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Abstract

While there has been substantial progress in001
developing systems to automate the process of002
fact-checking, such systems still lack credibil-003
ity in the eyes of the users, and thus human004
fact-checkers remain the main drivers of the005
process. In view of that, recently, a middle-006
ground approach has emerged: to do automatic007
fact-checking by verifying whether the input008
claim has been previously fact-checked by pro-009
fessional fact-checkers, and to return back an ar-010
ticle that explains the verdict on the claim. This011
is a sensible approach as people trust manual012
fact-checking, and as many claims are repeated013
multiple times online. Yet, a major issue when014
building such kinds of systems is the small num-015
ber of known input–verified claim pairs avail-016
able for training. Here, we aim to bridge this017
gap by making use of crowd fact-checking, i.e.,018
mining claims in social media for which users019
have responded with a link to a fact-checking020
article. In particular, we mine a large-scale021
collection of 330,000 tweets paired with a cor-022
responding fact-checking article. We further023
propose a new model to learn from this noisy024
data based on modified self-adaptive training,025
in a distant supervision scenario. Our experi-026
ments on a standard test set show improvements027
over the state of the art by two points absolute.028

1 Introduction029

The massive spread of disinformation online, espe-030

cially in social media, was counter-acted by major031

efforts to limit the impact of false information not032

only by journalists and fact-checking organizations033

but also by governments, private companies, re-034

searchers, and ordinary Internet users. Such efforts035

include, but are not limited to building systems036

for automatic fact-checking (Thorne and Vlachos,037

2018; Guo et al., 2021), rumor debunking (Zubiaga038

et al., 2016a; Derczynski et al., 2017), fake news de-039

tection (Ferreira, 2016; Pomerleau and Rao, 2017),040

and media profiling (Baly et al., 2020; Stefanov041

et al., 2020), among others.042

Figure 1: Crowd fact-checking thread on Twitter.

We study the problem of detecting previously 043

fact-checked claims, which is an integral part of 044

an end-to-end fact-checking pipeline (Hassan et al., 045

2017), and also an important task on its own right as 046

people often repeat the same claim online (Barrón- 047

Cedeno et al., 2020; Vo and Lee, 2020; Shaar et al., 048

2021). Unfortunately, research on this problem is 049

limited by data scarceness, with datasets typically 050

having about a 1,000 input–verified claim pairs 051

(Barrón-Cedeno et al., 2020; Shaar et al., 2020, 052

2021), with the notable exception of Vo and Lee 053

(2020), which contains 19K claims about images 054

matched against 3K fact-checking articles. 055

We propose to bridge this gap using crowd fact- 056

checking to create a large collection of tweet– 057

article pairs, which we then label automatically 058

using distant supervision. An example is shown 059

in Figure 1, where the first two tweets discuss a 060

controversial claim, while the third tweet offers a 061

link to a corresponding fact-checking article. 062

Our contributions are as follows: 063

• we mine a large-scale collection of 330,000 064

tweets paired with fact-checking articles; 065

• we propose two distant supervision strategies 066

to label the dataset; 067

• we propose a novel approach to learn from this 068

data using a modified self-adaptive training; 069

• we demonstrate sizable improvements over 070

the state of the art on a standard test set. 071
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2 Related Work072

Previously Fact-Checked Claims While fake073

news and mis/disinformation detection have been074

studied extensively (Zubiaga et al., 2016b; Li et al.,075

2016; Zubiaga et al., 2018; Martino et al., 2020;076

Hardalov et al., 2021; Guo et al., 2021), the prob-077

lem of detecting previously fact-checked claims078

remains under-explored. Hassan et al. (2017) men-079

tioned the task as a component of their end-to-end080

fact-checking pipeline, but did not evaluate it in081

isolation, neither did they study its contribution.082

Recently, the task received more attention from083

the research community. Shaar et al. (2020) col-084

lected two datasets, from PolitiFact (political de-085

bates) and from Snopes (tweets), of claim and086

corresponding fact-checking articles. The CLEF087

CheckThat! lab (Barrón-Cedeno et al., 2020; Shaar088

et al., 2021) extended these datasets with additional089

data in English and Arabic. The best-performing090

systems (Pritzkau, 2021; Mihaylova et al., 2021;091

Chernyavskiy et al., 2021a) used a combination092

BM25 retrieval, semantic similarity using sentence093

embeddings (Reimers and Gurevych, 2019), and094

reranking. Bouziane et al. (2020) further used exter-095

nal data from fact-checking datasets (Wang, 2017;096

Thorne et al., 2018; Wadden et al., 2020).097

Our work is most similar to that of Vo and Lee098

(2020), who mined 19K tweets and corresponding099

fact-checked articles. Unlike them, we focus on100

textual claims (they were interested in multimodal101

tweets with images), we collect an order of mag-102

nitude more examples, and we propose a novel103

approach to learn from such noisy data directly104

(while they manually checked each example).105

Training with Noisy Data Levering large col-106

lections of unlabeled data has been at the core of107

large-scale language models, such as GPT (Rad-108

ford et al., 2018, 2019), BERT (Devlin et al., 2019),109

and RoBERTa (Liu et al., 2019). Recently, such110

language models used noisy retrieved data (Lewis111

et al., 2020; Guu et al., 2020) or active relabeling112

and data augmentation (Thakur et al., 2021). More-113

over, using distantly supervised data labeling is a114

crucial part of the recent breakthroughs in few-shot115

learning (Schick and Schütze, 2021a,b).116

Yet, there has been little work of using noisy117

data for fact-checking tasks. Vo and Lee (2019) col-118

lected tweets containing a link to a fact-checking119

website, based on which tried to learn a fact-120

checking language and to generate automatic an-121

swers. You et al. (2019) used similar data from 122

tweets for fact-checking URL recommendations. 123

Unlike the above work, here we propose an au- 124

tomatic procedure for labeling and self-training 125

specifically designed for the task of detecting pre- 126

viously fact-checked claims. 127

3 Our Dataset: CrowdChecked 128

3.1 Dataset Collection 129

We use Snopes as our target fact-checking web- 130

site, due to its popularity among both Internet users 131

and researchers (Popat et al., 2016; Hanselowski 132

et al., 2019; Augenstein et al., 2019; Tchechmed- 133

jiev et al., 2019). We further use Twitter as the 134

source for collecting user messages, which could 135

contain claims and fact-checks of these claims. 136

Our data collection setup is similar to the one in 137

(Vo and Lee, 2019). First, we form a query1 to se- 138

lect tweets that contain a link to a fact-check from 139

Snopes (url:snopes.com/fact-check/ ), which is ei- 140

ther a reply or a quote tweet, and not a retweet.2 We 141

analyze in more detail the conversation structure of 142

these fact-checked tweets in Appendix B.1. 143

We then collect all tweets that match our query 144

in the interval from October 2017 till October 2021, 145

which yielded a total of 482,736 unique hits. We 146

further collect 148,503 reply tweets and 204,250 147

conversation (root) tweets.3 Finally, we filter out 148

malformed pairs, i.e., tweets linking to themselves, 149

empty tweets, non-English results, tweets with no 150

resolved URLs in the Twitter object (‘entities’), and 151

tweets with broken links to the fact-checking web- 152

site. After cleaning the dataset, we ended up with 153

332,660 unique tweet–article pairs (shown in first 154

row in Table 4), 316,564 unique tweets, and 10,340 155

fact-checking articles from Snopes they could point 156

to. More detail about the fact-checking articles col- 157

lection and statistics are given in Appendix B.2 and 158

on Figure 2. 159

3.2 Comparison to Existing Datasets 160

Next, we compare our dataset to a closely related 161

dataset from the CLEF-2021 CheckThat ’21 lab 162

Task 2A on Detecting Previously Fact-Checked 163

Claims in Tweets (Shaar et al., 2021), to which we 164

will refer as CheckThat ’21 in the rest of the paper. 165

1We use the Twitter API v2 with academic research access.
2We exclude retweets, as they do contain no comments,

but rather share previous tweets.
3The sum of the unique replies and of the conversation

tweets is not equal to the number of fact-checking tweets, as
more than one tweet might reply to the same comment.
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Dataset Tweets‡ Words Vocab
|Unique| Mean 50% Max |Unique|

CrowdChecked (Ours) 316,564 12.2 11 60 114,727
CheckThat ’21 1,399 17.5 16 62 9,007

Table 1: Statistics about our dataset vs. CheckThat ’21.
‡The number of unique tweets is lower compared to the
total number of tweet–article pairs, as one tweet can be
fact-checked by multiple articles.

All other datasets related to our task are either166

smaller (Barrón-Cedeno et al., 2020), come from a167

different domain (Shaar et al., 2021), are not in En-168

glish (Elsayed et al., 2019), or are multi-modal (Vo169

and Lee, 2020).170

Table 1 compares our CrowdChecked to Check-171

That ’21 in terms of number of examples, length172

of the tweets, and vocabulary size. Before we cal-173

culated these statistics, we lowercased the text and174

we removed all URLs, Twitter handlers, English175

stop words, and punctuation. We can see in Table 1176

that CrowdChecked contains two orders of magni-177

tude more examples, slightly shorter tweets (but178

the maximum length stays approximately the same,179

which can be explained by the word limit of Twit-180

ter), and has a vocabulary size that is an order of181

magnitude larger. Note, however, that many exam-182

ples in CrowdChecked are not good matches (see183

Section 3.1), and thus we use distant supervision184

to label them (see Section 3.3), with the resulting185

dataset sizes of matching pairs shown in Table 4.186

Finally, we compare the set of Snopes fact-187

checking articles referenced by the crowd fact-188

checkers to the ones included in the CheckThat ’21189

competition. We can see that the tweets in Crowd-190

Checked refer to around 3.5K less articles (namely191

10,340), compared to CheckThat ’21, which con-192

sists of 13,835 articles. A total of 8,898 articles are193

present in both datasets. Since the CheckThat ’21194

is collected earlier, it includes less articles from re-195

cent years compared to CrowdChecked, and peaks196

at 2016/2017. Nevertheless, for CheckThat ’21,197

the number of Snopes articles included in a claim–198

article pair is far less compared to our dataset (even199

after filtering out the unrelated pairs), as it is capped200

at the number of tweets included in that dataset201

(which is 1.4K).202

More detail about the process of collecting the203

fact-checking articles is given in Appendix B.2.204

Figure 2: Histogram of the year of publication of the
Snopes articles included in CrowdChecked (our dataset)
vs. those in CheckThat ’21.

