Beyond the Teacher: Leveraging Mixed-SKkill
Demonstrations for Robust Imitation Learning

Abstract: Achieving expert-like robotic task execution in dynamic environments
typically requires extensive, high-quality expert demonstrations, a significant bot-
tleneck for real-world deployment. We present a novel learning framework that
overcomes this data dependency, enabling robots to perform complex periodic
tasks with expert-like proficiency, even when learning from naive demonstrations.
Our two-stage pipeline first selects a representative demonstration based on user-
defined information-aware task intention scores. This single best demo is then
used to extract a canonical motion shape via Periodic Dynamic Movement Prim-
itives (DMPs). Finally, a Long Short-Term Memory (LSTM) network refines the
entire set of demonstrations, leveraging a multi-objective score that combines the
canonical shape with mutual information and other task quality metrics. The pro-
posed approach is demonstrated on a Franka Research 3 robot performing phasic
tasks across three contrasting domains: wiping and stirring in human assistive ser-
vices, weaving in the textile industry, and pick-and-place operations for warehouse
automation. Code available at: https://github.com/codesudopaper/MSDR2025.

1 Introduction

Imitation Learning (IL) enables robots to acquire complex behaviors by learning state-action map-
pings from expert demonstrations, bypassing the need for hand-crafted reward functions or exten-
sive environment exploration [1]. However, a major limitation of conventional IL methods is their
dependence on large quantities of high-quality expert demonstrations. When demonstrations are
suboptimal, inconsistent or scarce, as is often the case in real-world robotic settings, learned poli-
cies suffer from compounding errors due to covariate shift, and scalability becomes a bottleneck due
to high data acquisition costs [2].

To address this, we propose a novel IL pipeline that bypasses the reliance on abundant expert data.
Instead, our method recovers a high-quality, expert-like dataset from a single clean demonstration
using a combination of periodic Dynamic Movement Primitives (DMPs) and LSTM-based trajectory
sequence correction. This recovered dataset enables robust policy learning even when the remaining
data is noisy, suboptimal, or corrupted.

Recent works such as Making Imitation Learning Easy with Self-Supervision (MILES) [3], Co-
Imitation Learning (ColL) [4], and Task-Oriented Self-Imitation Learning (TOSIL) [5] mitigate the
disadvantage of poor demonstrations by using self-generated data through good or bad experiences
or human interventions. Others, like ILEED [6] and [7], estimate the ability of the demonstrator
or trajectory feasibility to filter or weight demonstrations for behavior cloning. However, these
methods typically require access to large demonstration datasets and sufficient exploration of the
state space to effectively learn latent representations and struggle with complex, highly structured
behaviors, such as periodic motions with high curvature, as seen in handwriting or stirring tasks.

Data curation strategies for imitation learning under imperfect demonstrations, such as Zhang et
al. [8] present Self-Supervised Approach to Data Curation for Large-Scale Imitation Learning (SCI-
ZOR), a framework for large-scale curation that removes redundant or suboptimal samples, though
it does not explicitly measure the information content of state—action pairs, risking the loss of task-
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relevant features. Belkhale et al. [9] analyze data quality by characterizing diversity and action
consistency as key factors for generalization, yet lack an online mechanism to score samples. Du
et al. [10] address data scarcity by proposing behavior retrieval from unlabeled datasets, which re-
lies on the availability of diverse priors and suitable retrieval metrics. Nguyen et al. [11] show that
leveraging fully observable policies can improve learning under partial observability, emphasizing
the importance of preserving predictive information. Hejna et al. [12] take a more direct approach
by employing mutual information estimators to quantify the dependence between states and actions,
demonstrating that higher mutual information correlates with better imitation performance.

2 Preliminaries and Problem Formulation

We aim to learn high-curvature periodic motion tasks, such as wiping, stirring, weaving, and pick-
and-place tasks on an n-DoF robotic manipulator (in this study, we use the 7-DoF Franka Research
3 Panda robot [13]), where the end effector (EE) exhibits structured rhythmic behaviors in Cartesian
space X. Mathematically, the input to our pipeline is a collection of M demonstration trajectories:

M

N
B={{z(thl,},_ . milt) €RY,

i=
where x; () ) denotes the Cartesian position of the end effector at time ¢, in the i-th demonstration,
and each trajectory contains N samples. The goal is to learn the continuous-time motion dynamics:

i=f(z), re€XCR? (1)
where d can be 2 or 3 depending on 2D or 3D cartesian space for EE, f : R? — R? defines a nominal
vector field that governs the end effector dynamics. This vector field corresponds to the Cartesian

velocity of the EE, which is obtained via forward kinematics from the robot’s joint velocities, tracked
using a low-level impedance-based controller. In practice, however, the demonstration set £ can
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Figure 1: Control flow diagram of the proposed approach. Pink blocks represent the set of demon-
strations, yellow blocks represent the first step in the strategy to extract the required task motion
pattern and value map on task space, blue blocks represent the second step in the strategy to correct
the naive demonstrations with adaptive (3, and cyan blocks represent the mutual information and
multi-objective loss functions from task intention.

