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Abstract

Machine learning models are prone to social001
biases in datasets and thus could make discrim-002
inatory decisions against demographic minor-003
ity groups. Most existing fairness-promoting004
methods usually assume access to the annota-005
tions of the demographic information. How-006
ever, such information could be inaccessible007
due to the high data annotation cost and pri-008
vacy restrictions. Recently, distributionally009
robust optimization (DRO) techniques have010
been applied to promote fairness without de-011
mographic labels. DRO-based methods op-012
timize the individuals/groups with the worst013
prediction performance, with the intuition that014
these groups roughly correspond to the mi-015
nority groups being biased against. How-016
ever, in complex real-world settings with mul-017
tiple strong bias attributes, the simple group-018
ing schemes in the existing DRO-based meth-019
ods can fail to identify the ground truth minor-020
ity groups. In this paper, we propose FREE-021
DRO, a demographic-free group DRO method022
featuring a more principled grouping scheme,023
call lagged dynamic grouping. Specifically,024
FREEDRO dynamically splits the training data025
based on the ground truth labels and the pre-026
diction of the model at an earlier iteration and027
then optimizes worst group performance. Ex-028
tensive experiments on five real-world datasets029
show that our method can effectively alleviate030
the biases and even achieve comparable results031
with methods with full demographic annota-032
tions. The results also verify that our group-033
ing scheme has a good correspondence with034
the ground truth demographic grouping.035

1 Introduction036

The fairness problem in machine learning (ML) has037

received increasing attention from both academia038

and industry (Holstein et al., 2019; Mehrabi et al.,039

2021). Machine learning models are found im-040

pacted by the biases in the human world and041

datasets, and thus make discriminative judgments042

against certain minority groups. For example, it 043

is found that some abusive language detection sys- 044

tems tend to classify texts that contain mere men- 045

tioning of certain minority groups, e.g., homosex- 046

ual groups, as abusive content, even though the 047

texts themselves are not abusive at all (Dixon et al., 048

2018). Furthermore, the biases present in these 049

deep learning models can in turn deepen the biases 050

in human society (Zhao et al., 2017). 051

Most existing fairness promoting methods nowa- 052

days require explicit labels of biased demographic 053

features. In many real-world applications, however, 054

such demographic labels are inaccessible, because 055

it is often difficult to identify what demographic bi- 056

ases are present in a machine learning model, and 057

even if the potential biases could be pinpointed, 058

it is sometimes impossible to collect the demo- 059

graphic labels due to privacy constraints (Lahoti 060

et al., 2020). For example, it is impossible for credit 061

card companies to prevent racial discrimination us- 062

ing race labels, because they are not allowed to 063

collect race information from their card applicants. 064

Motivated by this, many research efforts have 065

been directed to promoting fairness without relying 066

on demographic labels. Among these methods, a 067

major line of works involves distributionally robust 068

optimization (DRO) and group DRO (Hu et al., 069

2018; Oren et al., 2019; Sagawa et al., 2019, 2020; 070

Liu et al., 2021; Lahoti et al., 2020), whose objec- 071

tive is to optimize the worst performance of indi- 072

viduals or groups. The intuition is that the minority 073

groups being biased against usually corresponds 074

well with the groups with the worst prediction per- 075

formance. However, in many real-world settings, 076

the data distributions are complex, often involving 077

multiple strong bias features. As a result, the sim- 078

ple grouping schemes as in many DRO-based meth- 079

ods would fail to identify minority groups. A more 080

carefully-designed grouping scheme is needed to 081

maintain the effectiveness of DRO-based methods 082

under these complicated settings. 083
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In this paper, we propose FREEDRO , a084

