
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DURND: REWARDING FROM NOVELTY TO CONTRI-
BUTION FOR REINFORCEMENT LEARNING VIA DUAL
RANDOM NETWORKS DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing reward shaping techniques for sparse-reward tasks in reinforcement
learning generally fall into two categories: novelty-based exploration bonuses and
value-based rewards. The former encourages agents to explore less visited areas
but can divert them from their main objectives, while the latter promotes stable
late-stage convergence but often lacks sufficient early exploration. To combine
the benefits of both, we propose Dual Random Networks Distillation (DuRND),
a novel framework integrating two lightweight random network modules. These
modules jointly generate two rewards: a novelty reward to drive exploration and
a contribution reward to evaluate progress toward desired behaviors, achieving an
efficient balance between exploration and exploitation. With low computational
overhead, DuRND excels in high-dimensional environments like Atari, VizDoom,
and MiniWorld, outperforming several benchmarks.

1 INTRODUCTION

Model-Free Reinforcement Learning (MFRL) involves an agent learning optimal policies to maxi-
mize cumulative rewards within an environment, without any prior model of its dynamics (Sutton
& Barto, 2018). One pivotal challenge in MFRL is balancing exploration and exploitation, both
are critical stages for effective agent learning. Sufficient exploration is vital, particularly in tasks
with extremely sparse rewards where feedback is only available at the end of each episode. In such
scenarios, directed exploration is necessary for agents to identify all samples that potentially yield
positive effects (Ladosz et al., 2022). Conversely, in later training phases, exploitation becomes cru-
cial to reinforce behaviors that are known to be successful in maximizing rewards, which is essential
for stable convergence. Therefore, it is imperative to develop strategies that leverage information to
align closely with the agent’s overarching goals.

One well-studied line of work is reward shaping (RS), which designs additional rewards to supple-
ment the sparse environmental rewards, providing fine-grained, immediate feedback (Sorg et al.,
2010a;b). Introducing exploration bonus as auxiliary rewards stands out as a promising RS ap-
proach. By rewarding highly for novel states, it explicitly guides the agent to explore regions with
insufficient experience (Baldassarre et al., 2013; Bellemare et al., 2016; Zheng et al., 2018; Dev-
idze et al., 2022). However, since novelty does not necessarily correlate with meaningfulness or
align with the agent’s ultimate goals, continuously rewarding novelty may cause agents to dispro-
portionately focus on samples from suboptimal trajectories or even dangerous regions during the
stabilization stages, thereby distracting them from converging to optimal policies. The well-known
”noisy TV” problem is a prime example, where agents become captivated by highly novel but irrele-
vant TV channels in a maze navigation task (Mavor-Parker et al., 2022). Consequently, agents need
to recover from novelty rewards and shift towards exploitation gradually.

On the other hand, hidden value based RS approaches primarily develop task-related signals to
reveal the extent to which states contribute to achieving higher environmental rewards and their
inherent significance, e.g., the distance to the goal state, thereby enhancing exploitation (Trott et al.,
2019; Memarian et al., 2021; Ma et al., 2024b;a). Compared to the exploration-centric approaches
discussed earlier, these methods rely on their backbone algorithms’ exploration strategies. Although

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

highly efficient in exploiting known experiences, they often struggle in extremely sparse-reward
environments due to the lack of directional guidance toward effective exploration.

Building on the insights from both exploration bonus and hidden value RS approaches, a natural
research question arises: How can we devise a mechanism that computes both types of rewards ef-
ficiently, with minimal computational overhead and design efforts, while seamlessly evolving the
reward structure from exploration to exploitation? To this end, and inspired by Random Network
Distillation (RND), which is initially developed to measure how different a state is from those pre-
viously encountered (Burda et al., 2018), we extend this concept to propose the Dual Random
Networks Distillation (DuRND, pronounced “Durian”) framework.