include noisy, suboptimal, or inconsistent trajectories that degrade the learned policy fE obtained
through standard Imitation Learning (IL) methods [14], [15], [16]. Our goal is to synthesize a
corrected dataset Fjeaneqd Such that
N N M

Edleanea = {{‘rl (tk)}kzl } i1’
and the resulting learned policy fcleaned, generates trajectories through roll out that maximize the mu-
tual information between random variables for the state sequence S(z;) = {z; (tk)}],j:l and action
sequence A(x;) = {ai(tk)}gzl ,ai(te) = xi(te1) — zi(ty), an (tr) = 0, denoted as Z(S; A):

I(S;A) =Hs +Ha — H(s,a), 2)



where entropy Hx is the measure of uncertainty for the random variable X. Furthermore, we
need to minimize the user-defined task intention-based loss functions L(z;), which characterizes the
required task features such as symmetry, task-specific shape, smoothness and closed-loop behavior
more effectively than those generated by f B

EzNRollout(fc|e.d“ed) [U([L‘)] > EmNRollout(fE) [U(.’L’)L (3)
where U(z) = (1—6)Z(S(z); A(z)) — BL(x) is the demo utility score, 5 € (0, 1) is the demonstra-

tor ability’s estimate (for expert 8 = 1), and 2 ~ Rollout(f) denotes that the state trajectory z(t),
which is a solution of & = f(z) starting from an initial condition. A higher demo utility score U (x:)
improves behavior cloning by preserving informative state-action structure via mutual information
(as shown by [12]) while enforcing task consistency through L(x), thus reducing reliance on large

datasets.

Unlike prior works, we do not assume access to a large set of high-quality expert demonstrations.
Instead, we assume that the dataset contains a single expert-like trajectory e* € E. Using this, we
construct a compact representation of the task via periodic Dynamic Movement Primitives (DMPs).
A trajectory sequence-to-sequence correction model (e.g. LSTM) then maps noisy trajectories to-
ward this expert-like reference, enabling policy learning from weak supervision with improved ro-
bustness and generalization. Moving forward, we will demonstrate the method for cleaning a dataset
where EE is in a 2D Euclidean space, which can be easily generalized for a 3D Euclidean space for
the end effector.

3 Proposed Approach

This section outlines a novel data-efficient hierarchical approach for robot motion planning (as
shown in Fig. 1), integrating offline learning from suboptimal demonstrations.

3.1 Demo Utility Score: An Information-Aware Multi-objective Scoring Function

The raw set of demonstrations is often collected from teleoperation or crowd sourcing (regardless of
expertise). These naive recordings are frequently of low and inconsistent quality, often presenting as
noisy, inaccurate, or even trash data due to errors, incomplete tasks, or inefficient movements. Con-
sequently, a correction strategy is designed to transform this raw input into a reliable input suitable
for live robot operation using IL, using only a few demonstrations. Each demonstration trajectory
for tasks is provided with general prior demonstrator preferences applied during the drawing of im-
perfect trajectories as the rotation and scaling parameter § € (—27,27) and p € R, respectively.
We employ a multi-objective scoring mechanism derived for task-intentional prompt, given by Do’s
and Don’ts of the task, easily accessible from the task manual. This quantitative evaluation allows
us to prioritize the desired actions at a given state and correct the demonstrations of the entire raw
dataset.

Demo utility score (U;): U(z;) is calculated for each raw demonstration trajectory x; in E. This
score quantifies each demonstration’s quality based on the mutual information between states and
action as well as other important kinematic and geometric characteristics of the trajectory itself.
Using the intrinsic characteristics of the sequence of pairs (z;(tx), z;(tx+1)), Vk > 1, we compute
mutual information and various loss components; a higher mutual information and lower loss value
denotes a more desirable characteristic. The demo utility score U (x;), is defined as a convex com-
bination of mutual information Z(S; A) and composite multi-objective loss function —L(x;) for N
individual loss components, given the demonstrator ¢’s ability estimate 3; € (0, 1):

U(zi) = (1 = Bi)Z(S(x;); A(z;)) — BiL(xy), “4)
L(x;) = ij - Lj(x:),Vj € {1,2,..., N},

where L;(x;) is j-th loss component computed for the raw demonstration x;, and w; € [0, 1] is its
corresponding weight.