3.3 Data Labeling (Distant Supervision) 205

To label our examples, we experiment with two 206

distant supervision approaches: (i) based on the 207

Jaccard similarity between the tweet and its fact- 208

checking article, and (ii) based on the predictions 209

of a model trained on CheckThat ’21. We describe 210

these two approaches in more detail below. 211

Jaccard Similarity In this approach, we first pre- 212

process the texts by converting them to lowercase, 213

removing all URLs and replacing all numbers with 214

a single zero. Then, we tokenize the texts using the 215

NLTK’s Twitter tokenizer (Loper and Bird, 2002), 216

and we strip all handles and user mentions. The fi- 217

nal preprocessing step is to filter out all stop words 218

and punctuation (including quotes and special sym- 219

bols) and to stem (Porter, 1980) all tokens. 220

In order to obtain a numerical score for each 221

tweet–article pair, we calculate the Jaccard simi- 222

larity (jac) between the normalized tweet text and 223

each of the title and the subtitle from the Snopes 224

article (i.e., the intersection over the union of the 225

unique tokens). Both fields present a summary of 226

the fact-checked claim, and thus should include 227

more compressed information. Finally, we average 228

these two similarity values to obtain a more robust 229

score. Statistics are shown in Table 2. 230

Semi-Supervision Here, we train a Sentence- 231

BERT (Reimers and Gurevych, 2019) model, as de- 232

scribed in Section 4, using the manually annotated 233

data from CheckThat ’21. The model shows strong 234

performance on the testing set of CheckThat ’21 235

(see Table 5), and thus we expect it to have good 236

precision at detecting matching fact-checked pairs. 237

In particular, we calculate the cosine similarity be- 238
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Range Examples Good Pairs Good Pairs
(Jaccard) (%) Reply (%) Conv. (%)

[0.0;0.1) 62.57 5.88 0.00
[0.1;0.2) 18.98 36.36 14.29
[0.2;0.3) 10.21 46.67 50.00
[0.3;0.4) 4.17 76.47 78.57
[0.4;0.5) 2.33 92.86 92.86
[0.5;0.6) 1.08 94.12 94.12
[0.6;0.7) 0.43 80.00 80.00
[0.7;0.8) 0.11 92.31 92.31
[0.8;0.9) 0.05 91.67 92.86
[0.9;1.0] 0.02 100.00 100.00

Table 2: Proportion of examples in different bins based
on average Jaccard similarity between the tweet↔ the
title/subtitle. Manual annotations of good pairs.

Range Examples Good Pairs
(Cosine) (%) (%)

[-0.4;0.1) 37.83 0.00
[0.1;0.2) 16.50 6.67
[0.2;0.3) 12.28 41.46
[0.3;0.4) 10.12 36.36
[0.4;0.5) 8.58 63.16
[0.5;0.6) 6.69 70.00
[0.6;0.7) 4.47 84.21
[0.7;0.8) 2.48 96.15
[0.8;0.9) 0.97 93.10
[0.9;1.0] 0.08 100.00

Table 3: Proportion of examples in different bins based
on cosine similarity using sentence-BERT trained on
CheckThat ’21. Manual annotations of good pairs.

tween the embeddings of the fact-checked tweet239

and the fields from the Snopes article. Statistics240

about the scores are shown in Table 3.241

3.4 Feasibility Evaluation242

To evaluate the feasibility of the obtained labels, we243

performed manual annotation, aiming to estimate244

the number of good pairs (i.e., tweet–article pairs,245

where the article fact-checks the claim in the tweet).246

Our prior observations of the data suggested that247

unbiased sampling from the pool of tweets was248

not suitable, as it would include mostly pairs that249

have very few overlapping words, which is often250

an indicator that the texts are not related. Thus, we251

sample the candidates for annotation based on their252

Jaccard similarity, i.e., we divided the range of pos-253

sible values [0;1] into 10 equally sized bins and254

we sampled 15 examples from each bin, resulting 255

into 150 conversation–reply–tweet triples. After- 256

wards, the appropriateness of each reply-article and 257

conversation-article pair is annotated by three an- 258

notators independently. The annotators had a good 259

level of inter-annotator agreement: 0.750 for the 260

conversations, and 0.745 for the replies in terms of 261

Fleiss Kappa (Fleiss, 1971) (see Appendix C). 262

Tables 2 and 3 show the resulting estimates of 263

good pairs for both Jaccard and cosine-based la- 264

beling. In the case of Jaccard, we can see that the 265

expected number of good examples is very high 266

(over 90%) in the range of [0.4–1.0], and then it 267

drastically decreases, going to almost zero when 268

the similarity is less than 0.1. Similarly, for the 269

cosine score, we can see high number of matches 270

in the top 4 bins ([0.6–1.0]), albeit the number of 271

matches remains relatively high in the following 272

interval of [0.2–0.6) between 36% and 63%, and 273

again gets close to zero for the lower-score bins. 274

We analyze the distribution of the Jaccard scores in 275

CheckThat ’21 in more detail in Appendix B.3. 276

4 Method 277

General Scheme As a base for our models, we 278

use Sentence-BERT (SBERT). It uses a Siamese 279

network trained with a Transformer (Vaswani et al., 280

2017) encoder to obtain sentence-level embeddings. 281

We keep the base architecture proposed by Reimers 282

and Gurevych (2019), but we use additional fea- 283

tures, training tricks, and losses described in the 284

next sections. The input of the model is a pair of a 285

tweet and fact-checking article, which we encode 286

as follows: 287

• User Tweet: 288

[CLS] Tweet Text [SEP] 289

• Fact-checking article: 290

[CLS] Title [SEP] Subtitle [SEP] Verified 291

Claim [SEP] 292

We train the models using the Multiple Negatives 293

Ranking (MNR) loss (Henderson et al., 2017) (see 294

Eq. 1), instead of the standard cross-entropy loss, 295

as the datasets contain only positive (i.e., matching) 296

pairs. Moreover, we propose a new variant of the 297

MNR loss that accounts for the noise in the dataset, 298

as described in detail in Section 4.1. 299

Enriched Scheme In the enriched scheme of 300

the model, we adopt the pipeline proposed in the 301

best-performing system from the CheckThat ’21 302

competition (Chernyavskiy et al., 2021b). Their 303

method consists of independent components for 304
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assessing lexical (TF.IDF-based) and semantic305

(SBERT-based) similarities. The SBERT mod-306

els use the same architecture and input format as307

described in the ‘General Scheme’ above. How-308

ever, Chernyavskiy et al. (2021b) use an ensem-309

ble of models, i.e., instead of calculating a sin-310

gle similarity between the tweet and the joint ti-311

tle/subtitle/verified claim, the similarities between312

the tweet and the claim, the joint title/claim, and313

the three together are obtained from three models,314

one using on TF.IDF and one using SBERT, for315

each combination. These similarities are combined316

via a re-ranking model (see Section 4.2. In our317

experiments, the TF.IDF and the model ensembles318

are included only in the models with re-ranking.319

Shuffling and Temperature Additionally, we320

adopt a temperature parameter (τ ) in the MNR321

loss. We also make it trainable in order to stabilize322

the training process as suggested in (Chernyavskiy323

et al., 2021a). This forces the loss to focus on324

the most complex and important examples in the325

batch. Moreover, this effect is amplified after each326

epoch by an additional data shuffling that composes327

batches from several groups of the most similar ex-328

amples. This shuffling, in turn, increases the tem-329

perature significance. The nearest neighbors form-330

ing the groups are found using the model predic-331

tions. More detail can be found in (Chernyavskiy332

et al., 2021b).333

4.1 Training with Noisy Data334

Self-Adaptive Training To account for possible335

noise in the distantly supervised data, we modify336

the training process and apply a self-adaptive train-337

ing (Huang et al., 2020). We iteratively refurbish338

the labels y using the predictions of the current339

model starting after an epoch of choice, which is a340

hyper-parameter:341

yr ← α · yr + (1− α) · ŷ,342

where yr is the current refurbished label (yr = y343

initially), ŷ is the model prediction, and α is a344

momentum hyper-parameter (we set α to 0.9).345

Since the MNR loss operates with positive pairs346

only (it does not operate with labels), to implement347

this approach, we had to modify the loss function.348

Let {ci, vi}1..m be the batch of input pairs, where349

m is the batch size, C, V ∈ Rm×h are the ma-350

trices of embeddings for the tweets and for the351

fact-checking articles (h is the embeddings’ hidden352

size), and C, V are normalized to the unit hyper-353

sphere (we use cosine similarity), then:354

L = − 1

m

m∑
i=1

yri

(cTi vi
τ
− log

m∑
j=1

exp(
cTi vj
τ

)
)
(1)

355

If we set yri = 1, then Eq. 1 resembles the MNR 356

loss definition. The parameter τ is the temperature, 357

discussed in Section 4 Shuffling and Temperature. 358

Weighting In the self-adaptive training approach, 359

Huang et al. (2020) introduce weights wi = 360

maxj∈{1,..,L} ti,j , where ti is the corrected one-hot 361

encoded target vector in a classification task with 362

L classes. The goal is to ensure that noisy labels 363

will have a lower influence on the training process 364

compared to correct labels. Instead of a classifi- 365

cation task with one-hot target vectors ti,j , here 366

we have real targets yri . Therefore, we take these 367

probabilities as weights: wi = yri . After applying 368

both modifications with the addition of labels and 369

weights, the impact of each training example is 370

proportional to the square of the corrected label, 371

i.e., in Eq. 1 yri is now squared. 372

4.2 Re-ranking 373

Re-ranking has shown major improvements for de- 374

tecting previously fact-checked claims (Shaar et al., 375

2020, 2021; Mihaylova et al., 2021; Chernyavskiy 376

et al., 2021b), and thus we include it as part of our 377

model. In particular, we adopt the re-ranking pro- 378

cedure from Chernyavskiy et al. (2021b). It uses 379

a LambdaMART (Wu et al., 2010) model. The in- 380

puts are the reciprocal ranks (position in the ranked 381

list of claims) and the predicted relevance scores 382

(2 factors) based on the scores of the TF.IDF and 383

S-BERT models (2 models), between the tweet and 384

the claim, claim+title, and claim+title+subtitle (3 385

combinations), for a total of 12 features in the en- 386

semble and 4 in the single model. 387

5 Experiments 388

In this section, we describe our experimental setup 389

and we present our experimental results. The train- 390

ing procedure and the hyper-parameters are dis- 391

cussed in Appendix A, and the baseline models are 392

in Appendix D.1. 393

5.1 Experimental Setup 394

Datasets Table 4 shows statistics about the data 395

split sizes for CrowdChecked and CheckThat ’21. 396

We use these splits in our experiments, albeit some- 397

times mixed together. 398
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Dataset Data Split Threshold Tweet-Article
Pairs

CrowdChecked
(Our Dataset)

Train - 332,660

Train
Jaccard

0.30 27,387
0.40 12,555
0.50 4,953

Train
Cosine

0.50 48,845
0.60 26,588
0.70 11,734
0.80 3,496

CheckThat ’21
Train - 999
Dev4 - 199
Test - 202

Table 4: Statistics about our collected datasets in terms
of tweet–Aaticle pairs. Each subset is used for training.

