
Denoising Monte Carlo Renders with Diffusion Models

Ours

AFGSA
0.0102 / 39.42

0.0140 / 37.66

Isik

OIDN
0.0131 / 36.54

0.0138 / 37.19

Noisy

GT

L1 / PSNR� �
We present a denoiser based on a pixel-space diffusion model. Because our method has a strong prior of what a real image looks like, it
can generalize better on out of distribution images. In the example above, notice how competing methods produce unwanted artifacts like
splotchy/blurry regions and missing/broken-up lines on the surface texture. Our method will consistently produce an image that looks like
a real image (e.g. minimal unwanted artifacts), while adhering to the conditioning buffers. Results shown on a 4spp test image.

Vaibhav Vavilala
UIUC

Rahul Vasanth
UIUC

David Forsyth
UIUC

Abstract

Physically-based renderings contain Monte Carlo noise,
with variance that increases as the number of rays per pixel
decreases. This noise, while zero-mean for good modern
renderers, can have heavy tails (most notably, for scenes
containing specular or refractive objects). Learned meth-
ods for restoring low fidelity renders are highly developed,
because suppressing render noise means one can save com-
pute and use fast renders with few rays per pixel. We demon-
strate that a diffusion model can denoise low fidelity renders
successfully. Furthermore, our method can be conditioned
on a variety of natural render information, and this condi-
tioning helps performance. Quantitative experiments show
that our method is competitive with SOTA across a range of
sampling rates. Qualitative examination of the reconstruc-
tions suggests that the image prior applied by a diffusion
method strongly favors reconstructions that are “like” real
images – so have straight shadow boundaries, curved spec-
ularities and no “fireflies.”

1. Introduction

The image produced by a physically-based renderer is the
value of a random variable. Typically, the mean of this ran-
dom variable is the (unknown) true result; but light transport
effects mean that the variance – the result of using “too few
rays” – is complicated and heavy tailed. Analogous effects
appear in very low light photography. Increasing N – the
number of rays per pixel – quickly results in diminishing re-
turns, because the variance goes down as 1/N , and so there
is a significant literature that aims to suppress render noise.
This paper shows that a method based on diffusion is quan-
titatively competitive with the state of the art (SOTA) while
producing images that differ strongly in qualitative aspects.

Obvious solutions to render noise fail. Real-world
scenes in the film industry are too large to fit into GPU RAM
and must be rendered on a CPU. Often even hundreds to
thousands of rays per pixel may fail to reach an artist’s de-
sired level of quality. Problems are caused by the presence
of desirable but complex light transport phenomena such as
indirect specular, large numbers of light sources, subsurface
scattering, and volumetric effects.

The concept of relying on pretrained foundation mod-

els has been extensively explored for image restoration [23,
34]. Diffusion models have successfully removed JPEG
noise and film grain; images can be recolored; and local ob-
jects can be inpainted. Even the success of large language
models relies on a foundation model trained for next token
prediction, then finetuned for particular tasks (for example,
chatbots like ChatGPT relying on GPT-4 as the backbone).
Until now, large foundation models have not been ap-

plied to denoising Monte Carlo renders.
There are multiple reasons for this. For one, the area has

matured - high quality denoisers already exist, some geared
towards high quality and others towards speed. Another
reason is that there are known workarounds when existing
denoisers create problems. Artists can sample scenes for
longer (requiring additional compute and slowing artist iter-
ation) or manually touch-up unwanted artifacts in finishing
software like Photoshop or Nuke.

Further, it is not obvious that image foundation models
can handle high dynamic range gracefully, since they are
trained on images with per-pixel radiance from [0� 1]. Ray
traced images in contrast store the per-pixel colors in linear
space, which may exceed 1 if rendering a bright or shiny
object. Subsequent processing such as gamma correction,
tonemapping, compositing, and color grading bring the final
values to [0�1], suitable for standard dynamic range (SDR)
display. Denoisers must process inputs in a manner respect-
ing high dynamic range to be useful in practice. Across the

billions of images foundation models are trained on, a

variety of post-processing will be reflected in the datasets
such that the result sits in the range [0� 1]. We believe that
this wide array of tonemapping, geometry, textures, and

lighting is an asset if the foundation model can be uti-

lized effectively. As we show, images denoised with foun-
dation models can often look better than existing methods.

Another potential pitfall is that large scale training sets
will include images with unwanted lossy compression ar-
tifacts, film grain, image rescaling, motion blur, and other
phenomena associated with the capture and storage of im-
agery. It’s not obvious whether an image can be effectively
denoised without unwanted artifacts or hallucinations leak-
ing into the result. In practice, we don’t notice this to be a
problem in our evaluation.

Expensive data collection is another concern - it is ex-
tremely compute-intensive to generate 3D scenes and ren-
der them with a path tracer to an acceptable level of qual-
ity. A single image may require tens to hundreds of CPU
hours to converge, and tens of thousands of frames are re-
quired to build a sufficient training set. While high quality
rendering software exists (such as RenderMan used in VFX
houses, PBRT and MITSUBA for research [11, 28, 30]),
high quality datasets are not freely available. The research
community would benefit from large open source renders of
practical scenes with feature buffers at low sample counts,

and accompanying high sample target renders.
A problem we aim to address in this work is that existing

denoisers frequently struggle to generalize to scenes with
phenomena different from the training set (for example dif-
ferent hair colors/styles, volumetric effects, and novel tex-
tures). That may result in users having to collect more train-
ing data to retrain an existing denoiser (a computationally
demanding effort). Alternatively, denoiser limitations may
result in additional artist effort to detect and fix problems
manually - or simply accepting a lower-quality product.