Mutual information Z(S; A) between state sequence S(z;) and action sequence A(z;) can be es-
timated using the Kraskov—Stogbauer—Grassberger (KSG) estimator [17] without explicit density
modeling. The key steps are:

* For each sample, determine the distance to its k-nearest neighbor in the joint (.S, A) space,
which defines a local neighborhood radius.

* Count how many neighbors fall within this radius separately in the marginal S and A
spaces, which act as proxies for marginal densities.

* Combine these counts using the digamma-based KSG formula, shown in Eq. (30) of [17],
yielding an estimate of Z(S; A) = Hs(z,) + Ha(z) — H(s(z), A:))-

Intuitively, when the state sequence S(z;) and action sequence A(z;) are strongly dependent, the
distance to the k-th nearest neighbor in the joint space (.S, A) becomes smaller, indicating that state—
action pairs cluster more tightly together. At the same time, the number of neighbors within the same
joint radius is larger when viewed in the marginal spaces of S and A. In imitation learning, max-
imizing Z(S; A) therefore favors demonstrations where states and actions are consistently related,
leading to policies that are more robust under noisy or scarce data.

The specific formulations for these individual loss components are given as follows, assuming x; =
{pik, qix, }2_, represents the trajectory point as a vector of 2D coordinates (e.g. (pi, gix) € R?).

o Symmetry Loss (L1): It quantifies the symmetry of a trajectory with respect to the y-axis.
Let C';; be the x-coordinate of the trajectory’s centroid, C;,, = % Zszl Dik-

Ll(xi) = = min /\i7 (5)

Ai = |(2Ci — piks gir) — (Pij, @is) |2
where || - ||2 denotes Euclidean norm and it can be easily changed for symmetry across a

given axis, by aligning the x-axis along the required axis.

* Closure Loss (Lo): It quantifies the distance between the start and end point of a trajectory,
which creates a closed loop.

La(zi) = [|(pio; gio) — (Pins @in )25 (6)
where (p;0, ¢io), (Pin, ¢in) is the start and end point of the given trajectory x;.

» Smoothness Loss (L3): The smoothness of a trajectory is evaluated using a weighted sum of
the squared norms of its first, second, and third-order finite differences, which correspond to
velocity, acceleration, and jerk, respectively. Let the trajectory be represented as a sequence
of N points {z; (tk)}szl in R2. Define D, D2, and D? as first, second, and third-order
difference matrices. The smoothness loss is computed as:

Ly(2;) = a1 || DT + ag|| D?T4||3 + as|| D°T4ll3, @)
where T'; € RN*2 is the trajectory, and a1, o, and a3 are weights (e.g. a3 = 0.2,
ag = 0.3, ag = 0.5) that balance the contributions of velocity, acceleration, and jerk to the

total loss.

Using min-max normalization, we rescale mutual information Z(.S; A) as Z and each loss compo-

nent —L;(x;) as (1 — L;(z;)) to the [0,1] interval by subtracting the minimum value and dividing
by the range, with small §, for any metric I as

I; — min; I;

~ - R if HlanijmiIlej >(S,
I; = < max; I; —min; [;

0, otherwise,

(®)



then the normalized demo utility score for the trajectory x;, U;(z;) € [0, 1] is computed as

Ui(zi) = (1 — Bi)Z(S(x:); Alzi)) + 512 wj(1— Lj(x;)). ©)

For the initial demonstration selecearning Without Expert Trajectories tion, our specific formulation

of task intention score 1 — L(x;) uses the following combination of losses:
~ 3 ~
L= L(w) =Y wy - (1= Ly(w:),
j=1

where ih I~/2, f/3 are the normalized symmetry, closure, and smoothness loss, respectively, and
the weights (wy, w2, w3 € [0,1],3 ;w; = 1) signify the relative priority of each characteristic,
allowing for task-specific tuning. It is crucial to note that additional task-specific loss components
can be integrated into E(xv) which may be guided by the user preferences.

3.2 Step 1: Canonical Motion Extraction with Periodic DMP

In this step, periodic DMPs [18] are used to capture a smooth and temporally consistent motion
pattern from a single demonstration, rather than denoising the entire dataset. We have the core
assumption that within the set of naive demonstrations, there exists at least one trajectory that reflects
the best spirit of the task. To implement the shape extraction procedure, we follow the steps below:

1. The expert-like trajectory is selected using the demo utility score U; (as in (9)), defined
over the raw demonstration set F, as x°'(¢) := arg max U; (z;).
z,€E
2. After learning from the best raw demonstration (x°(t)), the Periodic DMP generates a
canonical reference for the desired motion, denoted as 2 (t).