The first group (CrowdChecked) is the data splits399

obtained from distant supervision. As the positive400

pairs are annotated with distant supervision and not401

by humans, we only include the examples as part402

of the training set. Each shown split is obtained403

using a different similarity measure (Jaccard or Co-404

sine) or threshold (see Section 3.3). From the total405

number of 332,660 collected tweet–claim pairs in406

CrowdChecked, we end up with subsets of sizes407

between 3.5K and 49K examples.408

The second group describes the CheckThat ’21409

dataset. We preserve the original training, develop-410

ment, and testing splits. In each of our experiments,411

we validate and test on the corresponding subsets412

from the CheckThat ’21, while the training set can413

be a mix with CrowdChecked.414

Metrics For our evaluation, we adopt the ranking415

measures used in the CheckThat ’21 competition.416

In particular, we calculate the Mean Reciprocal417

Rank (MRR), Mean Average Precision (MAP@K)418

and Precision@K, for K ∈ {1, 3, 5, 10}. All the419

models are optimized for MAP@5, as was in the420

CLEF-2021 CheckThat! lab subtask 2A.421

5.2 Experimental Results422

Below, we present experiments that (i) aim to ana-423

lyze the impact of training with the distantly super-424

vised data from CrowdChecked, and (i) to further425

improve the state-of-the-art (SOTA) results using426

modeling techniques to better leverage the noisy427

data points (see Section 4). In all our experiments,428

we evaluate the model on the development and on429

4Shaar et al. (2021) lists 200, but there is one duplicate
row in the development set.

Model MRR P@1 MAP@5

Baselines (CheckThat ’21)
Retrieval (Shaar et al., 2021) 76.1 70.3 74.9
SBERT (CheckThat ’21) 79.96 74.59 79.20

CrowdChecked (Our Dataset)
SBERT (jac > 0.30) 81.50 76.40 80.84
SBERT (cos > 0.50) 81.58 75.91 81.05

(Pre-train) CrowdChecked, (Fine-tune) CheckThat ’21
SBERT (jac > 0.30, Seq) 83.76 78.88 83.11
SBERT (cos > 0.50, Seq) 82.26 77.06 81.41

(Mix) CrowdChecked and CheckThat ’21
SBERT (jac > 0.30, Mix) 83.04 78.55 82.30
SBERT (cos > 0.50, Mix) 82.12 76.57 81.38

Table 5: Evaluation on the CheckThat ’21 testing set. In
parenthesis is name of the training split, i.e., Jaccard or
Cosine selection strategy, (Seq) first training on Crowd-
Checked and then on CheckThat ’21, (Mix) mixing the
data from the two. The highest results are in bold.

the testing sets from CheckThat ’21 (see Table 4), 430

and we train on a mix with CrowdChecked. The re- 431

ported results for each experiment (for each metric) 432

are averaged over three runs using different seeds. 433

Data Efficiency Our goal here is to evaluate the 434

impact of using distantly supervised data from 435

CrowdChecked. In particular, we train an SBERT 436

baseline, as described in Section 4, using four 437

different training datasets: (i) the training data 438

from CheckThat ’21, (ii) training data from Crowd- 439

Checked, (iii) pre-training on data from Crowd- 440

Checked and then fine-tuning on CheckThat ’21, 441

(iv) mixing the data from both datasets. 442

Table 5 shows the results grouped based on train- 443

ing data used. In each group, we include the two 444

best-performing models. We see that all SBERT 445

models outperform the Retrieval baseline by 4–8 446

points absolute in terms of MAP@5. Interestingly, 447

training only on distantly supervised data is enough 448

to outperform the SBERT trained on the Check- 449

That ’21 dataset by more than 1.5 MAP@5 points 450

absolute. Moreover, the performance of both data 451

labeling strategies (i.e., Jaccard and Cosine) is rel- 452

atively close, suggesting comparable amount of 453

noise in the two datasets. 454

Next, we train on combined data from the two 455

datasets. Unsurprisingly, both mixing the data and 456

training on the two datasets sequentially (first on 457

CrowdChecked and then on CheckThat ’21) yields 458

additional improvement compared to training on 459

a single dataset. Moreover, we observe the best 460
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Figure 3: MAP@5 for different thresholds and distant
supervision approaches. Jaccard, Cosine models are
trained only on CrowdChecked, (Seq) and (Mix) – also
on CheckThat ’21.

Model MAP@5
Dev Test

DIPS (Mihaylova et al., 2021) 93.6 78.7
NLytics (Pritzkau, 2021) - 79.9
Aschern (Chernyavskiy et al., 2021b) 94.2 88.2

SBERT (jac > 0.30, Mix) 90.0 82.3
+ shuffling & trainable temp. 92.4 82.6
+ self-adaptive training (Eq. 1) 92.6 83.6
+ loss weights 92.7 84.3

+ TF.IDF + Re-ranking 93.1 89.7
+ TF.IDF + Re-ranking (ens.) 94.8 90.3

Table 6: Results on CheckThat ’21 (dev and test). We
compare our model and its components (added sequen-
tially) to the state of the art. The best results are in bold.

result when the model is first pre-trained on the461

(Jaccard > 0.3) subset of CrowdChecked, and then462

fine-tuned on CheckThat ’21. This combination463

gains 2 points absolute in terms of MRR, P@1, and464

MAP@5, compared to SBERT (CrowdChecked)465

and 4 points compared to SBERT (CheckThat ’21).466

Nevertheless, we must note that pre-training with467

the Cosine similarly (cos > 0.50) did not yield468

such sizable improvements as the ones when using469

Jaccard. We attribute this, on one hand, to the more470

expected noise in the data according to our manual471

annotations (see Section 3.4), and on the other, to472

the fact that these examples are annotated by a473

similar model, so they are presumably easy for it.474

Further, we analyze the effects of choosing dif-475

ferent thresholds for the distant supervision ap-476

proaches. Figure 3 shows the change of MAP@5477

for each data labeling strategy. On the left part of 478

the figure, in the interval [0.3–0.5], are shown the 479

results of the Jaccard-based data labeling strategy, 480

and on the right ([0.5–0.8]) – the Cosine strategy. 481

Once again, the models trained on the data selected 482

using Jaccard similarity perform similarly or better 483

as the SBERT (CheckThat ’21) model (blue solid 484

line). On the other hand, the Cosine-based selection 485

outperforms the baseline only in small thresholds≤ 486

0.6. These observations are in favor of the hypothe- 487

sis that the highly ranked pairs from the fine-tuned 488

SBERT model are easy examples, and do not bring 489

much signal to the model over the CheckThat ’21 490

data, whereas the Jaccard ranked ones significantly 491

improve the model’s performance. Nonetheless, we 492

see similar performance when training with data 493

from the lowest two thresholds for the two simi- 494

larities (without data mixing), which suggests that 495

these subsets have similar characteristics. 496

Adding more distantly supervised data is benefi- 497

cial for the model, regardless of the strategy. The 498

only exception is the drop in performance when 499

we decrease the Jaccard threshold from 0.5 to 0.4. 500

We attribute this to the quality of the data in that 501

bracket, as the examples with lower similarity are 502

expected to add more noise, however the results 503

improve drastically at the next threshold (adding x2 504

more examples). The latter suggests that the model 505

was able to generalize better from the new data. 506

There is no such drop in the Cosine strategy. We 507

explain this with expectation that noise increases 508

proportionally to the decrease in model confidence. 509

Finally, we report the performance of each model 510

both on the development and testing sets in Ap- 511

pendix D.2, Tables 9 and 10. 512

Modeling Noisy Data We explore the effects 513

of the proposed changes to the SBERT training 514

approach: (i) shuffling and training temperature, 515

(ii) data-related modification of the MNR loss for 516

self-adaptive training with weights. We use the 517

(jac > 0.30, mix) approach in our experiments, as 518

the baseline SBERT models achieved the highest 519

scores on the development set (Table 9). In Table 6, 520

we ablate each of these modifications by adding 521

them iteratively to the baseline SBERT model. 522

First, we can see that adding a special shuffling 523

procedure and a trainable temperature (τ ) improves 524

the MAP@5 by 2 points on the dev set and 0.3 on 525

the test set. Next, we see a sizable improvement 526

of 1 point MAP@5 on the test set, when using 527

the self-adaptive training with MNR loss. More- 528
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over, an additional 0.7 points comes from adding529