Advancing the SOTA for denoising may alleviate some
of these problems. This paper is firmly in the high quality
regime (as opposed to focusing on speed), as we are uti-
lizing a multi-pass diffusion model and evaluating against
the best existing methods, which are all 1-pass neural
networks. We however present suggestions for making our
model run much faster.

Our contributions are:
1. We are the first to use large-scale image generation foun-

dation models to denoise MC renders, and we demon-
strate that conditioning on render buffers provides essen-
tial information to the diffusion model. To do so, we ap-
ply the ControlNet architecture to a pixel-based (rather
than latent variable based) diffusion model.

2. Quantitative and qualitative evidence suggest our
method is generally better than existing SOTA methods.

2. Related Work

Early denoisers relied on linear regression models and
hand-designed filters that run quickly. Zwicker et. al.
provide an excellent survey on classical approaches [51],
while Huo et. al survey deep learning methods on denois-
ing Monte Carlo renderings [17]. The latest advancements
in MC denoising reflect the progression of learning-based
approaches. We focus our literature review on recent de-
noising works and controlled image synthesis.

2.1. Real-time and Interactive Denoisers

Chaitanya et. al lower temporal noise in animations and
are the first to use a U-net [9, 33]. Thomas et. al incor-
porate a U-net, using a low-precision feature extractor and
multiple high-precision filtering stages to perform both su-
persampling and denoising [39]. Fan et. al make improve-
ments to efficiency, building on the hierarchical approach
utilized by Thomas et. al by predicting a kernel for a single
channel and incorporate temporal accumulation [13]. Lin
et. al employ a path-based approach [24].

Meng et. al train a network to splat samples onto multi-
scale, hierarchical bilateral grids, then denoise by slicing
the grid [26]. Lee et. al incorporate kernel prediction
and temporal accumulation for real time denoising [20, 21].
Munkberg et al. build on the approach used by Gharbi et.

DF Encoder Block_2
128x128

DF Encoder Block_3
64x64

DF Encoder
Block_4 32x32

DF Middle Block
16x16

DF Decoder Block_1
32x32

DF Decoder Block_2
64x64

DF Decoder Block_3
128x128

DF Decoder Block_4
256x256

DF Encoder Block_1
256x256

DF Encoder Block_1
256x256 (trainable copy)

DF Encoder Block_2
128x128 (trainable copy)

DF Encoder Block_3
64x64 (trainable copy)

DF Encoder Block_4
 32x32 (trainable copy)

DF Middle Block
16x16 (trainable copy)

zero convolution

zero convolution

zero convolution

zero convolution

Convolution Block_1
256x256

x4

Output - Denoised
Render

(b) Pixel-Space Control Module(a) DeepFloyd Stage II

zero convolution

zero convolution

...

DF Input - Noisy Radiance

Control Module Inputs - Render Buffers

x4

x4

x4

x4

x4

x4

x4

x4

x4

x4

x4

x4

x4

x4

x4

Figure 1. Overview of our method. We leverage a pretrained pixel-space diffusion model, DeepFloyd Stage II [2], as our base synthesizer
that is fixed during training. It accepts the noisy radiance as well as a forward-diffused copy of the noisy radiance (see methodology
section 3 for details). We introduce a trainable Control Module, analogous to ControlNet [50], initialized with the encoder and middle
blocks. It accepts all the auxiliary feature buffers from the renderer like albedo, normals, and depth, in addition to the noisy radiance. The
outputs of the Control Module are added to the DF decoder blocks at varying spatial resolutions. We utilize zero convolutions to ease early
stages of training. Time and prompt encoding not shown for brevity. Our prompt is the empty string during training and inference.

al, but splat radiance and sample embeddings onto multi-
ple layers. Filter kernels are applied to layers which are
composited, improving performance [27]. Munkberg et. al
eschew Laplacian pyramids used by Vogels et. al and im-
prove temporal stability compared to Chaitanya et. al. by
maintaining a per-sample approach [14, 27, 45].

Similar to Munkberg et. al, Isik et. al use per-sample
information when computing filter weights, though the fil-

ters operate on pixel-wise averages. Their network predicts
dense features, which are then incorporated in a pairwise-
affinity metric that results in per-pixel dilated 2D blur ker-
nels applied iteratively to the low sample radiance. An op-
tional temporal kernel can blend the previous frame’s de-
noised output with the current frame [18, 27].

Figure 2. Example images from our rendered dataset.

2.2. Offline Denoisers

Kalantari et al. utilize a multi-layer perceptron at a per-pixel
level to optimize cross-bilateral filter parameters [19].

