our model, without using re-ranking, outper-
forms all state-of-the-art models, except Aschern,
by more than 4.5 points on the testing dataset.

On the last two rows of Table 6, we present
the results of our model that includes all proposed
components, in combination with TEIDF features
and the LambdaMART re-ranking, described in
Section 4. Here, we must note that the model is
trained on a part of the CheckThat 21 training pool
(80%) — the other part is used to train the re-ranking
model. The full setup boosts the model’s MAP@5
up to 89.7 when using a single model of the TE.IDF
and SBERT (using the title/subtitle/claim as inputs,
same as SBERT). With the ensemble architecture
(re-ranking based on the scores of three TF.IDF and
three SBERT models), we reach our best results of
90.3 on the test set (adding 1.7 MAP@5 on deyv,
and 0.6 on test), outperforming the previous state-
of-the-art approach (Aschern Chernyavskiy et al.
(2021b), 88.2) by 2 points MAP@35, and more than
11 compared to the second best model (Pritzkau
(2021), 79.9). This improvement corresponds to
the observed gain over the SBERT model without
re-ranking. Nevertheless, the change in the strength
of the factors in LambdaMART is less. The TF-IDF
models still have high importance for re-ranking
— a total of 41% compared to 42.8% reported in
Chernyavskiy et al. (2021b). Here, we have a de-
crease mainly due to an increase of the importance
of the reciprocal rank factor from 18.8% to 20.2%
of the SBERT model that selects candidates. The
strength of other factors remains almost unchanged.

6 Discussion

Our proposed distant supervision data selection
strategies show promising results, achieving SOTA
results on the CheckThat *21. Nonetheless, we are
not able to identify all matching pairs in the list of
candidates in CrowdChecked. Hereby, we try to
estimate their expected number using the statistics
from our manual annotations,” shown in Tables 2,3.

SDue to the small number of annotated examples the vari-
ance in the estimates is large.

In particular, we estimate it by multiplying the
fraction of good pairs in each similarity bin by
the number of examples in this bin. Based on co-
sine similarity, we estimate that out of the 332,600
pairs, the matching pairs are approximately 90,170
(27.11%). Further, based on the Jaccard distri-
bution, we estimate that 14.79% of all tweet-
conversation (root of the conversation), and 22.23%
tweet-reply (the tweet before the current in the con-
versation) pairs are expected to match, or nearly
61,500 examples, assuming that the number of con-
versations and replies is equal.®

Our experiments show that the models can ef-
fectively account for the noise in the training data.
Both the self-adaptive training and the additional
weighing in the loss function (described in Sec-
tion 4), gain 1 additional point MAP@5 each.
These results suggest that further investigation of
the potential of learning from noisy labels (Han
et al., 2018; Wang et al., 2019; Song et al., 2020b,a;
Zhou and Chen, 2021) and utilizing all examples in
CrowdChecked, can improve the results even more.
Moreover, we argue that incorporating the nega-
tive examples (non-matching pairs) from Crowd-
Checked in the training objective can be beneficial
for the models (Lu et al., 2021; Thakur et al., 2021).

7 Conclusion and Future Work

We presented CrowdChecked, a large-scale dataset
for detecting previously fact-checked claims, with
more than 330,000 pairs of tweets and correspond-
ing fact-checking articles posted by crowd fact-
checkers. We further investigated two techniques
for labeling the tweet—article pairs using distance
supervision, resulting in training sets of 3.5K-50K
examples. We also proposed an approach for train-
ing from noisy data using self-adaptive learning
and additional weights in the loss function. Fur-
thermore, we demonstrated the utility of our data,
which yielded sizable performance gains of four
points in terms MRR, P@1, and MAP@35 over
strong baselines trained on manually annotated
data (Shaar et al., 2021). Finally, we demonstrated
improvements over the state of the art on the CLEF-
2021 CheckThat! dataset (Chernyavskiy et al.,
2021b) by two points absolute, when using Crowd-
Checked and our proposed model.

In future work, we plan to experiment with more
languages and more distant supervision techniques
such as predictions from an ensemble model.

®In practice, there are more replies than conversations.



