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Abstract

Most adversarial attacks and defenses focus on perturbations within small ℓp-norm con-
straints. However, ℓp threat models cannot capture all relevant semantics-preserving per-
turbations, and hence, the scope of robustness evaluations is limited. In this work, we
introduce Score-Based Adversarial Generation (ScoreAG), a novel framework that leverages
the advancements in score-based generative models to generate unrestricted adversarial ex-
amples that overcome the limitations of ℓp-norm constraints. Unlike traditional methods,
ScoreAG maintains the core semantics of images while generating adversarial examples, ei-
ther by transforming existing images or synthesizing new ones entirely from scratch. We
further exploit the generative capability of ScoreAG to purify images, empirically enhancing
the robustness of classifiers. Our extensive empirical evaluation demonstrates that ScoreAG
improves upon the majority of state-of-the-art attacks and defenses across multiple bench-
marks. This work highlights the importance of investigating adversarial examples bounded
by semantics rather than ℓp-norm constraints. ScoreAG represents an important step to-
wards more encompassing robustness assessments.

1 Introduction

(a) Original (b) ScoreAG-GAT (Ours) (c) APGD (ℓ2) (d) APGD (ℓ∞)

Figure 1: Examples of various adversarial attacks on an image of the class “tiger shark" (a). The inset
visualizes a heatmap of the strength of the corresponding perturbation. Despite the fact that the perturbation
generated by ScoreAG-GAT (b) lies outside of common ℓp-norm constraints (ℓ∞ = 188/255, ℓ2 = 18.47), it
is aware of the semantics: removing a small fish to change the predicted label to “hammer shark". This is
in stark contrast to APGD (Croce & Hein, 2020b) with matching norm constraints, which either (c) results
in highly perceptible and unnatural changes, or (d) fails to preserve image semantics completely. This is an
example of Generative Adversarial Transformation (GAS), one of the three use-cases of ScoreAG.
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Ensuring robustness against noisy data or malicious interventions has become a major concern in various
applications ranging from autonomous driving (Eykholt et al., 2018) and medical diagnostics (Dong et al.,
2023) to the �nancial sector (Fursov et al., 2021). Even though adversarial robustness has received signi�cant
research attention (Goodfellow et al., 2014; Madry et al., 2017; Croce & Hein, 2020b), it is still an unsolved
problem. Most works on adversarial robustness de�ne adversarial perturbations to lie within a restricted
`p-norm from the input. However, recent works have shown that signi�cant semantic changes can occur
within common perturbation norms, and that many relevant semantics-preserving corruptions lie outside
speci�c norm ball choices (Tramèr et al., 2020; Gosch et al., 2023). Examples include physical perturbations
such as stickers on stop signs (Eykholt et al., 2018) or natural corruptions such as lighting or fog (Kar et al.,
2022; Hendrycks & Dietterich, 2019). This led to the inclusion of a �rst `p-norm independent robustness
benchmark to RobustBench (Croce et al., 2020), and a call to further investigation into robustness beyond
`p-bounded adversaries (Hendrycks et al., 2022). Thus, in this work, we address the following research
question:

How can we generate semantics-preserving adversarial examples beyond`p-norm constraints?

We propose to leverage the signi�cant progress in di�usion models (Sohl-Dickstein et al., 2015; Ho et al., 2020)
and score-based generative models (Song et al., 2020) in generating realistic images. Speci�cally, we introduce
Score-Based Adversarial Generation (ScoreAG), a framework designed to synthesize adversarial examples,
transform existing images into adversarial ones, and purify images. Using di�usion guidance (Dhariwal &
Nichol, 2021), ScoreAG can generate semantics-preserving adversarial examples that are not captured by
common `p-norms (see Fig. 1). Overall, ScoreAG represents a novel tool for assessing and enhancing the
empirical robustness of image classi�ers.

Our key contributions are summarized as follows:

ˆ We overcome limitations of `p threat models by proposing ScoreAG, a framework utilizing di�usion guid-
ance on pre-trained models, enabling the generation ofunrestricted but semantics-preserving adversarial
examples.