demographic-free group-DRO-based debiasing085

method featuring a more principled grouping086

scheme, called lagged dynamic grouping, which087

dynamically partitions the training data based on088

true labels and the prediction results of the clas-089

sifier at a previous iteration. The algorithm then090

optimizes the worst-off group performance with a091

soft-weighted group DRO objective. We have per-092

formed extensive experiments on five real-world093

datasets, which show that FREEDRO outperforms094

other demographic-free baselines and can even095

achieve comparable results with methods that use096

full demographic information. Further experiments097

confirm that lagged dynamic grouping has a good098

alignment with the true demographic grouping.099

2 Related Work100

2.1 Fairness in Machine Learning101

The fairness problem in machine learning has102

received increasing attention (Chouldechova and103

Roth, 2018; Sun et al., 2019; Holstein et al., 2019;104

Mehrabi et al., 2021).105

The definitions of fairness can be broadly106

divided into individual fairness, group fair-107

ness, causal-based fairness, and Rawlsian fair-108

ness (Chouldechova, 2017; Makhlouf et al., 2020;109

Lahoti et al., 2020). Among them, individual fair-110

ness asks models to achieve similar performance111

on similar individuals (Dwork et al., 2012; Joseph112

et al., 2016) while suffering from the difficulty of113

defining the sample distance measure (Choulde-114

chova and Roth, 2018). Group fairness consists of115

a family of notions which pursues similar model116

performance on all demographic groups (Calders117

and Verwer, 2010; Hardt et al., 2016; Choulde-118

chova, 2017). Despite its effectiveness, different119

group fairness notions are found incompatible with120

each other (Kleinberg et al., 2017; Mitchell et al.,121

2018). Causal-based fairness (Kusner et al., 2017;122

Wu et al., 2019; Zhang and Bareinboim, 2018a,b)123

notions define fairness based on causal graphs,124

which could be hard to acquire without expert125

knowledge (Makhlouf et al., 2020). In this work,126

we adopt the Rawlsian fairness (Hashimoto et al.,127

2018; Lahoti et al., 2020; Lees et al., 2019) de-128

fined as the worst-group performance, which orig-129

inates from the distributive justice theory (Rawls130

and Kelly, 2001).131

The literature on mitigating the fairness prob-132

lem could be roughly divided into three lines:133

(1) pre-processing methods (Kamiran and Calders, 134

2011; Zemel et al., 2013; Feldman et al., 2015; 135

du Pin Calmon et al., 2017; Park et al., 2018; 136

Dixon et al., 2018; Grover et al., 2020; Zhang et al., 137

2020), which remove the biases by modifying or 138

re-weighting the training data; (2) in-processing 139

algorithms (Zafar et al., 2017; Agarwal et al., 2018; 140

Kamishima et al., 2012; Baharlouei et al., 2019; 141

Pérez-Suay et al., 2017), which add regulariza- 142

tion techniques during training; (3) post-processing 143

methods (Hardt et al., 2016; Chzhen et al., 2019; 144

Dwork et al., 2018; Kim et al., 2018, 2019; Wood- 145

worth et al., 2017; Mishler and Kennedy, 2021; 146

Lohia et al., 2019), which calibrate the model out- 147

puts to satisfy fairness constraints. However, most 148

of these works need the access to the ground-truth 149

demographic information, while the usage of such 150

information may be expensive and privacy risky. 151

2.2 Fairness without Demographic 152

A line of works which try to tackle unfairness prob- 153

lem without demographics is the proxy-based meth- 154

ods (Chen et al., 2019; Gupta et al., 2018; Kallus 155

et al., 2020; Diana et al., 2021; Romanov et al., 156

2019; Zhao et al., 2021), which use proxy variables 157

to replace the demographic information (e.g., zip 158

code as race). However, these methods need prior 159

knowledge of the biases and risks exaggerating 160

the disparities in the datasets due to the estima- 161

tion bias (Chen et al., 2019; Lahoti et al., 2020). 162

Another branch for solving the problem is to use 163

pseudo group information generated by cluster- 164

ing (Yan et al., 2020) or causal variational autoen- 165

coder (Grari et al., 2021), while these methods 166

highly rely on the assumptions of the data distri- 167

bution. There are also works focusing on achiev- 168

ing fairness with imperfect demographic informa- 169

tion (Awasthi et al., 2020; Dai and Wang, 2021; 170

Coston et al., 2019), and with third-party provided 171

privacy-preserved form demographic (Veale and 172

Binns, 2017; Hu et al., 2019; Jagielski et al., 2019). 173

Another line of works utilizes the distributional 174

robust optimization (DRO) techniques to alleviate 175

the unfairness problems. Without the explicit group 176

information, Hashimoto et al. (2018); Duchi et al. 177

(2020) develop a DRO framework (Namkoong and 178

Duchi, 2017), which considers any subset exceed- 179

ing a certain size as a potential demographic group. 180

Lahoti et al. (2020) make use of the computational- 181

identifiability to identify the minority groups and 182

remove biases in an adversarial re-weighting man- 183
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ner. Our work falls into the category of group184

