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Abstract

Machine learning models are prone to social
biases in datasets and thus could make discrim-
inatory decisions against demographic minor-
ity groups. Most existing fairness-promoting
methods usually assume access to the annota-
tions of the demographic information. How-
ever, such information could be inaccessible
due to the high data annotation cost and pri-
vacy restrictions. Recently, distributionally
robust optimization (DRO) techniques have
been applied to promote fairness without de-
mographic labels. DRO-based methods op-
timize the individuals/groups with the worst
prediction performance, with the intuition that
these groups roughly correspond to the mi-
nority groups being biased against. How-
ever, in complex real-world settings with mul-
tiple strong bias attributes, the simple group-
ing schemes in the existing DRO-based meth-
ods can fail to identify the ground truth minor-
ity groups. In this paper, we propose FREE-
DRO, a demographic-free group DRO method
featuring a more principled grouping scheme,
call lagged dynamic grouping. Specifically,
FREEDRO dynamically splits the training data
based on the ground truth labels and the pre-
diction of the model at an earlier iteration and
then optimizes worst group performance. Ex-
tensive experiments on five real-world datasets
show that our method can effectively alleviate
the biases and even achieve comparable results
with methods with full demographic annota-
tions. The results also verify that our group-
ing scheme has a good correspondence with
the ground truth demographic grouping.

1 Introduction

The fairness problem in machine learning (ML) has
received increasing attention from both academia
and industry (Holstein et al., 2019; Mehrabi et al.,
2021). Machine learning models are found im-
pacted by the biases in the human world and
datasets, and thus make discriminative judgments

against certain minority groups. For example, it
is found that some abusive language detection sys-
tems tend to classify texts that contain mere men-
tioning of certain minority groups, e.g., homosex-
ual groups, as abusive content, even though the
texts themselves are not abusive at all (Dixon et al.,
2018). Furthermore, the biases present in these
deep learning models can in turn deepen the biases
in human society (Zhao et al., 2017).

Most existing fairness promoting methods nowa-
days require explicit labels of biased demographic
features. In many real-world applications, however,
such demographic labels are inaccessible, because
it is often difficult to identify what demographic bi-
ases are present in a machine learning model, and
even if the potential biases could be pinpointed,
it is sometimes impossible to collect the demo-
graphic labels due to privacy constraints (Lahoti
etal., 2020). For example, it is impossible for credit
card companies to prevent racial discrimination us-
ing race labels, because they are not allowed to
collect race information from their card applicants.

Motivated by this, many research efforts have
been directed to promoting fairness without relying
on demographic labels. Among these methods, a
major line of works involves distributionally robust
optimization (DRO) and group DRO (Hu et al.,,
2018; Oren et al., 2019; Sagawa et al., 2019, 2020;
Liu et al., 2021; Lahoti et al., 2020), whose objec-
tive is to optimize the worst performance of indi-
viduals or groups. The intuition is that the minority
groups being biased against usually corresponds
well with the groups with the worst prediction per-
formance. However, in many real-world settings,
the data distributions are complex, often involving
multiple strong bias features. As a result, the sim-
ple grouping schemes as in many DRO-based meth-
ods would fail to identify minority groups. A more
carefully-designed grouping scheme is needed to
maintain the effectiveness of DRO-based methods
under these complicated settings.



In this paper, we propose FREEDRO , a
demographic-free group-DRO-based debiasing
method featuring a more principled grouping
scheme, called lagged dynamic grouping, which
dynamically partitions the training data based on
true labels and the prediction results of the clas-
sifier at a previous iteration. The algorithm then
optimizes the worst-off group performance with a
soft-weighted group DRO objective. We have per-
formed extensive experiments on five real-world
datasets, which show that FREEDRO outperforms
other demographic-free baselines and can even
achieve comparable results with methods that use
full demographic information. Further experiments
confirm that lagged dynamic grouping has a good
alignment with the true demographic grouping.

2 Related Work

2.1 Fairness in Machine Learning

The fairness problem in machine learning has
received increasing attention (Chouldechova and
Roth, 2018; Sun et al., 2019; Holstein et al., 2019;
Mehrabi et al., 2021).

The definitions of fairness can be broadly
divided into individual fairness, group fair-
ness, causal-based fairness, and Rawlsian fair-
ness (Chouldechova, 2017; Makhlouf et al., 2020;
Lahoti et al., 2020). Among them, individual fair-
ness asks models to achieve similar performance
on similar individuals (Dwork et al., 2012; Joseph
et al., 2016) while suffering from the difficulty of
defining the sample distance measure (Choulde-
chova and Roth, 2018). Group fairness consists of
a family of notions which pursues similar model
performance on all demographic groups (Calders
and Verwer, 2010; Hardt et al., 2016; Choulde-
chova, 2017). Despite its effectiveness, different
group fairness notions are found incompatible with
each other (Kleinberg et al., 2017; Mitchell et al.,
2018). Causal-based fairness (Kusner et al., 2017;
Wu et al., 2019; Zhang and Bareinboim, 2018a,b)
notions define fairness based on causal graphs,
which could be hard to acquire without expert
knowledge (Makhlouf et al., 2020). In this work,
we adopt the Rawlsian fairness (Hashimoto et al.,
2018; Lahoti et al., 2020; Lees et al., 2019) de-
fined as the worst-group performance, which orig-
inates from the distributive justice theory (Rawls
and Kelly, 2001).