ˆ With ScoreAG we transform existing images into adversarial ones as well assynthesizecompletely new
adversarial examples.

ˆ We show that ScoreAG enhances classi�er robustness bypurifying adversarial examples and common
corruptions.

ˆ We demonstrate ScoreAG's capability in an exhaustive empirical evaluation and show it is able to out-
perform a majority of existing attacks and defenses on several benchmarks. Additionally, we underscore
ScoreAG's semantic preserving ability in a human study.

2 Background

Score-Based Generative Modelling. Score-based generative models (Song et al., 2020) are a class of
generative models based on a continuous-time di�usion processf x t gt 2 [0;1] accompanied by their correspond-
ing probability densities pt (x ). The di�usion process progressively perturbs a data distribution x0 � p0 into
a prior distribution x1 � p1. This transformation is formalized as a Stochastic Di�erential Equation (SDE),
i.e.,

dx t = f (x t ; t)dt + g(t)dw; (1)

where f (�; t) : Rd ! Rd represents the drift coe�cient of x t , g(�) : R ! R the di�usion coe�cient, and w
the standard Wiener process (i.e., Brownian motion). Furthermore, let pst (x t j x s) describe the transition
kernel from x s to x t , where s < t .

By appropriately choosing f and g, p1 asymptotically converges to an isotropic Gaussian distribution, i.e.,
p1 � N (0; I ). To generate data, the reverse-time SDE needs to be solved:

dx t = [ f (x t ; t) � g(t)2r x t logpt (x t )]dt + g(t)dw: (2)
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Solving the SDE requires access to the time-dependent score functionr x t logpt (x t ), which is typically
unknown. Instead, the score function is estimated using a neural networks� (x t ; t). The parameters of this
network are learned by minimizing the following cost function:

Et

h
� (t)Ex 0 Ex t j x 0

�
ks� (x t ; t) � r x t logp0t (x t j x0)k2

2

� i
: (3)

Here, � (�) : [0; 1] ! R> 0 serves as a time-dependent weighting parameter, andt is uniformly sampled from
the interval [0; 1].

In this formulation, x0 � p0 is sampled from the data distribution, and x t � p0t (x t j x0) follows the
di�usion process at time t. The goal is to train the network s� to accurately match the true score function
r x t logp0t (x t j x0), enabling data generation through the reverse di�usion process, which can be solved
using numerical solvers.

Di�usion Guidance. To enable conditional generation with unconditionally trained di�usion models,
Dhariwal & Nichol (2021) introduce classi�er guidance. The central idea is to generate samples from the
conditional distribution p(x0 j c), where c represents a speci�c class, i.e., sampling images of classc. To
achieve this, the authors replace the gradient of the unconditional distribution pt (x t ) in the reverse process
(see equation 2) with its conditional counterpart.

By applying Bayes' theorem, the gradient of the conditional gradient can be decomposed as:

r x t logp(x t j c) = r x t logp(x t ) + r x t logp(c j x t ); (4)

where r x t logp(x t ) represents unconditional score function andr x t logp(c j x t ) represents the guidance
score. The unconditional score function is approximated using the neural networks� , which is trained using
the loss in equation 3.

To compute the guidance scorer x t logp(c j x t ), Dhariwal & Nichol (2021) utilize the gradients of a time-
dependent classi�er f (x t ; t) with respect to x t . The guidance score steers the generation process towards
samples that are consistent with the desired classc. This method allows an unconditional di�usion model,
i.e., a model trained without conditional information, to be adapted for conditional tasks, enabling the
generation of class-speci�c samples.

Classi�er guidance has since been extended to handle arbitrary conditionsc, such as guiding generation
towards CLIP embeddings (Nichol et al., 2021). This �exibility in choosing di�erent conditions is essential
to ScoreAG and enables us to adapt the model for three distinct tasks by adjusting the guidance condition,
as described in the next section.

