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ABSTRACT

Existing reward shaping techniques for sparse-reward tasks in reinforcement
learning generally fall into two categories: novelty-based exploration bonuses and
value-based rewards. The former encourages agents to explore less visited areas
but can divert them from their main objectives, while the latter promotes stable
late-stage convergence but often lacks sufficient early exploration. To combine
the benefits of both, we propose Dual Random Networks Distillation (DuRND),
a novel framework integrating two lightweight random network modules. These
modules jointly generate two rewards: a novelty reward to drive exploration and
a contribution reward to evaluate progress toward desired behaviors, achieving an
efficient balance between exploration and exploitation. With low computational
overhead, DuRND excels in high-dimensional environments like Atari, VizDoom,
and MiniWorld, outperforming several benchmarks.

1 INTRODUCTION

Model-Free Reinforcement Learning (MFRL) involves an agent learning optimal policies to maxi-
mize cumulative rewards within an environment, without any prior model of its dynamics (Sutton
& Barto, 2018). One pivotal challenge in MFRL is balancing exploration and exploitation, both
are critical stages for effective agent learning. Sufficient exploration is vital, particularly in tasks
with extremely sparse rewards where feedback is only available at the end of each episode. In such
scenarios, directed exploration is necessary for agents to identify all samples that potentially yield
positive effects (Ladosz et al., 2022). Conversely, in later training phases, exploitation becomes cru-
cial to reinforce behaviors that are known to be successful in maximizing rewards, which is essential
for stable convergence. Therefore, it is imperative to develop strategies that leverage information to
align closely with the agent’s overarching goals.

One well-studied line of work is reward shaping (RS), which designs additional rewards to supple-
ment the sparse environmental rewards, providing fine-grained, immediate feedback (Sorg et al.,
2010a;b). Introducing exploration bonus as auxiliary rewards stands out as a promising RS ap-
proach. By rewarding highly for novel states, it explicitly guides the agent to explore regions with
insufficient experience (Baldassarre et al., 2013; Bellemare et al., 2016; Zheng et al., 2018; Dev-
idze et al., 2022). However, since novelty does not necessarily correlate with meaningfulness or
align with the agent’s ultimate goals, continuously rewarding novelty may cause agents to dispro-
portionately focus on samples from suboptimal trajectories or even dangerous regions during the
stabilization stages, thereby distracting them from converging to optimal policies. The well-known
”noisy TV” problem is a prime example, where agents become captivated by highly novel but irrele-
vant TV channels in a maze navigation task (Mavor-Parker et al., 2022). Consequently, agents need
to recover from novelty rewards and shift towards exploitation gradually.

On the other hand, hidden value based RS approaches primarily develop task-related signals to
reveal the extent to which states contribute to achieving higher environmental rewards and their
inherent significance, e.g., the distance to the goal state, thereby enhancing exploitation (Trott et al.,
2019; Memarian et al., 2021; Ma et al., 2024b;a). Compared to the exploration-centric approaches
discussed earlier, these methods rely on their backbone algorithms’ exploration strategies. Although

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

highly efficient in exploiting known experiences, they often struggle in extremely sparse-reward
environments due to the lack of directional guidance toward effective exploration.

Building on the insights from both exploration bonus and hidden value RS approaches, a natural
research question arises: How can we devise a mechanism that computes both types of rewards ef-
ficiently, with minimal computational overhead and design efforts, while seamlessly evolving the
reward structure from exploration to exploitation? To this end, and inspired by Random Network
Distillation (RND), which is initially developed to measure how different a state is from those pre-
viously encountered (Burda et al., 2018), we extend this concept to propose the Dual Random
Networks Distillation (DuRND, pronounced “Durian”) framework.

DuRND incorporates two distinct Random Network (RN) modules: a success RN module for states
from successful trajectories and a failure RN module for states from failed trajectories. The sparse
environmental rewards determine whether a trajectory is successful or failed. (We also extend the
DuRND framework to accommodate more commonly sparse-reward scenarios, where the reward
does not explicitly indicate task completion.) With the dual RN modules, we can concurrently derive
two types of rewards: (a) the novelty reward, which evaluates how distinct a state is from all previ-
ously encountered states, and (b) the contribution reward, which assesses a state’s historical success
ratio, defined as the proportion of a state’s presence in successful trajectories relative to its total oc-
currences. The success ratio quantifies the state’s likelihood and contribution toward successful task
completion or achieving high rewards, tightly aligning with the agent’s objectives. Furthermore, we
introduce a reward adjustment scheme that dynamically evolves from rewarding novelty to reward-
ing contribution as learning progresses, achieving an efficient exploration-exploitation balance. The
main contributions of this paper are:

(i) We propose DuRND utilizing two RN modules to jointly compute two types of rewards: a nov-
elty reward to encourage directed exploration and a contribution reward to enhance experience
exploitation. By dynamically evolving the reward structure, DuRND achieves exploration-
efficient and convergence-stable learning in sparse-reward tasks.