The literature on mitigating the fairness prob-
lem could be roughly divided into three lines:

(1) pre-processing methods (Kamiran and Calders,
2011; Zemel et al., 2013; Feldman et al., 2015;
du Pin Calmon et al., 2017; Park et al., 2018;
Dixon et al., 2018; Grover et al., 2020; Zhang et al.,
2020), which remove the biases by modifying or
re-weighting the training data; (2) in-processing
algorithms (Zafar et al., 2017; Agarwal et al., 2018;
Kamishima et al., 2012; Baharlouei et al., 2019;
Pérez-Suay et al., 2017), which add regulariza-
tion techniques during training; (3) post-processing
methods (Hardt et al., 2016; Chzhen et al., 2019;
Dwork et al., 2018; Kim et al., 2018, 2019; Wood-
worth et al., 2017; Mishler and Kennedy, 2021;
Lohia et al., 2019), which calibrate the model out-
puts to satisfy fairness constraints. However, most
of these works need the access to the ground-truth
demographic information, while the usage of such
information may be expensive and privacy risky.

2.2 Fairness without Demographic

A line of works which try to tackle unfairness prob-
lem without demographics is the proxy-based meth-
ods (Chen et al., 2019; Gupta et al., 2018; Kallus
et al., 2020; Diana et al., 2021; Romanov et al.,
2019; Zhao et al., 2021), which use proxy variables
to replace the demographic information (e.g., zip
code as race). However, these methods need prior
knowledge of the biases and risks exaggerating
the disparities in the datasets due to the estima-
tion bias (Chen et al., 2019; Lahoti et al., 2020).
Another branch for solving the problem is to use
pseudo group information generated by cluster-
ing (Yan et al., 2020) or causal variational autoen-
coder (Grari et al., 2021), while these methods
highly rely on the assumptions of the data distri-
bution. There are also works focusing on achiev-
ing fairness with imperfect demographic informa-
tion (Awasthi et al., 2020; Dai and Wang, 2021;
Coston et al., 2019), and with third-party provided
privacy-preserved form demographic (Veale and
Binns, 2017; Hu et al., 2019; Jagielski et al., 2019).

Another line of works utilizes the distributional
robust optimization (DRO) techniques to alleviate
the unfairness problems. Without the explicit group
information, Hashimoto et al. (2018); Duchi et al.
(2020) develop a DRO framework (Namkoong and
Duchi, 2017), which considers any subset exceed-
ing a certain size as a potential demographic group.
Lahoti et al. (2020) make use of the computational-
identifiability to identify the minority groups and
remove biases in an adversarial re-weighting man-



ner. Our work falls into the category of group
DRO-based methods, which focus on optimizing
the worst performances over pre-defined groups
and has been shown effective in training unbiased
models (Hu et al., 2018; Oren et al., 2019; Sagawa
et al., 2019, 2020). Different from prior works,
our work defines the groups in a dynamic lagged
grouping manner with the predicted and the true
labels and optimizes a soft-weighted group DRO
objective in these groups.

There are also a series of works for removing
unknown datasets biases, which is similar to our
focus as the fairness problem can also be partly
seen as a dataset bias problem (Zhang et al., 2020).
Arjovsky et al. (2019) learn the bias-free representa-
tions by optimizing across different environments.
Bao et al. (2021a,b) make use of the invariance
among separate environments to partial out the im-
pacts of biases. Utama et al. (2020); Sanh et al.
(2021) assume the shallow models with limited ca-
pacity or under-trained are more prone to biases
and force the core model to learn from mistakes
of the shallow models. Liu et al. (2021) adopt a
two-stage training setting where a shallow model
is firstly trained and its misclassified samples are
then up-weighted in the second phase training. By
contrast, our work introduces a dynamic lagged
grouping strategy where groups are iteratively gen-
erated based on model predictions and true labels.

3 Background and Problem Formulation

3.1 Problem Formulation

Consider a classification problem, where X repre-
sents the input features, and Y € ) represents the
class label. In addition, denote Z € Z as an unob-
served sensitive attribute, which is often spuriously
correlated with Y. Denote G € G = Y x Z as
the group partitioned by different combinations of
Y and Z. Specifically, if Z is a one-dimensional
variable, then

G=(Y,2). (1)

For example, if Y is a one-dimensional binary vari-
able, say the hair color of a person (blond or black),
and Z is a one-dimensional gender feature (we use
binary gender for simplicity of illustration), then
G can take on four values, (black, male), (black,
female), (blond, male) and (blond, female).

