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Abstract

The loss landscape of state-of-the-art neural networks is far from simple. Under-
standing how optimization algorithms initialized differently navigate such high-
dimensional non-convex profiles is a key problem in machine learning. Liu et al.
(2020) use pre-training on random labels to produce adversarial initializations that
lead stochastic gradient descent into global minima with poor generalization. This
result contrasts with other literature arguing that pre-training on random labels
produces positive effects (see, e.g., Maennel et al. (2020)). We ask under which
conditions this initialization results in solutions that generalize poorly. Our goal is
to build a theoretical understanding of the properties of good solutions by isolating
this phenomenon in some minimal models. To this end, we posit and study sev-
eral hypotheses for why the phenomenon might arise in models of varying levels
of simplicity, including representation quality and complex structure in data.

1 Introduction

Overparametrized models that can fit even random data (Zhang et al., 2021) are able to find gener-
alizing solutions despite searching a high-dimensional loss landscape with multiple “bad” minima
(Keskar et al., 2016). Even more surprisingly, this success can be achieved by relatively simple
gradient-based algorithms initialized at random (Chizat and Bach, 2018; Du et al., 2019). Despite
the increasing theoretical effort to understand the performance of overparametrized models, the
knowledge of the underlying mechanisms is still sparse. A successful and influential research direc-
tion to address this puzzle is to study the implicit bias that leads training algorithms to pick good
solutions (see, e.g., Neyshabur et al. (2014); Soudry et al. (2018); Gunasekar et al. (2018)).

In this paper, we adopt a complementary perspective by considering learning failures: we investigate
the properties of “bad” solutions in order to identify the key missing ingredients that are necessary
for generalization. We explore the conditions under which gradient-based algorithms converge to
bad minima, even when substantial changes in model parameters occur. One method to identify such
bad minima is through initializations that empirically lead to poorly generalizing solutions: we refer
to these as adversarial initializations. For example the adversarial initialization method of Huang
et al. (2020) relies on training the model until it perfectly fits not only the training data but also
additional data with randomized labels. Liu et al. (2020) have proposed a different technique to find
these adversarial initializations leading SGD to poorly-generalizing global minima. In particular,
they consider two consecutive training phases:
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Phase 1: train the network using random labels until 100% training accuracy.

Phase 2: train on the original task, but initialized at the solution found in phase 1.
They find that the final solution starting from this adversarial initialization generalizes poorly on the
original task. This detrimental effect of initialization is removed when adding explicit regularization.
We exploit the same procedure to further investigate what about these minima makes them bad
and how this relates to pre-training on random labels. Indeed, there is no consensus on this point
and other works suggest that pre-training on random labels could help training (Maennel et al.,
2020). Recent empirical work (Chiang et al., 2022) further suggests that the volume of bad minima
could be significantly smaller compared to the volume of good minima in deep neural networks
trained on real datasets. Understanding why adversarial initializations still cause convergence to
bad minima despite their small volume would therefore shed light into why typical initializations
don’t. Crucially, we are not interested in asymptotic-time results; instead we consider timescales
that can be reached in practice by numerical experiments.

2 Experimental Framework and Proposed Hypotheses
We study a supervised learning task with training datasetXXX train ∈ Rn×d and true labels yyy train ∈ Rn,
where n denotes the number of training samples and d the input dimension. We also consider a
randomized version of the labels, that we call yyy rand. Liu et al. (2020) train different neural networks
architectures (VGG16, ResNet18, ResNet50, and DenseNet40) with SGD on CIFAR, CINIC10, and
ImageNet datasets and randomized labels until a solution is found. We call this solution ΘΘΘadv. They
observe that retraining from ΘΘΘadv on (XXX train, yyytrain) leads to poorer generalization error compared to
training on (XXX train, yyytrain) from random initialization. We hypothesize several possible explanations
for this phenomenon and design a series of experiments to discern which of these may hold. We
aim to isolate the phenomena observed by Liu et al. (2020) in minimal models that are amenable to
theoretical analyses. In this section, we describe each of these hypotheses and the experiments to
address them. In Sec. 3, we discuss how our findings relate to the posited explanations. Finally, in
Sec. 4 we present the next steps to further our investigation. We conjecture that poor generalization
from adversarial initialization could be caused by:

1. Norm of the solution: the large norm of Θadv leads to poor generalization.
2. Quality of representation: adversarial initialization produces bad representations that are

hard to escape. We ask which layer is more responsible for escaping bad minima. To this
end, we freeze the first layer weights during phase 2 and compare the performance gaps.