DRO-based methods, which focus on optimizing185

the worst performances over pre-defined groups186

and has been shown effective in training unbiased187

models (Hu et al., 2018; Oren et al., 2019; Sagawa188

et al., 2019, 2020). Different from prior works,189

our work defines the groups in a dynamic lagged190

grouping manner with the predicted and the true191

labels and optimizes a soft-weighted group DRO192

objective in these groups.193

There are also a series of works for removing194

unknown datasets biases, which is similar to our195

focus as the fairness problem can also be partly196

seen as a dataset bias problem (Zhang et al., 2020).197

Arjovsky et al. (2019) learn the bias-free representa-198

tions by optimizing across different environments.199

Bao et al. (2021a,b) make use of the invariance200

among separate environments to partial out the im-201

pacts of biases. Utama et al. (2020); Sanh et al.202

(2021) assume the shallow models with limited ca-203

pacity or under-trained are more prone to biases204

and force the core model to learn from mistakes205

of the shallow models. Liu et al. (2021) adopt a206

two-stage training setting where a shallow model207

is firstly trained and its misclassified samples are208

then up-weighted in the second phase training. By209

contrast, our work introduces a dynamic lagged210

grouping strategy where groups are iteratively gen-211

erated based on model predictions and true labels.212

3 Background and Problem Formulation213

3.1 Problem Formulation214

Consider a classification problem, whereX repre-215

sents the input features, and Y ∈ Y represents the216

class label. In addition, denote Z ∈ Z as an unob-217

served sensitive attribute, which is often spuriously218

correlated with Y . Denote G ∈ G = Y × Z as219

the group partitioned by different combinations of220

Y and Z. Specifically, if Z is a one-dimensional221

variable, then222

G = (Y, Z). (1)223

For example, if Y is a one-dimensional binary vari-224

able, say the hair color of a person (blond or black),225

and Z is a one-dimensional gender feature (we use226

binary gender for simplicity of illustration), then227

G can take on four values, (black, male), (black,228

female), (blond, male) and (blond, female).229

On the other hand, if Z is a k-dimensional vari-230

able, thenG is also a k-dimensional variable, with231

232

Gi = (Y,Zi). (2) 233

In other words, Z provides k different ways to 234

group the data. In the example above, if Z has an 235

additional dimension, (e.g., white or non-white), 236

thenG would also have two dimensions. G1 takes 237

on the four values defined by the output label and 238

gender. G2 also takes on four values defined by 239

the output label and race. For simplicity of our 240

illustration, the remainder of this section will focus 241

on the case with one-dimensional Z, unless stated 242

otherwise. 243

As the result of the spuriously-correlated at- 244

tribute Z, a regular classifier is prone to produce 245

a high error rate in some of these groups. In the 246

example of predicting hair color based on images 247

of a person,X represents the input image, and Y ∈ 248

{blond, black} represents the hair color. The gender 249

is a spuriously correlated feature, i.e., Z ∈{male, 250

female}, because female people are more likely to 251

have blond hair and male people black hair. As a 252

result, among the four groups, a regular classifier 253

tends to make many errors in the (male, blond) and 254

(female, black) groups. Our goal is to derive a train- 255

ing paradigm that can overcome the bias against 256

these groups. 257

3.2 Rawlsian Fairness and Group DRO 258

The fairness metric we would like to optimize for 259

is the Rawlsian fairness, which stems from the 260

distributive justice theory (Rawls and Kelly, 2001). 261

Rawlsian fairness measures the utility of the worst 262

off group. Formally, if we define the parameters of 263

the classifier as θ, the Rawlsian fairness objective 264

is defined as follows, 265

max
θ

min
g

E[U(θ)|G = g], (3) 266

where U(θ) is short for U(X, Y, Z;θ), represent- 267

ing some utility function of an individual. Rawlsian 268

fairness has a strong connection to a wide range 269

of machine learning algorithms (Hashimoto et al., 270

2018; Lahoti et al., 2020). For example, if we set 271

the utility function of to the negative loss function 272

of the classifier, `(θ), such as cross-entropy, then 273

Eq. (3) becomes the objective of the group DRO 274

method: 275

min
θ

max
g

E[`(θ)|G = g]. (4) 276

If Z is multidimensional, the objective becomes, 277

278

min
θ

max
i

max
gi

E[`(θ)|Gi = gi], (5) 279
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Figure 1: The pipeline of our proposed FREEDRO method with three main steps. (S.1) Use the lagged model the make
predictions on the current data; (S.2) Partition the data based on the model predictions and the ground truth labels; (S.3) Optimize
the Equation 9 across all partitions for rawlsian fairness promotion. Best viewed in color.

which is essentially minimizing the loss within the280

worst-off group.281

If the sensitive attribute, Z, were observed, we282

could directly apply the group DRO method, which283

has been shown effective in mitigating bias (Hu284

et al., 2018; Oren et al., 2019; Sagawa et al., 2019,285

2020). In our case, however, since Z is unobserved,286

we will explore ways to approximately recover the287

grouping information to bring group DRO back to288

the stage in the following.289

4 Methodology290

The key idea of our proposed FREEDRO is to in-291

troduce an alternative grouping, called lagged dy-292

namic grouping, to partition the training data, and293

then optimize the performance of the worst group.294

We will first introduce our algorithm FREEDRO295

in the first subsection, and then explain why our296

grouping can approximately recover the group de-297

mographic grouping in the following subsections.298

4.1 Lagged Dynamic Grouping299

Denote θ(t) as the parameter of the classifier at300

iteration t. Our grouping, Ĝ(θ(t)), is defined as301

Ĝ(θ(t)) = (Y, Ŷ (θ(t))), (6)302

where Ŷ (θ(t)) denotes the predicted label using the303

classifier at iteration t. Comparing Equations (1)304

and (6), we can see that the only difference between305

our proposed grouping and the oracle demographic306

grouping is that we replace the ground truth demo-307

graphic information, Z, with the predicted output308

label, Ŷ (θ(t)). As a concrete example, if Y is bi-309

nary, then our proposed grouping partitions the data310

into four groups: true positive, true negative, false311

positive, and false negative, using the classifier at312

iteration t.313

FREEDRO can then be formulated as follows.314

At iteration t, the algorithm involves two steps: 1)315

The algorithm uses the classifier at τ = t mod T316

iterations earlier to generate grouping Ĝ(θ(t−τ)), 317

where T is the delay interval length. 2) Then, 318

FREEDRO tries to minimize the worst group per- 319

formance. Formally, the objective at iteration t is 320

321

min
θ

E[`(θ)|Ĝ(θ(t−τ)) = g∗]. (7) 322

where 323

g∗ = argmax
g

E[`(θ)|Ĝ(θ(t−τ)) = g]. (8) 324

θ(t+1) is obtained by performing one (stochastic) 325

gradient step of the objective above. This objective 326

is very similar to Equation (4), except that the ora- 327

cle demographic grouping, G, is replaced with our 328

proposed grouping with delay τ , Ĝ(θ(t−τ)). 329

To stabilize training, we further generalize Equa- 330

tion (7) to a soft-weighted version: 331

min
θ

[
wsE[`(θ)|Ĝ(θ(t−τ)) = g∗]

