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Abstract

Batch normalization is a common component in computer vision models, including
ones typically used for few-shot learning. Batch normalization applied in convo-
lutional networks consists of a normalization step, followed by the application
of per-channel trainable affine parameters which shift and scale the normalized
features. The use of these affine parameters can speed up model convergence on
a source task. However, we demonstrate in this work that, on common few-shot
learning benchmarks, training a model on a source task using these affine param-
eters is detrimental to downstream transfer performance. We study this effect
for several methods on well-known benchmarks such as cross-domain few-shot
learning (CD-FSL) benchmark and few-shot image classification on miniImageNet.
We find consistent performance gains, particularly in settings with more distant
transfer tasks. Improvements from applying this low-cost and easy-to-implement
modifications are shown to rival gains obtained by more sophisticated and costly
methods.

1 Introduction

Advances in few shot learning (FSL) have allowed deep learning models to adapt data representations
with just a few labelled samples from novel classes [21, 19, 3]. Throughout the literature, most
FSL methods make use of Batch-Norm (BN) [8] layers when training on source datasets to speed
up model convergence and overcome the problem of internal covariate shift. Adding BN layers to
deep neural networks stabilizes the distribution of layer inputs by controlling the mean and variance
of these distributions, leading to improved performance across a plethora of computer vision tasks.
Despite the ubiquity of BN layers, specially in deep convolutional neural networks (CNN), the source
of their effectiveness is still poorly understood. Furthermore, recent studies have argued that this
effectiveness may not be due to reducing the covariate shift, as originally believed [18].

Computationally, BN layers [8] consist of two steps. First, each input is normalized according to the
mean and standard deviation across the spatial dimensions of a mini-batch for each of its channels. In
this paper, we refer to this first process as “Feature-Normalization”, or FN. These normalized inputs
are then scaled and shifted by the trainable coefficient γ and bias β (the affine parameters). From the
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perspective of domain adaptation, Li et al. [12] state that “the label related knowledge is stored in the
weight matrix of each layer, whereas domain related knowledge is represented by the statistics of the
Batch-Normalization”. In other words, affine parameters are responsible for adjusting the statistics
of Batch-Norm (domain knowledge) according to the underlying correlation among features (label
knowledge). This definition gives rise to a reasonable question: Are the affine parameters still useful
when facing a novel target domain? From fig. 1, in the absence of the affine parameters, the preceding
weight layers could substitute their role, resulting in similar output distributions of BN layers. The
auxiliary benefits of these affine parameters to weight layers has been studied in a recent work [4].
However, the negative effect, when facing novel labels of a new target domain, has not been explored.

In this work, we investigate the effect of replacing the BN layers with Feature-Normalization on the
generalizability of deep CNNs within the setting of cross domain few-shot transfer. In subsequent
sections, we provide a formal definition of Feature-Normalization and then evaluate the effect of this
replacement on some well-known cross domain few-shot methods and datasets.

2 Methods

For a batch S of labelled samples {(xsi , ysi )}Ni=1 of size N taken from a source domain Ds, let Θ
represent a CNN composed of L layers with weight matrices θl for layer index l. If h represents the
intermediate features of Θ for layer l, the Feature-Normalization layer at layer l is computed for each
channel and can be defined as2:

FN(hc) =
hc − µc√
σ2
c + ε

.

Here, channel is represented by c, and µc and σc are the first and second moments of hc respectively
defined as:

µc =
1

NHW

∑
n,h,w

hnchw, σc =

√
1

NHW

∑
n,h,w

(hnchw − µc)
2

where the spatial dimensions of hc are represented by H and W .

3 Related work

Figure 1: Distribution of input (left) and
output (right) from the BN (light green)
and FN (dark green) layers of a pre-
trained ResNet10. All spatial values per
channels are aggregated, resulting in one
distribution per layer.

Few shot learning Research on FSL has typically been
made on the basis that there is little domain shift between
the source and novel classes [3, 15, 20, 9, 5, 2, 21]. Re-
cently, research has been carried out to tackle FSL settings
where the domain gap between the source and target data
is large [14]. Work in semi-supervised FSL [16, 10, 17,
22] utilizes unlabelled data to train the softmax classifier
in the evaluation stages. Advances in self-training and
self-supervised learning have led to promising solutions
for FSL tasks with large domain gaps. A notable state-of-
the-art approach in the setting of distant tasks is STARTUP
[14], which employs a combination of self-training and
self-supervised learning components for cross domain few-
shot learning (CDFSL).

