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Abstract

We study differentially private algorithms for
graph cut sparsification, a fundamental problem
in algorithms, privacy, and machine learning.
While significant progress has been made, the
best-known private and efficient cut sparsifiers
on n-node graphs approximate each cut within
Õ(n1.5) additive error and 1+γ multiplicative er-
ror for any γ > 0 [Gupta, Roth, Ullman TCC’12].
In contrast, inefficient algorithms, i.e., those re-
quiring exponential time, can achieve an Õ(n) ad-
ditive error and 1 + γ multiplicative error [Eliáš,
Kapralov, Kulkarni, Lee SODA’20]. In this work,
we break the n1.5 additive error barrier for private
and efficient cut sparsification. We present an
(ε, δ)-DP polynomial time algorithm that, given
a non-negative weighted graph, outputs a private
synthetic graph approximating all cuts with multi-
plicative error 1 + γ and additive error n1.25+o(1)

(ignoring dependencies on ε, δ, γ).

At the heart of our approach lies a private algo-
rithm for expander decomposition, a popular and
powerful technique in (non-private) graph algo-
rithms.
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1. Introduction
Many modern applications rely on personal data, with no-
table examples including social networks and medical data
analysis. However, traditional algorithms, developed over
decades, are inherently non-private and often sensitive to
even small changes in input. This sensitivity can lead
to significant privacy breaches (Backstrom et al., 2007;
Narayanan & Shmatikov, 2008; Culnane et al., 2019). These
privacy concerns have driven extensive research on algo-
rithms that protect users’ privacy. Graphs, which are ubiqui-
tous in machine learning and data processing, have received
significant attention in privacy-preserving settings. Our
work contributes to this growing body of research by design-
ing private algorithms in the context of graph cuts. In social
networks, cut queries are crucial in analyzing how tightly a
community is connected internally and how it interacts with
the outside world. However, accurately releasing connec-
tivity information can compromise user privacy (Hay et al.,
2009). Moreover, there are exponentially many cuts, mak-
ing a direct private release of all the cuts infeasible. Hence,
one way to solve this problem is to construct a synthetic
graph on the same node set as the original while preserving
approximate cut values.

The standard notion of privacy is differential privacy (DP)
introduced by Dwork, McSherry, Nissim, and Smith in
their seminal work (Dwork et al., 2006), which indicates
that the output of a private algorithm of two neighbor-
ing inputs must be statistically indistinguishable. For-
mally, an algorithm A is (ε, δ)-DP if given two neighbor-
ing inputs G and G′ and a subset of outputs O, we have
Pr(A(G) ∈ O) ≤ eε Pr(A(G′) ∈ O) + δ. When δ = 0,
we say that the algorithm preserves pure-DP, and otherwise
approximate-DP. In the context of graphs, the most widely
studied notion of neighboring graphs is edges-neighboring:
two neighboring graphs differ in only one edge, and the
graphs’ node sets are publicly available. For weighted
graphs, two neighboring graphs are those whose total edge
weights differ by at most one, and in a single edge1.

1Algorithms satisfying this notion are often also private for
graphs whose vector of

(
n
2

)
edge weights differ by at most 1 in ℓ1

distance.
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Given a non-negative weighted, undirected graph G =
(V,E,w), we consider the problem of releasing a non-
negative weighted, undirected synthetic graph G̃ on the
same node set V which (a) is differentially private and (b)
approximately preserves values of all the cuts in G. A cut
is formed by a subset S ⊂ V where S ̸= ∅, and the value
of the cut wG(S) is the weight of the edges between S
and V \ S. Prior works (Gupta et al., 2012; Eliáš et al.,
2020; Liu et al., 2024) have settled the complexity of this
problem when no multiplicative error is allowed. In par-
ticular, Gupta, Roth, and Ullman showed how to release
a synthetic graph in a pure-DP manner and with O(n1.5)
additive error of each cut value. When the number of edges
of the input graph is upper-bounded by m, the additive er-
ror can be improved to Θ̃(

√
mn) (Eliáš et al., 2020; Liu

et al., 2024) for approximate-DP algorithms.2 Thus, despite
a long line of work, the additive error of this problem has
been stuck at O(n1.5) for dense graphs, the same error that
the simple algorithm of just adding Laplace noise to all pos-
sible edges achieves (although this would result in a graph
with negative edges, whereas the aforementioned works re-
lease a non-negative weight graph). The fundamental reason
for this is that Ω(n1.5) additive error is necessary even for
approximate-DP (Eliáš et al., 2020; Liu et al., 2024).

The synthetic graph that achieves the O(n1.5) bound is a
dense graph. However, in many applications, storing only a
sparse graph is desirable due to communication or memory
requirements. Indeed, this is the original motivation for the
extensive algorithmic work on graph sparsification (going
back to (Karger, 1994) more than three decades ago). This
requirement is also crucial in many other sub-fields, such as
the semi-streaming graph model (Feigenbaum et al., 2005).
For sparse synthetic graphs, it is unavoidable to also have
a multiplicative error in addition to the additive error (even
non-private graph sparsification has the multiplicative error).
However, the Ω(n1.5) lower bound does not apply when a
multiplicative error is allowed. In fact, using the exponential
mechanism, it is known how to achieve multiplicative error
1 + γ and additive error O(n log n) (Eliáš et al., 2020),
which is known to be near-optimal (Dalirrooyfard et al.,
2023). One caveat, though, is that this algorithm takes
exponential time, and the best polynomial time algorithm
still has O(n1.5) additive error. Closing this gap between
O(n1.5) and Õ(n) additive error, while allowing for 1 + γ
multiplicative approximation, is considered “a prominent
open problem in the differential privacy literature” (Eliáš
et al., 2020).

In this work, we provide the first polynomial time algorithm
that beats the O(n1.5) additive error barrier, thus making

2Throughout this paper, Õ, Θ̃, Ω̃ hide polylog(n/δ) factors
for approximate-DP problems, and polylog(n) factors for other
problems.

substantial progress toward resolving this open problem.
Theorem 1.1. Let γ ∈ (0, 1). There is a polynomial time
(ε, δ)-DP algorithm, which on any non-negative weighted n-
node graphG = (V,E,w) outputs a non-negative weighted
sparse graph H with Õ(n/γ2) edges such that with high
probability:

∀S ⊆ V, |wG(S)− wH(S)|

≤ γwG(S) +
n1.25+o(1) polylog(1/δ)

εγ0.5
.

We remark that prior work listed in Table 1 (except the first
one which adds Laplace noise to every edge) can also output
a sparse graph by simply running a non-private sparsifier
in post-processing. Then the prior results in Table 1 also
incur the same multiplicative approximation as Theorem
1.1 (but retain their additive error). Thus, the best prior
work on sparse cut-sparsifiers with Õ(n/γ2) edges has mul-
tiplicative approximation 1+γ and additive errorO(n1.5/ε)
(Gupta et al., 2012), even allowing approximate DP.