+ wuE[`(θ)|Ĝ(θ(t−τ)) 6= g∗]
]
,

(9) 332

where ws should be greater than wu to emphasize 333

the worst off group. When wu = 0 and ws = 1, 334

Objective (9) reduces to Objective (7). 335

To sum up, our algorithm FREEDRO has three 336

features. 337

• Grouping with predicted and true labels: The 338

data are partitioned into different groups based 339

on the predicted and true labels of the classifier. 340

• Lagged grouping: Classifier trained at an earlier 341

step is used to produce the grouping. 342

• Dynamic grouping: At each iteration, a differ- 343

ent grouping is generated. 344

Hence we name our algorithm lagged dynamic 345

grouping. In the following, we will explain why 346

each feature is essential. 347
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4.2 Why Lagged Dynamic Grouping?348

As mentioned, the overall goal of the proposed algo-349

rithm is to approximately recover the ground truth350

demographic grouping, G. In this subsection, we351

will explain why the three features of FREEDRO352

can contribute to this goal.353

Why grouping based on predicted and true la-354

bels? If the classifier primarily uses the biased355

demographic feature to make predictions, then the356

grouping based on its predicted label, together with357

the true labels, can recover the ground truth de-358

mographic grouping. To see why this is the case,359

Figure 1 illustrates, using the hair color prediction360

example. Recall that the true grouping G in this361

case is {(blond, female), (black, female), (blond,362

male), (black, male)}; whereas our grouping is363

{(blond, predicted blond), (black, predicted blond),364

(blond, predicted black), (black, predicted black)}.365

In the figure, the shape denotes male, and the366

shape denotes female), where the hair color la-367

bel blond hair is represented by blond color while368

black hair is represented by black color. If the clas-369

sifier primarily uses gender to predict hair color,370

the decision boundary should look like the dashed371

line, where the male samples ( ) mostly lie on one372

side and female samples ( ) mostly lie on the other373

side. As a result, (blond, predicted blond) mostly374

corresponds to (blond, female), and (black, pre-375

dicted black) mostly corresponds to (black, male).376

Likewise, the remaining two groups also have good377

correspondence. Having established such corre-378

spondence, the next question is, how to find a clas-379

sifier that primarily relies on biased demographic380

features, the answer to which lies in the second381

feature of FREEDRO .382

Why use lagged grouping? Consistent with383

Utama et al. (2020); Sanh et al. (2021); Liu et al.384

(2021), we assume that the biased demographic385

features usually take on simple, easy-to-use forms,386

just like the gender feature in the previous exam-387

ple. Hence, neural models tend to focus on such388

features at an early training stage, before switching389

their attention to complicated features.390

As discussed in Section 5.3, we conduct a case391

study and observe a similar behavior that models392

trained at earlier epochs pick up more bias. This393

observation motivates us to use a model trained394

at an earlier stage to produce the grouping so that395

the classifier would more heavily utilize the demo-396

graphic info and the resulting grouping can better397

align with the ground truth demographic grouping. 398

Why use dynamic grouping? So far, our discus- 399

sion has only focused on the case with only one 400

biased demographic feature. In the presence of 401

multiple biased demographic features, our algo- 402

rithm will fail to recover the grouping, if our biased 403

lagged classifier only relies on a subset of, but not 404

all, the biased demographic features. However, 405

this problem can be fixed by dynamic grouping. 406

Assume, for example, there are two biased demo- 407

graphic features, gender, and race, and assume that 408

the classifier initially only focuses on gender. As 409

a result, lagged dynamic grouping would only fix 410

the gender bias, and so race becomes the only un- 411

resolved bias. With the dynamic grouping, the 412

classifier would redirect its attention to any unre- 413

solved biases, in this example race, and hence fix 414

all the biases at the end. 415

5 Experiment 416

In this section, we first introduce our experiment 417

settings, which include the datasets, baselines, 418

model architectures, training details, and evalua- 419

tion metrics. We then elaborate on the experiment 420

setup of the motivating example we have shown in 421

Figure 2. After that, we present our main results on 422

five real-world datasets. Lastly, we provide abla- 423

tion studies on the key parameters of the proposed 424

methods. 425

5.1 Experiment Settings 426

Datasets We evaluate the proposed method 427

using five real-world datasets with re- 428

ported biases: COMPAS (Flores et al., 429

2016), Sexist Tweets (Waseem, 2016; 430

Waseem and Hovy, 2016; Park et al., 2018), 431

Jigsaw Toxicity (AI, 2019), Civil 432

Comments (Koh et al., 2021), Wiki 433

Comments (Dixon et al., 2018). These datasets 434

are all used for binary classification. For COMPAS, 435

we use the data split which is used in Lahoti 436

et al. (2020). We use the original data split for 437

Civil Comments (Koh et al., 2021) and Wiki 438

Comments (Dixon et al., 2018). For Sexist 439

Tweets and Jigsaw Toxicity, we randomly 440

split the dataset as 8:1:1 for training, validation 441

and testing. More details about these datasets can 442

be found in Table 1. 443

Baselines We compare our method with the fol- 444

lowing baselines: 445
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Dataset Size Task Positive (%) avg. Length Bias

COMPAS 7,214 Recidivism Prediction 48.1 Categorical Race, Gender
Sexist Tweets 12,096 Toxicity Detection 24.7 14.4 Gender
Jigsaw Toxicity 1,999,516 Toxicity Detection 8.0 50.7 Race, Gender, Religion, Sex orientation
Civil Comments 448000 Toxicity Detection 11.3 59.9 Race, Gender, Religion, Sex orientation
Wiki Comments 159,686 Toxicity Detection 9.6 66.0 Gender, Race, Sex orientation, Age, Nationality, Religion

Table 1: The details of the datasets that we use for evaluation. The “Positive (%)” column indicates the ratio of positive labels
(i.e., toxic for toxicity detection). The “Bias” column indicates the demographic features that are previously reported to be
spuriously correlated with labels in the corresponding datasets.