Batch-normalization BN layers enable the training of deeper networks while speeding up model
convergence [8] and producing a slight regularization effect [13]. The authors of Batch-Norm [8]
claim that it reduces internal covariate shift under the assumption that the normalization of features
alleviates the dramatic changes in distribution to a weight layer’s input. This assumption was cast
into uncertainty in [18] where the authors manually induced internal covariate shift post batch-
normalization to find minimal changes in training time. Further studies show that BN layers smoothen
the optimization process [18] and help prevent the exploding gradients problem [1].

2For the sake of simplicity, and consistency with the current architectures we implement the Feature-
Normalize layer using the available standard Batch-Norm modules with disabled affine parameters.
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On domain adaptation, AdaBN [11] utilizes BatchNorm to transform data features from different
domains into representations with similar distributions. In image classification tasks where the source
and target data are from the same distribution, Frankle et al. [4] highlight the expressive powers
of the BN affine parameters. They conduct experiments which show that these affine parameters
play a positive role towards improving model performance. However, this work does not take into
consideration settings where there is a distributional gap between the training and target labels. In
this paper, we explore the role of affine parameters towards the generizability of few shot learners in
the presence of a distributional shift between the source training and target data.

4 Experiments

Table 1: Evaluation of models trained on miniImageNet applied to
novel classes of ImageNet using classic evaluation protocol [21]

1-shot 5-shot 20-shot

Baseline BN 54.56 ± 0.84 76.18 ± 0.69 84.53 ± 0.52
Baseline FN (Ours) 55.16 ± 0.83 76.03 ± 0.67 84.23 ± 0.53

The experiments are conducted
on the publicly available CDFSL
benchmark [6], STARTUP [14]
codes and provided datasets. For
fairness and simplicity, in this
work, we follow the same evalua-
tion setting used for experiments
on the CDFSL benchmark [6] and STARTUP [14]. The optimizer settings and learning rate used
in this work follows STARTUP. The Baseline is standard transfer learning trained for 1000 epochs
on miniImageNet with a batch size of 128. AdaBN utilizes the Baseline model and adapts to the
novel domain using 20% of unlabelled samples from the target dataset, trained for an additional
10 epochs. STARTUP’s teacher model is trained for 400 epochs on miniImageNet and its student
model is trained for 1000 epochs on unlabelled samples from 20% of each target dataset, both using
a batch size of 256. The remaining 80% of target datasets are utilized for fine-tuning, as described
in section 4.1. All methods make use of the ResNet-10 architecture [7]. Results reported in table 1
are evaluated on samples from 900 unseen classes of ImageNet. In all experiments, the weights of
the feature extractor are frozen after the representation learning phase. A linear classifier is then
trained on the support set of the target dataset and the model is evaluated on the query set. All the
experiments were carried out using the Tesla V100 SXM2 16 GB GPU.

4.1 Benchmark

Figure 2: Learning accuracy on valida-
tion data for models with BN (blue) and
FN (Orange). While the BN model con-
verges faster, the accuracy of both mod-
els converge to the same level and re-
main steady.

We perform experiments on the challenging CDFSL bench-
mark [6]. MiniImageNet [21] is used as the base represen-
tation learning dataset. The target dataset is comprised of
4 datasets, each with samples from very different distri-
butions: EuroSAT (satellite imagery to determine land us-
age), CropDiseases (plant images to identify botanical dis-
eases), ChestX (chest X-rays to determine diagnosis) and
ISIC2018 (images of skin abrasions to detect melanoma).

Similar to [6], we perform experiments in an FSL linear
classification setting where the support set is composed of
5 classes with k samples per class (5-way k-shot), where
k ∈ {1, 5, 20, 50} and the overall scores are an average of
accuracies over all target datasets for k ∈ {5, 20, 50}. Eval-
uation is carried out over 600 episodes, 95% confidence
intervals with reported mean accuracy. For the experi-
ments on AdaBN and STARTUP, we randomly sample
20% of unlabelled images from novel classes in the target
dataset, following a similar setup to that of STARTUP [14].
The remaining samples are used during inference.

