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Abstract

Pre-trained Large Language Models (LLMs) require post-training methods such as
supervised fine-tuning (SFT) on instruction-response pairs to enable instruction
following. However, this process can cause forgetting in capabilities learned during
pre-training. In this paper, we investigate the loss of context awareness after
SFT, where context awareness is defined as the ability to extract and understand
information from user-provided context. Surprisingly, we discovered that the loss
of context awareness occurs in instruction fine-tuned LLMs when the chat template
is applied to input prompts. We identify that the performance decline is associated
with a bias toward different roles learned during conversational instruction fine-
tuning. The bias can be traced to training samples where the assistant response
minimally relies on the user-provided instruction. Based on these observations, we
propose a metric to identify context-dependent examples from general instruction
fine-tuning datasets. We then apply conditional instruction fine-tuning with a
context-dependency indicator, enabling the model to preserve context awareness
after SFT. Experiments on four context-dependent downstream tasks and three
pre-trained LLMs of different sizes show that our method effectively mitigates
the loss of context awareness without compromising general instruction-following
capabilities.

1 Introduction

Large language models (LLMs) pretrained on large-scale datasets acquire diverse language skills dur-
ing pretraining. To enhance these models’ ability to follow general instructions, further fine-tuning is
typically required. This includes supervised instruction fine-tuning (SFT) [23, 20] and reinforcement
learning from human feedback (RLHF) [6]. However, several studies have demonstrated additional
fine-tuning can potentially harm existing capabilities learned during pretraining [17, 3, 10].

Although some studies suggest that performance degradation can be mitigated or even eliminated
through improved instruction fine-tuning methods [19, 3, 11], in this paper, we demonstrate that
instruction fine-tuning specifically leads to the worsening of a model’s context awareness in a series
of open-source models. We define context awareness as a model’s ability to accurately retrieve,
process, and interpret specific information from user-provided context. Context awareness is highly
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relevant to the intrinsic hallucinations of LLMs [13] and crucial to the truthfulness of LLM-based
chat models [20]. It is also important for many real-world use cases, including retrieval augmented
generalization [15, 14, 26], in-context learning [1], and contextual question-answering [21, 5, 8].

We first demonstrate the loss of context awareness through evaluations of several popular, open-source
LLMs using the Needle-in-a-Haystack (NIH) task. We show that while many pretrained models
demonstrate near-perfect performance on NIH, their performance deteriorates consistently after SFT,
regardless of context window sizes, chat templates, architectures, or model sizes. We show that this
decline is correlated with the application of chat templates, which, however, are widely used and
essential in building conversational LLM assistants. When these chat templates are removed from
instruction fine-tuned models, NIH performance not only recovers but in some instances surpasses
that of their pretrained, non-fine-tuned counterparts.

These observations suggest that the deterioration in NIH performance does not indicate a catastrophic
loss of context-retrieval capabilities during instruction fine-tuning. Instead, the chat template appears
to mask these underlying abilities by introducing systematic biases into the models’ behavior. Through
analysis, we observe differences in attention allocation patterns in input tokens when comparing
instruction fine-tuned models with and without applying chat templates. Specifically, we examine
how the attention allocation shifts when tokens are marked as “user tokens” by the chat template.
As illustrated in Figure 3, the application of chat templates leads to a redistribution of attention
values: attention scores decrease for user input tokens while increasing for assistant tokens. We
further validate the relationship between attention score reallocation and context awareness through
targeted intervention experiments. By manually increasing attention values assigned to user tokens,
we partially restored the performance on simple context-relevant tasks.

These findings motivate us to develop a fine-tuning strategy that mitigates attention bias acquired
during instruction fine-tuning. Our approach stems from the intuition that the bias is learned from
certain patterns in the training dataset, where for some examples the model does not need the
context to generate correct answers. Therefore, we develop a quantitative metric to assess the
context-dependency of conversational instruction and response pairs based on attention allocation
patterns. We discover that context-dependent examples are notably sparse in commonly used open-
source instruction fine-tuning datasets. To help the model distinguish examples with and without
context-dependency during instruction finetuning, we add an indicator token to the identified context-
dependent instructions. After fine-tuning the model with this enhanced dataset, it learns to allocate
increased attention to user tokens when the indicator is present.

We evaluate our method on three open-source pretrained language models and several context-
dependent and general tasks. Empirical results demonstrate that models fine-tuned using our method
consistently achieve superior performance on context-dependent tasks compared to standard fine-
tuning while maintaining similar performance on general tasks.

Our contributions are summarized as follows:

* We identify that the context awareness of LLMs deteriorates after supervised instruction
fine-tuning with chat templates applied, compared to pretrained models.

» We pinpoint that the worsened context awareness is associated with attention allocation bias
on tokens marked as from different roles.

* We propose a quantitative metric to identify context-dependent instruction-response pairs
from general instruction fine-tuning datasets. By inserting an indicator into identified
instructions during SFT, we mitigate the loss of context awareness in instruct models when
the indicator is added during inference, while preserving general performance.

2 Loss of Context Awareness after Instruction Fine-tuning

We conduct preliminary studies to understand the loss of context awareness after instruction fine-
tuning and its root cause. In Section 2.1, we present evidence that context awareness consistently
deteriorates in instruct models and identified the main culprit as the roles indicated with chat templates.
In Section 2.2, we analyze correlational relation between instruct models and decreased attention
allocated to user role tokens. In Section 2.3, we find causal relation between the decreased attention
allocated to user role tokens (after instruction fine-tuning) and worsened context awareness.