weights to the loss, arriving at 84.3 MAP@5. These530

weights allow the model to give higher importance531

to the less noisy data during the training process.532

Here, we must note that for these two ablations the533

improvements on the development set are diminish-534

ing. We attribute this to its small size (199 exam-535

ples) and the high values of MAP@5. Finally, note536

that our model, without using re-ranking, outper-537

forms all state-of-the-art models, except Aschern,538

by more than 4.5 points on the testing dataset.539

On the last two rows of Table 6, we present540

the results of our model that includes all proposed541

components, in combination with TF.IDF features542

and the LambdaMART re-ranking, described in543

Section 4. Here, we must note that the model is544

trained on a part of the CheckThat ’21 training pool545

(80%) – the other part is used to train the re-ranking546

model. The full setup boosts the model’s MAP@5547

up to 89.7 when using a single model of the TF.IDF548

and SBERT (using the title/subtitle/claim as inputs,549

same as SBERT). With the ensemble architecture550

(re-ranking based on the scores of three TF.IDF and551

three SBERT models), we reach our best results of552

90.3 on the test set (adding 1.7 MAP@5 on dev,553

and 0.6 on test), outperforming the previous state-554

of-the-art approach (Aschern Chernyavskiy et al.555

(2021b), 88.2) by 2 points MAP@5, and more than556

11 compared to the second best model (Pritzkau557

(2021), 79.9). This improvement corresponds to558

the observed gain over the SBERT model without559

re-ranking. Nevertheless, the change in the strength560

of the factors in LambdaMART is less. The TF-IDF561

models still have high importance for re-ranking562

– a total of 41% compared to 42.8% reported in563

Chernyavskiy et al. (2021b). Here, we have a de-564

crease mainly due to an increase of the importance565

of the reciprocal rank factor from 18.8% to 20.2%566

of the SBERT model that selects candidates. The567

strength of other factors remains almost unchanged.568

6 Discussion569

Our proposed distant supervision data selection570

strategies show promising results, achieving SOTA571

results on the CheckThat ’21. Nonetheless, we are572

not able to identify all matching pairs in the list of573

candidates in CrowdChecked. Hereby, we try to574

estimate their expected number using the statistics575

from our manual annotations,5 shown in Tables 2,3.576

5Due to the small number of annotated examples the vari-
ance in the estimates is large.

In particular, we estimate it by multiplying the 577

fraction of good pairs in each similarity bin by 578

the number of examples in this bin. Based on co- 579

sine similarity, we estimate that out of the 332,600 580

pairs, the matching pairs are approximately 90,170 581

(27.11%). Further, based on the Jaccard distri- 582

bution, we estimate that 14.79% of all tweet- 583

conversation (root of the conversation), and 22.23% 584

tweet–reply (the tweet before the current in the con- 585

versation) pairs are expected to match, or nearly 586

61,500 examples, assuming that the number of con- 587

versations and replies is equal.6 588

Our experiments show that the models can ef- 589

fectively account for the noise in the training data. 590

Both the self-adaptive training and the additional 591

weighing in the loss function (described in Sec- 592

tion 4), gain 1 additional point MAP@5 each. 593

These results suggest that further investigation of 594

the potential of learning from noisy labels (Han 595

et al., 2018; Wang et al., 2019; Song et al., 2020b,a; 596

Zhou and Chen, 2021) and utilizing all examples in 597

CrowdChecked, can improve the results even more. 598

Moreover, we argue that incorporating the nega- 599

tive examples (non-matching pairs) from Crowd- 600

Checked in the training objective can be beneficial 601

for the models (Lu et al., 2021; Thakur et al., 2021). 602

7 Conclusion and Future Work 603

We presented CrowdChecked, a large-scale dataset 604

for detecting previously fact-checked claims, with 605

more than 330,000 pairs of tweets and correspond- 606

ing fact-checking articles posted by crowd fact- 607

checkers. We further investigated two techniques 608

for labeling the tweet–article pairs using distance 609

supervision, resulting in training sets of 3.5K–50K 610

examples. We also proposed an approach for train- 611

ing from noisy data using self-adaptive learning 612

and additional weights in the loss function. Fur- 613

thermore, we demonstrated the utility of our data, 614

which yielded sizable performance gains of four 615

points in terms MRR, P@1, and MAP@5 over 616

strong baselines trained on manually annotated 617

data (Shaar et al., 2021). Finally, we demonstrated 618

improvements over the state of the art on the CLEF- 619

2021 CheckThat! dataset (Chernyavskiy et al., 620

2021b) by two points absolute, when using Crowd- 621

Checked and our proposed model. 622

In future work, we plan to experiment with more 623

languages and more distant supervision techniques 624

such as predictions from an ensemble model. 625

6In practice, there are more replies than conversations.
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Ethics and Broader Impact626

Dataset Collection627

We collected the dataset using the Twitter API.7628

We followed the terms of use outlined by Twitter.8629

Specifically, we only downloaded public tweets,630

and we only distribute dehydrated Twitter IDs.631

Biases632

We note that some of the annotations are subjective,633

and we have clearly indicated in the text which634

these are. Thus, it is inevitable that there would635

be biases in our dataset. Yet, we have a very clear636

annotation schema and instructions, which should637

reduce biases.638

Misuse Potential639

Most datasets compiled from social media present640

some risk of misuse. We, therefore, ask researchers641

to be aware that our dataset can be maliciously642

used to unfairly moderate text (e.g., a tweet) that643

may not be malicious based on biases that may or644

may not be related to demographics and other in-645

formation within the text. Intervention with human646

moderation would be required in order to ensure647

this does not occur.648

Intended Use649

Our dataset can enable automatic systems for analy-650

sis of social media content, which could be of inter-651

est to practitioners, professional fact-checker, jour-652

nalists, social media platforms, and policymakers.653

Such systems can be used to alleviate the burden654

for social media moderators, but human supervi-655

sion would be required for more intricate cases and656

in order to ensure that the system does not cause657

unintended harm.658

Our models can help fight the COVID-19 info-659

demic, and they could support analysis and deci-660

sion making for the public good. However, the661

models can also be misused by malicious actors.662

Therefore, we ask the potential users to be aware of663

potential misuse. With the possible ramifications664

of a highly subjective dataset, we distribute it for665

research purposes only, without a license for com-666

mercial use. Any biases found in the dataset are667

unintentional, and we do not intend to do harm to668

any group or individual.669

7http://developer.twitter.com/en/docs
8http://developer.twitter.com/en/developer-terms/

agreement-and-policy

Environmental Impact 670

We would like to warn that the use of large-scale 671

Transformers requires a lot of computations and 672

the use of GPUs/TPUs for training, which con- 673

tributes to global warming (Strubell et al., 2019). 674

This is a bit less of an issue in our case, as we 675

do not train such models from scratch; rather, we 676

fine-tune them on relatively small datasets. More- 677

over, running on a CPU for inference, once the 678

model is fine-tuned, is perfectly feasible, and CPUs 679

contribute much less to global warming. 680

References 681

Isabelle Augenstein, Christina Lioma, Dongsheng 682
Wang, Lucas Chaves Lima, Casper Hansen, Chris- 683
tian Hansen, and Jakob Grue Simonsen. 2019. Mul- 684
tiFC: A real-world multi-domain dataset for evidence- 685
based fact checking of claims. In Proceedings of 686
the 2019 Conference on Empirical Methods in Natu- 687
ral Language Processing and the 9th International 688
Joint Conference on Natural Language Processing 689
(EMNLP-IJCNLP), pages 4685–4697, Hong Kong, 690
China. Association for Computational Linguistics. 691

Ramy Baly, Georgi Karadzhov, Jisun An, Haewoon 692
Kwak, Yoan Dinkov, Ahmed Ali, James Glass, and 693
Preslav Nakov. 2020. What was written vs. who 694
read it: News media profiling using text analysis 695
and social media context. In Proceedings of the 58th 696
Annual Meeting of the Association for Computational 697
Linguistics, pages 3364–3374, Online. Association 698
for Computational Linguistics. 699

Alberto Barrón-Cedeno, Tamer Elsayed, Preslav Nakov, 700
Giovanni Da San Martino, Maram Hasanain, Reem 701
Suwaileh, Fatima Haouari, Nikolay Babulkov, Bayan 702
Hamdan, Alex Nikolov, et al. 2020. Overview of 703
checkthat! 2020: Automatic identification and veri- 704
fication of claims in social media. In International 705
Conference of the Cross-Language Evaluation Forum 706
for European Languages, pages 215–236. Springer. 707

Mostafa Bouziane, Hugo Perrin, Aurélien Cluzeau, 708
Julien Mardas, and Amine Sadeq. 2020. Team buster. 709
ai at checkthat! 2020 insights and recommendations 710
to improve fact-checking. In CLEF (Working Notes). 711

Anton Chernyavskiy, Dmitry Ilvovsky, Pavel Kalinin, 712
and Preslav Nakov. 2021a. Batch-softmax con- 713
trastive loss for pairwise sentence scoring tasks. 714
arXiv preprint arXiv:2110.15725. 715

Anton Chernyavskiy, Dmitry Ilvovsky, and Preslav 716
Nakov. 2021b. Aschern at CLEF CheckThat! 2021: 717
Lambda-Calculus of Fact-Checked Claims. In Pro- 718
ceedings of the Working Notes of CLEF 2021 - Con- 719
ference and Labs of the Evaluation Forum, Bucharest, 720
Romania, September 21st - to - 24th, 2021, volume 721
2936 of CEUR Workshop Proceedings, pages 484– 722
493. CEUR-WS.org. 723

9

http://developer.twitter.com/en/docs
http://developer.twitter.com/en/developer-terms/agreement-and-policy
http://developer.twitter.com/en/developer-terms/agreement-and-policy
https://doi.org/10.18653/v1/D19-1475
https://doi.org/10.18653/v1/D19-1475
https://doi.org/10.18653/v1/D19-1475
https://doi.org/10.18653/v1/D19-1475
https://doi.org/10.18653/v1/D19-1475
https://doi.org/10.18653/v1/2020.acl-main.308
https://doi.org/10.18653/v1/2020.acl-main.308
https://doi.org/10.18653/v1/2020.acl-main.308
https://doi.org/10.18653/v1/2020.acl-main.308
https://doi.org/10.18653/v1/2020.acl-main.308
http://ceur-ws.org/Vol-2936/paper-38.pdf
http://ceur-ws.org/Vol-2936/paper-38.pdf
http://ceur-ws.org/Vol-2936/paper-38.pdf


Leon Derczynski, Kalina Bontcheva, Maria Liakata,724
Rob Procter, Geraldine Wong Sak Hoi, and Arkaitz725
Zubiaga. 2017. SemEval-2017 task 8: RumourEval:726
Determining rumour veracity and support for ru-727
mours. In Proceedings of the 11th International728
Workshop on Semantic Evaluation (SemEval-2017),729
pages 69–76, Vancouver, Canada. Association for730
Computational Linguistics.731

