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ABSTRACT

While model fairness improvement has been explored previously, existing meth-
ods invariably rely on adjusting explicit sensitive attribute values in order to im-
prove model fairness in downstream tasks. However, we observe the trend of
sensitive demographic information being inaccessible as public concerns around
data privacy grow. In this paper, we propose a confidence-based hierarchical struc-
ture of variational autoencoder (VAE) architectures called “Reckoner” for reliable
fairness learning under the assumption of missing sensitive attributes. First, we
present the results of exploratory data analyses conducted on the widely-used
COMPAS dataset. We observed significant disparities in model fairness across
different levels of confidence. Inspired by these findings, we devised a dual-model
system in which the model initialised with a high-confidence data subset learns
from the model initialised with a low-confidence data subset, enabling it to avoid
biased predictions. To maintain predictiveness, we also introduced learnable noise
into the dataset, forcing the data to retain only the most essential information for
predictions. Our experimental results show that Reckoner consistently outper-
forms state-of-the-art baselines on both the COMPAS and the New Adult datasets
in terms of both accuracy and fairness metrics.

1 INTRODUCTION

Automated models and algorithms have found wide application in various domains, including fi-
nance and justice, as tools to assist human decision-making processes (Con (2022); Brennan et al.
(2009)). These applications collect information like age and education level in financial services,
or misconduct incidents in policing, as well as sensitive data like race and gender from individuals,
raising concerns about the ability of automation to deliver accurate and equitable judgments across
diverse demographic groups. Due to concerns about the misuse of private data, increasing regulatory
restrictions have made it more challenging to access and make use of sensitive information in auto-
mated decision making (Voigt & Von dem Bussche (2017)). Approaches to improve fairness without
sensitive data can be roughly divided into two categories: focusing on maximising the utility of the
worst-case group (Hashimoto et al. (2018); Lahoti et al. (2020); Wei et al. (2023)) and focusing on
limiting the impact of sensitivity-correlated proxy on predictions (Gupta et al. (2018); Zhao et al.
(2022); Yan et al. (2020)). By relying on the the correlated observed attributes, these methods have
the potential benefit of unfairness mitigation. However, we argue that fairness is still underachieving
because the correlated attributes are unreliable.

We believe that approaches to fairness without sensitive attributes face two major challenges. First,
relying on proxy combinations is not reliable. Existing methods mostly rely on manually selecting
combinations of proxies based on the correlation between them and sensitive attributes or empirical
information (Datta et al. (2017); Zhao et al. (2022)). The problem is that only a small subset of
proxies rather than all relevant non-sensitive attributes would be considered, which can still allow
embedded bias in the data to hinder improvements in fairness predictions. For example, in existing
literature, there are almost no methods that treat age as a proxy in tasks with the COMPAS dataset,
while in our analysis, we observed an interesting interaction between age and sensitive attributes,
such as race. Moreover, manual selection is also highly inefficient, as different task scenarios imply
different suitable proxy groups, requiring careful selection of the attributes to be adjusted. Addi-
tionally, such methods are difficult to apply to unstructured data and have limited generalisability.
The second problem is the trade-off between prediction accuracy and fairness. Like many efforts to
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improve fairness (Wick et al. (2019); Feldman et al. (2015)), achieving a win-win situation for both
prediction accuracy and fairness remains challenging.

In this paper, we introduce a novel confidence-based framework that ensures both predictability and
fairness of classification results, leveraging learnable noise and a knowledge-sharing mechanism
between a dual-model system. We first analyse the distribution patterns of selected non-sensitive
information across subsets at different classification model confidence levels. We observe that when
data is close to the decision boundary, non-sensitive information associated with those data tends to
be similarly distributed across demographic groups, leading to lower accuracy but increased fairness.
In contrast, when data is far from the decision boundary, non-sensitive information shows varying
distributions across demographic groups, resulting in higher accuracy but reduced fairness. Inspired
by these findings, we initially divide the original training set into two subsets based on confidence
scores obtained from a simple linear classifier and then initialise generators with a Variational Au-
toencoder (VAE) as the backbone. Then we introduce learnable noise into the original data aiming
to retain only the necessary information for prediction. In the next phase, one generator acquires
knowledge from the other generator to learn fairness while also updating itself using the ground
truth to maintain high levels of effectiveness.