• ERM: conventional empirical risk minimization.446

• ARL (Lahoti et al., 2020): adversarially reweight-447

ing learning assumes no access to demographic in-448

formation. An adversarial network is co-trained449

with the final model to generate instance weights450

to highlight hard samples.451

• JTT (Liu et al., 2021): just train twice is a two-452

stage demographic-free training approach, which453

minimizes the loss over a reweighted dataset (sec-454

ond stage) with those training samples that are mis-455

classified at the end of first-stage standard training456

up-weighted.457

• POE and REWEIGHTING (Utama et al., 2020):458

A shallow model is firstly trained with limited459

steps in the training set. Product-of-expert trains460

the main model in an ensemble with the shallow461

model, where the softmax outputs of two mod-462

els are combined. Reweighting adjusts the impor-463

tance of a training instance by directly assigning464

a scalar weight calculated by the shallow model.465

Higher weights are assigned to those that the shal-466

low model wrongly predicts. An annealing mecha-467

nism is applied for both methods.468

• IPW: inverse probability weighting is an instance469

re-weighting technique. We specifically consider470

two variants of the IPW methods denoted as IPW-471

Z (Höfler et al., 2005) and IPW-ZY (Lahoti et al.,472

2020). The former one uses 1/P (z) as the con-473

stant weight while the latter one uses 1/P (z, y).474

These methods need to have explicit demographic475

information.476

• GDRO: group distributional robust optimiza-477

tion (Hu et al., 2018; Sagawa et al., 2019) uses478

the ground-truth demographic information together479

with the label to partition the dataset. We optimize480

the worst-off loss over the considered groups.481

It is worth emphasizing that all but IPW and482

GDRO are demographic-free methods. IPW and483

GDRO have an unfair advantage of accessing the484

demographic labels.485

Evaluation Metrics We evaluate all the methods486

with average accuracy and worst-group accuracy in487

the testing set. One challenge for calculating worst- 488

group fairness is that one sentence can contain mul- 489

tiple demographic values (e.g., The boy and the 490

girl are happy.) Following Koh et al. (2021); Liu 491

et al. (2021), we partition the dataset into multiple 492

overlapping groups, where each sentence contains 493

a specific demographic value (e.g., “male”) and a 494

specific label. For example, if we have two de- 495

mographic values {“male′′, “female′′} and two 496

labels {0, 1}, then the dataset will be partitioned 497

into four. With these partitioned groups, we report 498

the worst-off accuracy among them. 499

The ground-truth demographic information is 500

needed to calculate worst-group accuracy during 501

validation and testing. For COMPAS, we use the 502

provided gender and race annotations in the dataset. 503

For Civil Comments, we directly use the pro- 504

vided eight demographics in the original testing set. 505

For Jigsaw Toxicity, we use the provided de- 506

mographic annotations and manually cluster them 507

into eight demographics which are identical to 508

Civil Comments following Koh et al. (2021). 509

For Wiki Comments and Sexist Tweets, 510

due to the lack of demographic annotations, we 511

follow Zhang et al. (2020) and match each sen- 512

tence with a pre-defined demographic word dict to 513

extract the demographic information. We filter out 514

those demographic values with the low occurrence 515

and get two demographics for Sexist Tweets 516

and sixteen for Wiki Comments. The specific 517

details of the demographic identities can be found 518

in Appendix A.1. 519

Model architectures and training details All 520

approaches we evaluate are trained with the same 521

model architecture and training setup. For the 522

COMPAS dataset, we use a fully connected two- 523

layer feed-forward network with {64, 32} hidden 524

dimension, and train the models using an Adagrad 525

optimizer with 0.01 learning rates for 100 epochs. 526

For the other four biased datasets, we use the BERT- 527

base-uncased model (Devlin et al., 2019) imple- 528

mented with Transformers (Wolf et al., 2020). An 529
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Method Need Demographic COMPAS Sexist Tweets Jigsaw Toxicity Civil Comments Wiki Comments

ERM No 47.4 (66.8) 78.0 (91.9) 52.2 (95.1) 55.1 (91.9) 57.1 (96.6)

ARL No 46.9 (67.5) 82.0 (92.3) 52.9 (95.2) 57.1 (91.9) 60.0 (96.3)
JTT No 52.7 (58.9) 80.0 (92.1) 54.6 (95.1) 70.1 (90.9) 58.3 (96.0)
POE No 46.5 (60.6) 76.0 (91.2) 52.3 (93.4) 66.0 (90.7) 57.1 (96.3)

REWEIGHTING No 51.6 (57.1) 82.0 (92.1) 65.2 (93.3) 69.2 (90.1) 57.1 (96.6)

IPW-Z Yes 46.9 (67.1) 84.0 (92.0) 58.5 (95.2) 56.6 (91.7) 60.0 (96.1)
IPW-ZY Yes 47.0 (67.3) 82.0 (92.1) 53.5 (95.1) 56.4 (91.8) 58.3 (96.5)
GDRO Yes 63.3 (65.9) 84.9 (92.8) 50.5 (95.2) 70.0 (90.2) 60.0 (96.6)

FREEDRO (Ours) No 52.3 (63.1) 85.3 (92.1) 69.6 (94.6) 72.1 (90.6) 60.0 (95.7)

Table 2: Performance of different methods. All the models are evaluated on the Original testing set. The results are reported in
the worst group accuracy ↑ (average accuracy ↑) manner. % is neglected.