3. Rollouts from the learned Periodic DMP are then used to estimate a state visitation value
map Vg (s) : R? — [0,1] (as shown in Fig. ??) over the task space, by estimating state
visitation density using the nonparametric kernel density estimation (KDE) technique (de-
scribed in [19]). Formally, for a set of rollout states {z;(t;)}2_, in a 2D task space, the
KDE estimate at a point z;(t;,) is given byp(z;(ty)) = 75z ZL K(%), where
K is a kernel function (e.g., Gaussian) and & is the bandwidth controlling smoothness.
The resulting p(x) serves as the state visitation value map. This approach is advantageous
because it does not require discretizing the task space arbitrarily. This value map guides
the reward R, € R calculation for the learned policy 7(s) : R> — R2, defining the map
from state to action, in the refinement stage, required for adapting the demonstrator’s ability
factor 8 during training.

4. To preserve the variability present in the dataset, the shape trajectory x%(t) is inverse
transformed as per the rotation and scaling parameter, derived from the best trajectory
2 (¢)’s demonstrator preference, in order to obtain the global shape reference x9(t) with
0 =0, p = 1, i.e., no demonstrator bias.

5. For every raw demo z;(¢), the corresponding shape reference is generated from z9(t), using
. . R . . . aligned
its respective demonstrator’s rotation and scaling parameters 6, p, giving z; (t).

6. Calculate the loss L4(x;) as the distance between the respective demonstrator canonical
trajectory and raw demo:

| M
Life) = 37 -3 |

i=1 k=1

2 (1) () H2 . (10)

A key result of this stage is the shape preservation score 1 — L;(mi) (normalized as in (8)), quan-
tifying the accuracy with which the canonical representation reflects the fundamental shape shared
among the set of imperfect demonstrations. This loss, along with other intentional loss components



such as (5),(6),(7), will then be used in the subsequent learning based trajectory refinement stage for
optimization as

4
1—L(z;) =Y wj - (1— Lj(;)). (11)
j=1

3.3 Step 2: Refinement with Demo utility score

We introduce a Long Short-Term Memory (LSTM) model for refinement and correction. LSTMs
are particularly well suited for capturing long-term temporal dependencies [20], enabling the model
to learn context-aware corrections essential for complex movements. The LSTM is trained as a
sequence-to-sequence model that maps a noisy demonstration trajectory z;(t) € F to a denoised
and structurally refined output trajectory &;(t). The training objective for the network is to learn
this mapping by maximizing the demo utility score U; defined in (9), using (5), (6), (7), and (10).
This formulation enables the LSTM to learn corrections that align the raw input trajectories with the
task-intended behavior without requiring explicit supervision through human interventions.

During training, the demonstrator ability factor 3 is adapted based on the rollout trajectory generated
by the LSTM policy 7 (s). Specifically, the reward R, for a rollout is computed by summing the
negative log-likelihood of the state visitation probabilities Vi (s) of all states visited by the trajec-
tory:
Re= > Vals). (12)
s€Rollout(7)

The change in the mean reward Rﬁf) per epoch k is then used to update 3; via a tanh function, for

increased sensitivity via v € R even with small change in reward:
ARY) =1 (AP — BED),
5§k+1) = clip(ﬁi(k) +tanh(ARy), 0, 1),

If the reward decreases, f3; is reduced, increasing the emphasis on maximizing mutual information
Z(S; A) to guide learning towards the embedded optimal policy. Conversely, if the reward increases,
B; is raised, placing more weight on minimizing the task intention loss to ensure adherence to task
objectives. In general, this adaptive principle for tuning 3; allows the LSTM to progressively en-
hance the behavior of the embedded demonstrator, required to clean the raw demonstrations. Even
when the inputs are significantly distorted, the model is able to produce outputs that closely resemble
the expert demonstration in shape, periodicity, and symmetry (as conceptually shown in Fig. 1 and
illustrated by results in Fig. 2). This two-stage refinement process, leverages the generalization capa-
bilities of DMPs for canonical motion extraction and the expressiveness of LSTMs for fine-grained
refinement, which provides a robust framework for learning from a small number of non-expert or
degraded demonstrations. The final refined trajectory, denoted as Fejeaned = {i(tk)}{y:l, where
Z(ty) represents the refined state at discrete time ¢), (conceptually derived from an integral such as
z*(t) = [ F(-)dt), then can be used as a high-quality target for any subsequent control or tracking
systems such as the Neural ODE based low-level controller design as in [21], which is validated
with experiments in Section 5.