The main contributions of this paper are as follows:

• By analysing the distribution of non-sensitive attributes across demographic groups in dif-
ferent model confidence interval, we observe that biases implicitly contained within non-
sensitive attributes hinder the ability of the model to make fair judgments. This analysis
also sheds light on the relationship between predictability and fairness at different confi-
dence levels.

• We introduce a novel confidence-based classification framework, named Reckoner. This
framework achieves improved fairness while maintaining accurate predictions in classifi-
cation results by utilising learnable noise and knowledge-sharing in a dual-model system.
This provides an effective approach to improving fairness without using sensitive attributes.

• We conduct extensive experiments using real-world datasets to evaluate the effectiveness of
the proposed framework as compared to other baselines in terms of fairness and predictive
performance. We also present the results of an ablation study to understand the impact on
effectiveness of the two main components in this framework.

2 RELATED WORK

Group Fairness. In contrast to approaches that emphasise the equitable treatment of similar in-
dividuals in pursuit of individual fairness, our work focuses on group fairness, manifesting in the
differential treatment of distinct demographic groups. Some prevalent methods include incorporat-
ing fairness regularisation to the objective function or converting it into a constrained optimisation
problem. Kamishima et al. (2011) introduced a method for reducing mutual information between
sensitive groups and targets by quantifying the mutual distribution between them. This approach
aims to diminish the dependency between sensitive groups and targets. A similar concept is also
reflected in Beutel et al. (2019), where fairness is achieved by minimising the absolute correlation
between these two entities. In contrast to the aforementioned methods, Hardt et al. (2016) proposes
the use of the equalised odds fairness metric, which underscores the equalisation of true positive
and false positive rates across different demographic groups. It transforms the general loss func-
tion into an optimisation problem subject to fairness constraints, ensuring that the revised unbiased
predictions closely approximate the original predictions. Similarly, Zafar et al. (2019) achieves fair
classification by adding tractable constraints at the decision boundary. However, as the desire for
both algorithmic fairness and privacy grows, we observe the requirement of avoiding the use of
sensitive attributes in machine learning model training, leading to legislative restrictions on such
practices like, e.g., the General Data Protection Regulation (GDPR)(Voigt & Von dem Bussche
(2017)). To manage such requirements, some approaches have been designed under the assumption
that sensitive attributes are either difficult to obtain or prohibited from use.