AdamW optimizer (Loshchilov and Hutter, 2017)530

with a linearly-decaying learning rate (with initial531

value 1e-5) and gradient clipping (`2-norm = 1)532

are applied. We train for 10 epochs on Sexist533

Tweets and 5 epochs for other datasets due to the534

limits on computational resources. The batch size535

is set as 16 and weight decay is 0.01.536

Besides the above hyper-parameters shared537

across all methods, we tune the additional hyper-538

parameters of each algorithm based on the high-539

est worst-group accuracy calculated on the valida-540

tion set. Specifically, we list more details about541

hyper-parameter tuning for all approaches in the542

Appendix A.2.543

5.2 Experiment Results544

Table 2 shows the performance of FREEDRO with545

the other baselines. Below are our key observa-546

tions.547

First, our method consistently outperforms548

the other demographic-free baselines across all549

four text datasets. For example, FREEDRO im-550

proves at least 4.4% worst group accuracy on551

the Jigsaw Toxicity dataset compared with552

other demographic-free baselines. FREEDRO out-553

performs these baselines by 3.3% on the Sexist554

Tweets and 2.0% on Civil Comments.555

Second, our method achieves a better trade-off556

between average accuracy and worst group accu-557

racy compared with demographic-free baselines.558

For example, FREEDRO improves the worst-group559

accuracy by at least 3.3% and achieves compa-560

rable average accuracy with other demographic-561

free methods in Sexist Tweets. In Civil562

Comments, our method improves worst-group ac-563

curacy by at least 2.0% compared with JTT, POE564

and REWEIGHTING with at most 0.3% drop in av-565

erage accuracy. Compared with Arl, our method566

brings 15.0% worst-group accuracy improvement567

in cost of only 1.3% loss on average accuracy. We568

also note there is still a gap between average and569

Figure 2: The training trajectory in the COMPAS dataset. The
y-axis indicates the gap between the best and the worst group
accuracy. Such disparity indicates the biases of models.

worst group accuracy, which suggests that biases 570

are not completely eliminated. We ascribe this to 571

the imperfect grouping without true demographics. 572

Third, our method achieves comparable perfor- 573

mances to the methods with ground-truth demo- 574

graphics in the four text datasets. For example, 575

FREEDRO achieves comparable worst group accu- 576

racy with GDRO on Sexist Tweets and Wiki 577

Comments, and even outperforms GDRO in Wiki 578

Comments and Jigsaw Toxicity. One pos- 579

sible cause is the training instability of GDRO as 580

it needs to optimize the worst group performance 581

over all demographics and labels, while FREEDRO 582

only considers four groups. 583

5.3 Case Studies on COMPAS 584

We conduct a case study on the COMPAS dataset 585

to verify some of our hypotheses that motivate the 586

design of FREEDRO. 587

First, as discussed in Section 4.2, one of our mo- 588

tivating hypotheses is that a neural model trained 589

at an earlier iteration would pick up more bias. To 590

verify the hypothesis, in Figure 2, we report the 591

gap between the best and the worst group accuracy 592

as a function of iterations. The blue line and the 593

orange line correspond to ERM and FREEDRO re- 594

7



Figure 3: The ratio of the (race, label) groups minus the prior
probability in the selected groups for training of GDRO (left)
and FREEDRO (right). Greater than zero in y-axis means the
group is up-weighted during training.

spectively. This gap measures how much bias is595

captured in each model. The more the classifier re-596

lies on the biases in the dataset, the greater the gap597

between the best and the worst group performance.598

If the classifier does not rely on the bias at all, the599

gap should be 0. As can be observed, the gap de-600

creases for both algorithms, which confirms our601

assumption that models trained at an earlier epoch602

rely more heavily on bias features. In addition,603

we observe that FREEDRO achieves a smaller gap604

compared to ERM in the training trajectory, demon-605

strating that our method can effectively mitigate606

the biases.607

Second, we would also like to investigate how608

well the grouping of FREEDRO aligns with the609

true demographic grouping. To measure the group610

alignment, for every epoch, we collect the samples611

in the worst-performing group as selected by FREE-612

DRO and calculate the ratio of the four ground-613

truth demographic groups (e.g., {(white, negative),614

(white, positive), (black, negative), (black, posi-615

tive)}) in it. If FREEDRO can identify the true616

demographic groups well, the ratio of the minority617

groups (in this case (white, positive) and (black,618

negative)) should be high.619

Figure 3 plots the ratio curves for GDRO (left)620

and FREEDRO (right) as functions of training621

epochs. To make it easier to read, we subtract622

each ratio with the prior probability p(z, y) in the623

training data. In other words, if the demanded ratio624

is greater than zero, it means the corresponding625

group is up-weighted during training of FREEDRO.626

We show the result of GDRO as a reference because627

it uses the ground-truth demographic information628

to partition the training data and select the worst-629

performing group, and thus its ratio curves should630

exhibit the most ideal behavior. As can be observed631

in the figure, the minority groups (white, positive)632

and (black, negative) are successfully up-weighted633

K wu ws Worst Group Average

0 1.0 6.0 65.4 91.1
1 1.0 6.0 67.3 90.5
2 1.0 6.0 69.0 90.7

2 0.1 1.0 60.4 89.5
2 0.2 1.0 69.0 90.7
2 0.5 1.0 62.0 91.8
2 1.0 10.0 66.6 89.7
2 1.0 6.0 69.0 90.7
2 1.0 3.0 65.9 91.2