(ii) The rewards computation of DuRND requires lightweight computational overhead. Different
from some RS methods that depend on auxiliary agents, historical states buffers, or pseudo-
count estimation (Bellemare et al., 2016; Ostrovski et al., 2017; Mguni et al., 2023; Ma et al.,
2024b), DuRND operates only with two RN modules, providing remarkable scalability in
high-dimensional environments.

(iii) The effectiveness and efficiency of DuRND are validated across a variety of sparse-reward
tasks with high-dimensional states, demonstrating its superior performance compared to sev-
eral benchmarks.

2 BACKGROUND

Reinforcement Learning (RL) operates within the framework of Markov Decision Processes
(MDP), formalizing the interaction between an agent and an environment as a tuple ⟨S,A, T,R, γ⟩.
S and A are state space and action space, respectively, T : S × A × S → [0, 1] is the transi-
tion function, R : S → R is the reward function, and γ ∈ [0, 1] is the discount factor. This
paper studies stochastic policies π : S × A → [0, 1] that maximize the expected discounted re-
turn Eτ [

∑∞
t=0 γ

tR(st)], where τ = (s0, a0, s1, a1, . . .) is a trajectory of states and actions, and
st+1 ∼ T (·|st, at), at ∼ π(·|st). Common techniques in model-free RL encompass value-based
methods, policy-based methods, and their hybrid, actor-critic methods (Sutton & Barto, 2018).

Random Network Distillation (RND) motivates agents to explore the less frequently visited states
by incorporating novelty as an exploration bonus (Burda et al., 2018). RND introduces two neural
networks: a fixed and randomly initialized target network f(o) : O → Rk, and a trainable pre-
dictor network f̂(o; θ) : O → Rk. Both networks map an observation o ∈ O to a k-dimensional
feature embedding. The predictor network is trained to minimize the mean squared error (MSE)
e = ∥f̂(o; θ) − f(o)∥2 through gradient descent. This MSE for a specific observation o is also
used to quantify its novelty, as higher errors are expected for states that are dissimilar to those the
predictor has been trained on previously, thereby the exploration bonus is defined as rrnd = e. As
the predictor is trained with samples collected by the agent, it gradually develops a “memory” of the
states it has seen. RND has proven effective in assessing novelty to encourage exploration.
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3 RELATED WORK

Exploration Bonuses as shaping rewards have been widely used to guide the exploration direc-
tions. The most intuitive method is the count-based approach, where the novelty of each state is
assessed by its visitation frequency (Strehl & Littman, 2008). To adapt state counting to continu-
ous or unlimited state spaces, pseudo-counts were introduced (Bellemare et al., 2016), with several
works studied how to estimate the pseudo-counts (Fox et al., 2018; Badia et al., 2020; Devidze
et al., 2022). Specifically, Bellemare et al. (2016) derived from the Context Tree Switching model,
Fu et al. (2017) used exemplar models for implicit density estimation, Tang et al. (2017) discretized
continuous states using hash functions, and Machado et al. (2020) incorporated the successor repre-
sentation. Although tractable, these methods often require extensive storage resources or inference
time. Following the pseudo-count concept, neural network-based methods have been developed.
Ostrovski et al. (2017) used PixelCNN (Van den Oord et al., 2016) for density estimation; Martin
et al. (2017) used the feature representation from value approximation networks; Lobel et al. (2023)
derived the pseudo-counts by averaging samples from the Rademacher distribution; and Burda et al.
(2018) introduced Random Network Distillation to assess state novelty, while Yang et al. (2024) fur-
ther improved the precision of bonus allocation. Our work extends the RND approach to efficiently
count state visitations in high-dimensional spaces.

Hidden Values as shaping rewards effectively guide the optimization direction of agents to acceler-
ate the convergence. One common approach is to extract reward models from expert demonstrations
(Inverse RL) (Arora & Doshi, 2021; Cheng et al., 2021) or human feedback (RLHF) (Christiano
et al., 2017), which have been popularly applied in robotic control (Ellis et al., 2021; Schultheis
et al., 2021; Bıyık et al., 2022) and large language models (LLMs) (Sumers et al., 2021; Ghosal
et al., 2023; Wu et al., 2023; Hwang et al., 2023; Dai et al., 2024). However, these methods re-
quire considerable human-generated data, which is often challenging to obtain, especially in highly
specialized or advanced domains. Another line of research has emerged to derive beneficial infor-
mation directly from the agent’s own learning experiences (Zheng et al., 2018; Hu et al., 2020; Park
et al., 2023; Gupta et al., 2023). Representatively, Trott et al. (2019) used the state-goal distance as
heuristics, Memarian et al. (2021) ranked different trajectories via a trained classifier indicated by
the preferences, Ma et al. (2024b) introduced an assistant reward agent to collaboratively generate
rewards guiding the policy agent, Ma et al. (2024a) derived the success ratio based on Thompson
sampling framework to evaluate a state’s contribution to task completion. However, although these
methods effectively accelerate agent convergence, their reliance on the underlying algorithm’s ex-
ploration strategies may lead to suboptimal policies due to insufficient sample diversity. Our work
seeks to combine the shaping rewards of hidden value with exploration bonuses, aiming to achieve
efficient exploration and fast convergence.