Fairness Without Sensitive Attributes. To deal with fairness problem under this setting, the main
idea of some studies is leveraging the correlation between sensitive and non-sensitive attributes to
mitigate bias. Representative work includes the use of proxy features (Gupta et al. (2018)), in which
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a proxy group is obtained from clustering the data and is used to replace actual sensitive groups
during training. A well-known example is using ‘zip code’ instead of ‘race’ as this can have similar
effects on individual splits since the two attributes are highly correlated (Datta et al. (2017)). Simi-
larly, Zhao et al. (2022); Yan et al. (2020) explore features which have strong correlation with sen-
sitive attributes to learn fair classifiers by using them for training and for regularisation in learning.
However, this approach needs a careful selection of proxy attributes and even of fairness metrics. To
address underlying issues, Zhu et al. (2023) estimates fairness using only weak proxies. Through es-
timating the transition probabilities between sensitive group target values, it uses auxiliary models to
calibrate the fairness metrics. Another family of approaches, Hashimoto et al. (2018), addresses the
limits of missing sensitive attributes via techniques taken from distributionally robust optimisation
(DRO). The main idea involves utilizing observed correlated attributes to identify regions with low
utility and assigning higher weights to individuals within these regions to improve worst-case per-
formance and thus improving fairness. Recently, Jung et al. (2023), targeting group fairness, extends
DRO with fairness constraints in the resulting objective function using a re-weighting based learn-
ing method. Beside the aforementioned methods, others have recently utilised various techniques to
address unfairness without the knowledge of demographics. For example, Lahoti et al. (2020) adver-
sarially reweighs the samples to achieve a Rawlsian Max-Min fairness and learn the task classifier.
Others tackle the problem through knowledge distillation (Chai et al. (2022)), reweighing-based
contrastive learning (Chai & Wang (2022)) and causal variational autoencoder (Grari et al. (2022)).
However, these methods need the prior identification of proxies to harness their interactions with
sensitive attributes, such as correlation and causality, in order to achieve fairness. Our approach
avoids the need for such analysis. Instead, it leverages learnable noise applied to all data, forcing the
data to retain only essential information for better predictions. Additionally, it employs a dual-model
knowledge-sharing mechanism to acquire fairness-related knowledge, thereby improving predictive
fairness. Hence, our proposed framework exhibits greater generalisability, particularly when dealing
with data where proxy identification is challenging, such as images and audio.

3 ANALYSIS OF MODEL FAIRNESS BASED ON CONFIDENCE SCORES

Problem definition. Our goal is to improve fairness in prediction tasks in a non-sensitive attributes
setting, where a set of labeled data D = {xi, yi}Ni=1 is available for training. Each xi ∈ R1×m is
a m-dimensional data instance, and we use F = {fi, . . . , fm} to denote the m features. Sensitive
attributes S are not used in training, i.e. S /∈ F . Following the task settings on COMPAS and New
Adult datasets (Larson et al. (2016); Ding et al. (2021)), we focus on binary classification problems,
i.e., yi ∈ 0, 1.

We assume that even when sensitive information is excluded, remaining relevant data can still intro-
duce unintended biases and unfair errors. In this analysis, we aim to uncover unintended biases in
the COMPAS dataset, which is used for predicting offender recidivism. Figure 1a provides a simple
example. In our setup, sensitive information within the red dashed box is omitted from training.
Unfairness can arise when individuals of the same demographic and similar circumstances receive
harsher judgments or more prior convictions, leading the model to mistakenly view some as more
dangerous. Therefore, previous work has focused more on previous misconducts and the severity of
the original crime (Zhao et al. (2022); Le Quy et al. (2022)), whereas we are interested in another
attribute, age, which is also relevant to the predictions. Figure 1b and 1c show the distribution
patterns of the ’Age’ attribute and ’Previous Misconduct’ in various subsets, partitioned based on
confidence scores.

Some confidence-based works, such as OOD (Out-of-Distribution) detection (Hendrycks & Gim-
pel (2016)) and image classification (Cui et al. (2022); Corbière et al. (2019)), have inspired
us to consider that data with varying levels of confidence may hold crucial information for un-
covering misinformation. As a result, we divided the training dataset into two subsets based
on a confidence threshold of 0.6 as Lakkaraju et al. (2017) suggested, leading to the follow-
ing findings: (1) Surprisingly, the ages of individuals from different racial backgrounds ex-
hibit distinctly different distribution patterns within these subsets compared to ‘Previous Mis-
conduct ’ attribute. However, most prior literature has overlooked the age attribute and did
not consider it as a proxy for sensitive attributes. (2) The model appears to attempt to cap-
ture patterns in the feature distribution for predictions but is misled by the majority. We ob-
serve a tendency toward right-skewness in age distribution of both the entire training dataset and
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Offender A 0 Felony …… 23 White True

Offender B 3 Felony …… 22 Black False
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Figure 1: (a) An example of the COMPAS dataset. In our experiment, the attribute ’Race’ in the
red frame is not involved. (b) and (c) Distributions of the attribute ’Age’ and ’Previous Misconduct’
across different subsets of the training set.