Rather than hand-crafted kernels, Bako et al. use a con-
volutional neural network to predict filtering kernel weights
adaptively at a pixel level, then apply the kernels to the
noisy image input. Specular and diffuse components are
separately processed. The kernel prediction convolutional
network (KPCN) and kernel-prediction approaches are pop-
ular as they train quickly and are more robust than predict-
ing colors directly [5].

Vogels et al. utilize hierarchical pyramid kernels, ap-
proximating the behavior of large kernels with a small
kernel multi-resolution cascaded filtering strategy. This
work extends KPCN to animated sequences, incorporating
an adaptive sampling approach with temporal aggregation
[45]. Instead of inferring weights per pixel, Gharbi et al. use
radiance samples, demonstrating their utility for denoising
by predicting splatting kernels for each sample [14]. Balint
et al. further develop the pyramidal filtering approach with
improvements to upsampling, weight predictor networks,
and learnable partitioning [6].

Xu et. al show that generative adversarial networks can
be used for denoising, eliminating in-between layers used in
Bako et. al, but similarly train separate networks to process
specular and diffuse components [5, 47]. Yu et. al develop
this adversarial approach by processing all components to-
gether and incorporate a modified self-attention: auxiliary
feature guided self-attention (AFGSA) [49]. This work ef-
fectively implements a global blur kernel since each pixel
attends to the features of all pixels via the cross-attention

GT k=1 k=2 k=4

PSNR / L1� � 37.78 / 0.0227 40.68 / 0.0151 43.19 / 0.0111

Figure 3. Best viewed online in color. Diffusion methods based on
a latent variable image representation will not work for render de-
noising, because the VAE decoding creates significant problems.
Existing ControlNet [50] architectures use a latent representation
of the image. The limited size of the VAE dictionary limits the
accuracy of very precise pixel space tasks. Upsampling the image
helps, but does not remove this effect. In each row, 64x64 cropped
training images are shown, highlighting texture. We take the GT
training image, upsample by k, feed it through a VAE, decode,
downsample by k and show the result. We use the default VAE
from Stable Diffusion 2.1. Error metrics shown underneath are
averaged over 64 random training images. The VAE introduces
unacceptable changes to texture. In the first row, the black patches
are sharply defined in GT, but blurred after VAE decoding. In the
second, the VAE shifts the color of the texture. These changes are
partially due to the 8x spatial downsampling factor of VAEs, con-
verting a (H,W,3) image into a (H/8, W/8, 4) dimensional latent
code. Thus, existing control mechanisms relying on latent-space
diffusion models like ControlNet are not suitable for pixel-space
tasks like MC denoising. Even with 4x upscaling, which defeats
much of the efficiency gain of the VAE, the PSNR is comparable
with existing SOTA denoisers, which effectively caps the quality
that can be achieved. Thus, in this work we introduce spatial con-
trols to pixel-space diffusion models.

mechanism. Back et. al apply a post-processing network
incorporating a self-supervised loss to KPCN, AFGSA, and
Xu et. al [47] to improve denoising quality [4].

Our work deviates from much of the recent kernel-based
approaches in that we predict the colors directly.

2.3. Diffusion Models

Stable Diffusion is a foundational model that implements
latent diffusion [15, 32, 38], whereby a VAE compresses the
spatial resolution of the input image, the diffusion model is
run in latent space, and the resulting latent code is decoded
into the output image. The synthesis is commonly condi-
tioned by text input via cross attention. Additional controls
can be introduced, most notably ControlNet [50]. Control-
Net has been shown to facilitate control over latent diffusion
models by conditioning image synthesis on arbitrary spa-
tial information like edges, depth, and segmentation. Addi-
tional forms of conditioning include color palettes [44] and
even 3D primitives [40, 42, 43]

Imagen is another successful large-scale image synthesis
model that operates in pixel space [35], with image qual-
ity comparable to Stable Diffusion. Imagen relies on three
diffusion models: the first synthesizes at 64x64 resolution;
the second upsamples to 256 resolution; and the third up-
samples to 1024. Thus, super resolution replaces the need
for a VAE, easing compute requirements. DeepFloyd is an
open source implementation of Imagen [2]. We remark that
similar to denoising, super resolution is highly practical in
real-world rendering systems [41].

Wang et. al pass pixel-level features to a pretrained Sta-
ble Diffusion model for restoration [46]. Yang et. al intro-
duce a pixel-aware cross attention module to latent diffusion
models for realistic image super-resolution [48]. Similarly,
Instruct-Imagen utilizes cross-attention to condition a pixel
space diffusion model on spatial layout [16]. In contrast,
we use concatenation and addition to condition our diffu-
sion model, like ControlNet, but in pixel space.

3. Method Overview

3.1. Data

Rendering We generate approx. 5650 random scenes using
a procedure similar to [18]. Each scene contains randomly
arranged ShapeNet objects, textures, and lighting configu-
rations [10]. For each scene, we create a random camera
move over the course of 8 frames and render with PBRT-V3
at 256 resolution [30]. We render with the path-tracing inte-
grator and allow several bounces to capture indirect illumi-
nation. For each frame, we render the ground truth GT 1

raw
at 4096 spp, and render 16 additional frames with feature
buffers at 4spp (all with different random seeds to avoid
noise correlations). Thus we can train our denoiser with spp
2 {4, 16, 64}. Our auxiliary feature buffers F include nor-
mals, albedo, depth, direct specular, indirect specular, direct
diffuse, indirect diffuse, roughness, emissive, metallic, and
transmission. Variance for each channel is also stored.