Ethics and Broader Impact

Dataset Collection

We collected the dataset using the Twitter APL’
We followed the terms of use outlined by Twitter.®
Specifically, we only downloaded public tweets,
and we only distribute dehydrated Twitter IDs.

Biases

We note that some of the annotations are subjective,
and we have clearly indicated in the text which
these are. Thus, it is inevitable that there would
be biases in our dataset. Yet, we have a very clear
annotation schema and instructions, which should
reduce biases.

Misuse Potential

Most datasets compiled from social media present
some risk of misuse. We, therefore, ask researchers
to be aware that our dataset can be maliciously
used to unfairly moderate text (e.g., a tweet) that
may not be malicious based on biases that may or
may not be related to demographics and other in-
formation within the text. Intervention with human
moderation would be required in order to ensure
this does not occur.

Intended Use

Our dataset can enable automatic systems for analy-
sis of social media content, which could be of inter-
est to practitioners, professional fact-checker, jour-
nalists, social media platforms, and policymakers.
Such systems can be used to alleviate the burden
for social media moderators, but human supervi-
sion would be required for more intricate cases and
in order to ensure that the system does not cause
unintended harm.

Our models can help fight the COVID-19 info-
demic, and they could support analysis and deci-
sion making for the public good. However, the
models can also be misused by malicious actors.
Therefore, we ask the potential users to be aware of
potential misuse. With the possible ramifications
of a highly subjective dataset, we distribute it for
research purposes only, without a license for com-
mercial use. Any biases found in the dataset are
unintentional, and we do not intend to do harm to
any group or individual.

"http://developer.twitter.com/en/docs
8http://developer.twitter.com/en/developer-terms/
agreement-and-policy

Environmental Impact

We would like to warn that the use of large-scale
Transformers requires a lot of computations and
the use of GPUs/TPUs for training, which con-
tributes to global warming (Strubell et al., 2019).
This is a bit less of an issue in our case, as we
do not train such models from scratch; rather, we
fine-tune them on relatively small datasets. More-
over, running on a CPU for inference, once the
model is fine-tuned, is perfectly feasible, and CPUs
contribute much less to global warming.
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Appendix
A Hyperparameters and Fine-Tuning

Common Parameters

* The models are developed in Python using Py-
Torch (Paszke et al., 2019), the Transformers
library (Wolf et al., 2020) and the Sentence
Transformers library (Reimers and Gurevych,
2019)°.
For model optimization we  use
AdamW (Loshchilov and Hutter, 2017)
with weight decay le-8, 51 0.9, 82 0.999, €
1e-08, for 10 epochs and maximum sequence
length of 128 tokens (per encoder).”
All SentenceBERT models are initialized
from the ’stsb-bert-base’'! checkpoint.
The SBERT models use cosine similarity both
during training inside the MNR loss and dur-
ing inference for ranking.
The values of the hyper-parameters were
selected on the development set of Check-
That *21'% and we chose the best model check-
point based on the performance on the devel-
opment set (MAP@5).
We ran each experiment three times with dif-
ferent seeds and averaged all the metrics.
The models were evaluated on each epoch or
250 steps, whichever is less.
The evaluation metrics are calculated using
the official code from the CheckThat *21 com-
petition (Shaar et al., 2021)"3 and the Sen-
tenceTransformer’s library.
We trained our models on 5x Tesla K80 GPUs
and 1x GeForce GTX 1080Ti, depending on
the dataset size, the experiments took between
10 minutes and 5 hours.

Baseline SBERT

¢ Baseline SentenceBERT is trained w/ LR 2e-
05, warmup 0.1, and batch size 32.

* We set the temperature (7) in the MNR loss
to 1.0, i.e., using unmodified MNR.

* The model consists 110M params, same as
the bert-base Devlin et al. (2019), as it uses a
bi-encoder scheme.

? github.com/UKPLab/sentence- transformers

'""When needed, we truncated the sequences token by token,
starting from the longest sequence in the pair.