A key technical ingredient for proving Theorem 1.1 is pri-
vate expander decomposition, which may be of independent
interest; see more details in Section 4. The formal proof
of Theorem 1.1 can be found in Section 3. We show that
Theorem 1.1 has important downstream applications in Sec-
tion 5 and Appendix B, where we obtain DP algorithms for
max-cut, maximum-bisection, max-k-cut, and minimum-
bisection, with optimal multiplicative and improved addi-
tive error in the DP setting. We conclude in Section 6 with
several open questions that we find exciting and interesting
to pursue.

1.1. Related Work

Here, we mention some relevant problems to our work.
There has been a lot of work on releasing synthesized graphs
in a DP manner with objectives other than cut queries, such
as maintaining the degree sequence or subgraph counting
(see the survey (Li et al., 2023)). Depending on the objective,
different techniques are used. There have been studies on
DP algorithms for other cut problems such as min cut (Gupta
et al., 2010), min-st-cut (Dalirrooyfard et al., 2023), all
pairs min-st-cut (Aamand et al., 2024) and multiway cut
(Dalirrooyfard et al., 2023; Chandra et al., 2024), where the
error guarantees for all these problems are optimal. Note
that the output size in these problems is polynomial, so there
is no need to output a synthetic graph, and the techniques
are not directly applicable to our problem.

1.2. Technical Contribution

Our main technical contribution is an algorithm which,
given an input graph G = (V,E,w), in a differentially
private manner outputs a synthetic graph G̃ such that for any
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Reference DP Multiplicative Error Additive Error Runtime

Laplace Noise* Pure 1 O(n1.5/ε) Polynomial

(Gupta et al., 2012) Pure 1 O(n1.5/ε) Polynomial

(Arora & Upadhyay, 2019) Approx 1 + α Õ(
√
n|S|/ε) Polynomial

(Eliáš et al., 2020; Liu et al., 2024) Approx 1 Õ(
√
mn/ε) Polynomial

(Eliáš et al., 2020) Pure 1 + α O(n logn/ε) Exponential

Theorem 1.1 (Our Work) Approx 1 + α n1.25+o(1)/ε Polynomial

Table 1. A comparison of approaches for differentially-private cut-approximation that release synthetic graphs. Dependencies on the
approximate DP parameter δ are hidden, but the dependency is only polylog(1/δ) in all cases. We also omit the dependency on the
multiplicative approximation parameter α. (Arora & Upadhyay, 2019) obtain a bound of Õ(

√
n|S|/ε) to approximate a (S, V \ S) cut,

which can be Ω̃(n1.5) for large |S|. We note that Ω(n1.5) additive error is necessary even for approximate-DP (Eliáš et al., 2020; Liu
et al., 2024) if no multiplicative error is allowed.
*The first result of naively adding Laplace noise does not produce a non-negative graph, which the other results ensure.

cut (C, V \ C) we have |wG(C) − wG̃(C)| ≤ αwG(C) +

n1.25+o(1) for any desired small constant α = Ω(1). To
obtain a sparse graph approximating all cuts with a similar
approximation guarantee, we then run any graph sparsifica-
tion algorithm on G̃, e.g., the classic algorithm by Benczúr
and Karger (1996), and by post-processing properties of
differential privacy, the resulting graph is still private.

To describe our construction of G̃, we first outline two other
approaches for private graph cut approximation. For the
sake of simplicity, throughout this overview, we assume the
parameters ε, δ, α are all constants.

Approach 1: Additive error of Õ(
√
nm). For approxi-

mating all cuts in a DP-manner with purely additive error
guarantees Eliáš, Kapralov, Kulkarni, and Lee (2020) pro-
vide an (ε, δ)-DP algorithm with an additive approximation
of Õ(

√
nW ) for graphs with total edge weights bounded by

W . Liu, Upadhyay, and Zou (2024) provide an improved
algorithm with approximation Õ(

√
nm). In the case where

the number of edges m is small, these algorithms already
achieve an improvement over additive error O(n1.5).

Approach 2: Additive error of Õ(|C|
√
n). Another way

of privatizing G is to add Laplace noise Lap(1/ε) to the
weight of each edge of G. This algorithm is trivially private,
and by standard concentration bounds and union bounding
over all cuts of size s, one can see that these cut values are
preserved within additive error Õ(s

√
n). In fact, Upadhyay,

Upadhyay, and Arora (2021) provide an approximate DP
algorithm with essentially the same approximation guar-
antee and with the additional property that the synthetic
graph they output has non-negative edge weights. For cuts
C where s = |C| = o(n), these algorithms again improve
over the additive error of O(n1.5).

Our approach. Our approach is illustrated in Figure 1.
The main observation behind our algorithm is the follow-
ing: If for all cuts (C, V \ C) the cut weight wG(C) is
Ω̃(|C|

√
n/α), then the Õ(|C|

√
n) additive error achieved

by Approach 2 is only an α fraction of wG(C). Phrasing
it differently, the synthetic graph output by Approach 2 al-
ready achieves a (1 + α)-multiplicative approximation for
all the cuts.

Unfortunately, not all graphs satisfy the property described
above, i.e., wG(C) ∈ Ω̃(|C|

√
n/α). Nevertheless, that

observation raises the following question: Can we process
an input graphG so that the resulting graph, or conveniently
chosen subgraphs of G, exhibit that desired property? Our
approach answers this question affirmatively and shows how
to leverage it to obtain the advertised upper bound on the
additive error. We now provide more details.

Graph expanders. Graphs satisfying the above property
coincide with the notion of expander graphs.3 To elaborate,
for a cut (C, V \ C) of the graph, we define its sparsity as

ϕ(C) =
w(C)

min{|C|, |V \ C|}
.

The sparsity of the graph is then defined as ϕ(G) =
min∅⊊C⊊V ϕ(C). If ϕ(G) > ψ, we call G a ψ-expander.
The property considered in the previous paragraph can be
phrased as ϕ(G) ≥ Θ̃(

√
n/α).

Expander decomposition is a popular and powerful algorith-
mic tool that has been studied by numerous groups, e.g.,
(Nanongkai & Saranurak, 2017; Wulff-Nilsen, 2017; Sara-
nurak & Wang, 2019; Chuzhoy et al., 2020; Li & Saranurak,
2021). For any parameter ψ > 0, it is known how to de-
compose the vertices V of an arbitrary weighted graph into

3There are several notions of expanders, including edge, vertex,
and spectral expanders. We use a certain version of edge expanders.