Fairness Metrics(%)

Subsets Equalised
Odds

Demographic
Parity

High-confidence
Subset 25.10 32.90

Low-confidence
Subset 8.10 8.50

Training
Set 20.30 24.60

Table 1: Results of Equalised Odds and Demo-
graphic Parity in different subsets

the high-confidence subset, which comprises
approximately 65% of the training data. Ad-
ditionally, within high-confidence subset, there
are varying tendencies of age distribution dis-
persion and right-skewness among different
racial groups. However, These differences
are not observed in the low-confidence subset,
where the model’s performance is notably sub-
optimal. As mentioned in Barry et al. (2023),
this discrepancy may arise from the mislead-
ing feature distribution patterns captured by the
model. (3) We find that the model tends to pro-
vide relatively fair predictions in subsets with
lower confidence levels, whereas unfairness in
predictions becomes more notable in subsets

with higher confidence levels. Table 1 illustrates the variations in the Equalised Odds and De-
mographic Parity fairness metrics across different subsets. Building on the previous finding, we can
infer that the predictions from the model stem from capturing the feature distribution of the major-
ity. However, the exhibited tendency may potentially contain unfair biases and errors, leading to a
reduction in fairness.

The above analysis underscores the relationship between fairness and model confidence while fur-
ther disclosing how non-sensitive information can impact the accuracy and fairness of model pre-
dictions.

4 METHODS

Overview. As shown in Figure 2, our proposed method consists of two training stages, the Identifi-
cation stage and Refinement stage. In the Identification stage (Sec. 4.2), we employ a simple linear
classifier, such as logistic regression, to perform a binary classification task on the raw dataset under
a supervised learning setting. Then the training data is split into two subsets based on a predefined
confidence threshold: a high-confidence subset and a low-confidence subset. These subsets are then
used to initialise their respective generators. At the beginning of the Refinement stage (Sec. 4.3),
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Figure 2: Overview of Reckoner. Reckoner consists of two stages. Identification stage: we first
train a logistic regression classifier on the raw data, and then split the data based on confidence
scores. In Refinement stage, we introduce learnable noise into the original dataset. We employ two
generators, one for low-confidence instances and another for high-confidence ones. The Low-Conf
generator uses pseudo-distribution produced by the High-Conf generator for limited training times
and restores for each new data. Knowledge acquired during this process is then shared with the
High-Conf generator, which incorporates ground truth data to refine its model weights.

we introduce learnable noise to the original dataset, generating noise-augmented data for training in
this stage. The purpose of using learnable noise is to encourage each augmented input xi to “neu-
tralise” embedded unfairness and provide only necessary information for prediction. Next, during
the iterations, the High-Confidence (or “High-Conf ”) generator produces latent vectors to train the
Low-Confidence (or “Low-Conf ”) generator, and the Low-Conf generator updates its knowledge
back to the High-Conf generator. The Low-Conf generator is trained for a limited number of it-
erations, for example, three epochs, before reverting to its initialised state. This approach ensures
good and unbiased prediction while maintaining an efficient training process. Lastly, the High-Conf
generator uses ground truth and shared knowledge to update its parameters.

4.1 MOTIVATION

The motivation behind our proposed framework stems from the analytical findings in Section 3. We
believe that manually selecting combinations of sensitivity-correlated attributes and adjusting their
relationship with target values is unreliable, as unfairness may be embedded throughout the entire
dataset. However, discovering relationships among all attributes is inefficient (Wu et al. (2020)). To
enhance fairness and retain predictiveness, it is sufficient to predict only essential information, and
we can leverage characteristics from distinct subsets to enable the model to learn how to achieve
fair classification. To improve fairness in the settings of missing sensitive attributes, we design a
novel framework, named Reckoner, which seamlessly integrates learnable noise and a knowledge-
sharing mechanism between dual models. We have demonstrated the necessity of combining these
two components in our ablation study (see Section 5.2).