Other reward shaping methods have been explored, leveraging diverse strategies. Potential-based
algorithms defined rewards as the temporal difference of a potential function, ensuring that the
optimal policy remains consistent with the original MDP (Asmuth et al., 2008; Devlin & Kudenko,
2012). Information gain based approaches used the prediction errors in dynamics to model how
surprising the states are to motivate exploration (Houthooft et al., 2016; Pathak et al., 2017; Hong
et al., 2018; Burda et al., 2019; Sun et al., 2022). However, both branches require an environmental
transition model, which makes them challenging in adapting to large-scale scenarios with complex
dynamics. Additionally, some studies incorporated concepts of uncertainty or diversity (Eysenbach
et al., 2019; Pathak et al., 2019; Raileanu & Rocktäschel, 2020), or involved multiple agents or
hierarchical structures to shape rewards (Stadie et al., 2020; Yi et al., 2022; Mguni et al., 2023).

4 METHODOLOGY

4.1 OVERVIEW OF THE DURND FRAMEWORK

In our DuRND framework, the shaping reward is defined by integrating two auxiliary rewards:

RDuRND(s) := Renv(s) + λRnov(s) + ωRcon(s), (1)

where λ and ω are parameters that control the relative scales of the rewards. Here, Renv(s) is the
environment reward, Rnov(s) is the novelty reward, serving as the exploration bonus, and Rcon(s) is
the contribution reward, which assesses the states’ hidden value in achieving overall performance.
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Figure 1: An overview of the Dual Random Networks Distillation (DuRND) framework. The ob-
servation is processed through both Success and Failure RN modules to derive errors that reflect
its novelty in successful and failed scenarios, respectively. The two errors jointly form the DuRND
shaping rewards used to train the agent. At the end of each trajectory, the corresponding RN module
is updated based on the trajectory’s outcome, as indicated by the sparse environmental reward.

Both Rnov(s) and Rcon(s) are jointly computed by two distinct Random Network (RN) modules,
referred to as the success RN and the failure RN. They are updated based on successful and failed
trajectories, respectively, throughout the training process. A high-level overview of the DuRND
framework is illustrated in Figure 1.

4.2 REWARD SHAPING VIA DUAL RANDOM NETWORKS

4.2.1 DUAL RANDOM NETWORK MODULES

We introduce two distinct RN modules: the success RN moduleRS and the failure RN moduleRF .
Each module consists of two separate networks: a fixed and randomly initialized target network
fX(o) : O → Rk, and a differently initialized predictor f̂X(o; θX) : O → Rk, parameterized
by θX , where X ∈ {S, F}. It is worth noting that to prevent estimation bias from differences
between the two modules, both the architecture and weights of the target networks in RS and RF

are identical. Similarly, the predictors in both modules are also initialized identically.

At the end of each episode, samples from the entire trajectory are used to update the corresponding
RN module, identified as successful or failed based on environmental rewards. The criteria for
trajectory classification are further detailed in Section 4.2.3. Specifically, for a given trajectory of
states τX = {s1, s2, . . . , sT }, the predictor is updated to minimize the MSE loss:

eX(st; θX) =
∥∥∥fX(st)− f̂X(st; θX)

∥∥∥2 , ∀st ∈ τX , X ∈ {S, F}. (2)

By updating the predictors with the states observed by the agent, we harness the epistemic uncer-
tainty inherent in deep neural network training, where error progressively decreases as the volume
of training data increases (Burda et al., 2018). Consequently, this error, eX , itself effectively func-
tions as a density estimation for the states previously encountered by the agent, with larger errors
indicating less frequently visited states. Moving forward, we introduce how the two RN modules
collaboratively compute the two types of rewards.

4.2.2 NOVELTY AND CONTRIBUTION REWARDS

Novelty Reward. Since all historical states are delivered to update eitherRS orRF , the novelty of a
state regarding all previously encountered samples is naturally assessed by combining the prediction
errors from both modules, thus the novelty reward is defined as:

Rnov(s) = eS(s) + eF (s), (3)

where eS and eF are the prediction errors fromRS andRF , respectively, calculated by Equation 2.

4
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Contribution Reward. To evaluate the hidden value of a state, we consider its success ratio, which
is defined as the proportion of times a state appears in successful trajectories relative to its total his-
torical occurrences. In sparse-reward environments, a higher success ratio signifies a state’s greater
likelihood of contributing to successful task completion, aligning closely with the agent’s overall
objective. Given the prediction errors eS(s) and eF (s), which are related to the respective state’s
infrequency, the historical success ratio SR is estimated as:

SR(s) =
1

eS(s)
/
( 1

eS(s)
+

1

eF (s)

)
=

eF (s)

eS(s) + eF (s)
. (4)

However, directly using a static success ratio may lead to local optima due to premature overcon-
fidence, as noted by Ma et al. (2024a). To address this, a Beta distribution is constructed from
which we sample the contribution reward. The Beta distribution for a specific state involves two
parameters, ÑS(s) and ÑF (s), which are positively correlated with the actual pseudo-counts for
state s encountered in successful and failed trajectories, respectively, based on the RN errors, can be
estimated as:

ÑX(s) =
N(t)

eX(s)
, X ∈ {S, F}, (5)

where N(t) is the total number of states observed by the agent up to time t. Then the contribution
reward is derived as:

Rcon(s) = r̂, r̂ ∼ Beta(r; ÑS(s) + 1, ÑF (s) + 1) =
rÑS(s)(1− r)ÑF (s)

B
(
ÑS(s) + 1, ÑF (s) + 1

) , (6)

where r denotes the random variable and B(·, ·) is the normalization factor.