Data sanitization Unfortunately, our target renders were
still a bit noisy at such a high spp due to indirect illumina-
tion noise. Noise2Noise [22] establishes that neural net-
works can learn to denoise even when ground truth is noisy
if the training objective (often an L1 or L2 loss) attempts
to recover the mean of the distribution. This assumption
allows several prior methods to succeed even when ground
truth is noisy. However, methods relying on a discriminator
such as AFGSA [49] are not compatible with noisy ground
truth because noise will leak into the generated distribution.
Thus we adopt the following procedure to post-process the
ground truth images. We render an additional GT image
GT 2

raw at 4096 spp for each scene, but use a different ran-
dom seed than GT 1

raw. We then train a network with only
SMAPE loss that accepts a GT render and predicts the other
one from the pair that we rendered. This data-cleaning net-

work C✓ is optimized with:

LSMAPE =
1

N

X

i

SMAPE(C✓(Fi, GT 1
i,raw), GT 2

i,raw) (1)

Where the loss is averaged over i = 1, 2, ...N samples
in a minibatch and GT 1

i,raw and GT 2
i,raw are interchanged at

random during training. SMAPE is defined as:

SMAPE(A,B) =
||A�B||1

||A||1 + ||B||1 + ✏
(2)

We adopt the architecture of Isik [18] for C✓, condition-
ing the input on features but excluding any temporal loss
terms. The fully-trained data cleaning network is then run
on all the ground truth images we rendered (we just pick
one out of each pair of raw GT frames), generating clean
GT renders:

GTi,clean = C✓(Fi, GT 1
i,raw). (3)

All evaluated methods use GTclean as the target during
training, and have access to the same training, validation,
and test splits.

Range-compression Large-scale pretrained diffusion
models are trained on images with various degradations and
tonemappings applied, ultimately with pixel values rang-
ing from 0 to 1. Our dataset however has useful radiance
values well beyond that - we clamp the radiance buffers to
6. The practice of range-compressing in log space is com-
mon across all MC denoising works we evaluated. In our
case, we observe that gamma-correcting tonemappers pro-
duce more natural-looking results consistent with datasets
diffusion models were trained on. Thus we conduct initial
experiments with the following tonemapper:

Vout = AV �
in (4)

We set A = 0.47, � = 1/2.4, fully capturing the 0 � 6
range. However, early results showed that log tonemapping
produces better results for our model:

Vout = A ⇤ log(1 + Vin) (5)

We set A = 0.51. In our evaluation, we show that our
diffusion model can effectively denoise images in a LDR
space, and we reverse-tonemap the synthesized result back
to HDR space for error metric calculation. All figures in
this manuscript are tonemapped with gamma (eqn. 4), as
the details appear more clear.

Additional test data We hold out 3% of the data for
validation and 5% for testing. For qualitative evaluation, we
render a few PBRT-v3 test scenes that portray practical real-
world scenarios1 though we do not apply post-processing to
the ground truth as we did for the training images.

1https://www.pbrt.org/scenes-v3

https://www.pbrt.org/scenes-v3

For 4 spp models, we randomly sample one low-res stack
of buffers out of 16 available; we sample 4 buffers for the
16 spp models; and use them all for the 64 spp models. The
aux buffers are averaged over the selections.

3.2. Architecture

We use DeepFloyd [2] (which is based on Google’s Ima-
gen [35]) as our base architecture, and build a control mech-
anism around it in a manner similar to ControlNet [50]. Our
Control Module, shown in Fig. 1, consists of a few convolu-
tional layers that accept arbitrary numbers of channels (39
aux buffers in our case), the DeepFloyd encoder layers, and
the DeepFloyd middle layer. The Control Module gener-
ates feature maps at resolutions (256, 128,...16) which are
summed with the original DeepFloyd encoder outputs and
passed to the DeepFloyd decoder. DeepFloyd modules are
not trainable, only the Control Module is, consistent with
the original ControlNet. Zero convolutions are initialized to
ensure the system produces realistic images from the very
beginning. We only use the DeepFloyd Stage II module
for this work, which is intended to perform super resolu-
tion; we show it can perform image denoising here. We
use the smaller IF-II-M model for efficiency, which has
450M parameters. Our base module accepts two 3 channel
inputs that are concatenated: a time-dependent noisy radi-
ance buffer q (zt | x), which undergoes the diffusion for-
ward noising process, and that same noisy radiance x with-
out forward noising (because the aug level parameter is
fixed to 0 during training and inference). The Control Mod-
ule accepts the feature buffers Fi. The forward diffusion
process is defined as:

q (zt | x) = N
�
zt;↵tx,�

2
t I
�
,

q (zt | zs) = N
⇣
zt; (↵t/↵s) zs,�

2
t|sI

⌘
(6)

where 0 s < t 1,�2
t|s =

�
1� e�t��s

�
�2
t ,

and ↵t,�t define a differentiable noise schedule whose log
signal-to-noise-ratio, i.e., �t = log

⇥
↵2
t /�

2
t

⇤
, decreases with

t until q (z1) ⇡ N (0, I). For generation, the diffusion
model is trained to reverse this forward process. We refer
the reader to [35] for additional details.