On the other hand, if Z is a k-dimensional vari-
able, then G is also a k-dimensional variable, with

G = (Y, Z;). 2

In other words, Z provides k different ways to
group the data. In the example above, if Z has an
additional dimension, (e.g., white or non-white),
then G would also have two dimensions. GG takes
on the four values defined by the output label and
gender. (G4 also takes on four values defined by
the output label and race. For simplicity of our
illustration, the remainder of this section will focus
on the case with one-dimensional Z, unless stated
otherwise.

As the result of the spuriously-correlated at-
tribute Z, a regular classifier is prone to produce
a high error rate in some of these groups. In the
example of predicting hair color based on images
of a person, X represents the input image, and Y €
{blond, black} represents the hair color. The gender
is a spuriously correlated feature, i.e., Z €{male,
female}, because female people are more likely to
have blond hair and male people black hair. As a
result, among the four groups, a regular classifier
tends to make many errors in the (male, blond) and
(female, black) groups. Our goal is to derive a train-
ing paradigm that can overcome the bias against
these groups.

3.2 Rawlsian Fairness and Group DRO

The fairness metric we would like to optimize for
is the Rawlsian fairness, which stems from the
distributive justice theory (Rawls and Kelly, 2001).
Rawlsian fairness measures the utility of the worst
off group. Formally, if we define the parameters of
the classifier as 6, the Rawlsian fairness objective
is defined as follows,

maxmin E[U(0)|G = g], 3)

0 g

where U (0) is short for U(X,Y, Z; 0), represent-
ing some utility function of an individual. Rawlsian
fairness has a strong connection to a wide range
of machine learning algorithms (Hashimoto et al.,
2018; Lahoti et al., 2020). For example, if we set
the utility function of to the negative loss function
of the classifier, £(0), such as cross-entropy, then
Eq. (3) becomes the objective of the group DRO
method:

mgn mgaxE[E(H)\G =g|. 4)

If Z is multidimensional, the objective becomes,

mein max max E[((0)|G; = gi], Q)
i g
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Figure 1: The pipeline of our proposed FREEDRO method with three main steps. (S.1) Use the lagged model the make
predictions on the current data; (S.2) Partition the data based on the model predictions and the ground truth labels; (S.3) Optimize
the Equation 9 across all partitions for rawlsian fairness promotion. Best viewed in color.

which is essentially minimizing the loss within the
worst-off group.

If the sensitive attribute, Z, were observed, we
could directly apply the group DRO method, which
has been shown effective in mitigating bias (Hu
et al., 2018; Oren et al., 2019; Sagawa et al., 2019,
2020). In our case, however, since Z is unobserved,
we will explore ways to approximately recover the
grouping information to bring group DRO back to
the stage in the following.

4 Methodology

The key idea of our proposed FREEDRO is to in-
troduce an alternative grouping, called lagged dy-
namic grouping, to partition the training data, and
then optimize the performance of the worst group.
We will first introduce our algorithm FREEDRO
in the first subsection, and then explain why our
grouping can approximately recover the group de-
mographic grouping in the following subsections.

4.1 Lagged Dynamic Grouping

Denote 8() as the parameter of the classifier at
iteration ¢. Our grouping, G(8"), is defined as

G(OW) = (v,v(8)), 6)

where Y (")) denotes the predicted label using the
classifier at iteration t. Comparing Equations (1)
and (6), we can see that the only difference between
our proposed grouping and the oracle demographic
grouping is that we replace the ground truth demo-
graphic information, Z, with the predicted output
label, Y (0®). As a concrete example, if Y is bi-
nary, then our proposed grouping partitions the data
into four groups: true positive, true negative, false
positive, and false negative, using the classifier at
iteration ¢.

FREEDRO can then be formulated as follows.
At iteration ¢, the algorithm involves two steps: 1)
The algorithm uses the classifier at 7 = ¢ mod T’

iterations earlier to generate grouping G (B(t_T)),
where T' is the delay interval length. 2) Then,
FREEDRO tries to minimize the worst group per-
formance. Formally, the objective at iteration ¢ is

min E[((0)|G(0"7) = g']. (7)
where

g* = argmaxE[((0)|G(6"" ) =g]. (8
g

6(+1) is obtained by performing one (stochastic)
gradient step of the objective above. This objective
is very similar to Equation (4), except that the ora-
cle demographic grouping, G, is replaced with our
proposed grouping with delay 7, G(8(¢~7)).

To stabilize training, we further generalize Equa-
tion (7) to a soft-weighted version:

mein [wSE[f(H)\G'(O(t*T)) =g

. 9
+w, E[0(0)|G(0")) # g7]],

where ws should be greater than w,, to emphasize
the worst off group. When w,, = 0 and ws = 1,
Objective (9) reduces to Objective (7).

To sum up, our algorithm FREEDRO has three
features.

* Grouping with predicted and true labels: The
data are partitioned into different groups based
on the predicted and true labels of the classifier.

* Lagged grouping: Classifier trained at an earlier
step is used to produce the grouping.

* Dynamic grouping: At each iteration, a differ-
ent grouping is generated.