3



Breaking the n1.5 Barrier for Private and Efficient Graph Sparsification via Private Expander Decomposition

V1, . . . , Vk, so that the induced subgraph G[Vi] for every Vi
is a ψ-expander, and the sum of weights of the edges that
are not within any Vi is Õ(nψ). Suppose we can privately
obtain such a decomposition for ψ = Θ̃(

√
n/α). Then, the

sum of weights of the inter-component edges – that we refer
to by Esparse – would be Õ(n1.5/α). We apply Approach 1
to Esparse to obtain a synthetic graph that preserves each cut
with an additive error of Õ(

√
n1.5/α · n) = Õ(n1.25/

√
α).

For the edges within each G[Vi], we apply Approach 2 to
obtain a private graph sparsifier that preserves each cut in
G[Vi] with (1 + α)-multiplicative approximation.

Private expander decomposition. Unfortunately, to the
best of our knowledge, private expander decomposition has
not been studied in the literature.

One natural approach is to execute a non-private expander
decomposition algorithm on a private synthetic graph G̃,
e.g., G̃ obtained by Approach 2. However, this straightfor-
ward approach has a major issue: Let wG(S, T ) be the
sum of the weights of edges between S and T for any
S, T ⊂ V (G), S ∩T = ∅. If G̃[Vi] is a Θ̃(

√
n)-expander, it

does not immediately imply thatG[Vi] is a Θ̃(
√
n)-expander.

In order to achieve so, one would need to lower-bound
1
|C|
∣∣wG(C, Vi \ C)− wG̃(C, Vi \ C)

∣∣ by Θ̃(
√
n), which

the algorithm in Approach 2 does not achieve; it achieves
this bound for V = Vi.4

Hence, instead of applying non-private expander decom-
position algorithms in a black-box way, we privatize an
existing expander decomposition algorithm in a white-box
manner. On a high level, our approach follows the work
by (Nanongkai & Saranurak, 2017). To support weighted
graphs, we replace one of the key subroutines in (Nanongkai
& Saranurak, 2017) with a result from (Li & Saranurak,
2021). As the outcome, we obtain a private expander de-
composition algorithm that, for ψ ≥ n0.5+o(1), decomposes
a graph into ψ-expanders with the total weights of inter-
component edges upper-bounded by ψ ·n1+o(1). Our private
expander decomposition might be of independent interest.

2. Preliminaries
Definition 2.1 (Cut crossing edges). Let G = (V,E,w)
be a weighted graph and S ⊂ V a subset of vertices. We
use wG(S) to denote the total weights of edges with one
endpoint in S and the other endpoint in V \ S. That is,

wG(S) =
∑

{u,v}∈E:u∈S,v∈V \S

w(u, v).

4Such bounds are achievable if we allow negative weights in
G̃ (Upadhyay et al., 2021), but then we will not be able to run
non-private expander decomposition algorithms on G̃ because they
only work for graphs with non-negative edge weights.

G[V1]
G[V2]

G[V3]

C

V3 \ C

(C, V3 \ C) has
sparsity ≥ ψ
in G[V3]

Esparse

Figure 1. For ψ = n0.5+o(1), our algorithm privately obtains a
partition of the vertices ofG into sets V1, . . . , Vk such that (1) each
induced subgraph G[Vi] (red) has sparsity at least ψ and (2) the
total weight of edges between components (blue) is ·̃n1+o(1). We
run the Õ(

√
nm) additive error algorithm by (Eliáš et al., 2020) on

Esparse formed by the blue edges, and the algorithm by (Upadhyay
et al., 2021) on each G[Vi]. The high density of G[Vi] ensures
that the multiplicative approximation can subsume the error of the
latter algorithm.

When it is clear from the context, we omit the subscript G.

Theorem 2.2 ((Upadhyay et al., 2021)). Given a non-
negative weighted n-node graph G = (V,E), there is a
polynomial time (ε, δ)-DP algorithm which outputs a non-
negative weighted graph G̃ on the same vertex set V , such
that with probability 1− λ, for any S ⊆ V ,

∣∣wG(S)− wG̃(S)
∣∣ ≤ O

 |S| log( 1λ )
√
n log n log( 1δ )

ε

 .

To be more precise, we use the synthetic graph Ḡ described
in their Algorithm 8, and the guarantee on the cut values
is implied by their Equation (9). In their paper, they only
formally state the results for the case where λ is a constant,
but they can be easily extended to arbitrarily small λ by
incurring a cost of O(log(1/λ)) (see their discussion after
Theorem 15).

Theorem 2.3 ((Eliáš et al., 2020)). Given a non-negative
weighted n-node graph G = (V,E,w), there is a poly-
nomial time (ε, δ)-DP algorithm for 0 < ε < 1/2 and
0 < δ < 1/2, which outputs a non-negative weighted graph
G̃ on the same vertex set V , such that with high probability,
for every S ⊆ V ,∣∣wG(S)− wG̃(S)

∣∣
≤O

(√
w(E)n log n

ε
log2

(
n log n

δ

))
,

where w(E) denotes the sum of all edge weights.
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The original statement in (Eliáš et al., 2020) does not pro-
vide a high probability guarantee, so we provide a proof in
Appendix A for the above version.

Differential Privacy Tools. We now list basic definitions
and tools we use in the context of differential privacy.
Definition 2.4 (Edge-Neighboring Graphs). Graphs G =
(V,E,w) andG′ = (V,E′, w′) are called edge-neighboring
if there is (u, v) ∈ V 2 such that |w(u, v) − w′(u, v)| ≤ 1
and for all {u′, v′} ̸= {u, v}, u′, v′ ∈ V 2, we have
w(u′, v′) = w′(u′, v′). Non-edges are considered to have
zero weight.
Definition 2.5 (Differential Privacy (Dwork, 2006)). A ran-
domized algorithm A is (ε, δ)-DP if for any neighboring
graphs G and G′ and any set of possible outcomes O of A
it holds Pr (A(G) ∈ O) ≤ eε Pr (A(G′) ∈ O) + δ.

When δ = 0, algorithm A is called pure DP, or only ε-DP.
Theorem 2.6 (Basic composition (Dwork et al., 2006;
Dwork & Lei, 2009)). Consider algorithm A running t
(possibly adaptive) algorithms. If the i-th algorithm is
(εi, δi)-DP, for εi, δi ≥ 0, then A is (

∑
εi,
∑
δi)-DP.

3. Private Cut Sparsifier
In this section, we use our DP expander decomposition
result stated in Theorem 3.1 (which we prove in Section 4)
to describe our algorithm for private cut approximation.
Theorem 3.1. Let 0 < ε, δ < 1/2 be parameters. For any n,
there exists a parameter Ψ(n) = n0.5+o(1)·polylog(1/δ)/ε,
so that given an n-node non-negative weighted graph
G = (V,E,w) and a parameter ψ ≥ Ψ(n), there exists
a polynomial time (ε, δ)-DP algorithm that outputs a par-
tition of V = V1 ⊔ · · · ⊔ Vk, such that with probability
1−O(1/n8),

• For every 1 ≤ i ≤ k, the sparsity of G[Vi] is at least ψ.