3. Complex structure in data: Given that we are pre-training with the same examples (only
randomizing labels), something about the data structure should be memorized by the model.
What is the impact of this “memorization” bias on phase 2?

As a simple check to rule out the first hypothesis, we scale up the weights of a randomly-initialized
VGG16 model so that the norm of the overall weights matches that of the adversarial initialization.
The test accuracy is higher than in the adversarial initialization case but still does not match the
baseline, suggesting norm accounts for part of the problem but the shape of the initialization matters,
too. For further investigation, we develop the other two hypotheses. Our findings are detailed in
Sec. 3.

3 Classification Experiments to Study Representation Quality
We consider simple architectures to assess the generality of this behaviour. We use a fully-connected
network with one-hidden-layer of p hidden units and ReLU activation, which we call Np for suc-
cinctness, trained on n = 100 samples using gradient descent with step size 0.01 for the experiments
described below (except for MNIST, where we use SGD with batch size 32 and step size 0.1).

3.1 Experiments

Experiment 1: We train Np on (XXX train, yyytrain) until zero training error is achieved. Note that in the
classification setting, zero training error does not correspond to zero training loss, since logistic loss
is a proxy for the 0− 1 loss and only achieves zero asymptotically.

Experiment 2: In phase 1, we train Np on (XXX train, yyyrand) until zero training error is achieved at a
solution ΘΘΘadv. In phase 2, we train Np starting from ΘΘΘadv on (XXX train, yyy train) until zero training error.
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(a) Easy Gaussians (b) Spirals t ≤ 10 (c) Vectorized MNIST

Figure 1: Test accuracy for different initializations. We plot the test accuracy of Np trained on
linearly-separable Gaussians (a), multiple turns of the spirals (t ∈ [0, 10])(b), and vectorized MNIST
(c) under each of the experimental configurations described in Sec. 3.1, as a function of the network
width p. The black curve represents the baseline of training from random initialization on the true
labels (Experiment 1), the red curve represents following the phase 1 – phase 2 training proposed by
Liu et al. (2020) (Experiment 2), and the blue curve represents completing phase 1, freezing the first
layer weights, re-initializing the second layer weights to zero, and then completing phase 2 (Exper-
iment 3). Error bars represent one standard deviation across different random initializations. In (a)
and (b) we take d = 2, n = 100, while in (c) we have d = 784, n = 128. For the spirals, plotting
mean and standard deviation shows intersecting error bars; however, in the Appendix we show plots
of the median and interquartile range, which suggests that some of the error bar intersection actually
results from outliers.

Experiment 3: In phase 1, we train Np on (XXX train, yyyrand) until zero training error. In phase 2, we
freeze the first layer weights (i.e., feature representations), reset the second layer weights to zero,
and train only the second layer on (XXX train, yyytrain) until zero training error is achieved.

Note that any dataset where the test accuracy of Experiment 2 is worse than the test accuracy of
Experiment 1 exhibits the phenomenon of interest.

3.2 Datasets

Mixture of Gaussians: This dataset consists of points of binary label y ∈ {0, 1}, drawn from a
Gaussian with mean (2y − 1) · µ and variance Σ . In (a), µ = [2.5, 2.5] and Σ is the identity matrix.
The task is depicted in Fig. 2a.

Concentric Circles: This dataset consists of two concentric circles where the region inside the
innermost circle is labeled y = 0 and the outside ring is labeled y = 1. More precisely, for each
point, we pick a radius at random over [0, 10], add or subtract 5 according to the class, then add some
noise to it. We then randomly pick an angle at which to place it. The task is depicted in Fig. 2b.