Losses We use the usual losses documented in [2, 35],
i.e., mean squared error and variational lower bound. We
let the text prompt be the empty string during training and
inference.

Training & Inference We train with AdamW optimizer,
mixed precision, and batch size 12. While the model is
trained at 256 res, it can run inference at varying spatial res-
olutions as it relies on convolutional and transformer layers.
We use the SUPER27 DDPM inference schedule. We exper-
imentally set the aug level parameter to 0 during training
and inference. This parameter is intended to augment the

Figure 4. Our method requires approx. 2.8 seconds to denoise
a 256x256 image and 63 seconds to denoise an HD 1080x1920
frame (without skipping time steps) on an A40 GPU. We use
mixed-precision during inference and SUPER27 DDPM sampler
in DeepFloyd. This experiment suggests that we can skip around
18 of the 27 denoising time steps with negligible loss in quality,
making diffusion models even more practical. At inference time,
we can add gaussian noise to the low-spp render via equation 6
instead of starting from pure noise. The gaussian noise strength
needs to be sufficient to overcome the variance in the noisy render.
Even though diffusion is more expensive than single-pass meth-
ods, the cost of denoising remains much smaller than the cost of
rendering real-world scenes to convergence, which can be dozens
of hours. Even scenes that fit into GPU memory can take dozens
of minutes to render to convergence, which dwarfs the cost of de-
noising low-ray estimates.

Stage II input, which typically comes from Stage I. In our
case we supply the noisy radiance x (which is already at
the target resolution). We train for 7 days (170 epochs)
with initial learning rate 0.00002 and halved every two
days. All experiments are conducted on one NVIDIA A40
GPU. We train an independent network for each sampling
rate (4/16/64) though we would expect one appropriately-
trained network to succeed on all spp’s in practice. We train
independent models for competing methods as well.

4. Evaluation

We focus our comparative evaluation on 3 prior methods
known for quality - Isik, AFGSA, and OIDN [1, 18, 49].
Isik and OIDN rely on CNN U-nets, and AFGSA uses a
transformer with adversarial loss. We evaluate the best
available OIDN pretrained model (OIDN-VERSION = 2.1.0)
and supply it at test time with noisy radiance, albedo, and
normals. We retrain Isik and AFGSA with default hyperpa-
rameters, all feature buffers, and best-performing model on
the held-out validation set used for testing.

We evaluate each method using two standard metrics: L1

Table 1. Quantitatively, our method is competitive with SOTA. We compare error metrics across different spp settings (4, 16, 64) for
various methods on our test set, consisting of 226 sequences of 8 frames each at 256 res. All methods are run in single-frame mode
and evaluation metrics do not take into account temporal performance. Our method outcompetes all others in L1, which is computed in
HDR [0 � 6] space, as well as FoVVDP. We are also competitive in other metrics, which evaluate both pixel-wise and perceptual quality.
DINO [12, 29] and CLIP measure cosine similarity of the generated and GT global image feature vector. In the fourth row, we disable
our Control Module and denoise with an off-the-shelf DeepFloyd Stage II model, presenting the best numbers after ablating the number
of skipped denoising time steps and the aug level parameter. Applying pure DeepFloyd to low-ray estimates is not successful. Fifth row

Thus, conditioning our method with render buffer information via our Control Module makes a significant difference to performance.

Method L1 # PSNR " LPIPS # DINO " [29] CLIP " [31] FliP # [3] FoVVDP " [25]
AFGSA [49] 0.0279 38.672 0.1130 0.914 0.932 0.0494 8.699
Isik [18] 0.0499 38.828 0.0871 0.945 0.955 0.0476 8.835
OIDN [1] 0.0638 36.329 0.1192 0.915 0.904 0.0691 8.645
DeepFloyd-II [2] 0.1009 27.583 0.3860 0.742 0.804 0.1390 6.513
Ours 0.0237 39.130 0.0748 0.948 0.965 0.0487 8.888

4spp

Method L1 # PSNR " LPIPS # DINO " [29] CLIP " [31] FliP # [3] FoVVDP " [25]
AFGSA [49] 0.0184 42.076 0.0708 0.939 0.958 0.0350 9.222
Isik [18] 0.0449 42.044 0.0560 0.964 0.972 0.0346 9.283
OIDN [1] 0.0537 39.869 0.0858 0.937 0.924 0.0459 9.158
DeepFloyd-II [2] 0.0825 28.988 0.350 0.775 0.819 0.1076 7.150
Ours 0.0156 42.343 0.0499 0.965 0.975 0.0338 9.328