• The total weights of inter-component edges is ψ · n1+o(1).

Thus we get the following theorem.
Theorem 3.2. Let 0 < ε, δ < 1/2, 0 < α < 1 be pa-
rameters. Given any non-negative weighted n-node graph
G = (V,E,w), there is an (ε, δ)-DP algorithm running in
polynomial time that outputs a synthetic graph G̃ on the
same vertex set V with non-negative edge weights, so that
with high probability, for every C ⊆ V ,

(1− α)wG(C)−∆ ≤ wG̃(C) ≤ (1 + α)wG(C) + ∆,

for some

∆ =
n1.25+o(1) · polylog 1

δ

α0.5 · ε
. (1)

Proof. The algorithm is described in Algorithm 1.

Algorithm 1 Differentially Private algorithm for preserving
all cuts in a graph

1: Input: An n-node graph G = (V,E,w); DP parame-
ters ε, δ

2: Compute V1, V2, . . . , Vk by invoking Theorem 3.1 on
G with parameters ε/3, δ/3, and ψ = O(Ψ(n)/α ·
polylog(n/δ)) = n0.5+o(1) · polylog(1/δ)/(αε).

3: Let Esparse be the edges of E that are not within any Vi.
4: Let G̃sparse be obtained by applying Theorem 2.3 with

parameter (ε/3, δ/3) to Gsparse = (V,Esparse, w).
5: Let G̃i be obtained by applying Theorem 2.2 on G[Vi]

with privacy parameter (ε/3, δ/3) and λ = 1/n10.
6: return G̃ whose edge weights are the corresponding

edge weights from G̃sparse and {G̃i}ki=1.

3.1. Privacy Guarantee

The only places where Algorithm 1 uses edge weights are
via Theorem 3.1, Theorem 2.3 and Theorem 2.2. Let the
edge difference between two inputs be on e = {u,w}. Note
that there is only one invocation of Theorem 3.1 and one in-
vocation of Theorem 2.3. To see the impact of Theorem 2.2
on privacy, consider the partitioning V1, . . . , Vk of Theo-
rem 3.1, which we assume is the same in both neighboring
graphs. If e is between two partitions, then the subgraph
on each Vi in both neighboring graphs is the same and the
invocations of Theorem 2.2 yield the same output without
losing any privacy. If e is in some partition Vi, then only one
invocation of Theorem 2.2 uses the privacy budget. Hence
in total, at most three invocations of Theorem 3.1, Theo-
rem 2.3 and Theorem 2.2 use privacy budget, and since each
of these invocations is (ε/3, δ/3)-DP, overall the algorithm
is (ε, δ)-DP by basic composition.

3.2. Success Probability

Several favorable events must occur so our algorithm yields
the desired error bounds. First, we need the invocation of
Theorem 3.1 and Theorem 2.3 to succeed. By union bound,
these happen with high probability. Second, we need all
invocations to Theorem 2.2 to succeed. Since there are at
most O(n) invocations, by union bound, the probability that
any one of the invocations fails is O(nλ) = O(1/n9).

By union bound, the probability that none of these failure
events occur is 1− 1/ poly(n). In the rest of our analysis,
we condition on the good events occurring.

3.3. Additive Error Upper Bound

Here, we analyze the additive error of Algorithm 1. Let
C ⊆ V be an arbitrary subset. We aim to prove an upper
bound B on the additive error while allowing a (1 + α)-

5
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factor multiplicative error. That is, we want to show

(1− α)wG(C)−B ≤ wG̃(C) ≤ (1 + α)wG(C) +B.

Hence, it suffices to show the following:∣∣wG̃(C)− wG(C)
∣∣ − α · wG(C) ≤ B. To derive an

upper bound on
∣∣wG̃(C)− wG(C)

∣∣ − α · wG(C), define

Ci
def
= C ∩ Vi for 1 ≤ i ≤ k, where Vi is obtained by

Theorem 3.1. Then,∣∣wG̃(C)− wG(C)
∣∣− α · wG(C)

≤
(∣∣∣wG̃sparse

(C)− wGsparse(C)
∣∣∣− α · wGsparse(C)

)
+

k∑
i=1

(∣∣∣wG̃i
(Ci)− wGi(Ci)

∣∣∣− α · wGi(Ci)
)
.

We now analyze each of the two terms separately.

Additive error of Gsparse. Since∣∣∣wG̃sparse
(C)− wGsparse(C)

∣∣∣− α · wGsparse(C)

≤
∣∣∣wG̃sparse

(C)− wGsparse(C)
∣∣∣ ,

we focus on upper-bounding the latter term.

By Theorem 3.1, the total edge weights of edges cross-
ing two diffrent Vi and Vi, w(Esparse), are ψ · n1+o(1) =
n1.5+o(1) polylog(1/δ)/(αε).

Therefore, by Theorem 2.3, we conclude that

∣∣∣wG̃sparse
(C)− wGsparse(C)

∣∣∣ ≤ Õ(√w(Esparse)n

ε

)

=
n1.25+o(1) · polylog 1

δ

α0.5 · ε
. (2)

Additive error of Gi. Let ni be the number of vertices in
Vi. As a reminder, we defined Ci

def
= C ∩ Vi, where Vi is

obtained by Theorem 3.1. Let Di be the smaller one of Ci

and Vi \ Ci.

By Theorem 2.2, we have
∣∣∣wG̃i

(Di)− wGi(Di)
∣∣∣ ≤

|Di|
√
n polylog(n/δ)

ε . By Theorem 3.1, we have
ϕGi(Di) ≥ ψ, which implies wGi(Di) ≥ |Di|ψ =
|Di|n0.5+o(1)·polylog(1/δ)

αε . Hence, we have∣∣∣wG̃i
(Ci)− wGi

(Ci)
∣∣∣− α · wGi

(Ci)

=
∣∣∣wG̃i

(Di)− wGi
(Di)

∣∣∣− α · wGi
(Di) ≤ 0, (3)

if we set the polylog(n/δ) factor in ψ large enough.

Putting everything together. By combining all the cases,
i.e., Equations (2) and (3), the final upper-bound on the

additive error can be written as n1.25+o(1)·polylog 1
δ

α0.5·ε . This
concludes the proof.

We are now ready to prove Theorem 1.1. The difference
between Theorem 3.2 and Theorem 1.1 is that the latter out-
puts a sparse graph with a near linear number of edges. The
proof of Theorem 1.1 follows directly from Theorem 3.2:
we obtain a synthetic private graph G̃. Then, we run a
vanilla non-private cut-sparsification algorithm (which is
private via post-processing), such as (Benczúr & Karger,
1996), on G̃, giving us a spare synthetic graph. Given a
non-negative weighted graph and a parameter γ, the algo-
rithm from (Benczúr & Karger, 1996) outputs a sparse graph
with Õ(n/γ2) edges in polynomial time where all cuts are
approximated with a (1 + γ)-multiplicative factor.