2.1 Evaluating Context Awareness Through Needle-in-a-Haystack (NIH) Testing

_‘ Input prompt }
[Optional User template] You are a helpful AI assistant that answers a question using only
the provided document:

“July 2010What hard liquor, cigarettes, heroin, and crack have in common is that they're

all more concentrated forms of less addictive predecessors. The best thing to do in San
Francisco is eat a sandwich and sit in Dolores Park on a sunny day. Most if not all the

things we describe as addictive are.”

Question:

What is the best thing to do in San Francisco?

[Optional Assistant template] The best thing to do in San Francisco is

|—‘ Target output }
- |

at a sandwich and sit in Dolores Park on the sunny day

Figure 1: An example of the Needle-in-a-haystack (NIH) test used in our work. [Optional User
template] and [Optional Assistant template] are user and assistant role indicators used in instruction
fine-tuned models. The inserted needle is highlighted in yellow.

We demonstrate the loss of context awareness after instruction fine-tuning with the needle-in-a-
haystack (NIH) test. The NIH task provides a fairer comparison between pretrained models and
instruct models in terms of context retrieval performance, since it relies less on instruction-following
capabilities. We remove the newlines between context and needle in the original NIH test to increase
difficulty and better discriminate among different models. An example of the NIH prompt is shown
in Figure 1. We rerun the evaluation with different prompt templates for a more robust evaluation.
More details can be found in Appendix A.2.

Dataset. The NIH test evaluates the performance of language models in extracting a given sentence
(the needle) from irrelevant context. The needle can be inserted at different locations in contexts of
varying lengths. We report the recall error:

1

Il Z 1(w € output)
weK

err = 1 — recall

recall =

where K is the set of keywords in the targeted output and output is the output of the LLM. For all
NIH evaluations, we calculate the recall on the first 100 generated tokens. We average the recall
error across 400 NIH tests with different insertion locations and context lengths within the model’s
context window. An example of the NIH prompt in our experiments is shown in Figure 1. When the
chat template is applied to the prompt, the whole input prompt is partitioned into the user instruction
input and model response, indicated by special role markers in the chat template (e.g., <|user|> and
<|assistant|>). More details about the NIH tests can be found in Appendix A.2.

Models. We evaluate NIH on eight open-source language models from five model families. For
each model, we compare the performance of the pretrained version (not instruction fine-tuned) and
the official instruction-finetuned version released by the model provider. Here, we do not consider
stronger closed-source models as their pretrained versions are unavailable. The context window
lengths of these models range from 4K to 32K.

NIH performance drops after instruction finetuning on most models. We report the evaluation
results on NIH in Figure 2. Given the significantly improved instruction-following through instruction
finetuning, we would expect that performance would always increase. However, when comparing the
pretrained model (green bar) with the instruction-finetuned model (red bar), the NIH error increases
for most models after instruction fine-tuning, which implies negative effects from worse context
awareness after finetuning. The only outlier is Llama-3.1-8b, which highlights the nuanced dual
impact of instruction fine-tuning on different models: improvement in instruction following and
potential worsening of context sensitivity.
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Figure 2: Average recall error (1 - recall) on NIH for different model series (lower better). We report
the performance of official instruction-tuned models (both with and without chat templates) and their
pretrained counterparts from five model families, with sizes ranging from 7B to 27B. Some errors are
too small to be visible in the figure. Detailed numerical values can be found in Appendix B.1.

The performance drop is associated with chat templates. To determine whether the performance
difference mainly comes from a different input format or fine-tuned model weights, we remove the
chat templates (i.e., the role indicators in instruction-tuned models) and visualize the NIH errors
with blue bars in Figure 2. The NIH error without applying chat templates (blue bar) is significantly
lower than with templates (red bar). These results indicate that context retrieval capabilities are not
eliminated by instruction fine-tuning, but are instead impacted by biases associated with the presence
of chat templates.

The aforementioned phenomenon is consistent across models with varying context window lengths,
model families, chat templates, and small to medium model sizes. Although we are unable to conduct
experiments on extremely large models, context awareness in medium-sized models remains relevant,
as they are widely adopted in cost-sensitive settings such as edge devices and small businesses.

2.2 Attention Allocation Bias Across Different Roles

Based on our observations, performance on NIH drops significantly when the chat template is applied.
We hypothesize that the performance deterioration stems from the bias in instruction data and the bias
is embedded in different roles marked by the chat template. When the model generates a response, it
balances information from the input context and internal knowledge stored within its weights. It pays
attention to user tokens to maintain consistency with the user-provided context while attending to
previously generated assistant response tokens to maintain consistency with its output. If the model
learns to assign lower importance to user-provided context and higher importance to its internal
knowledge during SFT, it may develop a bias that causes it to weigh user tokens less. To support
our hypothesis, we analyze the attention allocation between user and assistant tokens, both with and
without chat templates.