16spp

Method L1 # PSNR " LPIPS # DINO " [29] CLIP " [31] FliP # [3] FoVVDP " [25]
AFGSA [49] 0.0142 45.091 0.0467 0.956 0.972 0.0260 9.562
Isik [18] 0.0433 45.055 0.0341 0.977 0.982 0.0260 9.593
OIDN [1] 0.0488 42.664 0.0640 0.954 0.940 0.0329 9.482
DeepFloyd-II [2] 0.0696 29.777 0.317 0.786 0.830 0.0973 7.261
Ours 0.0113 44.953 0.0346 0.975 0.982 0.0261 9.616

64spp

(applied in HDR space) and PSNR (in LDR space). We
also evaluate several perceptual metrics: DINO and CLIP
feature similarity, LPIPS, FoVVDP, and FliP. For PSNR and
perceptual metrics, we tonemap GT and prediction via the
following tonemapper, consistent with existing evaluation
methods:

Vout =
Vin

1 + Vin
(7)

Quantitative evaluation We test each method on 226 se-
quences of 8 frames each at 256 res in Table 1. Across spp
2 {4, 16, 64}, our method is the top-performer as measured
by L1 and FoVVDP. We are competitive with other meth-
ods as measured by PSNR and several perceptual metrics.
For our method, we use 27 DDPM steps at mixed-precision.
However, in Fig. 4, we ablate a key test-time hyperparam-
eter. We show that we can skip over half the DDPM steps
with negligible loss in PSNR, resulting in additional sav-
ings. This behavior is consistent across all spp’s we tested.

Finally, in the fourth row of each table in Tab. 1, we

examine the effects of removing the Control Module and
denoising with an off-the-shelf DeepFloyd Stage II model,
finding that the results are much worse. We test several
skipped time step and aug level values, and report the best
numbers. We skip 6 time steps and set aug level = 0.5 in
this row. Removing the Control Module hurts quality, thus
we conclude it is necessary to obtain good results.

Qualitative evaluation While our error metrics are gen-
erally better, the value of pretrained diffusion models be-
comes clear in our qualitative evaluation. The key finding
from our method is that images look more plausible and
realistic because the image model has seen billions of im-
ages. We demonstrate this in Fig. 5. In some cases, compet-
ing methods produce numbers comparable or slightly bet-
ter than ours. But upon closer inspection, the details ren-
dered from our diffusion model look more realistic, because
our model has a strong prior of what a real image looks
like. Thus shadows, specular highlights, and undersampled
edges look reasonable. Other methods overblur undersam-
pled regions, fail to remove fireflies even when trained to

OursNoisyGT

4spp

Isik OIDN AFGSA Reference

4spp

16spp

64spp

16spp

Figure 5. Qualitatively, our reconstructions look like real images, because DeepFloyd has a very strong notion of what an image looks
like (it has seen a huge dataset) and because the conditioning buffers offer strong guidelines (e.g. normals, albedo, and depth). In the
final column, red arrows point to areas of interest. First row. Notice the straight edge on the shadow (ours; real images tend to have
straight shadow edges) compared with blurred or blotchy edges (others). Second row. In undersampled regions, our method fills in
the shadow underneath a railing (real images do not have incomplete shadows); other methods render a blurred or incomplete shadow.
Third row. Notice the clean sharp highlight on the teacup handle, and smooth highlight boundaries (ours; real images have clean sharp
highlight boundaries) compared with absent highlights and blotchy boundaries (others). Notice also aliasing effects in the background,
most prominent for OIDN, and absent from our reconstruction. Fourth row. All methods have problems with this specular dragon.
Competing methods overblur the dragon’s mouth, whereas ours hallucinates plausible details. Fifth row. Fireflies, also known as spike
noise, are single very bright pixels, which do not occur in real images. It is rare that fireflies appear at 64 spp in our training set, so AFGSA
and Isik fail to remove them. OIDN succeeds in removing them, likely because we use their pretrained model that has seen a large dataset.

do so, and hallucinate splotchy patches when pushed out-
side the training distribution. Our method is not explicitly
engineered to remove fireflies or hallucinate nice-looking
specularities and shadows; it only knows it should synthe-
size a realistic image that follows the conditioning.

5. Conclusion

Pretrained large-scale image models enable MC denoising
that is quantitatively competitive with SOTA and qualita-
tively more realistic. These models that have seen bil-
lions of images are clearly beneficial for the denoising task,
where expensive, curated training sets typically number in

the tens to hundreds of thousands of scenes. One-step mod-
els like GANs and distilled diffusion models may yield
significant efficiency gains with acceptable quality trade-
offs [36, 37].

One area of future work is what conditioning to use; an-
other is what effects to capture in a training set. Our training
set is relatively straightforward, though we test on images
with challenging effects. A diverse training set that aggres-
sively oversamples difficult effects might produce better re-
sults. Another area of future work is video. As video gener-
ators become available [7, 8], our approach might usefully
be extended to temporally-coherent denoising.