Proof of Theorem 1.1. Let γ′ = γ/100. We run Theo-
rem 3.2 to compute a synthetic graph G̃ with α = γ′, and
then run (Benczúr & Karger, 1996)’s algorithm with parame-
ter γ′ on G̃ to find H . Let ∆ = n1.25+o(1) polylog(1/δ)

εγ0.5 be the
additive error guaranteed by Theorem 3.2. By the guarantee
of (Benczúr & Karger, 1996), the number of edges of H is
Õ(n/γ2), and for any S ⊆ V , we have

|wG(S)− wH(S)|
≤
∣∣wG(S)− wG̃(S)

∣∣+ ∣∣wG̃(S)− wH(S)
∣∣

≤ (γ′wG(S) + ∆) +
(
γ′ · wG̃(S)

)
≤ (γ′wG(S) + ∆) + (γ′ · ((1 + γ′) · wG(S) + ∆))

≤ γ · wG(S) +O(∆).

4. Private Expander Decomposition
In this section we describe how to design a private expander
decomposition algorithm. To that end, we first state a result
that directly follows from prior work.

Theorem 4.1 (Theorem 2.14 in (Li & Saranurak, 2021)).
Given a positive weighted n-node graph G = (V,E,w)
where the ratio between the largest edge weight and the
smallest edge weight is bounded by U , and parameter ψ >
0, there is a deterministic poly(n, logU)-time algorithm
that finds a cut (S, V \ S) with |S| ≤ |V \ S| such that

• w(S) ≤ ψ|S|;

• For any cut (S′, V \ S′) with |S′| ≤ |V \ S′| and
w(S′) ≤ ψ|S′|/dexp, we have that |S| ≥ |S′|/dsize

for some parameters 1 ≤ dexp(n) = logO(1)(n), 1 ≤
dsize(n) = O(1).
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Note that Theorem 4.1 essentially gives a bicriteria-
approximation of the largest set with sparsity at most ψ,
where the approximation factors are denoted by dexp and
dsize. In other words, the size of the set S output by The-
orem 4.1 is a dsize-approximation of the largest set with
sparsity at most ψ/dexp.

To obtain Theorem 4.1, we set the demand vector d to
be the all-1 vector, and r = 1 in Theorem 2.14 in (Li &
Saranurak, 2021). See also other versions of the results in,
e.g., (Nanongkai & Saranurak, 2017; Wulff-Nilsen, 2017;
Chuzhoy et al., 2020).

Note that Theorem 4.1 may return S = ∅, in which case it
certifies that ϕ(S′) > ψ/dexp for all cuts (S′, V \ S′) with
0 < |S′| < n. By combining Theorem 2.2 and Theorem 4.1,
we can obtain a private version of Theorem 4.1 in a black-
box way:

Theorem 4.2. Let ε, δ, λ ∈ (0, 1/2) be parameters. For any
n, there exists Ψ(n) = Ω̃(log(1/λ)

√
n/ε), so that given a

non-negative weighted n-node graph G = (V,E,w) and
parameter ψ ≥ Ψ(n), there is a polynomial time (ε, δ)-DP
algorithm that finds a cut (S, V \ S) with |S| ≤ |V \ S|
such that with probability 1− λ it holds:

• w(S) ≤ ψ|S|;

• For any cut (S′, V \ S′) with |S′| ≤ |V \ S′|
and w(S′) ≤ ψ|S′|/cexp, we have that |S| ≥
|S′|/csize for some parameters cexp(n) = 2dexp(n) =

logO(1)(n), csize(n) = dsize(n) = O(1).

Proof. We first apply Theorem 2.2 with parameters ε, δ, λ
to the input graph to obtain a graph G̃. With proba-
bility 1 − λ, we have

∣∣wG(S)− wG̃(S)
∣∣ ≤ ∆|S| for

∆ = O(log(1/λ)
√
n log n log(1/δ)/ε), for all S ⊆ V .

We assume this holds in the remainder of the proof. Let
Ψ(n) = 10∆dexp(n).

If some edge in G̃ has weight smaller than ψ/10n, we
simply remove this edge. Furthermore, if some edge in G̃
has weight greater than ψn, we set its weight to ψn. We
call the updated graph G̃′. This way, the ratio between the
largest edge weight and the smallest edge weight in G̃′ is
bounded by U = O(n2).

Then we run Theorem 4.1 on G̃′ with parameter 0.8ψ to
obtain a cut (S, V \ S) with |S| ≤ |V \ S|. The running
time is hence poly(n, logU) = poly(n).

Theorem 4.1 guarantees that (1) wG̃′(S) ≤ 0.8ψ|S| and (2)
For any cut (S′, V \S′) with |S′| ≤ |V \S′| andwG̃′(S

′) ≤
0.8ψ|S′|/dexp, we have |S| ≥ |S′|/dsize = |S′|/csize. Then,

• Because wG̃′(S) ≤ 0.8ψ|S|, there is no edge in the cut
with weight ψn. Hence, the difference between wG̃′(S)

and wG̃(S) is only caused by edges in G̃ with weight
smaller than ψ/10n. Therefore, wG̃(S) ≤ wG̃′(S) +
(ψ/10n) · |S|(n− |S|) ≤ 0.9ψ|S|. Furthermore,

wG(S) ≤ wG̃(S) +
∣∣wG(S)− wG̃(S)

∣∣
≤ 0.9ψ|S|+∆|S| ≤ ψ|S|,

where the final step holds because ψ ≥ Ψ(n) ≥ 10∆dexp.

• For any cut (S′, V \ S′) with |S′| ≤ |V \ S′| and
wG(S

′) ≤ ψ|S′|/cexp, we have

wG̃(S
′) ≤ wG(S

′) +
∣∣wG(S

′)− wG̃(S
′)
∣∣

≤ ψ|S′|/cexp +∆|S′| = ψ|S′|/2dexp +∆|S′|.

The above can be upper bounded by 0.6ψ|S′|/dexp be-
cause ψ ≥ Ψ(n) ≥ 10∆dexp. Furthermore, wG̃′(S

′) ≤
wG̃(S

′) because we only decrease edge weights or re-
move edges in G̃′ compared to G̃. Therefore,

wG̃′(S
′) ≤ 0.6|S′|/dexp ≤ 0.8|S′|/dexp,

and we can apply the second guarantee of Theorem 4.1 to
obtain |S| ≥ |S′|/csize as desired.

The privacy guarantee follows because Theorem 2.2 is (ε, δ)-
DP, and the remainder of the algorithm is post-processing
on the private output of Theorem 2.2.