Table 3: The effects of the lagged grouping frequency T and
the soft weights wu and ws of Equation 9. Worst Group and
Average indicate the correspondingly measured accuracy. The
results are evaluated in the validation set. The selected model
corresponding to FREEDRO in Table 2 is bolded.

by our method, which is consistent with the results 634

of GDRO. These results demonstrate the effective- 635

ness of our grouping strategy. 636

5.4 Ablation Studies 637

We perform a parameter sensitivity study on 638

Civil Comments to investigate the effects of 639

the key parameters of FREEDRO including the de- 640

lay interval T and the soft weights wu and ws of 641

Equation 9. 642

Effect of lagged grouping Table 3 shows the re- 643

sults on the delay interval T , i.e., the number of 644

lagged epochs at which the classifier is used to gen- 645

erate the grouping. When T = 0, the grouping is 646

generated with the concurrent model. We see that 647

with the increase of the T , the worst group accu- 648

racy improves, which verifies our hypothesis that 649

lagged models can produce better grouping. We 650

note that the average accuracy also drops when T 651

increases, indicating that larger T can reduce the 652

gap between the worst and the average accuracy. 653

Effect of relaxation coefficient Table 3 shows 654

the results on the soft weights wu and ws as in 655

Equation 9. We see that with larger ws/wu comes 656

better average accuracy, while the best worst group 657

occurs in a sweet spot at around ws/wu = 6. 658

6 Conclusion 659

In this paper, we introduce a novel DRO-based de- 660

biasing method without the use of demographic in- 661

formation, termed as FREEDRO. A lagged dynamic 662

grouping strategy is used to iteratively partition the 663

training data with the model predictions and true la- 664

bels, and the worst-off performance over the splits 665

is optimized with a soft-weighted group DRO. Ex- 666

tensive experiments are provided to demonstrate 667

the superiority of our method over state-of-the-art 668

demographic-free debiasing methods. 669
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7 Broader Impact670

Machine learning models are prone to the un-671

fairness biases in datasets and thus risk mak-672

ing discriminatory decisions towards minority673

groups (Holstein et al., 2019; Mehrabi et al., 2021).674

Biased ML systems could even amplify the dispari-675

ties and deepen the biases in human society (Zhao676

et al., 2017). Along with the proliferation of the677

use of ML techniques, it’s critical to make sure that678

ML systems treat every demographic equally.679

Despite the recent advances in mitigating the680

biases, most existing works need access to the681

ground-truth demographic annotations, which can682

be difficult due to the high cost and privacy683

risks (Holstein et al., 2019). To alleviate the prob-684

lem, we propose a novel training method termed685

as FREEDRO which can promote model fairness686

without the use of demographics. The experiments687

demonstrate that the proposed method can effec-688

tively improve model fairness. We believe that our689

research could help build more fair and responsible690

ML systems and provide broad positive impacts on691

both research and industry.692

Despite the effectiveness, we note that our693

method also has a few limitations and potential694

risks. First, our method, together with all other695

compared approaches, still needs a demographic-696

annotated development set to tune the hyper-697

parameters. Although it is cheaper to acquire such698

a set, it demands the users notice the biases in ad-699

vance, which could be hard in practice. It remains700

an open problem to find more effective validation701

measures for fairness that do not use the demo-702

graphics. Second, as demonstrated by the exper-703

iment results, the biases may not be completely704

eliminated. We leave it for future work to further705

dig into this problem. In practice, our method706

should be used with careful checks on potential707

ethical risks.708
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A Appendix1018

A.1 Demographic Identities of Datasets1019

We list the demographic identities used for evalua-1020

tion in all five datasets below. We note that we have1021

filtered out those identities with low frequency in1022

Wiki Comments and Jigsaw Toxicity.1023

• COMPAS: Black, White, Male, Female1024

• Sexist Tweets: Male, Female1025

• Jigsaw Toxicity: Male, Female,1026

LGBTQ, Christian, Muslim, Other Religion,1027

Black, White1028

• Civil Comments: Male, Female, LGBTQ,1029

Christian, Muslim, Other Religion, Black,1030

White1031

• Wiki Comments: Male, Female, LGBTQ,1032

Heterosexual, American, European, Asian,1033

Jewish, Black, White, Other Race, Old, Young,1034

Christian, Catholic, Muslim1035

A.2 Training Details for All Approaches1036

We list all the hyper-parameters we tuned with1037

grid-search in the validation set for all methods1038

for Wiki Comments, Civil Comments and1039

Jigsaw Toxicity.1040

• For FREEDRO, we tune the parameter delay1041

interval T in {0, 1, 2} and the wu and ws of1042

Equation 9 in {(0.1, 1.0), (0.2, 1.0), (0.5, 1.0),1043

(1.0, 3.0), (1.0, 6.0), (1.0, 10.0)}.1044

• For JTT, we tune its pretraining epoch number1045

T in {1, 2} and tune its up-weights λup in1046

{3.0, 6.0, 10.0}.1047

• For ARL, we tune its warm-up epoch number1048

T in {0, 1}.1049

• For POE and REWEIGHTING, we tune their1050

pretraining epoch number. T in {1, 2}.1051

• For IPW-Z and IPW-ZY, we tune if the average1052

of the weights are normalized to 1 or not.1053

• For GDRO, we implement it with a soft-1054

weighted version similar to Equation 9 except1055

for using the ground-truth demographic and1056

labels to partition the groups. We tune wu and1057

ws in {(0.0, 1.0), (0.1, 1.0), (0.2, 1.0), (0.5,1058

1.0), (1.0, 3.0), (1.0, 6.0), (1.0, 10.0)}. It’s1059

worth noticing that when wu, ws = (0.0, 1.0),1060

the GDRO conforms the Equation 4.1061

Method Validation Acc. Best Param.