4.2 IDENTIFICATION STAGE

In this stage, we perform a simple confidence-based sample split on the training data to obtain
high-confidence samples and low-confidence samples. Specifically, we train a logistic regression
classifier on the original training set and we split the data using confidence threshold (in this case,
it is set to 0.6 following Lakkaraju et al. (2017) ). Our hypothesis is that the model trained on the
low-confidence subset is more inclined towards fair classification, even if its predictive accuracy is
relatively modest. However, by integrating the knowledge derived from the model trained on the
high-confidence subset, it is possible to enhance fairness while maintaining predictive performance.
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4.3 REFINEMENT STAGE

4.3.1 LEARNABLE NOISE

In the initial phase of this stage, learnable noise is introduced into the training set. From a predic-
tive perspective, the model only needs the necessary information to achieve accurate predictions,
while the remaining parts, which may contain unfairness, can be adjusted. This concept aligns with
some of the work that utilises disentanglement to enhance fairness (Creager et al. (2019); Park et al.
(2021)). Selecting only a subset of relevant information for adjustment is unreliable because some
unfairness may be hidden within easily overlooked attributes, such as the age of offenders. Intu-
itively, learnable noise can assist in mitigating the embedded biases in the training data by forcing
the model to focus solely on predicting the most essential information. To be more specific, we add
a noise wrapper to vectors of the same dimensions as the input, which are randomly drawn from a
normal distribution. The noise wrapper is a simple two-layer MLP that is subsequently applied to
modify the input. The resulting modified input is referred to as a noise-augmented input and can be
represented as follows:

x̃i = xi + gω(η), (1)
where ω is the set of parameters in the noise wrapper g, and x̃i is the new input we use for the
High-Conf generator in rest of the refinement stage.

4.3.2 DUAL-MODEL AND KNOWLEDGE SHARING

The Low-Conf generator, initialised with the low-confidence subset, may not necessarily generate
highly informative representations that effectively represent the entire dataset. However, it treats
different demographic groups equally, illustrating a special case of the trade-off between fairness
and accuracy. The notably poor predictive performance prevents us from relying on the Low-Conf
generator to perform classification tasks, but it can guide the High-Conf generator to make fair
classification to some extent. Specifically, within the Reckoner framework, the Low-Conf generator
relies on the pseudo-distribution generated by the High-Conf generator for supervised learning to
update its own parameters. Since ground truths are not involved in this phase, the learning process
can only be referred to as pseudo-learning. This approach helps to improve the Low-Conf generator
to obtain better parameters for prediction. The supervised loss of pseudo-learning consists of three
components: the Evidence Lower Bound (ELBO) (Kingma & Welling (2013)), which serves as
the objective of the VAE, the regression loss of expectations µL and µH, and the regression loss of
variances σ2

L and σ2
H:

LL = LL
VAE + Lµ + Lσ2 , (2)

where LVAE(p, q) = Eq(z|x) [log p(x|z)]−DKL [q(z|x)||p(z)] is ELBO loss of the vanilla VAE. The
subscripts “H” and “L” refer to the High-Conf generator and the low-Conf generator, respectively.
Note that during this phase, the training iterations of the Low-Conf generator are limited (set to only
3 times in our experiments) for training efficiency. Furthermore, once these iterations end, the Low-
Conf generator has a rollback operation, reverting its parameters to their initialised values. This
design avoids the acquisition of biases and unfairness inherent in the dataset.