The theoretical foundation for using Beta distribution is supported by Thompson Sampling frame-
work (Thompson, 1933). A key intrinsic property of the Beta distribution is that as the sample size
increases, i.e., ÑS(s) and ÑF (s) grow, it gradually converges to the true success ratio, demon-
strating an adaptive convergence in response to increasing confidence level. Notably, due to the
non-linear nature of neural networks, the pseudo-counts derived from RN modules are not necessar-
ily linear to the actual counts. However, this discrepancy does not compromise our approach as we
primarily require a relative measure of success and failure counts, not precise values.

Finally, to effectively balance exploration and exploitation, we dynamically adjust the weights of
the novelty and contribution rewards, λ and ω, in Equation 1. We set λ to decrease linearly from 1
to 0, and ω to increase from 0 to 1 throughout the training process, which has been validated to be
effective in practice. This ensures that the agent initially focuses on exploration and gradually shifts
to exploitation by strategically scheduling the two rewards.

4.2.3 SUCCESSFUL AND FAILED TRAJECTORIES

In our DuRND framework, trajectories are classified as successful or failed based on environmental
rewards. For scenarios with task-completion indication rewards, which are typically issued at the
end of a trajectory, success is straightforwardly inferred from the final reward. For example, in a
maze navigation task, a reward is given only upon reaching the destination.

To extend DuRND to environments where rewards do not directly indicate overall trajectory success,
yet are still sparse and assigned to key milestones or sub-goals, we introduce a sub-trajectory ap-
proach. This strategy is based on a fundamental assumption that a trajectory can be divided into mul-
tiple sub-trajectories, each independently labeled as successful or not. The cumulative reward ob-
tained by the entire trajectory is then considered a collective contribution of all these sub-trajectories.
We define a hyperparameter Tmax, representing the maximum length for a sub-trajectory. If no re-
ward is received within Tmax consecutive steps, the sub-trajectory is considered failed; conversely,
receiving any reward within Tmax marks the preceding sequence as a successful sub-trajectory. This
approach enables DuRND to flexibly adapt to more general sparse-reward structures.

4.3 DURND ENHANCED RL ALGORITHM

We integrate the DuRND framework into Proximal Policy Optimization (PPO), a well-known, ad-
vanced on-policy RL algorithm (Schulman et al., 2017). PPO consists of two modules: a policy
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to select actions given states (actor) and a value function to evaluate the policy’s behavior (critic).
The enhancement is to use the DuRND-defined reward structure in Equation 1 to shape the sparse
environmental rewards. Let πθ be the parameterized policy network and Vϕ be the parameterized
Value network. We define the enhanced advantage given the DuRND reward as:

Ât =

T−t−l∑
l=0

γlδt+l, δt =
(
renv
t + λrnov

t + ωrcon
t

)
+ γVϕold(st+1)− Vϕold(st). (7)

Then the enhanced loss function for policy πθ is defined as:

L̂(θ) = E
[
min

(
rt(θ)Ât, clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
Ât

)]
, (8)

where rt(θ) =
πθ(at|st)
πθold(at|st)

is the probability ratio, and ϵ is the clipping parameter. The enhanced

loss function for the value function is defined as:

L̂(ϕ) = E
[(

Vϕ(st)−
(
Ât + Vϕold(st)

))2
]
. (9)

By leveraging real-time computed novelty and contribution rewards, alongside their linearly up-
dated weights, the augmented DuRND rewards effectively broaden the exploration horizon in early
training and progressively evolve to density, meaningful rewards later, improving convergence. We
implement the DuRND framework within the PPO algorithm, primarily following the vanilla RND
model (Burda et al., 2018). The trajectory-based optimization nature of PPO also fits well with
the DuRND’s updates. Besides, DuRND can be easily adapted to more model-free RL algorithms,
such as SAC (Haarnoja et al., 2018), TD3 (Fujimoto et al., 2018), and others. We summarize the
DuRND-enhanced PPO algorithm in Algorithm 1.