Spirals: This dataset consists of points in R2 of binary label y ∈ {0, 1}, where the first component
is given by (y + 1) · t · cos(t), and the second component is given by (y + 1) · t · sin(t) . Both
components are each jittered by some uniform random noise scaled by 0.9 · t .
Vectorized MNIST: We take each of 128 MNIST images and flatten them from 28× 28 to 784× 1.
Labels are the standard ones and cross entropy loss is used. For this setting, due to computational
constraints, all experiments consider the same 128 samples, and each random label set is used for
each width studied. This is substantially less randomness than in the other experiments, which may
explain why the error bars are much smaller.

3.3 Results and Discussion

In this section, we comment the results from our numerical experiments. Figure 1 displays the
performance as a function of the width for different tasks. In all cases, we observe statistically-
significant gaps between the output from adversarial initialization (Experiment 2, red curve) and the
baseline (Experiment 1, black curve). Below, we investigate the hypothesis in Sec. 2.

The role of representation quality — We investigate whether the main issue is the quality of repre-
sentations induced by adversarial initialization. To this end, we first run Experiment 3, freezing the
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(a) Linearly-separable Gaussians. (b) Concentric circles. (c) Spirals.

Figure 2: The learned functions. Decision boundary at the end of training in Experiments 1, 2, and
3 (from left to right) for linearly-separable Gaussians (a), concentric circles (b), and spirals (c). The
plots are for p = 500 but reflect similar trends as other widths.

first layer to the adversarial solution, on a dataset of linearly-separable Gaussians. In the linearly-
separable case (a), this performs as well as the baseline, and all three experiments achieve very close
to perfect generalization2. While this certainly indicates that Hypothesis 2 is not satisfactory, it also
suggests that this model is extremely simple. To test Hypothesis 2 in the more complex end, we
studied vectorized MNIST, finding almost the opposite phenomenon: i.e., adversarial features per-
form much more comparably to fully adversarial initialization, with some variation depending on
width (Fig. 1c). Thus, since it appears that it is possible in more complex settings for the adversarial
initialization procedure to produce representations that do not suffice to separate the data as well as
learned ones, the specific effect cannot be isolated just from the simple model. Viewing Figure 1a
and Figure 1c, then, suggests a nontrivial interplay of adversarial initialization with data structure
(Hypothesis 3).

The role of data structure — To that end, we design and study a dataset which requires a non-
linear separator (unlike simple mixture of Gaussians) but can still be expressed analytically (unlike
MNIST), that we refer to as spirals dataset. The results from the spirals dataset (Figure 1b) indi-
cate it might even help to maintain the features from this initialization procedure, cf Maennel et al.
(2020). This result suggests that memorization could help in certain tasks. More subtly, in vector-
ized MNIST, for small widths, we see that Experiment 3 outperforms Experiment 2, indicating that
when there are only a few features, they are not inherently bad, but for larger widths, more of the
problematic performance could be related to bad features (since the features do no better than the
fully adversarial case). Put together, these results lead us to conclude that the role of data structure
and representation quality are tightly related.

Note that sources of randomness in each experiment of easy Gaussians and spirals are: (1) the draw
of the data, (2) the draw of the random labels used in the adversarial initialization, and (3) the random
weights that the network is initialized with. If we fix the data and only vary the other two factors (see
appendix for examples), the trends look different to the averaged trend over different draws of data.
This implies that even for a given distribution, the different loss landscapes induced by differing
draws seem to be traversed differently during adversarial initialization. We will study this further in
an attempt to characterize which factors arising from the weight distribution and which ones arising
from the specific realization of the task affect the adversarial initialization performance.

Impact on decision boundary — Plotting the learned functions for the three experiments (Fig. 2)
shows that adversarial initialization leads to jagged decision boundaries, while resetting the readout
weights smoothens them. This may indicate that more of the piece-wise linear components are ac-
tive with fully adversarial initialization (Experiment 2) as compared to the setting where we reset
the readout weights (Experiment 3).