On the other hand, we rely on the High-Conf generator, which offers higher precision, to perform
classification tasks. However, as revealed by the analysis in Section 3, we are aware of its poor
performance in terms of fairness. Previous works (Liu et al. (2021); Herzog & Hertwig (2014))
suggest that averaging the opinions of two independent models provides a more effective enhance-
ment in prediction quality. This concept of leveraging the strengths of both models is prevalent in
various research areas, such as the high-pass and low-pass filters in graph neural networks (Bo et al.
(2021)) and Exponential Moving Average (EMA). The most promising improvement on fairness for
the High-Conf generator lies in integrating the knowledge from the Low-Conf generator, and its
parameter update mechanism can be expressed as follows:

ΘH ← αΘH + (1− α)ΘL, (3)
where α controls the proportion of the knowledge of High-Conf generator. In order to enhance
predictive accuracy, we use ground truths and employ the backpropagation algorithm to update the
High-Conf generator. By integrating the knowledge from the Low-Conf generator, the final update
mechanism can be formulated as follows:

θH
i ← θ̂H

i−1 − γ
∂LH

∂θ̂H
i−1

, θ̂H
i−1 ← αθH

i−1 + (1− α)θL
k, (4)
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where θH
i is the weight of High-Conf generator at i-th iteration, θ̂H

i−1 is the temporary weight in-
tegrating both High-Conf generator’s and Low-Conf generator’s knowledge controled by α, and k
is the iteration number when the Low-Conf generator achieve the best performance during pseudo-
learning. The supervised loss of classification task consists of three components: the ELBO loss
and the classification loss, which is binary cross entropy:

LH = LH
VAE + Lcls. (5)

Intuitively, the pseudo-learning applied to the High-Conf generator can be interpreted as shifting the
predictive distribution closer to the decision boundary, with the hyperparameter α controlling model
stability. Another component of the framework, learnable noise, retains only the most predictive
aspects of the input, ensuring both accuracy and enhanced prediction fairness. We will discuss the
contributions of these two components to prediction fairness in the discussion on ablation study (see
Section 5.2).

5 EXPERIMENTS

Datasets. We validate our model on two benchmark datasets:(1) New Adult: The dataset utilised for
Adult reconstruction, as introduced by Ding et al. (2021), comprises 49,531 samples, each associated
with 14 attributes. In contrast to Adult, New Adult retains the actual income values rather than
labels. The primary objective is to predict whether an individual’s income exceeds 50k. In our
experiments, we convert income into binary labels, and we set race as the sensitive attribute and
exclude it for experiments. (2) COMPAS: COMPAS (Larson et al. (2016)) comprises 7,215 data
samples, each associated with 11 attributes. Follwing previous works on fairness without sensitive
attributes (Chai et al. (2022)), we have filtered this dataset to include only African American and
Caucasian offenders, hence the modified dataset containing 6,150 samples. The primary objective
is to predict whether a offender will commit another offense within two years. We set race as the
sensitive attribute and exclude it for experiments.

Baselines. We compare our method with four related methods for fair comparisons: (1) Distributed
Robust Optimisation (DRO) (Hashimoto et al. (2018)): The primary objective of this method is
to enhance Rawlsian Max-Min Fairness (Rawls (2001)), by maximising utility for the worst-case
group. It achieves this by using observed attributes to identify problematic regions and assigning
higher weights to individuals within those regions. (2) ARL (Lahoti et al. (2020)): This approach
also aims at Rawlsian Max-Min Fairness and uses adversary learning to optimise worst-case per-
formance by prioritising instances with higher losses. (3) FairRF (Zhao et al. (2022)): This ap-
proach identifies features strongly correlated with sensitive attributes and minimise the correlation
by reweighting to achieve fairness. (4) Chai et al. (2022): This approach applies knowledge distil-
lation requiring one model to produce soft labels, and use them to train a second model to obtain a
better decision boundary. It has two variants: either with softmax label or with linear label.