Hence we name our algorithm lagged dynamic
grouping. In the following, we will explain why
each feature is essential.



4.2 Why Lagged Dynamic Grouping?

As mentioned, the overall goal of the proposed algo-
rithm is to approximately recover the ground truth
demographic grouping, GG. In this subsection, we
will explain why the three features of FREEDRO
can contribute to this goal.

Why grouping based on predicted and true la-
bels? If the classifier primarily uses the biased
demographic feature to make predictions, then the
grouping based on its predicted label, together with
the true labels, can recover the ground truth de-
mographic grouping. To see why this is the case,
Figure 1 illustrates, using the hair color prediction
example. Recall that the true grouping G in this
case is {(blond, female), (black, female), (blond,
male), (black, male)}; whereas our grouping is
{(blond, predicted blond), (black, predicted blond),
(blond, predicted black), (black, predicted black)}.
In the figure, the shape ® denotes male, and the
shape m denotes female), where the hair color la-
bel hair is represented by blond color while
black hair is represented by black color. If the clas-
sifier primarily uses gender to predict hair color,
the decision boundary should look like the dashed
line, where the male samples (®) mostly lie on one
side and female samples (m) mostly lie on the other
side. As a result, (blond, predicted blond) mostly
corresponds to (blond, female), and (black, pre-
dicted black) mostly corresponds to (black, male).
Likewise, the remaining two groups also have good
correspondence. Having established such corre-
spondence, the next question is, how to find a clas-
sifier that primarily relies on biased demographic
features, the answer to which lies in the second
feature of FREEDRO .

Why use lagged grouping? Consistent with
Utama et al. (2020); Sanh et al. (2021); Liu et al.
(2021), we assume that the biased demographic
features usually take on simple, easy-to-use forms,
just like the gender feature in the previous exam-
ple. Hence, neural models tend to focus on such
features at an early training stage, before switching
their attention to complicated features.

As discussed in Section 5.3, we conduct a case
study and observe a similar behavior that models
trained at earlier epochs pick up more bias. This
observation motivates us to use a model trained
at an earlier stage to produce the grouping so that
the classifier would more heavily utilize the demo-
graphic info and the resulting grouping can better

align with the ground truth demographic grouping.

Why use dynamic grouping? So far, our discus-
sion has only focused on the case with only one
biased demographic feature. In the presence of
multiple biased demographic features, our algo-
rithm will fail to recover the grouping, if our biased
lagged classifier only relies on a subset of, but not
all, the biased demographic features. However,
this problem can be fixed by dynamic grouping.
Assume, for example, there are two biased demo-
graphic features, gender, and race, and assume that
the classifier initially only focuses on gender. As
a result, lagged dynamic grouping would only fix
the gender bias, and so race becomes the only un-
resolved bias. With the dynamic grouping, the
classifier would redirect its attention to any unre-
solved biases, in this example race, and hence fix
all the biases at the end.

5 Experiment

In this section, we first introduce our experiment
settings, which include the datasets, baselines,
model architectures, training details, and evalua-
tion metrics. We then elaborate on the experiment
setup of the motivating example we have shown in
Figure 2. After that, we present our main results on
five real-world datasets. Lastly, we provide abla-
tion studies on the key parameters of the proposed
methods.

5.1 Experiment Settings

Datasets
using five

We evaluate the proposed method
real-world datasets with re-
ported biases: COMPAS (Flores et al.,
2016), Sexist Tweets (Waseem, 2016;
Waseem and Hovy, 2016; Park et al., 2018),
Jigsaw Toxicity (AL, 2019), Civil
Comments (Koh et al, 2021), Wiki
Comments (Dixon et al., 2018). These datasets
are all used for binary classification. For COMPAS,
we use the data split which is used in Lahoti
et al. (2020). We use the original data split for
Civil Comments (Kohetal., 2021) and Wiki
Comments (Dixon et al., 2018). For Sexist
Tweets and Jigsaw Toxicity, werandomly
split the dataset as 8:1:1 for training, validation
and testing. More details about these datasets can
be found in Table 1.

Baselines We compare our method with the fol-
lowing baselines:



Dataset Size Task Positive (%) ‘ avg. Length Bias
COMPAS 7,214 Recidivism Prediction 48.1 Categorical Race, Gender
Sexist Tweets 12,096 Toxicity Detection 24.7 144 Gender
Jigsaw Toxicity | 1,999,516 Toxicity Detection 8.0 50.7 Race, Gender, Religion, Sex orientation
Civil Comments 448000 Toxicity Detection 11.3 59.9 Race, Gender, Religion, Sex orientation
Wiki Comments 159,686 Toxicity Detection 9.6 66.0 Gender, Race, Sex orientation, Age, Nationality, Religion

Table 1: The details of the datasets that we use for evaluation. The “Positive (%) column indicates the ratio of positive labels
(i.e., toxic for toxicity detection). The “Bias” column indicates the demographic features that are previously reported to be

spuriously correlated with labels in the corresponding datasets.