Using Theorem 4.2, one could obtain a private expander
decomposition algorithm using the method in (Nanongkai
& Saranurak, 2017) for a given graph G and a sparsity
parameter ψ. To describe the algorithm, we define a
few parameters. If n is the number of vertices in the
input graph, then c̄size = csize(n), c̄exp = cexp(n), and
σ =

√
log c̄exp/ log n. s̄1, . . . , s̄L are parameters where

s̄1 = n/2 + 1, s̄i = s̄i−1/n
σ for i > 1, and L is the

smallest integer where s̄L ≤ 1 (these imply L = O(1/σ)).
Also, let ψi = ψ · (c̄exp)

L−i+1 for 1 ≤ i ≤ L. Let
A(H,ψ) be the returned result of applying Theorem 4.2 on
graph H with DP parameters ε′ = ε/(Lc̄sizen

σ log n), δ′ =
δ/(Lc̄sizen

σ log n), probability parameter λ = 1/n10, and
sparsity parameter ψ.

The algorithm is described in Algorithm 2. Note that com-
pared to (Nanongkai & Saranurak, 2017), our description of
the algorithm omits one variable I to the recursive calls, as
it was not used by the algorithm and only used for analysis
in (Nanongkai & Saranurak, 2017).

The following two lemmas summarize some of the re-
sults proved in (Nanongkai & Saranurak, 2017) regarding
Algorithm 2. Lemma 4.3 shows that Algorithm 2 satis-
fies the properties we want for our expander decomposi-
tion, and Lemma 4.4 bounds the recursion depth of Algo-
rithm 2 which is used in proving privacy. Even though in
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Algorithm 2 The expander decomposition algorithm in
(Nanongkai & Saranurak, 2017). A(H,ψ) is the returned
result of applying Theorem 4.2 on graph H with DP pa-
rameters ε′ = ε/(Lc̄sizen

σ log n), δ′ = δ/(Lc̄sizen
σ log n),

probability parameter λ = 1/n10, and sparsity parameter
ψ.

1: Input: A graph H = (V,E,w); a level parameter ℓ
2: S ← A(H,ψℓ)
3: if H is a singleton or S = ∅ then
4: return H
5: else
6: if |S| ≥ s̄ℓ+1/c̄size then
7: Recurse on (H[S], 1) and (H[V \S], ℓ), and return

union of the results
8: else
9: Recurse on (H, ℓ+ 1) and return the result.

10: end if
11: end if

(Nanongkai & Saranurak, 2017) their whole algorithm is
stated to work for unweighted graphs, these two lemmas
still work for weighted graphs with little to no change of
their proofs. The only slight change needed is for the second
bullet point of Lemma 4.3, where (Nanongkai & Saranurak,
2017) showed an upper bound on the number of edges, but
the same method can be extended to bound the total weight
of edges for weighted graphs in a straighforward manner.

Lemma 4.3 ((Nanongkai & Saranurak, 2017)). IfA always
correctly returns a set S that satisifes the guarantees in
Theorem 4.2, then Algorithm 2 on input (G = (V,E,w), 1)
for an n-node non-negative weighted graph G returns a
partition of V = V1 ⊔ · · · ⊔ Vk, such that

• For every 1 ≤ i ≤ k, the sparsity of G[Vi] is at least ψ.

• The total weights of edges between different parts Vi and
Vj for i ̸= j is O(ψ1n log n) = ψ · n1+o(1).

Lemma 4.4 ((Nanongkai & Saranurak, 2017)). The re-
cursion depth of Algorithm 2 on input (G, 1) is at most
Lc̄sizen

σ log n = no(1).

Now we are ready to prove Theorem 3.1

Proof of Theorem 3.1. The algorithm is to simply call Al-
gorithm 2 with input (G, 1) and the value of Ψ(n) is the
same as that from Theorem 4.2.

In order to apply Lemma 4.3, we need to show that all
invocations of algorithm A are correct with probability 1−
O(1/n8). On each recursion level, the set of vertices in
all the graphs H in the recursive calls are disjoint, so the
total number of recursive calls on each recursion level is
O(n). As the recursion depth is no(1) by Lemma 4.4, the

total number of recursive calls, and hence the total number
of invocations ofA, is n1+o(1). By union bound, the overall
success probability is ≥ 1− λ · n1+o(1) = 1−O(1/n8).

We also need to guarantee that all invocations of Theo-
rem 4.2 have sparsity parameter > Ψ(|H|) as required.
This holds because the smallest sparsity parameter we use
is ψL = ψ > Ψ(n) ≥ Ψ(|H|).

Hence, all invocations of A are correct with probability
1−O(1/n8), so the correctness follows from Lemma 4.3.

Finally, we analyze the privacy guarantee of Algorithm 2.
Let the edge difference between two inputs be at e = {u,w}.
Observe that when Algorithm 2 recurses, the edge e affects
at most one of the recursive calls. Therefore, the number
of recursive calls affected by e is upper-bounded by the
recursion depth, which is bounded by Lc̄sizen

σ log n. The
only part in Algorithm 2 that uses edge weights is via A,
which is (ε/Lc̄sizen

σ log n, δ/Lc̄sizen
σ log n)-DP. Hence,

Algorithm 2 is (ε, δ)-DP by basic composition.

5. Applications
We highlight some downstream applications of our main
result beyond the improved error bound for private all-cuts.
These applications include many of those in prior DP graph
cut works, e.g., (Arora & Upadhyay, 2019), except we use
our improved bound from Theorem 1.1 as needed. We
present our max-cut application in the main body and dis-
cuss our other applications to the maximum-bisection, max-
k-cut, and minimum-bisection problems in Appendix B.

Max-Cut. In the Max-Cut problem, we are given a
weighted graph G (with non-negative weights), and the
goal is to output a subset S ⊆ V maximizing wG(S). Goe-
mans and Williamson gave a polynomial time algorithm
for computing a ζGW − η approximation for any η > 0
where ζGW ≈ 0.87856 (Goemans & Williamson, 1995).
Furthermore, it is known that assuming the Unique-Games
conjecture, it is NP-Hard to approximate Max-Cut to any
factor better than ζGW +ρ for any ρ > 0 (Khot et al., 2007).

With respect to DP, the prior state-of-the-art algorithms ob-
tain the same multiplicative approximation as above, with
additional additive error coming from cut-sparsification. In
particular, it is known that for any fixed η > 0, there is
a polynomial time algorithm satisfying ε-DP with respect
to edge-neighboring graphs, which on any non-negative
weighted input graph G = (V,E), outputs a subset S ⊆
V satisfying wG(S) ≥ (ζGW − η)maxS′⊆V wG(S

′) −
Õ
(

n1.5

ε

)
, meeting the same Õ(n1.5) factor from cut-

sparsification (Gupta et al., 2012).