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and732
Kristina Toutanova. 2019. BERT: Pre-training of733
deep bidirectional transformers for language under-734
standing. In Proceedings of the 2019 Conference735
of the North American Chapter of the Association736
for Computational Linguistics: Human Language737
Technologies, NAACL-HLT ’19, pages 4171–4186,738
Minneapolis, Minnesota, USA.739

Tamer Elsayed, Preslav Nakov, Alberto Barrón-740
Cedeno, Maram Hasanain, Reem Suwaileh, Gio-741
vanni Da San Martino, and Pepa Atanasova. 2019.742
Overview of the clef-2019 checkthat! lab: automatic743
identification and verification of claims. In Inter-744
national Conference of the Cross-Language Evalua-745
tion Forum for European Languages, pages 301–321.746
Springer.747

Andreas Ferreira, William andVlachos. 2016. Emer-748
gent: a novel data-set for stance classification. In749
Proceedings of the 2016 Conference of the North750
American Chapter of the Association for Computa-751
tional Linguistics: Human Language Technologies,752
pages 1163–1168, San Diego, California. Associa-753
tion for Computational Linguistics.754

Joseph L Fleiss. 1971. Measuring nominal scale agree-755
ment among many raters. Psychological bulletin,756
76(5):378.757

Zhijiang Guo, Michael Schlichtkrull, and Andreas Vla-758
chos. 2021. A survey on automated fact-checking.759
arXiv preprint arXiv:2108.11896.760

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,761
and Mingwei Chang. 2020. Retrieval augmented762
language model pre-training. In Proceedings of the763
37th International Conference on Machine Learning,764
volume 119 of Proceedings of Machine Learning765
Research, pages 3929–3938. PMLR.766

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu,767
Miao Xu, Weihua Hu, Ivor W. Tsang, and Masashi768
Sugiyama. 2018. Co-teaching: Robust training of769
deep neural networks with extremely noisy labels. In770
Proceedings of the 32nd International Conference771
on Neural Information Processing Systems, NIPS’18,772
page 8536–8546, Red Hook, NY, USA. Curran Asso-773
ciates Inc.774

Andreas Hanselowski, Christian Stab, Claudia Schulz,775
Zile Li, and Iryna Gurevych. 2019. A richly anno-776
tated corpus for different tasks in automated fact-777
checking. In Proceedings of the 23rd Confer-778
ence on Computational Natural Language Learning,779
CoNLL ’19, pages 493–503, Hong Kong, China.780

Momchil Hardalov, Arnav Arora, Preslav Nakov, and 781
Isabelle Augenstein. 2021. A survey on stance detec- 782
tion for mis-and disinformation identification. arXiv 783
preprint arXiv:2103.00242. 784

Naeemul Hassan, Gensheng Zhang, Fatma Arslan, Jo- 785
sue Caraballo, Damian Jimenez, Siddhant Gawsane, 786
Shohedul Hasan, Minumol Joseph, Aaditya Kulka- 787
rni, Anil Kumar Nayak, Vikas Sable, Chengkai Li, 788
and Mark Tremayne. 2017. Claimbuster: The first- 789
ever end-to-end fact-checking system. Proc. VLDB 790
Endow., 10(12):1945–1948. 791

Matthew Henderson, Rami Al-Rfou, B. Strope, Yun- 792
Hsuan Sung, L. Lukács, R. Guo, S. Kumar, B. Mik- 793
los, and R. Kurzweil. 2017. Efficient natural lan- 794
guage response suggestion for smart reply. ArXiv 795
1705.00652. 796

Lang Huang, Chao Zhang, and Hongyang Zhang. 2020. 797
Self-adaptive training: beyond empirical risk mini- 798
mization. In Advances in Neural Information Pro- 799
cessing Systems, volume 33. 800

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 801
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 802
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 803
täschel, Sebastian Riedel, and Douwe Kiela. 2020. 804
Retrieval-augmented generation for knowledge- 805
intensive nlp tasks. In Advances in Neural Infor- 806
mation Processing Systems, volume 33, pages 9459– 807
9474. Curran Associates, Inc. 808

Yaliang Li, Jing Gao, Chuishi Meng, Qi Li, Lu Su, 809
Bo Zhao, Wei Fan, and Jiawei Han. 2016. A sur- 810
vey on truth discovery. SIGKDD Explor. Newsl., 811
17(2):1–16. 812

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 813
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 814
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 815
RoBERTa: A robustly optimized BERT pretraining 816
approach. arXiv:1907.11692. 817

Edward Loper and Steven Bird. 2002. NLTK: The nat- 818
ural language toolkit. In Proceedings of the ACL 819
Workshop on Effective Tools and Methodologies for 820
Teaching Natural Language Processing and Compu- 821
tational Linguistics, TeachingNLP ’02, pages 63–70, 822
Philadelphia, Pennsylvania, USA. 823

Ilya Loshchilov and Frank Hutter. 2017. Decou- 824
pled weight decay regularization. arXiv preprint 825
arXiv:1711.05101. 826

Jing Lu, Gustavo Hernandez Abrego, Ji Ma, Jianmo Ni, 827
and Yinfei Yang. 2021. Multi-stage training with im- 828
proved negative contrast for neural passage retrieval. 829
In Proceedings of the 2021 Conference on Empiri- 830
cal Methods in Natural Language Processing, pages 831
6091–6103, Online and Punta Cana, Dominican Re- 832
public. Association for Computational Linguistics. 833

Giovanni Da San Martino, Stefano Cresci, Alberto 834
Barrón-Cedeño, Seunghak Yu, Roberto Di Pietro, 835

10

https://doi.org/10.18653/v1/S17-2006
https://doi.org/10.18653/v1/S17-2006
https://doi.org/10.18653/v1/S17-2006
https://doi.org/10.18653/v1/S17-2006
https://doi.org/10.18653/v1/S17-2006
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N16-1138
https://doi.org/10.18653/v1/N16-1138
https://doi.org/10.18653/v1/N16-1138
https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html
https://doi.org/10.18653/v1/K19-1046
https://doi.org/10.18653/v1/K19-1046
https://doi.org/10.18653/v1/K19-1046
https://doi.org/10.18653/v1/K19-1046
https://doi.org/10.18653/v1/K19-1046
https://doi.org/10.14778/3137765.3137815
https://doi.org/10.14778/3137765.3137815
https://doi.org/10.14778/3137765.3137815
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.1145/2897350.2897352
https://doi.org/10.1145/2897350.2897352
https://doi.org/10.1145/2897350.2897352
https://doi.org/10.3115/1118108.1118117
https://doi.org/10.3115/1118108.1118117
https://doi.org/10.3115/1118108.1118117
https://doi.org/10.18653/v1/2021.emnlp-main.492
https://doi.org/10.18653/v1/2021.emnlp-main.492
https://doi.org/10.18653/v1/2021.emnlp-main.492


and Preslav Nakov. 2020. A survey on computa-836
tional propaganda detection. In Proceedings of the837
Twenty-Ninth International Joint Conference on Arti-838
ficial Intelligence, IJCAI-20, pages 4826–4832. Inter-839
national Joint Conferences on Artificial Intelligence840
Organization. Survey track.841

Simona Mihaylova, Iva Borisova, Dzhovani Chemis-842
hanov, Preslav Hadzhitsanev, Momchil Hardalov, and843
Preslav Nakov. 2021. DIPS at CheckThat! 2021: Ver-844
ified Claim Retrieval. In Proceedings of the Working845
Notes of CLEF 2021 - Conference and Labs of the846
Evaluation Forum, Bucharest, Romania, September847
21st - to - 24th, 2021, volume 2936 of CEUR Work-848
shop Proceedings, pages 558–571. CEUR-WS.org.849

Adam Paszke, Sam Gross, Francisco Massa, Adam850
Lerer, James Bradbury, Gregory Chanan, Trevor851
Killeen, Zeming Lin, Natalia Gimelshein, Luca852
Antiga, Alban Desmaison, Andreas Kopf, Edward853
Yang, Zachary DeVito, Martin Raison, Alykhan Te-854
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,855
Junjie Bai, and Soumith Chintala. 2019. PyTorch:856
An imperative style, high-performance deep learn-857
ing library. In Advances in Neural Information Pro-858
cessing Systems 30: Annual Conference on Neural859
Information Processing Systems 2017, NeurIPS ’19,860
pages 8024–8035.861

Dean Pomerleau and Delip Rao. 2017. Fake862
news challenge stage 1 (FNC-I): Stance detection.863
https://www.fakenewschallenge.org/.864

K. Popat et al. 2016. Credibility assessment of textual865
claims on the web. In CIKM. ACM.866

Martin F Porter. 1980. An algorithm for suffix stripping.867
Program.868

Albert Pritzkau. 2021. NLytics at CheckThat! 2021:869
Multi-class fake news detection of news articles and870
domain identification with RoBERTa - a baseline871
model. In CLEF.872

Alec Radford, Karthik Narasimhan, Tim Salimans, and873
Ilya Sutskever. 2018. Improving language under-874
standing by generative pre-training.875

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,876
Dario Amodei, and Ilya Sutskever. 2019. Language877
models are unsupervised multitask learners. OpenAI878
Blog.879

Nils Reimers and Iryna Gurevych. 2019. Sentence-880
BERT: Sentence embeddings using Siamese BERT-881
networks. In Proceedings of the 2019 Conference on882
Empirical Methods in Natural Language Processing883
and the 9th International Joint Conference on Natu-884
ral Language Processing (EMNLP-IJCNLP), pages885
3982–3992, Hong Kong, China. Association for Com-886
putational Linguistics.887

Stephen Robertson and Hugo Zaragoza. 2009. The888
probabilistic relevance framework: Bm25 and be-889
yond. Found. Trends Inf. Retr., 3(4):333–389.890

Timo Schick and Hinrich Schütze. 2021a. Exploiting 891
cloze-questions for few-shot text classification and 892
natural language inference. In Proceedings of the 893
16th Conference of the European Chapter of the Asso- 894
ciation for Computational Linguistics: Main Volume, 895
pages 255–269, Online. Association for Computa- 896
tional Linguistics. 897