"huggingface.co/sentence-transformers/stsb-bert-base

Zhttps://gitlab.com/checkthat_lab/
clef2021-checkthat-lab/-/tree/master/task2

Bhttps://gitlab.com/checkthat_lab/
clef2021-checkthat-lab/-/tree/master/task2/scorer
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Proposed Model

The model is trained w/ LR 1e-05, warmup
0.1, and batch size 8, group size of 4 during
the dataset shuffling.

We tuned settings of the self-adaptive training
approach: momentum « to 0.9, refurbishment
process starting at the second epoch.

We set the learning rate for temperature (7) in
the MNR loss to 0.4.

In the re-ranking, we used 800 training exam-
ples to train SBERT and the remaining 199 to
train LambdaMART.

We re-ranked the top-100 results from the best
SentenceBERT model with LambdaMART.
All other training details we kept from
(Chernyavskiy et al., 2021b).

The model consists 330M params, 3x as the
size of the Baseline SBERT, as it trains three
separate models.

In our preliminary experiments, SBERT-base
and SBERT-large models achieved the same
results in terms of MAP @5, therefore we ex-
periment with the base versions.

B Dataset

B.1 Tweet Collection
(Conversation Structure)

It is important to note that this ‘fact-checking’ tweet
can be part of a multiple-turn conversational thread,
therefore taking the post that it replies to (previous
turn), does not always express a claim which the
current tweet targets. In order to better understand
that phenomena, we perform manual analysis of
conversation thread. The conversational threads are
organized in a similar way shown Figure 1, i.e., the
root is the first comment, then there can be a long
discussion, followed by a fact-checking comment
(the one with the Snopes link). In our analysis we
identify four patterns: (i) current tweet verifies a
claim in the the tweet it replies to, (ii) the tweet
verifies the root of the conversation, (iii) the tweet
does not verify any claim in the chain (a common
scenario), (iv) in very few cases the fact-check tar-
gets a claim expressed not in the root or the closest
tweet. This analysis suggests that for the task of
detecting previously fact-checked claims, it is suf-
ficient to collect the triplet of the fact-checking
tweet, root of the conversation (conversation), and
the tweet that the target tweet is replying to (reply).


github.com/UKPLab/sentence-transformers
huggingface.co/sentence-transformers/stsb-bert-base
https://gitlab.com/checkthat_lab/clef2021-checkthat-lab/-/tree/master/task2
https://gitlab.com/checkthat_lab/clef2021-checkthat-lab/-/tree/master/task2
https://gitlab.com/checkthat_lab/clef2021-checkthat-lab/-/tree/master/task2/scorer
https://gitlab.com/checkthat_lab/clef2021-checkthat-lab/-/tree/master/task2/scorer

B.2 Fact-checking Articles Collection

In order to obtain a collection of fact-checking arti-
cles for each tweet, we first formed a list of unique
URLs shared in the fact-checking tweets from the
crowd fact-checkers. Next, from each URL we
downloaded the HTML of the whole page and ex-
tracted the meta information using CSS selectors
and RegEx rules. In particular, we follow previ-
ous work (Barrén-Cedeno et al., 2020; Shaar et al.,
2021) and collect: title, the title of the page, subti-
tle, short description of the fact-check, claim, the
claim of interest, subtitle, short description of the
fact-check, date, the date on the article was pub-
lished, author, the author of the article. We do
not parse the content of the article and factual la-
bel, as the credibility of the claim is not related to
the objective of this task, i.e., the goal is to find a
fact-checking article, but not to verify it.

As a result we collected 10,340 articles that are
published in the period between 1995-2021. The
per-year distribution is shown in Table 2 (in brown).
The majority of the articles are from the period after
2015, with a peak at the ones from 2020/2021. We
attribute this on the increased media literacy and
on the nature of the Twitter dynamics (Zubiaga,
2018).

B.3 CheckThat ’21 Word Overlaps

Here, we analyze the distribution of the Jaccard
scores in the CheckThat 21, shown in Figure 4.
The distribution is different compared to the one
observed in the our newly collected dataset, as it
peaks at around 0.4, and is slightly shifted towards
lower similarity values, suggesting the examples
included are not easily solvable with basic lexical
features (Shaar et al., 2021), which we also observe
in our experiments (see Section 5).