Experimental settings. We prepare two inputs for each NIH test case: one with the chat template
and one without. The prompt formats follow the input prompt shown in Figure 1. We collect attention
weights from each layer, focusing on the last token (which generates the next answer token) and
its attention to all input tokens. We separately sum the attention weights for user and assistant
tokens. When calculating the attention weight allocation with chat templates, we exclude the attention
weights on chat template tokens and renormalize the attention weights across the user, assistant, and
BOS tokens. We report the attention allocation from an arbitrary middle layer (e.g., Layer 15) on a
representative context retrieval head that allocates the highest attention to user tokens without chat
templates. Further discussion on head and layer selection can be found in the Appendix B.3.

Less attention on user tokens with chat templates. We visualize the changes in attention allo-
cation, both with and without chat templates in Figure 3. When chat templates are applied to mark
tokens as from different roles, attention allocated to user tokens decreases while attention to assistant
tokens increases for all models. This indicates that the models learn to assign lower attention to user
tokens compared to the baseline level (where the chat template is not applied). In our experiments,
we collect attention allocation data for context lengths less than 4,000. Although several models (e.g.
Llama-3 and Gemma-2) achieve perfect NIH accuracy under 4,000 context length, the decrease in
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Figure 3: We visualize the changes in attention allocation between user tokens and assistant tokens
after applying chat templates. The attention allocation is calculated when the model generates the
first answer token in its response. The attention weights are averaged across 400 tests with context
lengths ranging from 200 to 4,000 and needle depths from 0% to 100%. More detailed scores can be
found in Appendix B.2.

user attention remains noticeable. Note that comparison is only reasonable within variants of each
model and not between different ones.

2.3 Attention Steering to Compensate for Attention Bias

In the previous section, we observed a trend of decreased attention allocated to user tokens when chat
templates were applied to instructional models, associated with a performance decline on the NIH
task. To establish a more robust causal relationship, we further verify our hypothesis by manually
steering attention toward user tokens to compensate for the attention bias.

Post-hoc attention steering of user tokens. To compensate for the attention bias observed in
instruction models, we manually steer the attention on user tokens.

Specifically, we modify the self-attention weights in each transformer layer:

+ - oAtt(x,y) ify ¢U
% - Att(x,y) otherwise,

Att(x,y) = { (1)

where x and y are two tokens in the input sequence, a € (0, 1) is the steering strength (lower for
more emphasis on user tokens), U is the subset of all user tokens, and Z is the normalization constant
that renormalizes the altered attention scores across all tokens. Att(x,y) is the original attention
weight from token x to token y.

We adopt the same attention steering implementation as Zhang et al. [28]. They steered the attention
of pretrained language models to emphasize user-specified portions of user instructions, enabling
models to follow instructions without explicit instruction fine-tuning. In our setting, we increase
the attention weights of instruction-fine-tuned models on the entire user input prompt, which conse-
quently decreases weights on other tokens (chat template role tokens, BOS/EOS tokens, and partially
generated model responses). We steer on all heads with intervention factor v = 0.95.

Post-hoc attention steering partially recovers the NIH performance but produces side effects.
We report the performance of attention steering in Table 1. Attention steering requires customized
attention calculations for different heads and layers, which limits the use of several existing efficient
attention implementations. Therefore, we are only able to apply attention steering to two Llama-
2 models with 4,000-token context windows. We report the recall on NIH task as well as the
performances on two additional contextual QA tasks: QuAC [5] and DROP [8]. Detailed descriptions
and metrics of these tasks can be found in Section 4. Unlike NIH and QuAC, which retrieve
exact sentences from the context, DROP requires the model not only to understand and retrieve
relevant information from the context but also to apply discrete mathematical operations to the
retrieved information. As shown in the table, attention steering can boost performance on simple
context retrieval tasks such as NIH and QuAC. However, on DROP, which requires a more complex
combination of different capabilities, performance with attention steering is negatively impacted. The



Table 1: NIH recall and QuAC/DROP containing score with attention steering. “Baseline” and
“+ Attention Steering” are evaluated with chat templates. “w/o chat template” shows the NIH
performance without the chat template for reference (same as Figure 2).

Task Capabilities Model Name Baseline + Attention Steering  w/o chat template
NIH sentence retrieval Llama-2-7B-Chat ~ 0.9917 0.9932 0.9975
Llama-2-13B-Chat  0.9207 0.9225 0.9578
QUAC sentence retrieval Llama-2-7B-Chat 22.20 24.00 -
reading comprehension  Llama-2-13B-Chat 18.60 20.00 -
DROP context retrieval Llama-2-7B-Chat 44.22 43.46 -
math operation Llama-2-13B-Chat ~ 46.20 45.11 -

deteriorating performance on DROP suggests that intervening in attention scores to emphasize user
tokens, while improving context awareness, might impair other capabilities of the model.

In the next section, we introduce a fine-tuning strategy to better mitigate the loss of context awareness
with fewer side effects based on all of our aforementioned observations.

3 Instruction Fine-tuning with Context-dependency Indicators

Our method is based on the intuition that by explicitly marking context-dependent data samples with a
special indicator during instruction fine-tuning, the model learns to associate the indicator with paying
more attention to the user-provided context. After fine-tuning whenever the indicator is appended to a
user instruction, the conditional generation allocates more attention to the user-provided content and
responds to the instruction with more context awareness. The main technical challenge is identifying
context-dependent data samples from the instruction dataset.