Timo Schick and Hinrich Schütze. 2021b. It’s not just 898
size that matters: Small language models are also few- 899
shot learners. In Proceedings of the 2021 Conference 900
of the North American Chapter of the Association 901
for Computational Linguistics: Human Language 902
Technologies, pages 2339–2352, Online. Association 903
for Computational Linguistics. 904

Shaden Shaar, Nikolay Babulkov, Giovanni Da San Mar- 905
tino, and Preslav Nakov. 2020. That is a known lie: 906
Detecting previously fact-checked claims. In Pro- 907
ceedings of the 58th Annual Meeting of the Asso- 908
ciation for Computational Linguistics, pages 3607– 909
3618, Online. Association for Computational Lin- 910
guistics. 911

Shaden Shaar, Fatima Haouari, Watheq Mansour, 912
Maram Hasanain, Nikolay Babulkov, Firoj Alam, 913
Giovanni Da San Martino, Tamer Elsayed, and 914
Preslav Nakov. 2021. Overview of the CLEF-2021 915
CheckThat! Lab Task 2 on Detecting Previously Fact- 916
Checked Claims in Tweets and Political Debates. In 917
CLEF (Working Notes), pages 393–405. 918

Hwanjun Song, Minseok Kim, Dongmin Park, and Jae- 919
Gil Lee. 2020a. Learning from noisy labels with deep 920
neural networks: A survey. ArXiv, abs/2007.08199. 921

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju 922
Shin, and Jae-Gil Lee. 2020b. Learning from noisy 923
labels with deep neural networks: A survey. arXiv 924
preprint arXiv:2007.08199. 925

Peter Stefanov, Kareem Darwish, Atanas Atanasov, and 926
Preslav Nakov. 2020. Predicting the topical stance 927
and political leaning of media using tweets. In Pro- 928
ceedings of the 58th Annual Meeting of the Associa- 929
tion for Computational Linguistics, pages 527–537, 930
Online. Association for Computational Linguistics. 931

Emma Strubell, Ananya Ganesh, and Andrew McCal- 932
lum. 2019. Energy and policy considerations for 933
deep learning in NLP. In Proceedings of the 57th 934
Annual Meeting of the Association for Computational 935
Linguistics, pages 3645–3650, Florence, Italy. Asso- 936
ciation for Computational Linguistics. 937

Andon Tchechmedjiev, Pavlos Fafalios, Katarina 938
Boland, Malo Gasquet, Matthäus Zloch, Benjamin 939
Zapilko, Stefan Dietze, and Konstantin Todorov. 940
2019. Claimskg: A knowledge graph of fact-checked 941
claims. In International Semantic Web Conference, 942
pages 309–324. Springer. 943

Nandan Thakur, Nils Reimers, Johannes Daxenberger, 944
and Iryna Gurevych. 2021. Augmented SBERT: Data 945
augmentation method for improving bi-encoders for 946

11

https://doi.org/10.24963/ijcai.2020/672
https://doi.org/10.24963/ijcai.2020/672
https://doi.org/10.24963/ijcai.2020/672
http://ceur-ws.org/Vol-2936/paper-45.pdf
http://ceur-ws.org/Vol-2936/paper-45.pdf
http://ceur-ws.org/Vol-2936/paper-45.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.fakenewschallenge.org/
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2020.acl-main.332
https://doi.org/10.18653/v1/2020.acl-main.332
https://doi.org/10.18653/v1/2020.acl-main.332
http://ceur-ws.org/Vol-2936/paper-29.pdf
http://ceur-ws.org/Vol-2936/paper-29.pdf
http://ceur-ws.org/Vol-2936/paper-29.pdf
http://ceur-ws.org/Vol-2936/paper-29.pdf
http://ceur-ws.org/Vol-2936/paper-29.pdf
https://doi.org/10.18653/v1/2020.acl-main.50
https://doi.org/10.18653/v1/2020.acl-main.50
https://doi.org/10.18653/v1/2020.acl-main.50
https://doi.org/10.18653/v1/2021.naacl-main.28
https://doi.org/10.18653/v1/2021.naacl-main.28
https://doi.org/10.18653/v1/2021.naacl-main.28
https://doi.org/10.18653/v1/2021.naacl-main.28


pairwise sentence scoring tasks. In Proceedings of947
the 2021 Conference of the North American Chapter948
of the Association for Computational Linguistics: Hu-949
man Language Technologies, pages 296–310, Online.950
Association for Computational Linguistics.951

James Thorne and Andreas Vlachos. 2018. Automated952
fact checking: Task formulations, methods and fu-953
ture directions. In Proceedings of the 27th Inter-954
national Conference on Computational Linguistics,955
pages 3346–3359, Santa Fe, New Mexico, USA. As-956
sociation for Computational Linguistics.957

James Thorne, Andreas Vlachos, Christos958
Christodoulopoulos, and Arpit Mittal. 2018.959
FEVER: a large-scale dataset for fact extraction960
and VERification. In Proceedings of the 2018961
Conference of the North American Chapter of962
the Association for Computational Linguistics:963
Human Language Technologies, Volume 1 (Long964
Papers), pages 809–819, New Orleans, Louisiana.965
Association for Computational Linguistics.966

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob967
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz968
Kaiser, and Illia Polosukhin. 2017. Attention is all969
you need. In Advances in Neural Information Pro-970
cessing Systems 30: Annual Conference on Neural In-971
formation Processing Systems 2017, NIPS ’17, pages972
5998–6008, Long Beach, California, USA.973

Nguyen Vo and Kyumin Lee. 2019. Learning from fact-974
checkers: Analysis and generation of fact-checking975
language. In Proceedings of the 42nd International976
ACM SIGIR Conference on Research and Devel-977
opment in Information Retrieval, SIGIR’19, page978
335–344, New York, NY, USA. Association for Com-979
puting Machinery.980

Nguyen Vo and Kyumin Lee. 2020. Where are the981
facts? searching for fact-checked information to alle-982
viate the spread of fake news. In Proceedings of the983
2020 Conference on Empirical Methods in Natural984
Language Processing (EMNLP), pages 7717–7731,985
Online. Association for Computational Linguistics.986

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu987
Wang, Madeleine van Zuylen, Arman Cohan, and988
Hannaneh Hajishirzi. 2020. Fact or fiction: Verifying989
scientific claims. In Proceedings of the 2020 Con-990
ference on Empirical Methods in Natural Language991
Processing (EMNLP), pages 7534–7550, Online. As-992
sociation for Computational Linguistics.993

Hao Wang, Bing Liu, Chaozhuo Li, Yan Yang, and994
Tianrui Li. 2019. Learning with noisy labels for995
sentence-level sentiment classification. In Proceed-996
ings of the 2019 Conference on Empirical Methods997
in Natural Language Processing and the 9th Inter-998
national Joint Conference on Natural Language Pro-999
cessing (EMNLP-IJCNLP), pages 6286–6292, Hong1000
Kong, China. Association for Computational Linguis-1001
tics.1002

William Yang Wang. 2017. “liar, liar pants on fire”:1003
A new benchmark dataset for fake news detection.1004

In Proceedings of the 55th Annual Meeting of the 1005
Association for Computational Linguistics (Volume 2: 1006
Short Papers), pages 422–426, Vancouver, Canada. 1007
Association for Computational Linguistics. 1008

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 1009
Chaumond, Clement Delangue, Anthony Moi, Pier- 1010
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- 1011
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 1012
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 1013
Teven Le Scao, Sylvain Gugger, Mariama Drame, 1014
Quentin Lhoest, and Alexander Rush. 2020. Trans- 1015
formers: State-of-the-art natural language processing. 1016
In Proceedings of the 2020 Conference on Empirical 1017
Methods in Natural Language Processing: System 1018
Demonstrations, EMNLP ’20, pages 38–45, Online. 1019

Qiang Wu, Christopher JC Burges, Krysta M Svore, 1020
and Jianfeng Gao. 2010. Adapting boosting for in- 1021
formation retrieval measures. Information Retrieval, 1022
13(3):254–270. 1023

Di You, Nguyen Vo, Kyumin Lee, and Qiang Liu. 2019. 1024
Attributed multi-relational attention network for fact- 1025
checking url recommendation. In Proceedings of the 1026
28th ACM International Conference on Information 1027
and Knowledge Management, pages 1471–1480. 1028

Wenxuan Zhou and Muhao Chen. 2021. Learning from 1029
noisy labels for entity-centric information extraction. 1030
In Proceedings of the 2021 Conference on Empiri- 1031
cal Methods in Natural Language Processing, pages 1032
5381–5392, Online and Punta Cana, Dominican Re- 1033
public. Association for Computational Linguistics. 1034

Arkaitz Zubiaga. 2018. A longitudinal assessment of 1035
the persistence of Twitter datasets. Journal of the 1036
Association for Information Science and Technology, 1037
69(8):974–984. 1038

Arkaitz Zubiaga, Ahmet Aker, Kalina Bontcheva, Maria 1039
Liakata, and Rob Procter. 2018. Detection and reso- 1040
lution of rumours in social media: A survey. ACM 1041
Comput. Surv., 51(2). 1042

Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geraldine 1043
Wong Sak Hoi, and Peter Tolmie. 2016a. Analysing 1044
how people orient to and spread rumours in social 1045
media by looking at conversational threads. PLOS 1046
ONE, 11(3):1–29. 1047

Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geraldine 1048
Wong Sak Hoi, and Peter Tolmie. 2016b. Analysing 1049
how people orient to and spread rumours in social 1050
media by looking at conversational threads. PloS 1051
one, 11(3):e0150989. 1052