We note that even if approximate-DP is allowed, there
are no algorithms obtaining better than Õ(n1.5) error, al-
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though we remark that (Arora & Upadhyay, 2019) ob-
tain a more refined guarantee with error of the form
Õ(|S′|

√
npolylog(1/δ)/ε) where |S′| is the cardinality of

the optimal set maximizing the cut value. However, in the
worst case, this bound is still Ω̃(n1.5). Using our synthetic
graph leads to improved guarantees, a corollary of our main
theorem, with a full proof in Appendix B.

Corollary 5.1 (Corollary of our Main Theorem 3.2). For
any fixed η > 0, there exists a polynomial time (ε, δ)-DP
algorithm that on any non-negative weighted n-node graph
G = (V,E,w) outputs a subset S ⊆ V satisfying (with
high probability) that wG(S) is at least

(ζGW − η) max
S′⊆V

wG(S
′)−O(∆).

6. Conclusion
Given a graph G, we develop an algorithm that, in a DP
manner, computes a synthetic graph whose cut values are
close to those in G. On n-node graphs with more than n1.5

edges, our algorithm imposes significantly lower additive
error than the prior work. We obtain this result by decom-
posing the input graph into sparse and dense regions. As
a byproduct, we show how to design a DP algorithm for
expander decomposition. One interesting open question is
whether private expander decomposition has applications
beyond all cuts.

Our work leaves a few intriguing questions. Perhaps the
most natural one is whether the additive error can be re-
duced beyond n1.25 while still allowing for a multiplicative
approximation. Interestingly, an improved additive error (at
the cost of allowing multiplicative errors) for graphs with
roughly n1.5 edges would directly imply improvements for
all graphs by plugging it into our method. This yields an-
other open question: What is the range of the number of
edges m ≫ n for which the

√
mn additive error can be

polynomially improved while allowing multiplicative er-
rors?
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Eliáš, M., Kapralov, M., Kulkarni, J., and Lee, Y. T. Dif-
ferentially private release of synthetic graphs. In Pro-
ceedings of the 14th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 560–578, 2020.

Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., and
Zhang, J. On graph problems in a semi-streaming model.
Theoretical Computer Science, 348(2-3):207–216, 2005.

Frieze, A. and Jerrum, M. Improved approximation algo-
rithms for MAX k-CUT and MAX BISECTION. Algo-
rithmica, 18(1):67–81, 1997.

Garey, M. R., Johnson, D. S., and Stockmeyer, L. Some
simplified NP-complete problems. In Proceedings of the
sixth annual ACM symposium on Theory of computing,
pp. 47–63, 1974.

Goemans, M. X. and Williamson, D. P. Improved approx-
imation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of
the ACM (JACM), 42(6):1115–1145, 1995.

Gupta, A., Ligett, K., McSherry, F., Roth, A., and Talwar,
K. Differentially private combinatorial optimization. In
Proceedings of the 21st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2010.

Gupta, A., Roth, A., and Ullman, J. R. Iterative construc-
tions and private data release. In Proceedings of the 9th
Theory of Cryptography Conference (TCC), volume 7194,
pp. 339–356, 2012. doi: 10.1007/978-3-642-28914-9\
19.

Hay, M., Li, C., Miklau, G., and Jensen, D. Accurate
estimation of the degree distribution of private networks.
In 2009 Ninth IEEE International Conference on Data
Mining, pp. 169–178. IEEE, 2009.

Karger, D. R. Random sampling in cut, flow, and network de-
sign problems. In Proceedings of the twenty-sixth annual
ACM symposium on Theory of computing, pp. 648–657,
1994.

Khot, S., Kindler, G., Mossel, E., and O’Donnell, R. Opti-
mal inapproximability results for MAX-CUT and other
2-variable CSPs? SIAM Journal on Computing, 37(1):
319–357, 2007.

Li, J. and Saranurak, T. Deterministic weighted ex-
pander decomposition in almost-linear time. CoRR,
abs/2106.01567, 2021.

Li, Y., Purcell, M., Rakotoarivelo, T., Smith, D., Ranbaduge,
T., and Ng, K. S. Private graph data release: A survey.
ACM Computing Surveys, 55(11):1–39, 2023.

Liu, J., Upadhyay, J., and Zou, Z. Optimal bounds on private
graph approximation. In Proceedings of the 2024 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 1019–1049, 2024.

Nanongkai, D. and Saranurak, T. Dynamic spanning forest
with worst-case update time: adaptive, Las Vegas, and
O(n1/2 - ϵ)-time. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pp.
1122–1129. ACM, 2017. doi: 10.1145/3055399.3055447.

Narayanan, A. and Shmatikov, V. Robust de-anonymization
of large sparse datasets. In Proceedings of the 2008 IEEE
Symposium on Security and Privacy (SP), pp. 111–125,
2008.
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A. Proof of Theorem 2.3
Proof of Theorem 2.3. In order to prove the theorem, we first introduce the notion of cut norm. For any real n by n matrix
A, the cut norm of A is defined as

∥A∥C = max
I,J⊆[n]

∣∣∣∣∣∣
∑
i∈I

∑
j∈J

Ai,j

∣∣∣∣∣∣ .
Given any matrix A, there is a polynomial time algorithm that outputs an estimate ∥̃A∥C such that 0.56∥A∥C ≤ ∥̃A∥C ≤
∥A∥C (Alon & Naor, 2006).

For an undirected graph G, let WG denote its weighted adjacency matrix. Given a non-negative weighted graph G, (Eliáš
et al., 2020) showed an (ε, δ)-DP polynomial time algorithm that outputs a non-negative weighted graphs G̃ such that

E
[
∥WG −WG̃∥C

]
≤ O

(√
w(E)n

ε
log2

(n
δ

))
.

Let L be O(log n) with a sufficiently large constant hidden in front of O. We run (Eliáš et al., 2020)’s algorithm
with parameters (ε/L, δ/L) independently for L times to obtain G̃1, . . . , G̃L. By Markov’s inequality, for each G̃i,

E
[
∥WG −WG̃i

∥C
]
≤ ∆ for some ∆ = O

(√
w(E)n logn

ε log2
(

n logn
δ

))
with probability at least 2/3.

The algorithm then proceeds to compute an approximation d̃i,j of ∥G̃i − G̃j∥C for every i, j ∈ [L] using (Alon & Naor,
2006)’s algorithm. The algorithm then outputs an arbitrary G̃i as the result where d̃i,j ≤ 2∆ for more than half of the
indices j ∈ [L] (break ties arbitrarily; if there is no such i satisfying the requirement, the algorithm may output an empty
graph).

First of all, this graph is (ε, δ)-DP by basic composition.

Next, we show the correctness of the algorithm with high probability. By standard concentration bounds,
E
[
∥WG −WG̃i

∥C
]
≤ ∆ holds for more than half of the synthetic graphs G̃i with high probability. We next condi-

tion on this event.