Algorithm 1 Dual Random Networks Distillation enhanced Proximal Policy Optimization

Require: Environment E , parameterized πθ and Vϕ

Require: Random Network modulesRS andRF

1: for iteration = 1, 2, . . . do
2: for each epoch and T = ∅ do
3: (st, at, r

env
t , st+1)← Interact(πθold , E) ▷ collect transitions by executing current policy

4: eS(st) ∼ RS , eF (st) ∼ RF ▷ compute prediction errors from two RN modules
5: rnov

t = eS(st) + eF (st) ▷ compute novelty reward
6: rcon

t ∼ Beta(r;N(t)/eS(st) + 1, N(t)/eF (st) + 1) ▷ sample contribution reward
7: T ← T ∪ {(st, at, rnew

t , rnov
t , rcon

t , st+1)} ▷ store augmented transitions
8: end for
9: if trajectory is successful: RS ← Update(RS , T ) ▷ update success RN module

10: else: RF ← Update(RF , T ) ▷ otherwise, update failure RN module
11: θ ← θ − αθ∇θL̂(θ) ▷ optimize πθ by Equation 8
12: ϕ← ϕ− αϕ∇ϕL̂(ϕ) ▷ optimize Vϕ by Equation 9
13: end for

5 EXPERIMENTS

Experiments are designed to evaluate the DuRND framework across various environments with
sparse rewards. We select ten challenge tasks from three domains: Atari games, classic 2D games
from the arcade learning environment (ALE) platform (Bellemare et al., 2013), VizDoom, a 3D
first-person shooting game environment (Kempka et al., 2016; Tomilin et al., 2022), and Mini-
World, a simulated 3D interior maze environment (Chevalier-Boisvert et al., 2023). Specifically, the
two MiniWorld environments provide task-completion indication rewards only at the end of each
episode, while other environments assign rewards for achieving specific milestones, but the overall
distribution of rewards remains highly sparse. To ensure consistency in reward scaling across all
environments, we standardize rewards: 1 for task completion or milestone achievement and 0 other-
wise. Illustrations of all tasks can be found in Figure 2, with detailed descriptions of these tasks and
the environmental reward structures provided in Appendix A.1.
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(a) Freeway (b) Frogger (c) Solaris (d) BeamRider (e) DefendLine

(f) SaveCenter (g) CollectKit (h) SlayGhosts (i) ThreeRooms (j) TMaze

Figure 2: Ten sparse-reward tasks evaluated in our experiments.
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Figure 3: The learning performance of DuRND compared with baselines.

5.1 COMPARISON TO BASELINES

We compare DuRND with six widely-recognized reward shaping baselines, covering the two main
categories we have discussed. For approaches that incorporate exploration bonuses as auxiliary re-
wards, we include ExploRS (Devidze et al., 2022), RND (Burda et al., 2018), and #Explo (Tang
et al., 2017); For approaches that extract hidden value-based rewards, we include ReLara (Ma et al.,
2024b), ROSA (Mguni et al., 2023), and SORS (Memarian et al., 2021). All baselines are imple-
mented based on the RLeXplore library (Yuan et al., 2024) or the codes attached in the respective
papers. Further experimental details, like hyperparameters, neural network architectures, and hard-
ware configurations, are provided in Appendix A.2.

The learning results averaged over ten runs with different random seeds, are illustrated in Figure 3,
with the quantified data presented in Table 1. The DuRND framework demonstrates distinct advan-
tages mainly from three aspects: efficient and directed exploration, rapid and stable convergence,
and considerably low training resource demands.

Exploration. DuRND inherits its exploratory capability from the RND’s intrinsic exploration
bonus. Rewarding novelty allows the agent to assign higher rewards to less frequently visited states,
thus encouraging more targeted exploration. For the baselines, ReLara relies on random reward
injections and random action space sampling that mainly introduce noise to amplify uncertainty;
ROSA and SORS depend on the agent’s underlying exploration strategies. All these three baselines
lack explicit guidance on which areas to explore. Consequently, DuRND is observed to collect tra-
jectories with higher episodic returns earlier in training due to the novelty reward, enhancing sample
efficiency. Furthermore, while ReLara, ROSA, and SORS can also converge to optimal policies
in many settings, they sometimes remain trapped in local optima. For instance, in the SaveCenter
tasks, DuRND achieves higher returns by continuously defeating 12 enemies in one episode, while
the baselines only defeat about 6 within the same training periods.
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Table 1: Comparison of DuRND with baseline models: the average episodic returns with standard
errors (↑ higher is better).

Environments DuRND ExploRS RND #Explo ReLara ROSA SORS

Freeway 23.22 ± 0.01 17.46 ± 0.00 14.77 ± 0.01 15.16 ± 0.01 15.47 ± 0.00 3.68 ± 0.00 7.30 ± 0.01
Frogger 14.36 ± 0.00 10.19 ± 0.00 8.59 ± 0.00 1.81 ± 0.00 9.30 ± 0.01 3.45 ± 0.00 7.79 ± 0.00
Solaris 18.91 ± 0.02 9.82 ± 0.01 6.07 ± 0.00 2.06 ± 0.00 2.96 ± 0.00 1.87 ± 0.00 2.50 ± 0.00