3 Score-Based Adversarial Generation

In this section, we introduce Score-Based Adversarial Generation(ScoreAG), a framework employing gen-
erative models to evaluate robustness beyond thèp-norm constraints. ScoreAG is designed to perform the
following three tasks: (1) the generation of adversarial images (see Sec. 3.2),(2) the transformation of exist-
ing images into adversarial examples (see Sec. 3.3), and(3) the puri�cation of images to enhance empirical
robustness of classi�ers (see Sec. 3.4).

ScoreAG consists of three steps:(1) select a guidance term for the corresponding task to model the con-
ditional score function r x t logp(x t j c), (2) adapt the reverse-time SDE with the task-speci�c conditional
score function, and (3) solve the adapted reverse-time SDE for an initial noisy imagex1 � N (0; I ) using
numerical methods. Depending on the task, the result is either an adversarial or a puri�ed image. We
provide an overview of ScoreAG in Fig. 2.

In detail, the conditional score function is composed of the normal score functionr x t logpt (x t ) and the
task-speci�c guidance term r x t logp(c j x t ), that is

r x t logpt (x t j c) = r x t logpt (x t ) + r x t logpt (c j x t ); (5)
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Figure 2: An overview of ScoreAG and its three steps. ScoreAG starts from noisex1 and iteratively
denoises it into an imagex0. It uses the task-speci�c guidance termsr x t logpt (c j x t ) and the score
function r x t logpt (x t ) to guide the process towards the task speci�c conditionc. The network s� is used for
approximating the score function r x t logpt (x t ) and for the one-step Euler predictionx̂0.

where logpt (x t ) is modeled by a score-based generative model. Solving the adapted reverse-time SDE yields
a sample of the conditional distribution p(x0 j c), i.e., an adversarial or puri�ed image. To simplify the
presentation, we will denote class-conditional functions aspy (x t ) rather than the more verbosep(x t j y).

3.1 Problem Statement.

In the realm of adversarial robustness, traditional evaluation methods often constrain adversarial perturba-
tions within an `p-norm ball, providing a limited robustness assessment. These limitations are addressed by
unrestricted attacks. In this work, we consider the following three key tasks:(1) Generating new adversarial
images that inherently belong to a speci�c classy� but are misclassi�ed by the classi�er as ~y; (2) Transform-
ing existing imagesx � into adversarial examples, i.e., images that are misclassi�ed as~y (see adversary) while
maintaining their core semantics and true classy� ; and (3) Purifying adversarial images xADV to recover
correct classi�cation and enhance empirical robustness.

Adversary. Let y� 2 f 1; : : : ; K g denote the true class of a clean imagex 2 [0; 1]C � H � W , ~y 6= y� be a
di�erent class, and f (�) : [0; 1]C � H � W ! f 1; : : : ; K g a classi�er. An image xADV 2 [0; 1]C � H � W is termed
an adversarial example if it is misclassi�ed by f , i.e., f (x ) = y� 6= ~y = f (xADV ), while preserving the
semantics, i.e., 
( x ) = 
( xADV ) with 
 denoting a semantics-describing oracle. Therefore, adversarial
examples do not change the true label of the image. To enforce this, conventional adversarial attacks restrict
the perturbation to lie in a certain `p-norm, avoiding large di�erences to the original image. In contrast,
ScoreAG is not limited by `p-norm restrictions but preserves the semantics by employing a class-conditional
generative model. In the following, we introduce each task in detail.

3.2 Generative Adversarial Synthesis

Generative Adversarial Synthesis (GAS) aims to synthesize images that are adversarial by nature. While
these images maintain the semantics of a certain classy� , they are misclassi�ed by a classi�er into a di�erent
class~y. The formal objective of GAS is to sample from the distribution py � (x0 j f (x0) = ~y), wheref (x0) = ~y
corresponds to the guidance conditionc.

Applying Bayes' theorem according to equation 5, the conditional score can be expressed as:

r x t logpt;y � (x t j f (x0) = ~y) = r x t logpt;y � (x t ) + sy � r x t logpt;y � (f (x0) = ~y j x t ); (6)
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