e ERM: conventional empirical risk minimization.
e ARL (Lahoti et al., 2020): adversarially reweight-
ing learning assumes no access to demographic in-
formation. An adversarial network is co-trained
with the final model to generate instance weights
to highlight hard samples.

o JTT (Liu et al., 2021): just train twice is a two-
stage demographic-free training approach, which
minimizes the loss over a reweighted dataset (sec-
ond stage) with those training samples that are mis-
classified at the end of first-stage standard training
up-weighted.

e POE and REWEIGHTING (Utama et al., 2020):
A shallow model is firstly trained with limited
steps in the training set. Product-of-expert trains
the main model in an ensemble with the shallow
model, where the softmax outputs of two mod-
els are combined. Reweighting adjusts the impor-
tance of a training instance by directly assigning
a scalar weight calculated by the shallow model.
Higher weights are assigned to those that the shal-
low model wrongly predicts. An annealing mecha-
nism is applied for both methods.

e IPW: inverse probability weighting is an instance
re-weighting technique. We specifically consider
two variants of the [PW methods denoted as I[PW-
7 (Hofler et al., 2005) and Ipw-zY (Lahoti et al.,
2020). The former one uses 1/P(z) as the con-
stant weight while the latter one uses 1/P(z,y).
These methods need to have explicit demographic
information.

e GDRO: group distributional robust optimiza-
tion (Hu et al., 2018; Sagawa et al., 2019) uses
the ground-truth demographic information together
with the label to partition the dataset. We optimize
the worst-off loss over the considered groups.

It is worth emphasizing that all but IPw and
GDRO are demographic-free methods. IPw and
GDRO have an unfair advantage of accessing the
demographic labels.

Evaluation Metrics We evaluate all the methods
with average accuracy and worst-group accuracy in

the testing set. One challenge for calculating worst-
group fairness is that one sentence can contain mul-
tiple demographic values (e.g., The boy and the
girl are happy.) Following Koh et al. (2021); Liu
et al. (2021), we partition the dataset into multiple
overlapping groups, where each sentence contains
a specific demographic value (e.g., “male”) and a
specific label. For example, if we have two de-
mographic values {“male”, “female”} and two
labels {0, 1}, then the dataset will be partitioned
into four. With these partitioned groups, we report
the worst-off accuracy among them.

The ground-truth demographic information is
needed to calculate worst-group accuracy during
validation and testing. For COMPAS, we use the
provided gender and race annotations in the dataset.
For Civil Comments, we directly use the pro-
vided eight demographics in the original testing set.
For Jigsaw Toxicity, we use the provided de-
mographic annotations and manually cluster them
into eight demographics which are identical to
Civil Comments following Koh et al. (2021).
For Wiki Comments and Sexist Tweets,
due to the lack of demographic annotations, we
follow Zhang et al. (2020) and match each sen-
tence with a pre-defined demographic word dict to
extract the demographic information. We filter out
those demographic values with the low occurrence
and get two demographics for Sexist Tweets
and sixteen for Wiki Comments. The specific
details of the demographic identities can be found
in Appendix A.1.

Model architectures and training details All
approaches we evaluate are trained with the same
model architecture and training setup. For the
COMPAS dataset, we use a fully connected two-
layer feed-forward network with {64, 32} hidden
dimension, and train the models using an Adagrad
optimizer with 0.01 learning rates for 100 epochs.
For the other four biased datasets, we use the BERT-
base-uncased model (Devlin et al., 2019) imple-
mented with Transformers (Wolf et al., 2020). An



Method ‘ Need Demographic ‘ COMPAS

‘ Sexist Tweets ‘ Jigsaw Toxicity

Civil Comments Wiki Comments

ERM | No | 474(668) | 78.0 (91.9) | 52.2(95.1) 55.1(91.9) 57.1 (96.6)
ARL No 46.9 (67.5) 82.0(92.3) 52.9(95.2) 57.1(91.9) 60.0 (96.3)

JTT No 52.7 (58.9) 80.0 (92.1) 54.6 (95.1) 70.1 (90.9) 58.3 (96.0)

POE No 46.5 (60.6) 76.0 (91.2) 52.3(93.4) 66.0 (90.7) 57.1(96.3)
REWEIGHTING No 51.6 (57.1) 82.0 (92.1) 65.2(93.3) 69.2 (90.1) 57.1 (96.6)
IPW-Z Yes 46.9 (67.1) 84.0 (92.0) 58.5(95.2) 56.6 (91.7) 60.0 (96.1)
IPW-2Y Yes 47.0 (67.3) 82.0 (92.1) 53.5(95.1) 56.4 (91.8) 58.3 (96.5)
GDRO Yes 63.3(65.9) 84.9 (92.8) 50.5 (95.2) 70.0 (90.2) 60.0 (96.6)
FREEDRO (Ours) | No | 523(63.1) | 85.3 (92.1) \ 69.6 (94.6) 72.1 (90.6) 60.0 (95.7)

Table 2: Performance of different methods. All the models are evaluated on the Original testing set. The results are reported in
the worst group accuracy 1 (average accuracy 1) manner. % is neglected.