C Annotations

Setup and Guidelines Each annotator was pro-
vided by the same guidelines and briefed in from
one of the authors of this paper. For annotation we
used a Google Sheets document, where non of the
annotators had access to the annotations from the
others. The annotation sheet contained the follow-
ing fields:
* tweet_text — the text of the fact-checking tweet
* text_conversation — the text of the root of the
conversation
* text_reply — the text of the last tweet before
the fact-checking one
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Figure 4: Distribution of the Jaccard similarity scores.
The score is an average of the sim(tweet, title) and
sim(tweet, subtitle).

‘ Replay Conversation

Fleiss Kappa | 0.745 0.750

Table 7: Fleiss Kappa inter-annotator agreement be-
tween our three annotators (A, B, C).

* title — the title of the Snopes article

* subtitle — the subtitle of the Snopes article.

The task annotation task is to mark if ‘Conversa-
tion matches’ and ‘Replay matches’ using a check-
boxes. We also allowed them to add comments as
a free form text.

Demographics We recruited three annotators —
2 male and 1 female on age between 25 and 30.
The annotators have higher education (at least a
bachelors degree), and are currently enrolled in a
MSc or Ph.D programs in computer science. Each
annotator is proficient in English but is not a native
speaker of the language.

Inter-annotator Agreement Here, we present
the inter-annotator agreement. We measure the
overall agreement using Fleiss kappa (Fleiss, 1971)
(shown in Figure 7) but also the agreement between
each two annotators using Cohen’s Kappa (shown
in Table 8). The overall level of agreement of agree-
ment between the annotators is good. Moreover,
we can see that between annotator A and C the
agreement is almost perfect both for the replies and
conversations. The lowest agreement is between A
and B but still substantial.

Disagreement Analysis After the annotations
procedure was finished we analyzed the examples
the annotators disagree on. The first type of claims
that cause disagreement are the ones depend on
information external sources, e.g., ‘Blame Russia



Annotators | Replay Conversation
Cohen Kappa
A+ B 0.650 0.655
A& C 0.885 0.922
B« C 0.698 0.673

Table 8: Cohen Kappa inter-annotator agreement be-
tween our three annotators (A, B, C).

again? [URL]’. The second type are tweets contain-
ing multiple claims that needs to be fact-checked,
however the referenced article does not target the
main claim, e.g., ‘It sounds like someone who is
scared as heck that they will not win,” Shermichael
Singleton says of Pres. Trump’s remarks encour-
aging his supporters to vote twice.” and its crowd
fact-check ‘Did Trump Tell People To Vote Twice?’ .
Here, the main claim is in the quote itself, while the
remark about voting twice is secondary. Third type
are the claim is ambiguous Fanta (soft drink) was
created so that the Nazi’s could replace Coca-Cola
during WWII [URL], and the fact-check is about
‘Was Fanta invented by the Nazis?’. Here, it is not
clear who created Fanta. The final pattern is — the
claim is partial match with the fact-check, e.g., ‘did
President Trump have a great economy and job
creation for Ist 3 years???’, and the fact-check is
‘Did Obama’s Last 3 Years See More Jobs Created
Than Trump’s First 37°.

D Experiments

D.1 Baselines and State-of-the-Art

Retrieval (Shaar et al., 2021) uses an informa-
tion retrieval model based on BM25 (Robertson and
Zaragoza, 2009) that ranks the list of fact-checking
articles based on the relevance score between its
{claim’, ’title’} and the tweet’s text.

Sentence-BERT s a bi-encoder model based on
Sentence-BERT fine-tuned for detecting previously
fact-checked claims using MNR loss. The details
are in Section 4, General Scheme.

DIPS (Mihaylovaetal., 2021) adopts a Sentence-
BERT model that computes the cosine similarity
for each pair of an input tweet and a verified claim
(article). The final ranking is made by passing a
sorted list of cosine similarities to a fully-connected
neural network.