References

[1] Attila T. Áfra. Intel® Open Image Denoise, 2024. https:
//www.openimagedenoise.org. 6, 7, 1, 2

[2] Stability AI. Deepfloyd if. 3, 5, 6, 7
[3] Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller,

Magnus Oskarsson, Kalle Åström, and Mark D. Fairchild.
FLIP: A Difference Evaluator for Alternating Images. Pro-
ceedings of the ACM on Computer Graphics and Interactive
Techniques, 3(2):15:1–15:23, 2020. 7, 2

[4] Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and
Bochang Moon. Self-supervised post-correction for monte
carlo denoising. In ACM SIGGRAPH 2022 Conference Pro-
ceedings, New York, NY, USA, 2022. Association for Com-
puting Machinery. 4

[5] Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer,
Jan Novák, Alex Harvill, Pradeep Sen, Tony DeRose, and
Fabrice Rousselle. Kernel-predicting convolutional networks
for denoising monte carlo renderings. ACM Transactions on
Graphics (TOG) (Proceedings of SIGGRAPH 2017), 36(4),
2017. 4

[6] Martin Balint, Krzysztof Wolski, Karol Myszkowski, Hans-
Peter Seidel, and Rafał Mantiuk. Neural partitioning pyra-
mids for denoising monte carlo renderings. In ACM SIG-
GRAPH 2023 Conference Proceedings, New York, NY,
USA, 2023. Association for Computing Machinery. 4

[7] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel
Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi,
Zion English, Vikram Voleti, Adam Letts, Varun Jampani,
and Robin Rombach. Stable video diffusion: Scaling latent
video diffusion models to large datasets, 2023. 8

[8] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue,
Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luh-
man, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya
Ramesh. Video generation models as world simulators.
2024. 8

[9] Chakravarty Reddy Alla Chaitanya, Anton Kaplanyan,
Christoph Schied, Marco Salvi, Aaron E. Lefohn, Derek
Nowrouzezahrai, and Timo Aila. Interactive reconstruction
of monte carlo image sequences using a recurrent denoising
autoencoder. ACM Transactions on Graphics (TOG), 36:1 –
12, 2017. 2

[10] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 5

[11] Per Christensen, Julian Fong, Jonathan Shade, Wayne
Wooten, Brenden Schubert, Andrew Kensler, Stephen Fried-
man, Charlie Kilpatrick, Cliff Ramshaw, Marc Bannister,
et al. Renderman: An advanced path-tracing architecture for
movie rendering. ACM Transactions on Graphics (TOG), 37
(3):1–21, 2018. 2

[12] Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr
Bojanowski. Vision transformers need registers, 2023. 7, 2

[13] Hangming Fan, Rui Wang, Yuchi Huo, and Hujun Bao. Real-
time monte carlo denoising with weight sharing kernel pre-

diction network. Computer Graphics Forum, 40(4):15–27,
2021. 2

[14] Michaël Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehti-
nen, and Frédo Durand. Sample-based monte carlo denois-
ing using a kernel-splatting network. ACM Trans. Graph., 38
(4), 2019. 3, 4

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models, 2020. 4

[16] Hexiang Hu, Kelvin CK Chan, Yu-Chuan Su, Wenhu Chen,
Yandong Li, Kihyuk Sohn, Yang Zhao, Xue Ben, Bo-
qing Gong, William Cohen, et al. Instruct-imagen: Im-
age generation with multi-modal instruction. arXiv preprint
arXiv:2401.01952, 2024. 5

[17] Yuchi Huo and Sung eui Yoon. A survey on deep learning-
based monte carlo denoising, 2021. 2

[18] Mustafa Işık, Krishna Mullia, Matthew Fisher, Jonathan
Eisenmann, and Michaël Gharbi. Interactive monte carlo de-
noising using affinity of neural features. ACM Trans. Graph.,
40(4), 2021. 3, 5, 6, 7

[19] Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. A
machine learning approach for filtering monte carlo noise.
ACM Trans. Graph., 34(4), 2015. 4

[20] Junmin Lee, Seunghyun Lee, Min Yoon, and Byung Cheol
Song. Real-time monte carlo denoising with adaptive fusion
network. IEEE Access, 12:29154–29165, 2024. 2

[21] Junmin Lee, Seunghyun Lee, Min Yoon, and Byung Cheol
Song. Real-time monte carlo denoising with adaptive fusion
network. IEEE Access, 12:29154–29165, 2024. 2

[22] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli
Laine, Tero Karras, Miika Aittala, and Timo Aila.
Noise2noise: Learning image restoration without clean data,
2018. 5

[23] Xin Li, Yulin Ren, Xin Jin, Cuiling Lan, Xingrui Wang,
Wenjun Zeng, Xinchao Wang, and Zhibo Chen. Diffusion
models for image restoration and enhancement–a compre-
hensive survey. arXiv preprint arXiv:2308.09388, 2023. 2

[24] Weiheng Lin, Beibei Wang, Jian Yang, Lu Wang, and Ling-
Qi Yan. Path-based monte carlo denoising using a three-scale
neural network. Computer Graphics Forum, 40, 2020. 2

[25] Rafał K. Mantiuk, Gyorgy Denes, Alexandre Chapiro, Anton
Kaplanyan, Gizem Rufo, Romain Bachy, Trisha Lian, and
Anjul Patney. Fovvideovdp: a visible difference predictor
for wide field-of-view video. ACM Trans. Graph., 40(4),
2021. 7, 2

[26] Xiaoxu Meng, Quan Zheng, Amitabh Varshney, Gurprit
Singh, and Matthias Zwicker. Real-time monte carlo denois-
ing with the neural bilateral grid. In Eurographics Sympo-
sium on Rendering, 2020. 2