12

https://doi.org/10.18653/v1/2021.naacl-main.28
https://aclanthology.org/C18-1283
https://aclanthology.org/C18-1283
https://aclanthology.org/C18-1283
https://aclanthology.org/C18-1283
https://aclanthology.org/C18-1283
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3331184.3331248
https://doi.org/10.1145/3331184.3331248
https://doi.org/10.1145/3331184.3331248
https://doi.org/10.1145/3331184.3331248
https://doi.org/10.1145/3331184.3331248
https://doi.org/10.18653/v1/2020.emnlp-main.621
https://doi.org/10.18653/v1/2020.emnlp-main.621
https://doi.org/10.18653/v1/2020.emnlp-main.621
https://doi.org/10.18653/v1/2020.emnlp-main.621
https://doi.org/10.18653/v1/2020.emnlp-main.621
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/D19-1655
https://doi.org/10.18653/v1/D19-1655
https://doi.org/10.18653/v1/D19-1655
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.emnlp-main.437
https://doi.org/10.18653/v1/2021.emnlp-main.437
https://doi.org/10.18653/v1/2021.emnlp-main.437
https://doi.org/10.1002/asi.24026
https://doi.org/10.1002/asi.24026
https://doi.org/10.1002/asi.24026
https://doi.org/10.1145/3161603
https://doi.org/10.1145/3161603
https://doi.org/10.1145/3161603
https://doi.org/10.1371/journal.pone.0150989
https://doi.org/10.1371/journal.pone.0150989
https://doi.org/10.1371/journal.pone.0150989
https://doi.org/10.1371/journal.pone.0150989
https://doi.org/10.1371/journal.pone.0150989


Appendix1053

A Hyperparameters and Fine-Tuning1054

Common Parameters1055

• The models are developed in Python using Py-1056

Torch (Paszke et al., 2019), the Transformers1057

library (Wolf et al., 2020) and the Sentence1058

Transformers library (Reimers and Gurevych,1059

2019)9.1060

• For model optimization we use1061

AdamW (Loshchilov and Hutter, 2017)1062

with weight decay 1e-8, β1 0.9, β2 0.999, ϵ1063

1e-08, for 10 epochs and maximum sequence1064

length of 128 tokens (per encoder).101065

• All SentenceBERT models are initialized1066

from the ’stsb-bert-base’11 checkpoint.1067

• The SBERT models use cosine similarity both1068

during training inside the MNR loss and dur-1069

ing inference for ranking.1070

• The values of the hyper-parameters were1071

selected on the development set of Check-1072

That ’2112 and we chose the best model check-1073

point based on the performance on the devel-1074

opment set (MAP@5).1075

• We ran each experiment three times with dif-1076

ferent seeds and averaged all the metrics.1077

• The models were evaluated on each epoch or1078

250 steps, whichever is less.1079

• The evaluation metrics are calculated using1080

the official code from the CheckThat ’21 com-1081

petition (Shaar et al., 2021)13 and the Sen-1082

tenceTransformer’s library.1083

• We trained our models on 5x Tesla K80 GPUs1084

and 1x GeForce GTX 1080Ti, depending on1085

the dataset size, the experiments took between1086

10 minutes and 5 hours.1087

Baseline SBERT1088

• Baseline SentenceBERT is trained w/ LR 2e-1089

05, warmup 0.1, and batch size 32.1090

• We set the temperature (τ ) in the MNR loss1091

to 1.0, i.e., using unmodified MNR.1092

• The model consists 110M params, same as1093

the bert-base Devlin et al. (2019), as it uses a1094

bi-encoder scheme.1095

9github.com/UKPLab/sentence-transformers
10When needed, we truncated the sequences token by token,

starting from the longest sequence in the pair.
11huggingface.co/sentence-transformers/stsb-bert-base
12https://gitlab.com/checkthat_lab/

clef2021-checkthat-lab/-/tree/master/task2
13https://gitlab.com/checkthat_lab/

clef2021-checkthat-lab/-/tree/master/task2/scorer

Proposed Model 1096

• The model is trained w/ LR 1e-05, warmup 1097

0.1, and batch size 8, group size of 4 during 1098

the dataset shuffling. 1099

• We tuned settings of the self-adaptive training 1100

approach: momentum α to 0.9, refurbishment 1101

process starting at the second epoch. 1102

• We set the learning rate for temperature (τ ) in 1103

the MNR loss to 0.4. 1104

• In the re-ranking, we used 800 training exam- 1105

ples to train SBERT and the remaining 199 to 1106

train LambdaMART. 1107

• We re-ranked the top-100 results from the best 1108

SentenceBERT model with LambdaMART. 1109

• All other training details we kept from 1110

(Chernyavskiy et al., 2021b). 1111

• The model consists 330M params, 3x as the 1112

size of the Baseline SBERT, as it trains three 1113

separate models. 1114

• In our preliminary experiments, SBERT-base 1115

and SBERT-large models achieved the same 1116

results in terms of MAP@5, therefore we ex- 1117

periment with the base versions. 1118

B Dataset 1119

B.1 Tweet Collection 1120

(Conversation Structure) 1121

It is important to note that this ‘fact-checking’ tweet 1122

can be part of a multiple-turn conversational thread, 1123

therefore taking the post that it replies to (previous 1124

turn), does not always express a claim which the 1125

current tweet targets. In order to better understand 1126

that phenomena, we perform manual analysis of 1127

conversation thread. The conversational threads are 1128

organized in a similar way shown Figure 1, i.e., the 1129

root is the first comment, then there can be a long 1130

discussion, followed by a fact-checking comment 1131

(the one with the Snopes link). In our analysis we 1132

identify four patterns: (i) current tweet verifies a 1133

claim in the the tweet it replies to, (ii) the tweet 1134

verifies the root of the conversation, (iii) the tweet 1135

does not verify any claim in the chain (a common 1136

scenario), (iv) in very few cases the fact-check tar- 1137

gets a claim expressed not in the root or the closest 1138

tweet. This analysis suggests that for the task of 1139

detecting previously fact-checked claims, it is suf- 1140

ficient to collect the triplet of the fact-checking 1141

tweet, root of the conversation (conversation), and 1142

the tweet that the target tweet is replying to (reply). 1143

13

github.com/UKPLab/sentence-transformers
huggingface.co/sentence-transformers/stsb-bert-base
https://gitlab.com/checkthat_lab/clef2021-checkthat-lab/-/tree/master/task2
https://gitlab.com/checkthat_lab/clef2021-checkthat-lab/-/tree/master/task2
https://gitlab.com/checkthat_lab/clef2021-checkthat-lab/-/tree/master/task2/scorer
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B.2 Fact-checking Articles Collection1144

In order to obtain a collection of fact-checking arti-1145

cles for each tweet, we first formed a list of unique1146

URLs shared in the fact-checking tweets from the1147

crowd fact-checkers. Next, from each URL we1148

downloaded the HTML of the whole page and ex-1149

tracted the meta information using CSS selectors1150

and RegEx rules. In particular, we follow previ-1151

ous work (Barrón-Cedeno et al., 2020; Shaar et al.,1152

2021) and collect: title, the title of the page, subti-1153

tle, short description of the fact-check, claim, the1154

claim of interest, subtitle, short description of the1155

fact-check, date, the date on the article was pub-1156

lished, author, the author of the article. We do1157

not parse the content of the article and factual la-1158

bel, as the credibility of the claim is not related to1159

the objective of this task, i.e., the goal is to find a1160

fact-checking article, but not to verify it.1161

As a result we collected 10,340 articles that are1162

published in the period between 1995–2021. The1163

per-year distribution is shown in Table 2 (in brown).1164

The majority of the articles are from the period after1165

2015, with a peak at the ones from 2020/2021. We1166

attribute this on the increased media literacy and1167

on the nature of the Twitter dynamics (Zubiaga,1168

2018).1169

B.3 CheckThat ’21 Word Overlaps1170

Here, we analyze the distribution of the Jaccard1171

scores in the CheckThat ’21, shown in Figure 4.1172

The distribution is different compared to the one1173

observed in the our newly collected dataset, as it1174

peaks at around 0.4, and is slightly shifted towards1175

lower similarity values, suggesting the examples1176

included are not easily solvable with basic lexical1177

features (Shaar et al., 2021), which we also observe1178

in our experiments (see Section 5).1179

C Annotations1180

Setup and Guidelines Each annotator was pro-1181

vided by the same guidelines and briefed in from1182

one of the authors of this paper. For annotation we1183

used a Google Sheets document, where non of the1184

annotators had access to the annotations from the1185

others. The annotation sheet contained the follow-1186

ing fields:1187

• tweet_text – the text of the fact-checking tweet1188

• text_conversation – the text of the root of the1189

conversation1190

• text_reply – the text of the last tweet before1191

the fact-checking one1192

Figure 4: Distribution of the Jaccard similarity scores.
The score is an average of the sim(tweet, title) and
sim(tweet, subtitle).

Replay Conversation

Fleiss Kappa 0.745 0.750

Table 7: Fleiss Kappa inter-annotator agreement be-
tween our three annotators (A, B, C).

• title – the title of the Snopes article 1193

• subtitle – the subtitle of the Snopes article. 1194

The task annotation task is to mark if ‘Conversa- 1195

tion matches’ and ‘Replay matches’ using a check- 1196

boxes. We also allowed them to add comments as 1197

a free form text. 1198

Demographics We recruited three annotators – 1199

2 male and 1 female on age between 25 and 30. 1200

The annotators have higher education (at least a 1201

bachelors degree), and are currently enrolled in a 1202

MSc or Ph.D programs in computer science. Each 1203

annotator is proficient in English but is not a native 1204

speaker of the language. 1205

Inter-annotator Agreement Here, we present 1206

the inter-annotator agreement. We measure the 1207

overall agreement using Fleiss kappa (Fleiss, 1971) 1208

(shown in Figure 7) but also the agreement between 1209

each two annotators using Cohen’s Kappa (shown 1210

in Table 8). The overall level of agreement of agree- 1211

ment between the annotators is good. Moreover, 1212

we can see that between annotator A and C the 1213

agreement is almost perfect both for the replies and 1214

conversations. The lowest agreement is between A 1215

and B but still substantial. 1216

Disagreement Analysis After the annotations 1217

procedure was finished we analyzed the examples 1218

the annotators disagree on. The first type of claims 1219

that cause disagreement are the ones depend on 1220

information external sources, e.g., ‘Blame Russia 1221

14



Annotators Replay Conversation
Cohen Kappa

A↔ B 0.650 0.655
A↔ C 0.885 0.922
B↔ C 0.698 0.673

Table 8: Cohen Kappa inter-annotator agreement be-
tween our three annotators (A, B, C).