NLytics (Pritzkau, 2021) uses a RoBERTa-based
model optimized as a regression function obtaining
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Model MRR P@1 MAP@5
Baselines (CheckThat °21)

Retrieval (Shaar et al., 2021)  76.1 70.3 74.9

SBERT (CheckThat *21) 87.97 84.92 87.45

CrowdChecked (Our Dataset)

SBERT (cos > 0.50) 88.20 85.76 87.80

SBERT (cos > 0.60) 87.21 84.25 86.69

SBERT (cos > 0.70) 86.18 83.08 85.76

SBERT (cos > 0.80) 83.57 80.40 82.93

SBERT (jac > 0.30) 88.01 85.09 87.61

SBERT (jac > 0.40) 87.26 84.76 86.80

SBERT (jac > 0.50) 86.53 83.42 86.13

(Pre-train) CrowdChecked, (Fine-tune) CheckThat 21

SBERT (cos > 0.50, Seq) 89.92 87.60 89.49
SBERT (cos > 0.60, Seq) 89.56 87.27 89.20
SBERT (cos > 0.70, Seq) 88.70 85.59 88.36
SBERT (cos > 0.80, Seq) 88.42 85.26 88.03
SBERT (jac > 0.30, Seq) 90.21 87.44 89.69
SBERT (jac > 0.40, Seq) 89.64 86.77 89.25
SBERT (jac > 0.50, Seq) 89.44 86.26 89.03
(Mix) CrowdChecked and CheckThat 21
SBERT (cos > 0.50, Mix) 89.47 86.77 88.99
SBERT (cos > 0.60, Mix) 88.54 85.76 87.98
SBERT (cos > 0.70, Mix) 87.71 84.92 87.18
SBERT (cos > 0.80, Mix) 88.40 85.26 87.97
SBERT (jac > 0.30, Mix) 90.41 87.94 90.00
SBERT (jac > 0.40, Mix) 89.82 86.60 89.48
SBERT (jac > 0.50, Mix) 88.71 85.26 88.31

Table 9: Evaluation on the CheckThat "21 development
set. In parenthesis is name the training split, i.e., Jaccard
(jac) or Cosine (cos) data selection strategy, (Seq) first
training on CrowdChecked and then on CheckThat *21,
(Mix) mixing the data from the two datasets.

a direct ranking for each tweet-article pair.

Aschern (Chernyavskiy et al., 2021b) combines
TF.IDF with a Sentence-BERT (ensemble with
three models of each type). The final ranking is
obtained from a re-ranking LambdaMART model.

D.2 Experimental Results

Here, we present the expanded results for our ex-
periments described in Section 5. Tables 9 and 10
include the results for the Data Efficiency experi-
ments on the development set, and testing set, re-
spectively. In Table 10 corresponds to Table 5 in
the main paper, and includes all metrics and for all
thresholds (shown in Figure 3). Next, the results
from our Modeling Noisy Data experiments are in
Table 11, which corresponds to Table 6 in the main
paper. In all tables we use the same notation and
grouping as in their corresponding table.



Precision MAP
Model MRR @1 @3 @5 @10 @20 @1 @3 @5 @10 @20

Baselines (CheckThat °21)
Retrieval (Shaaretal.,2021) 76.1 703 26.2 164 88 4.6 703 741 749 757 759
SBERT (CheckThat °21) 79.96 74.59 27.89 17.19 896 4.61 74.59 78.66 79.20 79.66 79.83

CrowdChecked (Our Dataset)

SBERT (cos > 0.50) 81.58 7591 28.60 17.76 9.04 4.67 7591 80.36 81.05 81.27 81.48
SBERT (cos > 0.60) 79.71 7475 27.39 1696 8.86 4.59 74.75 78.25 78.84 79.38 79.61
SBERT (cos > 0.70) 78.27 7228 27.61 17.10 8.89 4.53 7228 76.95 77.54 78.01 78.12
SBERT (cos > 0.80) 78.39 7294 2734 16.83 8.81 4.55 7294 77.04 77.52 78.08 78.28
SBERT (jac > 30) 81.50 76.40 28.49 17.43 894 4.65 76.40 80.45 80.84 81.14 81.38
SBERT (jac > 40) 79.45 7442 2734 1693 8.89 4.65 7442 77.92 7852 79.08 79.33
SBERT (jac > 50) 79.96 7475 27.89 1729 894 4.60 74.75 78.63 79.26 79.63 79.81