3.1 Identifying Context-dependent Instructions

A training sample in the instruction fine-tuning dataset is a conversation between the user and model
assistant, which may consist of multiple instruction-response pairs. Formally, we denote user instruc-
tions as X, assistant responses as Y, and a conversation of n total turns as C' = [ X1, Y7, ..., X, Ya].

Identifying context-dependent instructions with a reference language model. We identify the
context-dependent instructions by calculating the attention allocation on user tokens. We start by
preparing a seed instruction fine-tuned model M, which can be the same or a weaker pretrained model
fine-tuned with the original instruction fine-tuning dataset. We then define the context-dependency
score for the m™™ turn response Y;,, given its instruction X,,, and conversation history:

1
sm(Ym) = Yol > f}{leag( > Ay, x), @)
YEYm x€X1U...UX,,

where H is the set of attention heads in model M and Att(y, x) is the attention weight from token
y to x. Intuitively, the score sy (Y,,) measures the sum of attention scores allocated to all user
instructions in prior turns X; U ... U X,,, averaged over response tokens y € Y,,. As different
heads learn different capabilities, we calculate the score on the most representative head for context
retrieval on each layer, specifically the head that allocates the highest attention weight to user tokens.
We compute the score on a single middle layer for practical efficiency, as we find the relative scores
sz to be insensitive to layer choice. We defer the detailed discussion of layer and head selection to
Appendix B.5.

3.2 Instruction Fine-tuning with Context-dependency Indicators

A threshold 8 € (0,1) can be selected after the context-dependency score is obtained for each
instruction-response pair. A conversation turn (X,,,, Y,,,) with sp;(Y,,) > [ is considered context-
dependent. We append a special token [IND] to the user instruction X, if it is context-dependent. In
our implementation, the special token [IND] is added as an additional special token to the vocabulary
to avoid conflicts with existing ones.



After conditional instruction fine-tuning, the user can specify whether to add this indicator to their
query, depending on whether the model response should rely more on user-provided context.

4 Experiments

We validate the effectiveness of our method using three open-source pretrained models trained on
three instruction fine-tuning datasets and benchmarked a set of context-dependent and general tasks.

4.1 Experiment Settings

Models We evaluate our method on three open-source pretrained large language models: TinyLlama-
1.1B [27], Llama-2-7B [22], and Llama-3-8B [9]. TinyLlama-1.1B is a 1.1B Llama model pretrained
on 3 trillion tokens with a context window length of 2048. Llama-2-7B and Llama-3-8B have context
windows of 4096 and 8192 tokens, respectively. Due to limited computational resources in academic
labs, we can only fine-tune models with up to 8B parameters. We also truncate the training examples
to 4096 tokens. Detailed hyperparameters can be found in Appendix A.1.1.

Instruction Fine-tuning Datasets We experiment with three popular open-source instruction
fine-tuning datasets: ShareGPT, adopted by Vicuna [4], UltraChat-200k [7], and WizardLM-70K [25].
For ShareGPT, we follow the same preprocessing process as Chiang et al. [4]. We remove refusal
responses from ShareGPT and WizardLM-70K to prevent the fine-tuned models from becoming
oversensitive and frequently refusing to respond. For all three datasets, we remove model responses
from incomplete conversation chunks that lack user input instructions. Statistics of the processed
datasets are presented in Table 2.

Table 2: Statistics of instruction fine-tuning datasets in our experiments. We report the statistics after
performing preprocessing as detailed in Section 4.1. Average length is measured in the number of
tokens with TinyLlama tokenization.

Datasets \ Avg. conversation length  # conversations  # instructions
ShareGPT 1,567.68 93,645 331,722
UltraChat-200k 1,437.33 207,865 657,794
WizardLM-70K 484.00 57,523 57,523

Context awareness benchmarks. In addition to NIH, we report the performance on three closed-
book QA tasks to benchmark context awareness: SQuUAD [21], QuAC [5], and DROP [8]. SQuAD is
a reading comprehension benchmark where the answer to each question can be found in the context.
We evaluate only the answerable subset of questions in SQUAD 1.0. QuAC is similar to SQuAD, but
its questions are more open-ended and the lengths of the answers are longer. While NIH, SQuAD,
and QuAC only require direct retrieval from context, DROP requires more complicated reasoning
based on the given context, and its answers require discrete operations on the retrieved context such
as addition, sorting, or counting.

As instruction fine-tuned models are not specifically trained on QA tasks to provide concise answers,
their responses are generally more verbose. Therefore, we report the containment score, defined as
whether the model response contains the ground-truth answer with keyword string matching, rather
than the F1 score to exclude the effects of different models’ response styles. Prompt templates for
QA tasks are listed in Appendix A.3.

For Needle-in-a-haystack, we report the recall defined in Section 2.1, which is also the default
metric used in Dubey et al. [9]. We set the maximum NIH context length to 1,000 for models fine-
tuned on WizardLM-70K due to its shorter instruction lengths. For models fine-tuned on ShareGPT
and UltraChat-200K, we set the maximum NIH context length to the maximum context window
considered in fine-tuning, which is 2,000 for TinyLlama and 4,000 for Llama-2 / Llama-3. The
prompt template used in NIH is the same as Section 2.1 except that we remove the response prefix
and keep only the user input prompt.

General instruction-following benchmarks. To validate that our method maintains strong per-
formance on general instruction-following tasks, we evaluate the fine-tuned models on MT-Bench



[29] where the response quality is rated by a GPT-4 judge based on helpfulness, relevance, accuracy,
depth, creativity, and level of detail. We report the average rating across the MT-Bench test cases.