AdamW optimizer (Loshchilov and Hutter, 2017)
with a linearly-decaying learning rate (with initial
value le-5) and gradient clipping (f2-norm = 1)
are applied. We train for 10 epochs on Sexist
Tweets and 5 epochs for other datasets due to the
limits on computational resources. The batch size
is set as 16 and weight decay is 0.01.

Besides the above hyper-parameters shared
across all methods, we tune the additional hyper-
parameters of each algorithm based on the high-
est worst-group accuracy calculated on the valida-
tion set. Specifically, we list more details about
hyper-parameter tuning for all approaches in the
Appendix A.2.

5.2 Experiment Results

Table 2 shows the performance of FREEDRO with
the other baselines. Below are our key observa-
tions.

First, our method consistently outperforms
the other demographic-free baselines across all
four text datasets. For example, FREEDRO im-
proves at least 4.4% worst group accuracy on
the Jigsaw Toxicity dataset compared with
other demographic-free baselines. FREEDRO out-
performs these baselines by 3.3% on the Sexist
Tweets and 2.0% on Civil Comments.

Second, our method achieves a better trade-off
between average accuracy and worst group accu-
racy compared with demographic-free baselines.
For example, FREEDRO improves the worst-group
accuracy by at least 3.3% and achieves compa-
rable average accuracy with other demographic-
free methods in Sexist Tweets. In Civil
Comment s, our method improves worst-group ac-
curacy by at least 2.0% compared with JTT, POE
and REWEIGHTING with at most 0.3% drop in av-
erage accuracy. Compared with Ar1, our method
brings 15.0% worst-group accuracy improvement
in cost of only 1.3% loss on average accuracy. We
also note there is still a gap between average and
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Figure 2: The training trajectory in the COMPAS dataset. The
y-axis indicates the gap between the best and the worst group
accuracy. Such disparity indicates the biases of models.

worst group accuracy, which suggests that biases
are not completely eliminated. We ascribe this to
the imperfect grouping without true demographics.

Third, our method achieves comparable perfor-
mances to the methods with ground-truth demo-
graphics in the four text datasets. For example,
FREEDRO achieves comparable worst group accu-
racy with GDRO on Sexist Tweets and Wiki
Comment s, and even outperforms GDRO in Wik i
Comments and Jigsaw Toxicity. One pos-
sible cause is the training instability of GDRO as
it needs to optimize the worst group performance
over all demographics and labels, while FREEDRO
only considers four groups.

5.3 Case Studies on COMPAS

We conduct a case study on the COMPAS dataset
to verify some of our hypotheses that motivate the
design of FREEDRO.

First, as discussed in Section 4.2, one of our mo-
tivating hypotheses is that a neural model trained
at an earlier iteration would pick up more bias. To
verify the hypothesis, in Figure 2, we report the
gap between the best and the worst group accuracy
as a function of iterations. The blue line and the
orange line correspond to ERM and FREEDRO re-
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Figure 3: The ratio of the (race, label) groups minus the prior
probability in the selected groups for training of GDRO (left)
and FREEDRO (right). Greater than zero in y-axis means the
group is up-weighted during training.

spectively. This gap measures how much bias is
captured in each model. The more the classifier re-
lies on the biases in the dataset, the greater the gap
between the best and the worst group performance.
If the classifier does not rely on the bias at all, the
gap should be 0. As can be observed, the gap de-
creases for both algorithms, which confirms our
assumption that models trained at an earlier epoch
rely more heavily on bias features. In addition,
we observe that FREEDRO achieves a smaller gap
compared to ERM in the training trajectory, demon-
strating that our method can effectively mitigate
the biases.

Second, we would also like to investigate how
well the grouping of FREEDRO aligns with the
true demographic grouping. To measure the group
alignment, for every epoch, we collect the samples
in the worst-performing group as selected by FREE-
DRO and calculate the ratio of the four ground-
truth demographic groups (e.g., {(white, negative),
(white, positive), (black, negative), (black, posi-
tive)}) in it. If FREEDRO can identify the true
demographic groups well, the ratio of the minority
groups (in this case (white, positive) and (black,
negative)) should be high.

Figure 3 plots the ratio curves for GDRO (left)
and FREEDRO (right) as functions of training
epochs. To make it easier to read, we subtract
each ratio with the prior probability p(z, y) in the
training data. In other words, if the demanded ratio
is greater than zero, it means the corresponding
group is up-weighted during training of FREEDRO.
We show the result of GDRO as a reference because
it uses the ground-truth demographic information
to partition the training data and select the worst-
performing group, and thus its ratio curves should
exhibit the most ideal behavior. As can be observed
in the figure, the minority groups (white, positive)
and (black, negative) are successfully up-weighted

K | wy, ws | Worst Group Average

0]10 60 65.4 91.1
1110 60 67.3 90.5
2|10 6.0 69.0 90.7
2101 1.0 60.4 89.5
2102 10 69.0 90.7
2105 10 62.0 91.8
2 | 1.0 100 66.6 89.7
2|10 60 69.0 90.7
2110 30 65.9 91.2

Table 3: The effects of the lagged grouping frequency 7" and
the soft weights w,, and ws of Equation 9. Worst Group and
Average indicate the correspondingly measured accuracy. The
results are evaluated in the validation set. The selected model
corresponding to FREEDRO in Table 2 is bolded.

by our method, which is consistent with the results
of GDRO. These results demonstrate the effective-
ness of our grouping strategy.