ERM 53.0 -

ARL 52.6 T = 1
JTT 53.7 T = 5, λup = 3.0
POE 52.3 T = 2

REWEIGHTING 54.0 T = 10

IPW-Z 52.7 Normalize = False
IPW-ZY 52.8 Normalize = False
GDRO 62.6 wu = 0.1, ws = 1.0

FREEDRO 56.0 T = 50, wu = 0.2, ws = 1.0

Table 4: The validation results of all approaches in COMPAS.
Validation Acc. column indicates the worst group accuracy
evaluated on the validation set. Best Para. indicates the best
parameter in the validation set.

Method Validation Acc. Best Param.

ERM 81.6 -

ARL 80.3 T = 1
JTT 77.6 T = 1, λup = 10.0
POE 80.3 T = 5

REWEIGHTING 81.6 T = 1

IPW-Z 80.3 Normalize = False
IPW-ZY 80.3 Normalize = False
GDRO 81.6 wu = 1.0, ws = 10.0

FREEDRO 81.6 T = 2, wu = 1.0, ws = 6.0

Table 5: The validation results of all approaches in Sexist
Tweets. Validation Acc. column indicates the worst group
accuracy evaluated on the validation set. Best Para. indicates
the best parameter in the validation set.

Method Validation Acc. Best Param.

ERM 47.9 -

ARL 49.1 T = 1
JTT 49.7 T = 1, λup = 6.0
POE 54.5 T = 2

REWEIGHTING 64.6 T = 1

IPW-Z 52.2 Normalize = True
IPW-ZY 51.4 Normalize = False
GDRO 47.2 wu = 1.0, ws = 3.0

FREEDRO 63.4 T = 2, wu = 0.1, ws = 1.0

Table 6: The validation results of all approaches in Jigsaw
Toxicity. Validation Acc. column indicates the worst
group accuracy evaluated on the validation set. Best Para.
indicates the best parameter in the validation set.

Method Validation Acc. Best Param.

ERM 54.9 -

ARL 54.4 T = 1
JTT 67.7 T = 1, λup = 3.0
POE 66.7 T = 1

REWEIGHTING 66.5 T = 1

IPW-Z 55.5 Normalize = True
IPW-ZY 55.5 Normalize = True
GDRO 64.8 wu = 1.0, ws = 10.0

FREEDRO 69.0 T = 2, wu = 1.0, ws = 6.0

Table 7: The validation results of all approaches in Civil
Comments. Validation Acc. column indicates the worst
group accuracy evaluated on the validation set. Best Para.
indicates the best parameter in the validation set.
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Method Validation Acc. Best Param.

ERM 41.7 -

ARL 50.0 T = 0
JTT 57.1 T = 2, λup = 3.0
POE 50.0 T = 2

REWEIGHTING 47.6 T = 1

IPW-Z 57.1 Normalize = False
IPW-ZY 50.0 Normalize = False
GDRO 41.7 wu = 1.0, ws = 10.0

FREEDRO 50.0 T = 0, wu = 0.2, ws = 1.0

Table 8: The validation results of all approaches in Wiki
Comments. Validation Acc. column indicates the worst
group accuracy evaluated on the validation set. Best Para.
indicates the best parameter in the validation set.

For Sexist Tweets, we tune the hyper-1062

parameters with more values for the following1063

methods:1064

• For JTT, we tune its pretraining epoch number1065

T in {1, 2, 5, 10} and tune its up-weights λup1066

in {3.0, 6.0, 10.0, 20.0, 50.0}.1067

• For ARL, we tune its warm-up epoch number1068

T in {0, 1, 2, 3}.1069

• For POE and REWEIGHTING, we tune their1070

pretraining epoch number T in {1, 2, 5, 10}.1071

For COMPAS, we tune the hyper-parameters with1072

more values for the following methods:1073

• For FREEDRO, we tune the parameter dy-1074

namic lagged grouping frequency T in {0, 1,1075

2, 5, 10} and the wu and ws in Equation 91076

in {(0.1, 1.0), (0.2, 1.0), (0.5, 1.0), (1.0, 3.0),1077

(1.0, 6.0), (1.0, 10.0)}.1078

• For JTT, we tune its pretraining epoch number1079

T in {1, 2, 5, 10} and tune its up-weights λup1080

in {3.0, 6.0, 10.0}.1081

• For ARL, we tune its warm-up epoch number1082

T in {0, 1, 2, 5, 10}.1083

• For POE and REWEIGHTING, we tune their1084

pretraining epoch number T in {1, 2, 5, 10}.1085

All experiments are run on a 16G Tesla V1001086

GPU. The validation results and the best parameters1087

for all approaches are in Table 8, 6, 7, 5 and 4.1088
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