Table 3: Comparing vanilla instruction finetuning with finetuning with context-relevant indicators (+
indicator). For “+ Indicator” models, [IND] is added in all evaluations. As a reference, we also list
the performances evaluated on official Llama-2 and Llama-3 instruct models, which are finetuned
with closed-source datasets. NIH, SQuAD, and QuAC are simple context-dependent tasks, while
DROP and MT-Bench require more complex capabilities.

Context-dependent tasks Complex-skill tasks

SFT dataset Pretrained Model Method NIH SQUAD QuAC | DROP MT-Bench
TimvLlama. 1B Vanilla | 09846 5973 1550 | 27.39 3.7250

Y : +Indicator | 0.9921  62.05 17.40 | 27.84 3.7375

ShareGPT (Vicuna) Llama.2.7h Vanilla | 03378 7678  23.60 | 33.90 6.4875
ama-2- +Indicator | 0.7007  79.09 2420 | 33.90 5.7375

Llama.3-8b Vanilla | 0.8957  83.06 24.80 | 42.15 7.4375

ama-5- +Indicator | 0.9404  84.80 2450 | 43.17 7.1625

TimvLlama. 11B Vanilla | 1.0000  73.03 2270 | 30.96 3.9000

InylLlama-Z. +Indicator | 1.0000 7447 23.10 | 30.96 4.1125

UltraChat-200K Llama-7h Vanilla | 0.9850  83.81 2420 | 37.91 5.7125
ama-z- +Indicator | 0.9725  85.76 26.10 | 37.58 5.8125

Llama.3-8b Vanilla | 1.0000  85.12 25.50 | 50.99 7.2375

+Indicator | 1.0000 8628 26.40 | 50.22 6.8500

TimvLlama. 1B Vanilla | 09250  60.51 13.80 | 27.53 42750

y : +Indicator | 0.9925 6339 14.60 | 28.36 4.3000

WizardLM-70K Llama.2.7h Vanilla | 0.7375  82.89 23.70 | 34.07 5.7750
+Indicator | 0.9254  83.13 2530 | 34.44 6.2250

Llama.3.8b Vanilla | 0.9846 8825 24.60 | 46.87 7.1125

+Indicator | 0.9871  88.53 26.00 | 47.85 7.5250

(Closed-source datasets) __ L1ama-2-7b-chat - | 0.8264"  83.28 2220 | 44.22 6.9375
Llama-3-8b-Instruct - | 10" 8696 2740 | 46.54 8.0750

* Here NIH is evaluated without the response prefix used in Section 2.1 and the maximum context length is set to 4096
for fair comparison. Therefore, the exact numbers differ from Figure 2.

4.2 Instruction Fine-tuning with Context-dependency Indicators

Settings and hyperparameters. We adopt a TinyLlama model fine-tuned on the original ShareGPT
(Vicuna) dataset as the seed model M and compute the context-dependency score on a middle layer
(15 in all of our main experiments) for faster computation. We set the threshold for context-awareness
as B = 0.6 for all experiments reported in Table 3. An ablation study on the choice of threshold value
can be found in Appendix B.6.

Sparsity of context-dependent instructions. We compute the context-dependency scores on all
three instruction fine-tuning datasets (see Table 10) and find that context-dependent instructions
are consistently scarce in all datasets. Note that the scarcity is an intrinsic property of the datasets
overlooked by the original curators of the data. This observation supports our hypothesis that the
model learns the bias to weigh user tokens less importantly from the instruction dataset.

4.3 Experiment Results

Conditional finetuning improves performance on context-dependent tasks. Table 3 shows
that “+ Indicator” (ours) outperforms “vanilla” fine-tuning consistently across different models and
SFT datasets on NIH, SQuAD, and QuAC. The benchmarks isolate and measure context awareness
performance. For the “vanilla” fine-tuning setting, we train and evaluate the model without the
indicator token. For the “+ Indicator” setting, we add the indicator token to the selected subset of
prompts in fine-tuning and all queries for evaluation. The results confirmed that models learn to focus
more on the user-provided context when the indicator token is present in the prompt.



Sparsity of context-dependent instructions impacts performance on general tasks. The purpose
of evaluating on general tasks is to demonstrate that our method minimally impacts other capabilities
than context awareness. Table 3 presents the evaluation results on MT-Bench as an assessment of
general instruction-following capabilities and DROP to assess more complex reasoning capabilities
inadditionl to purely contextual retrieval. Models fine-tuned with the indicator perform comparably
or sometimes better. Comparing the performance between the three SFT datasets, ShareGPT suffers
from the most negative impact with the indicator, while WizardLM-70K improves. This can be
explained by the net number and thus diversity of the context-dependent subset in each dataset.
Table 10 shows that WizardLM-70K has the highest proportion of context-dependent samples, while
ShareGPT has the least.