again? [URL]’. The second type are tweets contain-1222

ing multiple claims that needs to be fact-checked,1223

however the referenced article does not target the1224

main claim, e.g., ‘It sounds like someone who is1225

scared as heck that they will not win,” Shermichael1226

Singleton says of Pres. Trump’s remarks encour-1227

aging his supporters to vote twice.’ and its crowd1228

fact-check ‘Did Trump Tell People To Vote Twice?’.1229

Here, the main claim is in the quote itself, while the1230

remark about voting twice is secondary. Third type1231

are the claim is ambiguous Fanta (soft drink) was1232

created so that the Nazi’s could replace Coca-Cola1233

during WWII [URL], and the fact-check is about1234

‘Was Fanta invented by the Nazis?’. Here, it is not1235

clear who created Fanta. The final pattern is – the1236

claim is partial match with the fact-check, e.g., ‘did1237

President Trump have a great economy and job1238

creation for 1st 3 years???’, and the fact-check is1239

‘Did Obama’s Last 3 Years See More Jobs Created1240

Than Trump’s First 3?’.1241

D Experiments1242

D.1 Baselines and State-of-the-Art1243

Retrieval (Shaar et al., 2021) uses an informa-1244

tion retrieval model based on BM25 (Robertson and1245

Zaragoza, 2009) that ranks the list of fact-checking1246

articles based on the relevance score between its1247

{’claim’, ’title’} and the tweet’s text.1248

Sentence-BERT is a bi-encoder model based on1249

Sentence-BERT fine-tuned for detecting previously1250

fact-checked claims using MNR loss. The details1251

are in Section 4, General Scheme.1252

DIPS (Mihaylova et al., 2021) adopts a Sentence-1253

BERT model that computes the cosine similarity1254

for each pair of an input tweet and a verified claim1255

(article). The final ranking is made by passing a1256

sorted list of cosine similarities to a fully-connected1257

neural network.1258

NLytics (Pritzkau, 2021) uses a RoBERTa-based1259

model optimized as a regression function obtaining1260

Model MRR P@1 MAP@5

Baselines (CheckThat ’21)
Retrieval (Shaar et al., 2021) 76.1 70.3 74.9
SBERT (CheckThat ’21) 87.97 84.92 87.45

CrowdChecked (Our Dataset)
SBERT (cos > 0.50) 88.20 85.76 87.80
SBERT (cos > 0.60) 87.21 84.25 86.69
SBERT (cos > 0.70) 86.18 83.08 85.76
SBERT (cos > 0.80) 83.57 80.40 82.93
SBERT (jac > 0.30) 88.01 85.09 87.61
SBERT (jac > 0.40) 87.26 84.76 86.80
SBERT (jac > 0.50) 86.53 83.42 86.13
(Pre-train) CrowdChecked, (Fine-tune) CheckThat ’21
SBERT (cos > 0.50, Seq) 89.92 87.60 89.49
SBERT (cos > 0.60, Seq) 89.56 87.27 89.20
SBERT (cos > 0.70, Seq) 88.70 85.59 88.36
SBERT (cos > 0.80, Seq) 88.42 85.26 88.03
SBERT (jac > 0.30, Seq) 90.21 87.44 89.69
SBERT (jac > 0.40, Seq) 89.64 86.77 89.25
SBERT (jac > 0.50, Seq) 89.44 86.26 89.03

(Mix) CrowdChecked and CheckThat ’21
SBERT (cos > 0.50, Mix) 89.47 86.77 88.99
SBERT (cos > 0.60, Mix) 88.54 85.76 87.98
SBERT (cos > 0.70, Mix) 87.71 84.92 87.18
SBERT (cos > 0.80, Mix) 88.40 85.26 87.97
SBERT (jac > 0.30, Mix) 90.41 87.94 90.00
SBERT (jac > 0.40, Mix) 89.82 86.60 89.48
SBERT (jac > 0.50, Mix) 88.71 85.26 88.31

Table 9: Evaluation on the CheckThat ’21 development
set. In parenthesis is name the training split, i.e., Jaccard
(jac) or Cosine (cos) data selection strategy, (Seq) first
training on CrowdChecked and then on CheckThat ’21,
(Mix) mixing the data from the two datasets.

a direct ranking for each tweet-article pair. 1261

Aschern (Chernyavskiy et al., 2021b) combines 1262

TF.IDF with a Sentence-BERT (ensemble with 1263

three models of each type). The final ranking is 1264

obtained from a re-ranking LambdaMART model. 1265

D.2 Experimental Results 1266

Here, we present the expanded results for our ex- 1267

periments described in Section 5. Tables 9 and 10 1268

include the results for the Data Efficiency experi- 1269

ments on the development set, and testing set, re- 1270

spectively. In Table 10 corresponds to Table 5 in 1271

the main paper, and includes all metrics and for all 1272

thresholds (shown in Figure 3). Next, the results 1273

from our Modeling Noisy Data experiments are in 1274

Table 11, which corresponds to Table 6 in the main 1275

paper. In all tables we use the same notation and 1276

grouping as in their corresponding table. 1277
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Precision MAP
Model MRR @1 @3 @5 @10 @20 @1 @3 @5 @10 @20

Baselines (CheckThat ’21)
Retrieval (Shaar et al., 2021) 76.1 70.3 26.2 16.4 8.8 4.6 70.3 74.1 74.9 75.7 75.9
SBERT (CheckThat ’21) 79.96 74.59 27.89 17.19 8.96 4.61 74.59 78.66 79.20 79.66 79.83

CrowdChecked (Our Dataset)
SBERT (cos > 0.50) 81.58 75.91 28.60 17.76 9.04 4.67 75.91 80.36 81.05 81.27 81.48
SBERT (cos > 0.60) 79.71 74.75 27.39 16.96 8.86 4.59 74.75 78.25 78.84 79.38 79.61
SBERT (cos > 0.70) 78.27 72.28 27.61 17.10 8.89 4.53 72.28 76.95 77.54 78.01 78.12
SBERT (cos > 0.80) 78.39 72.94 27.34 16.83 8.81 4.55 72.94 77.04 77.52 78.08 78.28
SBERT (jac > 30) 81.50 76.40 28.49 17.43 8.94 4.65 76.40 80.45 80.84 81.14 81.38
SBERT (jac > 40) 79.45 74.42 27.34 16.93 8.89 4.65 74.42 77.92 78.52 79.08 79.33
SBERT (jac > 50) 79.96 74.75 27.89 17.29 8.94 4.60 74.75 78.63 79.26 79.63 79.81

(Pre-train) CrowdChecked, (Fine-tune) CheckThat ’21
SBERT (cos > 0.50, Seq) 82.26 77.06 28.27 17.62 9.26 4.76 77.06 80.64 81.41 81.99 82.18
SBERT (cos > 0.60, Seq) 80.13 75.41 27.45 17.00 8.94 4.65 75.41 78.55 79.13 79.76 79.99
SBERT (cos > 0.70, Seq) 79.27 73.43 27.72 17.33 8.94 4.58 73.43 77.78 78.56 78.94 79.09
SBERT (cos > 0.80, Seq) 78.32 72.77 27.17 16.93 8.89 4.58 72.77 76.71 77.41 77.98 78.15
SBERT (jac > 0.30, Seq) 83.76 78.88 28.93 17.82 9.21 4.71 78.88 82.59 83.11 83.49 83.63
SBERT (jac > 0.40, Seq) 80.69 75.25 27.83 17.33 9.09 4.69 75.25 79.04 79.76 80.34 80.57
SBERT (jac > 0.50, Seq) 81.99 76.90 28.16 17.76 9.13 4.69 76.90 80.34 81.33 81.70 81.88

(Mix) CrowdChecked and CheckThat ’21
SBERT (cos > 0.50, Mix) 82.12 76.57 28.55 17.59 9.13 4.68 76.57 80.86 81.38 81.82 82.00
SBERT (cos > 0.60, Mix) 81.45 76.40 28.27 17.43 8.96 4.61 76.40 80.25 80.79 81.14 81.31
SBERT (cos > 0.70, Mix) 79.08 73.10 27.83 17.33 8.89 4.57 73.10 77.72 78.46 78.77 78.95
SBERT (cos > 0.80, Mix) 79.73 74.75 27.56 17.00 9.06 4.62 74.75 78.22 78.73 79.46 79.59
SBERT (jac > 0.30, Mix) 83.04 78.55 28.66 17.52 9.11 4.69 78.55 81.93 82.30 82.75 82.94
SBERT (jac > 0.40, Mix) 81.18 74.59 28.55 17.72 9.14 4.74 74.59 79.79 80.46 80.85 81.10
SBERT (jac > 0.50, Mix) 81.56 76.73 28.22 17.36 9.03 4.71 76.73 80.23 80.71 81.19 81.45

Table 10: Evaluation on the CheckThat ’21 testing set. In parenthesis is name the training split, i.e., Jaccard (jac) or
Cosine (cos) data selection strategy, (Seq) first training on CrowdChecked and then on CheckThat ’21, (Mix) mixing
the data from the two datasets.

Precision MAP
Model MRR @1 @3 @5 @10 @1 @3 @5 @10

DIPS (Mihaylova et al., 2021) 79.5 72.8 28.2 17.7 9.2 72.8 77.8 78.7 79.1
NLytics (Pritzkau, 2021) 80.7 73.8 28.9 17.9 9.3 73.8 79.2 79.9 80.4
Aschern (Chernyavskiy et al., 2021b) 88.4 86.1 30.0 18.2 9.2 86.1 88.0 88.3 88.4

SBERT (jac > 0.30, Mix) 83.0 78.6 28.7 17.5 9.1 78.6 81.9 82.3 82.8
+ shuffling & trainable temp. 83.2 77.7 29.1 17.8 9.1 77.7 82.2 82.6 82.9
+ self-adaptive training (Eq. 1) 84.2 78.7 29.3 18.1 9.3 78.7 83.0 83.6 83.9
+ loss weights 84.8 79.7 29.5 18.2 9.3 79.7 83.7 84.3 84.6

+ TF.IDF + Re-ranking 89.9 86.1 30.9 18.9 9.6 86.1 89.2 89.7 89.8
+ TF.IDF + Re-ranking (ens.) 90.6 87.6 30.7 18.8 9.5 87.6 89.9 90.3 90.4

Table 11: Results on the CheckThat ’21 testing set. We compare our model and its components (added sequentially)
to state-of-the-art approaches.
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