BeamRider 18.05 ± 0.01 16.19 ± 0.01 11.96 ± 0.00 9.03 ± 0.00 11.84 ± 0.00 10.57 ± 0.00 10.56 ± 0.00
DefendLine 8.52 ± 0.00 1.63 ± 0.00 1.11 ± 0.00 1.62 ± 0.00 4.27 ± 0.00 5.33 ± 0.00 1.28 ± 0.01
SaveCenter 6.33 ± 0.00 2.03 ± 0.00 2.37 ± 0.00 1.30 ± 0.00 2.64 ± 0.00 0.83 ± 0.00 1.78 ± 0.01
CollectKit 20.87 ± 0.01 11.97 ± 0.01 14.59 ± 0.01 0.90 ± 0.00 12.43 ± 0.01 6.80 ± 0.00 1.60 ± 0.00
SlayGhosts 15.60 ± 0.00 2.82 ± 0.00 10.18 ± 0.00 1.27 ± 0.00 10.61 ± 0.00 5.01 ± 0.00 5.07 ± 0.01

ThreeRooms 0.86 ± 0.00 0.48 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.12 ± 0.00 0.18 ± 0.00
TMaze 0.96 ± 0.00 0.80 ± 0.00 0.97 ± 0.00 0.39 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.30 ± 0.00

Exploitation. DuRND progressively shifts from rewarding novelty to rewarding contribution, en-
hancing the agent’s focus on states that are more likely to result in successful task completion,
thereby continuously reinforcing beneficial behaviors. However, for the baselines that only incor-
porate exploration bonuses, such as ExploRS, RND, and #Explo, agents struggle to derive effective
guidance from novelty rewards as training progresses to later stages. More critically, the agents’
overemphasis on novel yet low-value states hinders the recovery from the shaping rewards, leading
to policies that diverge from the original task objectives. Observations in tasks like Freeway, De-
fendLine, and SlayGhosts reveal that while these baselines may initially achieve high environmental
returns, their performance declines in later stages, deviating from the optimal policies. Conversely,
DuRND maintains a steady convergence towards the optimal policy, demonstrating its effectiveness
in balancing exploration and exploitation.

Memory Efficiency. DuRND is space-efficient as it only introduces two lightweight RN modules to
compute both types of rewards. In comparison, ReLara and ROSA both demand additional agents,
which are generally more complex and computationally expensive. ExploRS and #Explo both in-
volve pseudo-counts but are not RND-based, relying instead on density models that require sub-
stantial extra space for storing historical states (at least partially). To empirically validate DuRND’s
memory efficiency, we report the maximum memory consumption in Table 2. To provide a more
intuitive comparison, we normalize the data relative to our DuRND. To keep the comparison fair
between off-policy and on-policy methods, we exclude the memory consumption of replay buffers.

Table 2: The maximum memory consumption during training across three domains, normalized
relative to DuRND to report intuitively (↓ lower is better).

Domains DuRND ExploRS RND #Explo ReLara ROSA SORS

Atari games 1 10.94 0.91 0.84 3.67 3.84 1.1
VizDoom 1 11.94 0.93 0.84 3.97 4.24 1.06

MiniWorld 1 11.41 0.90 0.83 3.58 3.91 1.12

5.2 EXPLORATION-EXPLOITATION TRADE-OFF

In this section, we further study the exploration-exploitation trade-off in DuRND by demonstrating
the differences in state visitation distributions under different reward shaping methods and explo-
ration strategies. For an intuitive illustration, we consider a toy task in a one-dimensional chain of
length 31, with states as s0, s1, · · · , s30 from left to right. The agent starts at the midpoint, s15, at
the beginning of each episode. There are 15 states on either side of the starting point, but only the
far-right state, s30, is the successful terminal state with Renv(s30) = 1, while all other states are
rewarded as 0. Each episode is limited to a maximum of 20 steps. The agent can take three actions:
moving to the left, moving to the right, and staying in the current state.

We compare the complete DuRND with two variants: (1) DuRND with only the novelty reward
λRnov, and (2) DuRND with only the contribution reward ωRcon; as well as three reward shaping or
exploration approaches: (3) vanilla RND, that only rewards novelty; (4) SORS, that defines shaping
rewards by ranking trajectories with environmental feedback; and (5) ϵ-greedy, the popular strategy
that selects a random action with probability ϵ and the greedy action with probability 1− ϵ. For each
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Figure 4: The state visiting distributions of different methods for each 25k steps in the toy task.

method, we track the state visitation over a total of 100k steps in the toy task, presenting the results
for every 25k steps in Figure 4.

From the presented results, we observe that DuRND demonstrates an efficient trade-off between
exploration and exploitation. In the early stage (around 0 to 50k steps), DuRND shows a more
balanced state visitation across the entire chain, while in the later stage (around 50k to 100k steps),
the agent increasingly focuses on the right side of the starting point, as only these states yield task
completion. In comparison, RND maintains a broader exploratory behavior but is less effective
at the exploitation stage, still visiting states on the left side even in the last 25k steps. DuRND
with only λRnov performs better than RND because of the novelty reward scheduling; however it
performs worse than the complete DuRND, indicating the effectiveness of the ωRcon term. SORS
and DuRND with only ωRcon converge slower than complete DuRND, and their exploration ranges
are more limited. For ϵ-greedy, which lacks a clear exploratory direction, the initial exploration is
more concentrated, consequently, it fails to reach the terminal state within the 100k steps.