5 Related Work

Instruction fine-tuning and chat templates. To enable instruction-following, pretrained LLMs
usually require supervised fine-tuning on instruction-following datasets (SFT) [23, 20], and optionally
reinforcement learning with human feedback (RLHF) [6]. Instruction fine-tuning datasets consist
of user instruction and target model response pairs, which can be collected from modified NLP
tasks [23, 19], human annotations [20, 4] or synthesized data from existing LLMs [7, 25]. Instruction
fine-tuning usually converts training examples into a dialog format with a chat template, which
typically consists of user, assistant, and system role indicators. However, these role indicators and
role partition in the conversation are not sufficiently presented and learned during pretraining, making
them prone to bias during fine-tuning.

Context awareness and hallucinations in LLMs Context awareness is crucial for mitigating
hallucinations where the response is not consistent with the provided context, such as the “closed-
domain” hallucination in Ouyang et al. [20] and intrinsic hallucination in Huang et al. [13]. Several
existing works aim to understand and mitigate these intrinsic hallucinations. Liu et al. [18] studies
the failure of context retrieval when the relevant information is in the middle of the provided context,
showing the existence of positional bias in context retrieval. Follow-up work [12] proposes to
calibrate this positional bias and mitigate the issue. In our work, we study a new role bias in popular
open-source instruction-finetuned models, where the context receives less attention when marked
as user tokens by the chat template. Some other papers such as An et al. [2] synthesize examples
targeted toward specific tasks (e.g., contextual QA) to increase the performance on context-dependent
tasks. Instead, our method is more general in terms of task and input format compared. This
makes our method more applicable to different types of user queries that require greater attention to
user-provided context.

Side effects of instruction finetuning Neural networks are known to catastrophically forget existing
knowledge or capabilities when sequentially trained on new tasks or domains [16]. It is commonly
believed that traditional catastrophic forgetting on pretraining-stage capabilities can be significantly
mitigated by finetuning the model on a diversified mixture of prompts [19, 3, 11]. We discovered
that, contrary to popular belief, context awareness can deteriorate after instruction fine-tuning.

6 Conclusion

This work highlights the detrimental effects of supervised instruction fine-tuning on the context
awareness of pretrained language models, even in scenarios involving short context lengths. We have
identified that the decline in context awareness is closely linked to attention allocation biases within
chat templates, which are learned during conversational instruction finetuning. Our proposed method
utilizes conditional supervised fine-tuning with an indicator marking samples with context-relevant
training samples. Our method effectively maintains contextual understanding while benefiting from
supervised instruction.

Limitation Due to computational resource limitations, our methods were only validated on smaller
models. We hope to extend the experiments to full finetuning or larger models when more resources
become available. Additionally, our technique of associating context-dependent user instructions with
the indicator token may also encode other unintended styles from the selected subset of instructions.
This issue is particularly aggravated when the subset of context-relevant samples is small and



significantly different from the remaining dataset. One future direction is to better disentangle the
context-dependency signal within the selected corpus. Another future direction is expanding the
evaluation of context-dependent benchmarks (e.g., RAG) to discover the extent of the harm caused
by the decreased context awareness.
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A Appendix

A.1 Experimental Details
A.1.1 Instruction Fine-tuning

We adopted the fine-tuning recipes from the Huggingface alignment-handbook? for Llama-2 and
Llama-3 QLoRA tuning. For the TinyLlama model, we used the fine-tuning recipe provided by the
author?. See detail configurations in Table 4. We fine-tuned the models for one epoch on ShareGPT
and UltraChat-200K, and two epochs on WizardLM-70K due to its smaller training set. We used the
TinyLlama chat template for all instruct models fine-tuned in Table 3. All experiments are conducted
on 4 A6000 GPUs on a local server. Execution time of training runs usually range from a couple
hours to at most 1-2 days.

Table 4: Fine-tuning hyperparameters configuration

Models | Fine-tune config Learning rate  Batch size  Precision
TinyLlama | Full fine-tune 2e-5 128 bf16
Llama-2/3 | QLoRA with rank = 16, alpha =16 2e-4 64 bf16

A.2 NIH Evaluation Details

For all NIH evaluations, we average the recall error across 400 tests. Specifically, we evaluate on 20
context lengths uniformly distributed between 200 and the maximum context length, and 20 needle
insertion depths uniformly located between 0% and 100%.

To ensure that our NIH evaluation is not sensitive to differences in prompt templates, we run
evaluations with 4 different prompt templates on small-scale experiments and report the mean and
standard deviation. For evaluations on larger models or larger context window sizes, we report
the evaluation results using only one prompt template. We illustrate the mean errors in Figure 1.
Complete results with standard deviations can be found in Table 7.

A.3 Contextual QA Evaluation Details

We list the prompts used in contextual QA tasks in Table 5 and Table 6. For contextual QA tasks, we
generate answers of up to 100 tokens and truncate them at the end of the first complete sentence. For
NIH tests, we generate answers of up to 50 tokens.

As UltraChat-200K constructs its data with a fixed set of prompt templates similar to our default
ones used in evaluation (the templates used for ShareGPT and WizardLM models in Table 6 and
5), we evaluate UltraChat-200K-finetuned models with a simpler template to exclude the impact of
overfitting on finetuning prompt templates.

Table 5: Prompt templates used for SQuAD and DROP in Table 1 and Table 3 when the model is
finetuned on different instruction finetuning datasets.

Instruct Finetuning Dataset | Template for SQuAD and DROP

ShareGPT & WizardLM-70K | {context}\nAnswer the question according to the above passage: {question}
UltraChat-200K {context} {question}

*https://github.com/huggingface/alignment-handbook
*https://github.com/jzhang38/TinyLlama
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Table 6: Prompt templates used for QuAC in Table 1 and Table 3 when the model is finetuned on
different instruction finetuning datasets.