5.4 Ablation Studies

We perform a parameter sensitivity study on
Civil Comments to investigate the effects of
the key parameters of FREEDRO including the de-
lay interval T" and the soft weights w,, and wg of
Equation 9.

Effect of lagged grouping Table 3 shows the re-
sults on the delay interval 7T, i.e., the number of
lagged epochs at which the classifier is used to gen-
erate the grouping. When T" = 0, the grouping is
generated with the concurrent model. We see that
with the increase of the 7', the worst group accu-
racy improves, which verifies our hypothesis that
lagged models can produce better grouping. We
note that the average accuracy also drops when T'
increases, indicating that larger 7" can reduce the
gap between the worst and the average accuracy.

Effect of relaxation coefficient Table 3 shows
the results on the soft weights w, and w; as in
Equation 9. We see that with larger w/w,, comes
better average accuracy, while the best worst group
occurs in a sweet spot at around ws /w,, = 6.

6 Conclusion

In this paper, we introduce a novel DRO-based de-
biasing method without the use of demographic in-
formation, termed as FREEDRO. A lagged dynamic
grouping strategy is used to iteratively partition the
training data with the model predictions and true la-
bels, and the worst-off performance over the splits
is optimized with a soft-weighted group DRO. Ex-
tensive experiments are provided to demonstrate
the superiority of our method over state-of-the-art
demographic-free debiasing methods.



7 Broader Impact

Machine learning models are prone to the un-
fairness biases in datasets and thus risk mak-
ing discriminatory decisions towards minority
groups (Holstein et al., 2019; Mehrabi et al., 2021).
Biased ML systems could even amplify the dispari-
ties and deepen the biases in human society (Zhao
et al., 2017). Along with the proliferation of the
use of ML techniques, it’s critical to make sure that
ML systems treat every demographic equally.

Despite the recent advances in mitigating the
biases, most existing works need access to the
ground-truth demographic annotations, which can
be difficult due to the high cost and privacy
risks (Holstein et al., 2019). To alleviate the prob-
lem, we propose a novel training method termed
as FREEDRO which can promote model fairness
without the use of demographics. The experiments
demonstrate that the proposed method can effec-
tively improve model fairness. We believe that our
research could help build more fair and responsible
ML systems and provide broad positive impacts on
both research and industry.

Despite the effectiveness, we note that our
method also has a few limitations and potential
risks. First, our method, together with all other
compared approaches, still needs a demographic-
annotated development set to tune the hyper-
parameters. Although it is cheaper to acquire such
a set, it demands the users notice the biases in ad-
vance, which could be hard in practice. It remains
an open problem to find more effective validation
measures for fairness that do not use the demo-
graphics. Second, as demonstrated by the exper-
iment results, the biases may not be completely
eliminated. We leave it for future work to further
dig into this problem. In practice, our method
should be used with careful checks on potential
ethical risks.
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A Appendix
A.1 Demographic Identities of Datasets

We list the demographic identities used for evalua-
tion in all five datasets below. We note that we have
filtered out those identities with low frequency in
Wiki Comments and Jigsaw Toxicity.

e COMPAS: Black, White, Male, Female
e Sexist Tweets: Male, Female

e Jigsaw Toxicity: Male, Female,
LGBTQ, Christian, Muslim, Other Religion,
Black, White

e Civil Comments: Male, Female, LGBTQ,
Christian, Muslim, Other Religion, Black,
White

e Wiki Comments: Male, Female, LGBTQ,
Heterosexual, American, European, Asian,
Jewish, Black, White, Other Race, Old, Young,
Christian, Catholic, Muslim

A.2 Training Details for All Approaches

We list all the hyper-parameters we tuned with
grid-search in the validation set for all methods
for Wiki Comments, Civil Comments and
Jigsaw Toxicity.

* For FREEDRO, we tune the parameter delay
interval 7" in {0, 1, 2} and the w,, and wg of
Equation 9 in {(0.1, 1.0), (0.2, 1.0), (0.5, 1.0),
(1.0, 3.0), (1.0, 6.0), (1.0, 10.0)}.

For JTT, we tune its pretraining epoch number
T in {1, 2} and tune its up-weights A, in
{3.0, 6.0, 10.0}.

For ARL, we tune its warm-up epoch number
T in {0, 1}.

For POE and REWEIGHTING, we tune their
pretraining epoch number. 7" in {1, 2}.

For IPW-Z and IPW-ZY, we tune if the average
of the weights are normalized to 1 or not.