Impact on training time — An interesting question is how the three training schemes affect op-
timization speed (Fig. 2). For linearly-separable Gaussians, the training time following adversarial
initialization (i.e., the number of steps required to reach zero training error) is larger than for random
initialization or resetting at 0, for sufficiently large number of hidden units. On the other hand, for
concentric circles, spirals, and vectorized MNIST, the training time from adversarial initialization
is smaller, suggesting that the landscape near the adversarial initialization provides many easy-to-
find minimizers of the training error. In the spirals and MNIST cases, the adversarial features with 0
readout setting takes much longer to achieve a solution, suggesting there needs to be substantial drift

2The concentric circles dataset also shows similar behavior, albeit less starkly. We defer the plot to the
appendix.
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(a) Easy Gaussians (b) Concentric circles (c) Spirals up to 10 (d) Vectorized MNIST

Figure 3: The training time. Number of steps to converge to zero training error for different
datasets as a function of width. Different colors represent different initialization/training schemes.
For the simplest task (a), the adversarial initialization takes longer to converge, whereas in the more
complex ones (c-d), it converges relatively quickly. Dataset (b) behaves in a more inconclusive way.

in the second layer to find a solution.3 This suggests that spirals may be a good model for further
inquiry into what differentiates between overly simple models and theoretically-intractable ones.

Conclusions Hypothesis 1 does not suffice. Hypothesis 2 holds in certain regimes but importantly
does not hold in many regimes. Hypothesis 3 bears further investigation; next steps in the rep-
resentation quality line of work will need to consider the relationship between the quality of the
representations and the necessary complexity of representations for a given data distribution.

4 Pathways for Future Investigation
While our current suite of experiments and datasets presents an intriguing picture of the phenomenon
we are studying, there remain many open questions. In the following, we list a series of theoretical
and computational investigations that we are currently exploring to shed light into our findings.

Assess the “badness” of the solution — We can evaluate more systematically the properties of
the minima found from adversarial initialization using well-understood proxies for the performance,
such as flatness and the quality of the decision boundary (see, e.g. Keskar et al. (2016); Wu et al.
(2017); Guan and Loew (2020); Fawzi et al. (2018)).

Characterize the adversarial initialization —A related promising direction is to exploit theoreti-
cal results from the literature on implicit bias, as in Soudry et al. (2018). Analyzing the effect of the
implicit bias for training on random labels starting from random initialization for one-hidden-layer
networks Chizat and Bach (2020) might allow us to characterize the predictor achieved in phase 1
of Experiment 2, which in turn would inform us about the outcome of phase 2.

Characterize adversarial representations — We propose to study a random features model as
done by Mei et al. (2022), in a teacher-student framework where labels are generated by a set of
“teacher” features that establish a benchmark for “good” representations. We could then analyze
how random features compare to adversarial ones. Adversarial features could be modeled as orthog-
onal to the teacher ones, or even estimated from implicit bias as mentioned in the above section.
Furthermore, we could tune the the teacher features to model different task structures.

Characterize the solution space — Finally, we can attempt to quantify the volume of solutions
found from adversarial initialization using the replica method from statistical physics as done, e.g.,
in Annesi et al. (2023); Baldassi et al. (2023), or enumerating the number of minima using the Kac-
Rice method (see, e.g., Maillard et al. (2020)). Understanding the structure of the space of solutions
and their generalization properties could shed light into the behaviour of the convergence time in
relation to the performance.

Acknowledgments and Disclosure of Funding

This work had its genesis in open problem sessions during the 2022 Les Houches summer school in
Statistical Physics and Machine Learning, organized by Lenka Zdeborová and Florent Krzakala. We
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A Some Additional Plots

Figure 4: Concentric Circles shows similar phenomenon to easy Gaussians (Fig.1a).

Figure 5: Spirals where t ≤ 10. Plot shows median and Inter Quartile Range.
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(a) Spirals where t ≤ 2π and averaged over many
X, ytrain

(b) Spirals where t ≤ 2π and the same X, ytrain are
used for all experiments. (Additionally, each yrand is
studied for each of the widths.)

Figure 6: Note that the trends are different between the two plots, one that is averaged over different
draws of X, ytrain , and the one where X, ytrain is fixed. Thus, different draws have different proper
ties that need to be studied.
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