(Pre-train) CrowdChecked, (Fine-tune) CheckThat 21
SBERT (cos > 0.50, Seq) 82.26 77.06 28.27 17.62 9.26 4.76 77.06 80.64 81.41 81.99 82.18
SBERT (cos > 0.60, Seq) 80.13 75.41 2745 17.00 8.94 4.65 75.41 78.55 79.13 79.76 79.99
SBERT (cos > 0.70, Seq) 79.27 73.43 27.72 17.33 8.94 4.58 73.43 77.78 78.56 78.94 79.09
SBERT (cos > 0.80, Seq) 78.32 72.77 27.17 1693 8.89 4.58 72.77 76.71 77.41 77.98 78.15
SBERT (jac > 0.30, Seq) 83.76 78.88 28.93 17.82 9.21 4.71 78.88 82.59 83.11 83.49 83.63
SBERT (jac > 0.40, Seq) 80.69 75.25 27.83 17.33 9.09 4.69 75.25 79.04 79.76 80.34 80.57
SBERT (jac > 0.50, Seq) 81.99 76.90 28.16 17.76 9.13 4.69 7690 80.34 81.33 81.70 81.88

(Mix) CrowdChecked and CheckThat 21
SBERT (cos > 0.50, Mix) 82.12 76.57 28.55 17.59 9.13 4.68 76.57 80.86 81.38 81.82 82.00
SBERT (cos > 0.60, Mix) 81.45 76.40 28.27 1743 896 4.61 76.40 80.25 80.79 81.14 81.31
SBERT (cos > 0.70, Mix) 79.08 73.10 27.83 17.33 8.89 4.57 73.10 77.72 78.46 78.77 78.95
SBERT (cos > 0.80, Mix) 79.73 74.75 27.56 17.00 9.06 4.62 74.75 7822 78.73 79.46 79.59
SBERT (jac > 0.30, Mix) 83.04 78.55 28.66 17.52 9.11 4.69 78.55 81.93 82.30 82.75 82.94
SBERT (jac > 0.40, Mix) 81.18 74.59 28.55 17.72 9.14 474 74.59 79.79 80.46 80.85 81.10
SBERT (jac > 0.50, Mix) 81.56 76.73 28.22 17.36 9.03 4.71 76.73 80.23 80.71 81.19 81.45

Table 10: Evaluation on the CheckThat ’21 testing set. In parenthesis is name the training split, i.e., Jaccard (jac) or
Cosine (cos) data selection strategy, (Seq) first training on CrowdChecked and then on CheckThat *21, (Mix) mixing
the data from the two datasets.

Precision MAP

Model MRR @] @3 @5 @I0 @1 @3 @5 @I0
DIPS (Mihaylova et al., 2021) 79.5 72.8 282 17.7 9.2 728 77.8 78.7 79.1
NLytics (Pritzkau, 2021) 80.7 73.8 289 179 93 738 792 799 804
Aschern (Chernyavskiy et al., 2021b) 88.4 86.1 30.0 182 9.2 86.1 88.0 88.3 88.4
SBERT (jac > 0.30, Mix) 83.0 78.6 287 17.5 9.1 78.6 819 823 828
+ shuffling & trainable temp. 83.2 77.7 29.1 17.8 9.1 77.7 822 82.6 829
+ self-adaptive training (Eq. 1) 84.2 78.7 29.3 181 9.3 78.7 83.0 83.6 83.9

+ loss weights 84.8 79.7 29.5 182 9.3 79.7 83.77 843 84.6

+ TE.IDF + Re-ranking 89.9 86.1 309 189 9.6 86.1 89.2 89.7 89.8

+ TEIDF + Re-ranking (ens.) 90.6 87.6 30.7 18.8 9.5 87.6 89.9 90.3 90.4

Table 11: Results on the CheckThat *21 testing set. We compare our model and its components (added sequentially)
to state-of-the-art approaches.
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