5.3 NOVELTY AND CONTRIBUTION REWARDS

5.3.1 ANALYSIS OF THE LEARNED REWARDS

We discuss how the novelty and contribution rewards evolve during training. Figure 5 shows the
normalized rewards received by the agent throughout learning. Over time, the novelty reward de-
creases while the contribution reward increases, both nonlinearly. The decline in the novelty reward
indicates the diminishing differentiation among states after extensive exploration, i.e., states become
uniformly non-novel, thus, the information provided by novelty rewards loses significance in later
training, highlighting again the limitation of relying only on novelty may hinder convergence. The
contribution reward increases and eventually stabilizes at a high level, dominating the shaping re-
wards. This is attributed to the continuous reinforcement of successful trajectories, which directs the
agent’s focus towards states conducive to success, thereby causing the contribution rewards to con-
verge to a stable level. In summary, the transition from exploration-driven to task-oriented rewards
is a critical factor underpinning DuRND’s superior performance.

5.3.2 ABLATION STUDY: EFFECTS OF TWO TYPES OF REWARDS

To further understand the effects of two types of rewards, we conduct an ablation study to compare
the complete DuRND framework with two variants: (1) DuRND with only the novelty reward (only
Rnov), and (2) DuRND with only the contribution reward (only Rcon). The learning curves are shown
in Figure 6, with the quantitative results provided in Appendix A.3.

The experimental results show that both rewards are essential for DuRND’s performance. When
relying only on the novelty reward, agents struggle to recover the environmental rewards, leading to
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Figure 5: The novelty and contribution rewards learned in DuRND framework.
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Figure 6: Ablation study: the learning performance of DuRND with a single type of reward.

unstable convergence and deviations from the task’s original objectives. But this variant outperforms
the vanilla RND, as the decreasing on the novelty reward over time alleviates the agent’s distrac-
tion. In contrast, using only the contribution reward hinders efficient exploration, delaying favorable
outcomes and potentially trapping the agent in local optima.

6 CONCLUSION AND DISCUSSION

Conclusion. This paper introduced the DuRND framework, designed to separately estimate the
visitation frequencies of states from both successful and failed (sub-)trajectories. The dual RN
modules compute two types of rewards, guiding the agent from directed exploration to stable conver-
gence. Experimentally, we demonstrate that compared to the novelty-based RS approaches, DuRND
avoids the pitfalls of continuous novelty-driven exploration, instead shifting to provide more mean-
ingful rewards for desired behaviors; while compared to the hidden value based RS approaches,
DuRND effectively broadens the exploration scope and collects more diverse information. In sum-
mary, DuRND combines the advantages of both approaches, achieving an efficient tradeoff between
exploration and exploitation. Moreover, DuRND operates with low computational overhead in high-
dimensional environments, making it a scalable solution for a wide range of RL tasks.

Limitations. We find that in non-task-completion-indication reward scenarios, DuRND remains
sensitive to the maximum sub-trajectory length Tmax, as it affects the accuracy of classifying states as
successful or failed. This hyperparameter also varies across environments, depending on the degree
of reward sparsity. Thus, determining the appropriate Tmax requires some environment-specific prior
knowledge. To adapt to diverse settings, a dynamic Tmax that adjusts according to the environment’s
average reward cycle could be considered. Additionally, while linearly adjusting the weights of the
two rewards has been empirically effective, this approach may not be optimal. Identifying the right
moment to shift from rewarding novelty to rewarding contribution may need better metrics to gauge
whether exploration has been sufficient. This presents a valuable direction for future research.
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A APPENDIX

A.1 ENVIRONMENTS CONFIGURATION

All tasks in our experiments provide sparse rewards. The objective descriptions and the criteria for
assigning sparse environmental rewards are detailed in Table 3. Apart from tasks ThreeRooms and
TMaze, which offer episodic rewards, other tasks provide intermediate rewards upon the completion
of some specific milestones. All other states yield zero reward.

Table 3: Objective descriptions and environmental rewards assignments for the ten tasks.

Environments Sparse Rewards Assignment

Freeway Guide the chicken across multiple lanes of heavy traffic.
1. +1 reward for the chicken goes across the screen.
2. Episode ends if all 3 chickens are hit by cars or maximum steps 2000 are reached.

Frogger Guide the frog home across a highway and river while avoiding cars and predators.
1. +2 rewards for reaching home.
2. +1 reward for eating a fly.
3. Episode ends when all 5 frogs are lost or maximum steps 2000 are reached.

Solaris Control a spaceship to blast enemies and explore new galaxies.
1. +1 reward for destroying a target.
2. +1 reward for entering a new galaxy.
3. Episode ends when all ships are destroyed or maximum steps 2000 are reached.

BeamRider Control a spaceship to destroy enemies while avoiding obstacles.
1. +1 reward for each enemy ship destroyed.
2. Episode ends if all ships are lost or maximum steps 2000 are reached.

DefendLine Defend the line by neutralizing incoming enemies.
1. +1 reward for each enemy killed.
2. Episode ends if the player is defeated or the maximum steps 1000 are reached.