Let I ⊆ [L] with |I| > L/2 be the set of indices i with E
[
∥WG −WG̃i

∥C
]
≤ ∆. For any i, j ∈ I ,

d̃i,j ≤ ∥WG̃i
−WG̃j

∥C ≤ ∥WG̃i
−WG∥C + ∥WG −WG̃j

∥C ≤ 2∆.

Hence, for any i ∈ I , the number of j where d̃i,j ≤ 2∆ is more than L/2, so the algorithm will not output an empty graph.

Now let G̃i be the graph output by the algorithm. Since there are more than L/2 indices j with d̃i,j ≤ 2∆, and |I| > L/2,
there must exist some j ∈ I where d̃i,j ≤ 2∆. Then

∥WG̃i
−WG∥C ≤ ∥WG̃i

−WG̃j
∥C + ∥WG̃j

−WG∥C ≤
1

0.56
d̃i,j +∆ = O(∆).

For any cut (S, V \ S), we have

∣∣∣wG̃i
(S)− wG(S)

∣∣∣ =
∣∣∣∣∣∣
∑
u∈S

∑
v∈V \S

(
WG̃i

−WG

)
u,v

∣∣∣∣∣∣ ≤ ∥WG̃i
−WG∥C = O(∆),

as desired.

B. Omitted Applications
We discuss additional applications of our main result to the maximum bisection, max-k-cut, and minimum bisection
problems. We also give the full proof of Corollary 5.1 for our max-cut application.
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Max-Cut.

Proof of Corollary 5.1. The algorithm is straightforward. We compute our private synthetic graph G̃ on the input graph
G, letting α = η/100 in Theorem 3.2. Then, we run the best off-the-shelf approximation algorithm for max-cut on G̃.
This yields a solution in G̃ with ζGW − η/100 multiplicative error. Note that privacy is not affected since the latter step is
post-processing. In our private synthetic graph, every cut is approximated up to additive error ∆ as defined in Equation 1.
Letting S be the subset of V that we output, we have

wG(S) ≥
1

1 + α
wG̃(S)−∆

≥ ζGW − η/100
1 + α

max
S′⊆V

wG̃(S
′)−∆

≥ ζGW − η/100
1 + α

max
S′⊆V

((1− α)wG(S
′)−∆)−∆

≥ (ζGW − η/100)(1− α)
1 + α

max
S′⊆V

wG(S
′)−O(∆)

≥ (ζGW − η) max
S′⊆V

wG(S
′)−O(∆),

as desired.

Maximum-Bisection and Max-k-Cut. The Maximum-Bisection problem is a well-studied variant of Max-Cut with
balance constraints. More precisely, given a weighted graph G, we seek to find a cut S satisfying |S| = n/2 – we can
assume n is even by adding an isolated node – such that wG(S) is maximized (Frieze & Jerrum, 1997).

Max-k-Cut is an alternate way to generalize Max-Cut where we seek to partition V into k pieces, maximizing the total weight
of edges across distinct pieces (Frieze & Jerrum, 1997). Since these problems generalize Max-Cut, both problems cannot be
solved exactly in polynomial time unless P = NP . Furthermore, similar to Max-Cut, it is known that Maximum-Bisection
cannot be approximated better than ζGW + η for any η > 0 (Khot et al., 2007; Raghavendra & Tan, 2012), under the
Unique-Games conjecture. For upper bounds, it is known that Maximum-Bisection can be approximated to a factor ζMB−η
for any η > 0 where ζMB ≈ 0.8776 (note that this is not quite the same as ζGW , although it is close) (Austrin et al., 2016),
and Max-k-Cut can be approximated to a multiplicative factor ck > 1− 1/k for any k ≥ 1 (Frieze & Jerrum, 1997; de Klerk
et al., 2004). We remark that better bounds are known for small values of k (Frieze & Jerrum, 1997; de Klerk et al., 2004).

To obtain DP algorithms for these problems, we follow the same approach as for the previous applications. Namely, we
invoke the appropriate non-private optimization algorithms on a private synthetic graph, resulting in an ε-DP algorithm with
the same multiplicative factor approximation as non-private, and with additive error Õ(n1.5/ε) in the Maximum-Bisection
problem, and Õ(kn1.5/ε) for Max-k-Cut. For example, this follows from the work of (Gupta et al., 2012).

Our main result yields improved bounds, as stated by the following claim. The proof is almost identical to that of Corollary
5.1, so we omit it.

Corollary B.1 (Corollary of our Main Theorem 3.2). There exists a polynomial time (ε, δ)-DP algorithm that on any
non-negative weighted n-node graph G = (V,E,w) outputs a subset S ⊆ V, |S| = n/2 satisfying (with high probability)
that wG(S) is at least

(ζMB − η) max
S′⊆V,|S′|=n/2

wG(S
′)−

n1.25+o(1) · polylog 1
δ

ε
.

Similarly, for any k ≥ 1, there exists an (ε, δ)-DP algorithm that runs in time poly(n, log log(1/δ), log(1/ε)) and partitions
V into S1, · · · , Sk such that (with high probability) the total weight of the edges between distinct partitions is at least
(ck − η) fraction of the optimal solution up to an additive error

kn1.25+o(1) · polylog 1
δ

ε
.

Minimum-Bisection. This application is the natural minimizing variant of Maximum-Bisection. Recall that a bisection of
a graph is a partition of its nodes into two equal-sized sets, so we want to minimize w(S) subject to |S| = n/2.. The cost of
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a bisection is the weighted cost of edges crossing the cut. The study of this problem can be traced back to almost five decades
ago (Garey et al., 1974), and it is known that solving the problem exactly is NP-hard. The best-known polynomial-time
algorithm achieves a O(log n)-approximation (Räcke, 2008).

Concerning DP, prior work on DP all-cuts can again be applied straightforwardly (simply run the bisection algorithm of
(Räcke, 2008) as post-processing), which gives an ε-DP algorithm computing the minimum-bisection with multiplicative
approximation O(log(n)) and additive error Õ(n1.5/ε). Again, we note that even if approximate DP is allowed, previous
algorithms cannot improve the additive error. Our main theorem gives the following corollary, which is obtained by again
running the standard bisection algorithm of (Räcke, 2008) on the output of our main theorem as post-processing.

Corollary B.2 (Corollary of our Main Theorem 3.2). There is a polynomial time algorithm satisfying (ε, δ)-DP, which on
any nonnegative weighted n-node graph G = (V,E,w) outputs a subset S ⊆ V satisfying |S| = n/2 and wG(S) is (with
high probability) at most

O(log(n)) · min
S′⊆V,|S′|=n/2

wG(S
′) +

n1.25+o(1) · polylog 1
δ

ε
.

14