Implementation Details. For feature engineering, since both datasets we are using in the experi-
ments contain categorical features, we employ feature hashing on categorical features to avoid hav-
ing sparse training data. For the proposed framework, we apply logistic regression to train a simple
binary classifier and follow Lakkaraju et al. (2017) setting 0.6 as the confidence threshold for data
splitting in the identification stage. In the refinement stage, we use each confidence-based subset
and use 10% of the total model training iterations to initialise both the High-Conf generator and the
Low-Conf generator. In the pseudo-learning phrase, the Low-Conf generator is trained three times.
In the training for the whole proposed framework, we use Adam to be the optimiser, MSE loss for
calculating regression loss in the pseudo-learning phrase, and binary cross entropy for classification
loss. For evaluation, we use Equalised Odds (Berk et al. (2021)) and Demographic Parity (Corbett-
Davies et al. (2017)) as fairness metrics and report accuracy for classification. Both fairness metrics
are considered better when they have lower values.

5.1 RESULTS

Table 2 and Table 3 show the comparison results of our models with other baselines. Note that
results of both variants from Chai et al. (2022) and of FairRF(Zhao et al. (2022)) are from Chai
et al. (2022) with the same datasets and same train-valid-test split. Our model consistently performs
favourably against the baselines. In COMPAS dataset, we can observe that Reckoner achieves the
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Table 2: Results on the COMPAS dataset

Metrics(%) Accuracy Equalised Odds Demographic Parity
Methods

DRO (Hashimoto et al. (2018)) 67.48± 0.21% 21.01± 1.25% 25.41± 1.90%
ARL (Lahoti et al. (2020)) 68.72± 0.88% 20.95± 1.01% 25.29± 1.31%
FairRF (Zhao et al. (2022)) 63.26± 0.83% 25.67± 2.63% 21.47± 1.76%
Chai et al. (2022)(softmax label) 63.47± 0.44% 21.32± 1.97% 19.52± 2.46%
Chai et al. (2022)(linear label) 63.34± 0.46% 20.31± 2.62% 20.27± 2.34%
Reckoner 64.00± 0.99% 17.10± 2.01% 20.12± 2.20%
Reckoner (noise) 62.68± 1.05% 16.91± 1.91% 19.77± 1.86%
Reckoner (pseudo-learning) 64.17± 0.94% 18.38± 1.05% 21.57± 1.01%

Table 3: Results on the New Adult dataset

Metrics(%) Accuracy Equalised Odds Demographic Parity
Methods

DRO (Hashimoto et al. (2018)) 84.51± 0.26% 11.59± 1.67% 12.07± 1.50%
ARL (Lahoti et al. (2020)) 85.32± 0.32% 12.11± 1.30% 13.41± 1.06%
FairRF (Zhao et al. (2022)) 83.74± 0.86% 11.23± 1.42% 11.37± 1.46%
Chai et al. (2022)(softmax label) 84.63± 0.47% 10.34± 1.22% 10.63± 1.34%
Chai et al. (2022)(linear label) 84.27± 0.31% 10.57± 1.64% 10.21± 1.52%
Reckoner 84.02± 0.06% 5.33± 1.02% 8.28± 0.42%
Reckoner (noise) 83.67± 0.54% 5.41± 2.00% 7.65± 0.84%
Reckoner (pseudo-learning) 83.65± 0.52% 6.14± 0.63% 9.18± 0.39%

best result in Equalised Odds with a relative improvement of about 3.21% over the best baseline
Compared to Chai et al. (2022) with optimal Demographic Parity, although our method exhibits a
marginal difference of 0.6%, we hold advantages in terms of accuracy and Equalised Odds, with
improvements of 0.53% and 4.22%, respectively. In comparison to the highest accuracy achieved by
ARL (Lahoti et al. (2020)), we have a significant edge in fairness, with improvements of 3.91% for
Equalised Odds and 5.29%. In New Adult dataset, Reckoner exhibits significant improvements in
fairness evaluations compared to all the baselines. In comparison to the best-performing baselines
in terms of fairness, it achieves a 5.01% improvement in Equalised Odds and a 1.93% improvement
in Demographic Parity. While the fairness differentials among other baselines are not particularly
obvious, our method demonstrates a more notable enhancement in fairness. Simultaneously, Reck-
oner achieves the third-highest position in terms of prediction accuracy, with a marginal 1.30% gap
compared to the most accurate baseline. This difference may be attributed to the accuracy-fairness
tradeoff.