SaveCenter Protect the center by eliminating enemies.
1. +1 reward for each enemy killed.
2. Episode ends if the player is defeated or the maximum steps 1000 are reached.

CollectKit Collect health kits in a room full of poison.
1. +1 reward for collecting one kit.
2. Episode ends if the player is killed by the poison or the maximum steps 1000 are reached.

SlayGhosts Eliminate ghosts or monsters in a designated environment.
1. +1 reward for each ghost killed.
2. Episode ends if the player is killed or the maximum steps 1000 are reached.

ThreeRooms Navigate through three connected rooms to reach a red cube.
1. +1 reward for reaching the red cube.
2. −0.1 penalty for each time step taken.
3. Episode ends when the cube is reached or the maximum steps 500 are reached.

TMaze Navigate a T-shaped maze to reach the red cube.
1. +1 point for reaching the red cube.
2. −0.1 penalty for each time step taken.
3. Episode ends when the cube is reached or the maximum steps 500 are reached.

A.2 EXPERIMENTS IMPLEMENTATION DETAILS

A.2.1 IMPLEMENTATION DETAILS

In this section, we discuss some details of the implementation of our DuRND framework.

Observation Normalization. Observation normalization is a common practice in deep reinforce-
ment learning, which helps stabilize the learning process. We normalize the observations by sub-
tracting the running mean and dividing by the running standard deviation, following the implemen-
tation introduced in Burda et al. (2018).
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Random Networks Error Normalization. For different tasks and different initializations of the
random network modules, the scale of the MSE errors, eS and eF , can vary significantly. To make
it easy to formalize the hyperparameter λ across different tasks, we normalize the MSE errors by
dividing them by the initial error, which is the average of the MSE errors from the first mini-batch
at the beginning of the training process. This is built on the assumption that the errors are gradually
decreasing, so the initial error is a good approximation of the scale of the errors.

State Number Function. In implementation, the state number estimation function N(t) in Equa-
tion 5 is not directly assigned as the corresponding time step t. Instead, we use a factor ϕ to scale
the state number function, which is defined as N(t) = ϕt, where ϕ = 0.01 in our experiments. This
is mainly because that directly using the time step t results in overly large estimated pseudo-counts,
which may lead to premature confidence in the Beta distributions, thus leading to suboptima.

A.2.2 HYPERPARAMETERS

DuRND is relatively robust to hyperparameters, we report the hyperparameters used in our experi-
ments in Table 4.

Table 4: The hyperparameters of DuRND in our experiments.

Hyperparameters Values

discount factor γ 0.99
generalized advantage estimate 0.95

number of mini-batches 32
learning rate 3× 10−4

maximum gradient normalization 0.5
random networks learning rate 10−6

PPO clip coefficient 0.2
PPO entropy coefficient 0.0

PPO value loss coefficient 0.5
Total training steps 106

A.2.3 NEURAL NETWORK ARCHITECTURES

The neural network architecture of the PPO agent used in our experiments is shown in Figure 7. The
PPO agent comprises actor and critic modules, which share the same feature extraction layers.

Figure 7: The neural network architecture of the PPO agent in our experiments.

For the random networks that map one frame of preprocessed observation to a 512-length feature
vector, the architecture is depicted in Figure 8.
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Figure 8: The neural network architecture of the random network in our experiments.

A.2.4 HARDWARE CONFIGURATIONS

The experiments are conducted on machines mainly with two kinds of configurations:

1. The GPU is NVIDIA Tesla A100 with 40GB memory. The CPU is Intel Xeon Gold 6326
with 16 cores and 32 threads.

2. The GPU is NVIDIA Tesla H100 with 40GB memory. The CPU is AMD Epyc 9334 with
32 cores and 64 threads.

The experiments are implemented by PyTorch in version 2.0.1 and CUDA in version 11.7.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

To support the main results of the ablation study in our paper, we provide quantified results of
DuRND with a single type of reward in Table 5. The results show that both types of rewards are
essential for the DuRND framework to achieve the best performance.

Table 5: Ablation study: the average episodic returns with standard errors of DuRND with a single
type of reward

Environments DuRND DuRND with only Rnov DuRND with only Rcon

Freeway 23.22± 0.01 19.63± 0.01 15.57± 0.01
Frogger 14.36± 0.00 10.10± 0.00 10.81± 0.00
Solaris 18.91± 0.02 7.83± 0.01 17.61± 0.01

BeamRider 18.05± 0.01 9.45± 0.00 13.07± 0.01
DefendLine 8.52± 0.00 2.65± 0.00 4.09± 0.00
SaveCenter 6.33± 0.00 3.08± 0.00 4.31± 0.00
CollectKit 20.87± 0.01 11.12± 0.01 9.11± 0.01
SlayGhosts 15.60± 0.00 7.22± 0.00 4.03± 0.00

ThreeRooms 0.86± 0.00 0.26± 0.00 0.06± 0.00
TMaze 0.96± 0.00 0.93± 0.00 0.52± 0.00
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