For GDRO, we implement it with a soft-
weighted version similar to Equation 9 except
for using the ground-truth demographic and
labels to partition the groups. We tune w,, and
ws in {(0.0, 1.0), (0.1, 1.0), (0.2, 1.0), (0.5,
1.0), (1.0, 3.0), (1.0, 6.0), (1.0, 10.0)}. It’s
worth noticing that when w,,, ws = (0.0, 1.0),
the GDRO conforms the Equation 4.
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Method ‘ Validation Acc. ‘ Best Param.

ERM | 53.0 |

ARL 52.6 T=1

JTT 53.7 T =5 p=30

POE 523 T=2

REWEIGHTING 54.0 T=10

Ipw-z 52.7 Normalize = False
IpPw-zY 52.8 Normalize = False
GDRO 62.6 wy, = 0.1, ws = 1.0

FREEDRO | 56.0 | T =50,w, = 0.2,w, = 1.0

Table 4: The validation results of all approaches in COMPAS.
Validation Acc. column indicates the worst group accuracy
evaluated on the validation set. Best Para. indicates the best
parameter in the validation set.

Method ‘ Validation Acc. ‘ Best Param.
ERM | 81.6 |
ARL 80.3 T=1
Jrr 77.6 T =1,y =10.0
POE 80.3 T=5
REWEIGHTING 81.6 T=1
Ipw-7 80.3 Normalize = False
Tpw-zY 80.3 Normalize = False
GDRO 81.6 wy = 1.0, ws = 10.0
FREEDRO | 81.6 | T=2w, =1.0,w, =60

Table 5: The validation results of all approaches in Sexist
Tweets. Validation Acc. column indicates the worst group
accuracy evaluated on the validation set. Best Para. indicates
the best parameter in the validation set.

Method ‘ Validation Acc. ‘ Best Param.
ERM | 479 |
ARL 49.1 T=1
ITT 49.7 T =1\ =060
POE 545 T=2
REWEIGHTING 64.6 T=1
IpW-2 522 Normalize = True
Ipw-zY 514 Normalize = False
GDRO 472 wy, = 1.0, ws = 3.0
FREEDRO | 63.4 | T=2w,=01ws =10

Table 6: The validation results of all approaches in Jigsaw
Toxicity. Validation Acc. column indicates the worst
group accuracy evaluated on the validation set. Best Para.
indicates the best parameter in the validation set.

Method ‘ Validation Acc. ‘ Best Param.
ERM | 54.9 |
ARL 54.4 T=1
Jrr 67.7 T =1, p=30
POE 66.7 T=1
REWEIGHTING 66.5 T=1
Ipw-z 555 Normalize = T'rue
Ipw-zY 555 Normalize = T'rue
GDRO 64.8 wy = 1.0, ws = 10.0
FREEDRO | 69.0 [T =2w,=10,w,=6.0

Table 7: The validation results of all approaches in Civil
Comments. Validation Acc. column indicates the worst
group accuracy evaluated on the validation set. Best Para.
indicates the best parameter in the validation set.



Method ‘ Validation Acc. ‘ Best Param.

ERM | 417 |

ARL 50.0 T=0

JrT 57.1 T =2, p=30

POE 50.0 T=2

REWEIGHTING 47.6 T=1

Ipw-z 57.1 Normalize = False
Ipw-2Y 50.0 Normalize = False
GDRO 41.7 w, = 1.0,ws = 10.0

FREEDRO | 50.0 | T=0,w,=02w,=10

Table 8: The validation results of all approaches in Wiki
Comments. Validation Acc. column indicates the worst
group accuracy evaluated on the validation set. Best Para.
indicates the best parameter in the validation set.

For Sexist Tweets, we tune the hyper-
parameters with more values for the following
methods:

* For JTT, we tune its pretraining epoch number
T'in {1,2,5,10} and tune its up-weights A,
in {3.0, 6.0, 10.0, 20.0, 50.0}.

» For ARL, we tune its warm-up epoch number
Tin {0, 1,2, 3}.

e For POE and REWEIGHTING, we tune their
pretraining epoch number 7" in {1, 2, 5, 10}.

For COMPAS, we tune the hyper-parameters with
more values for the following methods:

* For FREEDRO, we tune the parameter dy-
namic lagged grouping frequency 7" in {0, 1,
2, 5, 10} and the w, and w, in Equation 9
in {(0.1, 1.0), (0.2, 1.0), (0.5, 1.0), (1.0, 3.0),
(1.0, 6.0), (1.0, 10.0)}.

* For JTT, we tune its pretraining epoch number
T in {1, 2, 5, 10} and tune its up-weights A, p
in {3.0, 6.0, 10.0}.

* For ARL, we tune its warm-up epoch number
Tin {0, 1, 2,5, 10}.

* For POE and REWEIGHTING, we tune their
pretraining epoch number 7" in {1, 2, 5, 10}.

All experiments are run on a 16G Tesla V100
GPU. The validation results and the best parameters
for all approaches are in Table 8, 6, 7, 5 and 4.
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