Template for QUAC

{context}\nAnswer the question with pieces from the the above passage: {question}
{context} {question}

Instruct Finetuning Dataset |

ShareGPT & WizardLM-70K
UltraChat-200K

B Additional Experiment Results

B.1 Full NIH Results on Open-source Official Models

In Figure 2, we only report the NIH performances when the response prefix is added, for fair
comparison. In Table 7, we show the exact numbers for Figure 2 as well as additional evaluation
results without the response prefix. When the response prefix is removed, the performance drop on
NIH is even more significant compared to results without chat templates.

The standard deviations shown in the table are explained in Section A.2.

Table 7: NIH performance with and without chat templates on different models. The mean and
standard deviations were calculated using 4 different prompt templates listed in Table 8.

w/o chat template w/ chat template

Model Name Context window w/ response prefix ~ w/ response prefix ~ w/o response prefix
Llama-2-7b 4K 98.94 £+ 0.33% - -
Llama-2-7b-chat 99.40 £+ 0.48% 99.17 £ 0.28 % 92.45 + 1.24%
Llama-2-13b 4K 98.89 + 0.34% - -
Llama-2-13b-chat 96.13 £+ 0.64% 91.50 £ 0.76% 92.78 + 0.24%
Llama-3-8b 3K 99.62 £+ 0.26% - -
Llama-3-8b-instruct 99.92 £+ 0.09% 96.10 £+ 0.58% 95.89 + 0.62%
Llama-3.1-8b 128K 86.89% - -
Llama-3.1-8b-instruct 98.17% 95.64% 94.75%
mistral-v0.2 32K 100% - -
mistral-v0.2-instruct 99.00% 94.14% 93.92%
mistral-v0.3 3K 100% - -
mistral-v0.3-instruct 99.32% 84.71% 72.00%
gemma-2-9b 8K 100 £ 0% - -
gemma-2-9b-it 98.75 + 0% 98.03+ 0% 98.72 + 0.54%
gemma-2-27b 3K 100% - -

emma-2-27b-it 100% 99.64% 99.25%
g

B.2 Full Results for Figure 3

In Figure 3, we only show the changes in attention allocation with and without chat templates. In
Figure 4, we show the absolute numbers of attention allocation for each part of the input prompts.
When the chat template is added, we normalize the attention weights on user tokens, response tokens,
and the BOS token only, with the sum of attention allocation being 1.

B.3 Probing Context Retrieval Heads

In Sections 2.2, 2.3, and 3.1, we mentioned identifying a representative context retrieval head on
each layer that allocates the largest attention to user tokens. Because different attention heads can
have very different functionalities, and context retrieval heads can be sparse among all heads [24], we
believe that selecting a representative context retrieval head for visualization, attention steering, and
data selection is both necessary and important. Specifically, given an input sequence X1, X2, . . ., X,
with m tokens, we select the context retrieval head ™ from each layer [ that allocates the highest

15



Table 8: Four different prompt templates were used in the NIH evaluation. In Table 7, we report the
mean and standard deviation across different prompt templates for small models and small context
windows. {context} represents the context with the needle inserted.

Prompt templates in NIH evaluation

You are a helpful Al assistant that answers a question using only the provided document:
{context}
Question: {retrieval_question}

You are a helpful Al assistant that answers a question using only the provided context:
{context}
Question: {retrieval_question}

Document:
{context}
Answer the question accoriding to the provided document: {retrieval_question }

Context:
{context}
Answer the question accoriding to the provided context: {retrieval_question}

EZ Inference with Chat Templates + Attention Renormalization
[ Inference without Chat Templates

100 [ User Tokens

2262, [ Assistant Tokens

7 a7.306 % ? 7 ﬁ‘% 7“7 [ BOS Token

Percentage

2 ¥ 10.03; [0.762.0. .
Llamg. Llamg. Llamg. Llamg., Mist, Mist, gem
"8-2-76.-Chay ma 2-13B-Chay ma 3‘85-lnstruct m 3'1’83"nsrruct raws"“stmt.vo 2 raws"”stfwf.vo 3 298

Figure 4: We visualize the full attention allocation on user tokens, assistant tokens, and BOS token
with and without applying the chat templates. The attention allocation is calculated when the model
is generating the first answer token in its response. For cases where the chat template is applied, we
normalize the attention values on user tokens, assistant tokens, and the BOS token such that attention
scores allocated to these three sum up to 1. The attention weights are averaged across 400 tests with
context lengths ranging from 200 to 4000 and needle depths from 0% to 100%.

attention to user tokens when generating the first answer token:

h* = arg max Z Attty 1(x_1,%;) 3)
heH,; x; €U

, where x_1 and x; are the last token and 7th token in the sequence of tokens on each layer, respectively.
U is a subset of all user tokens.

In Section 2.2, we select the retrieval head on layer 15 for each input prompt and visualize the average
attention change on the selected head across different prompts. In Section 2.3, we select one retrieval
head on each layer using a sampled NIH prompt and steer all identified retrieval heads. In Section 3.1,
we select the retrieval head on layer 15 for each input prompt and calculate the context-dependency
score. In Section B.5, we provide a further discussion on the agreement between different layers.