4.2 Results

Table 2 reports the results of our experiments. Across all datasets, and the 5, 20 and 50 levels of
shot (as is in the CDFSL benchmark), the average performance of the models configured with FN
exceeds that of BN models across all four datasets. FN outperforms BN models, notably surpassing
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Table 2: The results of few-shot learning methods under extreme distribution shift. All methods make
use of the ResNet-10 as backbone.

Baseline AdaBN STARTUP

BN FN (ours) BN FN (ours) BN FN (ours)

5-WAY, 1-SHOT

EuroSAT 59.18±0.85 62.75±0.84 57.46±0.80 62.12±0.85 63.88±0.84 64.00±0.88
CropDisease 68.46±0.87 70.93±0.83 68.19±0.85 71.46±0.86 75.93±0.80 74.56±0.85
ISIC 33.10±0.59 32.77±0.60 34.72±0.65 34.55±0.64 32.70±0.60 35.12±0.64
ChestX 22.54±0.41 22.37±0.42 22.32±0.41 22.46±0.41 23.09±0.43 22.93±0.43

5-WAY, 5-SHOT

EuroSAT 79.98±0.37 80.75±0.58 80.21±0.60 81.75±0.64 82.29±0.60 82.51±0.62
CropDisease 89.85±0.49 91.32±0.46 90.12±0.50 91.62±0.46 93.02±0.45 92.86±0.43
ISIC 45.50±0.59 44.80±0.61 48.88±0.62 48.88±0.62 47.20±0.61 48.54±0.63
ChestX 26.65±0.42 26.32±0.45 25.66±0.42 26.71±0.42 26.94±0.44 27.17±0.44

5-WAY, 20-SHOT

EuroSAT 88.01±0.46 87.88±0.43 88.94±0.44 89.79±0.42 89.26±0.43 89.63±0.43
CropDisease 96.00±0.27 96.68±0.24 96.26±0.28 96.88±0.24 97.51±0.21 97.43±0.23
ISIC 55.60±0.56 56.43±0.58 58.98±0.58 59.79±0.57 58.60±0.58 59.98±0.59
ChestX 31.97±0.43 32.36±0.46 31.11±0.46 31.76±0.45 33.19±0.46 33.54±0.46

5-WAY, 50-SHOT

EuroSAT 91.03±0.37 91.01±0.34 92.08±0.36 92.51±0.34 91.99±0.36 92.59±0.33
CropDisease 97.58±0.21 98.09±0.17 97.90±0.19 98.28±0.17 98.45±0.17 98.53±0.16
ISIC 61.40±0.56 62.64±0.57 63.61±0.59 64.98±0.57 64.20±0.58 65.90±0.56
ChestX 35.28±0.47 36.32±0.48 34.21±0.45 35.87±0.47 36.91±0.50 37.67±0.47

the BN baseline by nearly 4 points for 1-shot classification on EuroSAT. It can be observed that
simply configuring the Baseline model with FN obtains results that rival (within error bars) the more
complex and computationally expensive STARTUP, which employs a large amount of unlabelled data
to bridge the domain gap.

Table 1 reports the performance of the FN and BN configurations on the experiment with the unseen
classes of ImageNet. Although the accuracies of both models on validation data are almost the
same (fig. 2), in FSL settings where there is a relatively smaller domain shift, FN does not provide
any substantial gains over BN. Moreover, from fig. 2, it can be inferred that the FN does not
improve performance on non-Few-Shot settings, and the affine parameters indeed aid convergence on
in-distribution validation data.

5 Conclusion

Feature-Normalization layer improves the few-shot generalization accuracy on shifted domains by
leveraging a lower amount of the model’s parameters. By stabilizing the output distribution of
convolutional layers, Feature-Normalization improves robustness against distributional shifts. It
captures and normalizes the statistical distribution of data features while preventing the affine from
overfitting to the training source labels. Feature-Normalization is completely consistent with well
known Batch-Norm implementations. It could be easily integrated in existing CNN architectures
and used by SOTA methods. It is observed that the proposed normalization technique only helps in
few-shot transfer and the effect is more pronounced as the data distribution shifts. This is an initial
study and we will consider further experiments on the effect of affine parameters in other few shot
benchmarks and methods.
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