[27] Jacob Munkberg and Jon Hasselgren. Neural denoising with
layer embeddings. Computer Graphics Forum, 39(4):1–12,
2020. 3

[28] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wen-
zel Jakob. Mitsuba 2: A retargetable forward and inverse
renderer. ACM Transactions on Graphics (TOG), 38(6):1–
17, 2019. 2

[29] Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V.
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,

https://www.openimagedenoise.org
https://www.openimagedenoise.org

Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Rus-
sell Howes, Po-Yao Huang, Hu Xu, Vasu Sharma, Shang-
Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran, Nico-
las Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou,
Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bo-
janowski. Dinov2: Learning robust visual features without
supervision, 2023. 7, 2

[30] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physi-
cally based rendering: From theory to implementation. MIT
Press, 2023. 2, 5

[31] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision, 2021. 7, 2

[32] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models, 2022. 4

[33] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation,
2015. 2

[34] Chitwan Saharia, William Chan, Huiwen Chang, Chris A.
Lee, Jonathan Ho, Tim Salimans, David J. Fleet, and Mo-
hammad Norouzi. Palette: Image-to-image diffusion mod-
els, 2022. 2

[35] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,
Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J
Fleet, and Mohammad Norouzi. Photorealistic text-to-image
diffusion models with deep language understanding, 2022.
5, 6

[36] Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, and
Timo Aila. Stylegan-t: Unlocking the power of gans for fast
large-scale text-to-image synthesis. In International con-
ference on machine learning, pages 30105–30118. PMLR,
2023. 8

[37] Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas
Blattmann, Patrick Esser, and Robin Rombach. Fast high-
resolution image synthesis with latent adversarial diffusion
distillation. arXiv preprint arXiv:2403.12015, 2024. 8

[38] Yang Song and Stefano Ermon. Generative modeling by es-
timating gradients of the data distribution, 2020. 4

[39] Manu Mathew Thomas, Gabor Liktor, Christoph Pe-
ters, Sung ye Kim, Karthikeyan Vaidyanathan, and An-
gus Graeme Forbes. Temporally stable real-time joint neu-
ral denoising and supersampling. Proceedings of the ACM
on Computer Graphics and Interactive Techniques, 5:1 – 22,
2022. 2

[40] Vaibhav Vavilala and David Forsyth. Convex decomposition
of indoor scenes. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 9176–
9186, 2023. 4

[41] Vaibhav Vavilala and Mark Meyer. Deep learned super reso-
lution for feature film production. In ACM SIGGRAPH 2020
Talks, New York, NY, USA, 2020. Association for Comput-
ing Machinery. 5

[42] Vaibhav Vavilala, Seemandhar Jain, Rahul Vasanth, Anand
Bhattad, and David Forsyth. Blocks2world: Controlling re-
alistic scenes with editable primitives, 2023. 4

[43] Vaibhav Vavilala, Florian Kluger, Seemandhar Jain, Bodo
Rosenhahn, and David Forsyth. Improved convex decom-
position with ensembling and boolean primitives, 2024. 4

[44] Vaibhav Vavilala, Faaris Shaik, and David Forsyth. Dequan-
tization and color transfer with diffusion models, 2025. 4

[45] Thijs Vogels, Fabrice Rousselle, Brian Mcwilliams, Gerhard
Röthlin, Alex Harvill, David Adler, Mark Meyer, and Jan
Novák. Denoising with kernel prediction and asymmetric
loss functions. ACM Trans. Graph., 37(4), 2018. 3, 4

[46] Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK
Chan, and Chen Change Loy. Exploiting diffusion prior
for real-world image super-resolution. In arXiv preprint
arXiv:2305.07015, 2023. 5

[47] Bing Xu, Junfei Zhang, Rui Wang, Kun Xu, Yong-Liang
Yang, Chuan Li, and Rui Tang. Adversarial monte carlo de-
noising with conditioned auxiliary feature modulation. ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH
Asia 2019), 38(6):224:1–224:12, 2019. 4

[48] Tao Yang, Xuansong Xie Peiran Ren, and Lei Zhang. Pixel-
aware stable diffusion for realistic image super-resolution
and personalized stylization. In arXiv:2308.14469, 2023. 5

[49] Jiaqi Yu, Yongwei Nie, Chengjiang Long, Wenju Xu, Qing
Zhang, and Guiqing Li. Monte carlo denoising via auxil-
iary feature guided self-attention. ACM Trans. Graph., 40
(6), 2021. 4, 5, 6, 7, 1, 2

[50] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models, 2023.
3, 4, 6

[51] M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoor-
thi, F. Rousselle, P. Sen, C. Soler, and S.-E. Yoon. Recent
advances in adaptive sampling and reconstruction for monte
carlo rendering. Computer Graphics Forum, 34(2):667–681,
2015. 2

	. Introduction
	. Related Work
	. Real-time and Interactive Denoisers
	. Offline Denoisers
	. Diffusion Models

	. Method Overview
	. Data
	. Architecture

	. Evaluation
	. Conclusion
	. Additional Evaluation