5.2 ABLATION STUDY

In our ablation study, we demonstrated the effectiveness of the two components in the proposed
framework, Reckoner, and the necessity of combining them. Intuitively, the model that does not
incorporate learnable noise but incorporate parameters from Low-Conf generators may suffer from
an abundance of irrelevant information and decreased predictive performance. On the other hand, the
model that does not utilise pseudo-learning may lack fairness knowledge from Low-Conf generators,
potentially leading to unfairness amplification. However, relying solely on High-Conf generators for
prediction may yield improvements in predictive performance.

Effect of the learnable noise. Our model without learnable noise trains both generators using
original inputs in the refinement stage. Firstly, we assess the dissimilarity between the original
inputs and the reconstructed inputs from both models. Subsequently, we compare the performance
of Reckoner with and without learnable noise. As illustrated in Figure 3, We observed that the
information generated by the proposed model, in comparison to its variant without learnable noise,
is more distinct from the original inputs. In contrast to the variant, the proposed model demonstrates
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a substantial increase of 5.77 units in the distance between the reconstructed inputs and the original
inputs, indicating a larger divergence between the two. However, as indicated by the accuracy
measurements in Table 2, its predictive performance shows a 1.32% improvement over the variant.
This suggests that our approach stands out due to the introduction of learnable noise, which changes
the distribution of certain features. In a supervised learning context, the model adjusts these feature
distributions to better emphasise predictability while fitting the target function. On the other hand,
in terms of fairness metrics, the variant outperforms the proposed model. This distinction may be
attributed to the learning principles of fair classification reflected in the parameters of the Low-Conf
generator.

0 20 40 60
distance

Reckoner

Reckoner w/o 
learnable noise

Reckoner w/o 
pseudo-learning

dist: 61.35
dist: 49.47
dist: 55.24

Figure 3: Ablation study on the learnable noise
and the pseudo-learning using COMPAS dataset.

Effect of the pseudo-learning. In addition to
the learnable noise, we also evaluate the effec-
tiveness of pseudo-learning. Our model with-
out pseudo-learning is one where the model
only utilises the High-Conf generator to fit
the target function. This variant subsequently
trains with new inputs that consist of both
learnable noise and original data. From Fig-
ure 3, we observe that the proposed model
can acquire knowledge about fair classifica-
tion through pseudo-learning. This variant pro-
duces the most dissimilar reconstructed inputs
compared to the original data but exhibits the
best predictive performance (another evidence
to the effectiveness of learnable noise). How-
ever, its poor fairness performance also under-
scores the indispensability of pseudo-learning.

In contrast to a marginal 0.17% predictive advantage, this variant demonstrates a 1.28% enhance-
ment in unfairness levels compared to our proposed model in Equalised Odds and a 1.45% im-
provement in Demographic Parity. As hypothesised, the absence of guidance on fairness from the
Low-Conf generator in this variant’s predictions introduces bias errors.

6 CONCLUSIONS

In this paper, we present a novel framework for classification tasks that improving fairness without
sensitive attributes. Through an analysis of the distribution of non-sensitive attributes across dif-
ferent confidence subsets with respect to different demographic groups, we gain insights into how
non-sensitive features are influenced by sensitive attributes and the relationship between fairness and
predictability within these subsets. Our proposed framework includes: (1) learnable noise, which
is used to force inputs to retain only necessary information for prediction; (2) a dual-model system,
employed to enable one model to learn fairness predictions from the other model. Our experimental
results show the superiority of the proposed method, which can make accurate and fair predictions,
as compared to the state of the art. Our ablation study also confirms the benefits of the two main
components in our proposed solution.
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