4 Comparison and discussions

We have raw demonstrations for wiping task (WP), pick-and-place task (PnP) and weaving task
(WV), where N = 300, M = 4, with rotation parameters {¢;}% ; = {5°,—5° 10°,—10°} and
{pi},; = {1,1.1,1.2,1.3}. These variations in @ and p introduce demonstrator preferences,
allowing us to evaluate the robustness of our framework in recovering the underlying trajectory
shapes from distorted data. We then train multiple imitation learning methods, including Behavioral
Cloning (BC) [22], Trajectory-based BC (Traj-BC) [23], Imitation Learning by Estimating Expertise
of Demonstrators (ILEED) [6], and Neural ODE (NODE) [21] on both cleaned and noisy datasets.
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Figure 2: Teacher demonstrations {z;(¢;)}%_, shown as solid blue lines in first row, their corre-
sponding shape reference trajectories {x?(tk)}izl, denoted as target trajectory, shown as dotted
red line, and the resulting cleaned outputs {x} (tx)}4_, shown as solid blue lines in second row.
Each demonstration is refined using its shape reference to produce a consistent and structured set of
cleaned demonstrations.

The resulting outputs, corresponding to 50 rollouts from each trained models as shown in Fig. 3
show that the standard IL methods perform well especially with respect to the loss L4 for shape
preservation with dataset Ejeaneq, demonstrating the effectiveness of our approach for complex imi-
tation learning tasks like periodic motions.

It also validates the statistical advantage by evaluating the performance of the rollout trajectories
against the reward R, (as computed in (12)), which is higher for rollout states with higher value
in the map Vg, estimated by the single expert-like trajectory, as shown by the bar chart in Fig.
4. Our method offers the highest statistical advantage in behavior cloning when integrated with
ILEED, with increase in mean normalized reward for wiping task by 0.88, pick-and-place task by
0.418, and weaving task by 0.084, as it combines knowledge of demonstrator skill with a corrective
refinement mechanism that effectively “skills up” the demonstrator, reducing reliance on knowledge
of the complete state space with large dataset. This synergy allows data-hungry ILEED to achieve
significantly improved performance even with a small dataset, containing as few as four trajectories,
highlighting the robustness and data-efficiency of our approach.

The Neural ODE (NODE) model demonstrates consistently stronger performance across all tasks
when trained on the cleaned dataset compared to the noisy dataset. This improvement can be at-
tributed to the higher mean demo utility score of the cleaned dataset, preserving high mutual in-
formation between the state and action sequences in the cleaned data, which allows the model to
better encode the underlying dynamics. This effect is particularly important in the weaving task,
where capturing long-range dependencies and the structure of the two conjoined loops is crucial for
accurate trajectory generation.

BC and Traj-BC models achieve good performance on the wiping task, benefiting from task intention
scores that promote symmetry and smooth closure despite limited data. However, their strong data
dependence prevents them from learning the more complex pick-and-place and weaving tasks with
only four demonstrations, as evidenced by the high variance in normalized rewards. However, the
rollout trajectories for BC and Traj-BC models trained on the cleaned dataset are able to preserve the
shape for the required task implementation as compared to the models trained on the noisy dataset,
especially in the case of the weaving task.

5 Experimental Results

We performed experiments on the Franka Research 3 Panda robot using hardware setup as shown in
Fig. 5. The 2D demonstration trajectories in F, E.jcqneq are padded with height of 0.3 unit along
z-axis and centered about the point (0.35, 0) for 3D trajectories required for wiping task. Similarly,
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Figure 4: Comparison of mean reward and reward variability (standard deviation) for rollout trajec-
tories generated by models trained on noisy (in red) versus cleaned (in blue) demonstration datasets.

the demonstration trajectories were aligned in 3D space for the pick-and-place task. In the first
scenario, we learned the nominal trajectory using only 4 naive demonstrations for the wiping task,
with the help of the NODE framework [21]. The resulting motion was inconsistent and failed to
preserve the desired specifications as shown in Fig. 5a, 5c. With E jcqned, the learned trajectory
aligned closely with the intended expert-like drawing. The corrected trajectory retained the essential
curvature, periodicity, and closure properties, demonstrating the model’s ability to robustly recover
trajectories as shown in Fig. 5b, 5d.

(c) Pick-and-place task - noisy

(d) Pick-and-place task - clean

Figure 5: Experimental results with expert-like behavior using imperfect demonstrations. Here
“noisy” and “clean” means rollout are from IL model trained on dataset £ and Fjeaned, respectively.
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