B.4 Attention Distribution Analysis

This section compares the attention distributions of inference-time attention steering and training-time
conditional SFT to illustrate why the latter method is better for recovering context-awareness. We
analyze the attention allocated to user versus assistant responses in Llama-2, fine-tuned on ShareGPT.
The attention steering method is applied with o = 0.95, while the conditional SFT model was trained
using a context-relevance filtering threshold of 5 = 0.6.
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Fig 5 presents the attention distribution averaged across all heads (left) and the distribution for the
retrieval head specifically (right). We observe that while attention steering boosts user attention
more than conditional SFT when averaged across all heads, the opposite is true for the retrieval
head. This discrepancy highlights the coarse-grained nature of attention steering; it uniformly steers
all heads, which can unnecessarily boost attention in ways that do not improve context-awareness.
Conversely, the conditional SFT method learns to selectively increase user attention on the critical
retrieval head, thus avoiding the unintended performance regressions associated with indiscriminate
attention manipulation.

Average of All Heads Retrieval Head
0.0101 User Attention 0.00010 1
Assistant Attention
c  0.005 g 0.000051
o K}
kel o
§ 0.0001 § 0.00000]
€ =
2 2
< -0.005 1 < —0.00005 {
User Attention
—0.0101 —~0.000101 Assistant Attention
Attention‘ Steering Conditiénal SFT Attention‘ Steering Conditiénal SFT

Figure 5: We visualize the attention distribution shift of the attention steering and conditional SFT
variants relative to the vanilla instruction fine-tuned model.

B.5 Agreement Between Different Layers

In Figure 6, we calculate and visualize the disagreement heatmap in S selection when the context-
dependency score is calculated across different layers. We use the same TinyLlama model, fine-tuned
on the vanilla ShareGPT dataset, as the seed model M. Specifically, we first calculate the context-
dependency scores for each conversation turn in 500 randomly sampled examples from the ShareGPT
dataset across different layers. We then select the top 10% of conversation turns with the highest

context-dependency scores on each layer [ as the subset S;. We compute the disagreement between
two layers [ and !’ by calculating the ratio of non-overlapping conversation turns in their respective

subsets S; and ;. We can see from the figure that the disagreement among the 9 middle layers is low,
indicating that we can safely choose an arbitrary layer for the context-dependency score calculation.

B.6 Ablation Study for Different Threshold 3

Table 9: Ablation study with different threshold 3, which is used in Section 3.
Threshold 5 | SQUAD QuAC DROP MT-Bench

1.0 (Vanilla) | 0.5918  0.1130 0.2739 3.725

0.5 0.6207  0.1270 0.2872 4.075
0.6 0.6144  0.1290 0.2784 3.825
0.7 0.6160 0.1290 0.2786 3.675

We use 8 = 0.6 in all our main experiments. To evaluate the sensitivity to the threshold 3, we select

S with different thresholds and prepare the final modified instruction finetuning dataset. We fine-tune
a TinyLlama-1.1B model on these three datasets and evaluate it on three contextual QA tasks and
MT-Bench. As shown in Table 9, all three models outperform vanilla finetuning on the contextual QA
tasks. However, performance on MT-Bench shows a decreasing trend when the threshold increases

from 0.5 to 0.7, potentially due to a more drastic difference between S and the unselected subset.
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Figure 6: We visualize the disagreement heatmap of S selection when the context-dependency score

S (Y,,) is calculated across different layers. We select as S the 10% of conversation turns with the
highest context-dependency scores on each layer. The disagreement is measured by the number of

non-overlapping conversation turns in S selected by any two layers.

Table 10: Ratio of identified context-dependent instructions in each instruction finetuning dataset.
Total number of instructions in each dataset can be found in Table 2

Dataset 0.5 0.6 0.7 0.8
ShareGPT (Vicuna) 0.14 0.10 0.07 0.04

UlraCHat-200K  0.22  0.18 0.14 0.11
WizardLM-70K 034 023 0.13 0.06

B.7 Distribution of Instruction Lengths

Here we visualize the changes in the distribution of instruction lengths between the original instruction

finetuning dataset and the selected context-dependent subset S. Although higher context-dependency
is to some extent correlated with longer instruction lengths, there is still a large number of short

instructions showing high context dependency and selected for inclusion in S.

B.8 Proportion of context-dependent samples filtered with different thresholds

We report the ratio of identified context-dependent instructions with different threshold values [ in
Table 10.
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Figure 7: Change of instruction lengths between the original and the selected subset from ShareGPT
dataset.
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Figure 8: Change of instruction lengths between the original and the selected subset from UltraChat-
200K dataset.
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Figure 9: Change of instruction lengths between the original and the selected subset from WizardLM-
70K dataset.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: [NA|
Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims

made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: [NA]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4 and Appendix A.1.1

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: [NA|
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section 4 and Appendix A.1.1
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The temperature when evaluating LLMs are set to 0 so the output is completely
deterministic.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Appendix A.1.1
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [NA |
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work aimed at advancing the field of machine learning.
We investigate and mitigate language models’ loss of context awareness after supervised
fine-tuning (SFT). Our work can potentially benefit many real-world applications, such as
retrieval-augmented generation, in-context learning, and contextual question-answering. We
have not identified any potential negative societal consequences.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [NA |
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA|

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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