DuRND incorporates two distinct Random Network (RN) modules: a success RN module for states
from successful trajectories and a failure RN module for states from failed trajectories. The sparse
environmental rewards determine whether a trajectory is successful or failed. (We also extend the
DuRND framework to accommodate more commonly sparse-reward scenarios, where the reward
does not explicitly indicate task completion.) With the dual RN modules, we can concurrently derive
two types of rewards: (a) the novelty reward, which evaluates how distinct a state is from all previ-
ously encountered states, and (b) the contribution reward, which assesses a state’s historical success
ratio, defined as the proportion of a state’s presence in successful trajectories relative to its total oc-
currences. The success ratio quantifies the state’s likelihood and contribution toward successful task
completion or achieving high rewards, tightly aligning with the agent’s objectives. Furthermore, we
introduce a reward adjustment scheme that dynamically evolves from rewarding novelty to reward-
ing contribution as learning progresses, achieving an efficient exploration-exploitation balance. The
main contributions of this paper are:

(i) We propose DuRND utilizing two RN modules to jointly compute two types of rewards: a nov-
elty reward to encourage directed exploration and a contribution reward to enhance experience
exploitation. By dynamically evolving the reward structure, DuRND achieves exploration-
efficient and convergence-stable learning in sparse-reward tasks.

(ii) The rewards computation of DuRND requires lightweight computational overhead. Different
from some RS methods that depend on auxiliary agents, historical states buffers, or pseudo-
count estimation (Bellemare et al., 2016; Ostrovski et al., 2017; Mguni et al., 2023; Ma et al.,
2024b), DuRND operates only with two RN modules, providing remarkable scalability in
high-dimensional environments.

(iii) The effectiveness and efficiency of DuRND are validated across a variety of sparse-reward
tasks with high-dimensional states, demonstrating its superior performance compared to sev-
eral benchmarks.

2 BACKGROUND

Reinforcement Learning (RL) operates within the framework of Markov Decision Processes
(MDP), formalizing the interaction between an agent and an environment as a tuple ⟨S,A, T,R, γ⟩.
S and A are state space and action space, respectively, T : S × A × S → [0, 1] is the transi-
tion function, R : S → R is the reward function, and γ ∈ [0, 1] is the discount factor. This
paper studies stochastic policies π : S × A → [0, 1] that maximize the expected discounted re-
turn Eτ [

∑∞
t=0 γ

tR(st)], where τ = (s0, a0, s1, a1, . . .) is a trajectory of states and actions, and
st+1 ∼ T (·|st, at), at ∼ π(·|st). Common techniques in model-free RL encompass value-based
methods, policy-based methods, and their hybrid, actor-critic methods (Sutton & Barto, 2018).

Random Network Distillation (RND) motivates agents to explore the less frequently visited states
by incorporating novelty as an exploration bonus (Burda et al., 2018). RND introduces two neural
networks: a fixed and randomly initialized target network f(o) : O → Rk, and a trainable pre-
dictor network f̂(o; θ) : O → Rk. Both networks map an observation o ∈ O to a k-dimensional
feature embedding. The predictor network is trained to minimize the mean squared error (MSE)
e = ∥f̂(o; θ) − f(o)∥2 through gradient descent. This MSE for a specific observation o is also
used to quantify its novelty, as higher errors are expected for states that are dissimilar to those the
predictor has been trained on previously, thereby the exploration bonus is defined as rrnd = e. As
the predictor is trained with samples collected by the agent, it gradually develops a “memory” of the
states it has seen. RND has proven effective in assessing novelty to encourage exploration.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 RELATED WORK

Exploration Bonuses as shaping rewards have been widely used to guide the exploration direc-
tions. The most intuitive method is the count-based approach, where the novelty of each state is
assessed by its visitation frequency (Strehl & Littman, 2008). To adapt state counting to continu-
ous or unlimited state spaces, pseudo-counts were introduced (Bellemare et al., 2016), with several
works studied how to estimate the pseudo-counts (Fox et al., 2018; Badia et al., 2020; Devidze
et al., 2022). Specifically, Bellemare et al. (2016) derived from the Context Tree Switching model,
Fu et al. (2017) used exemplar models for implicit density estimation, Tang et al. (2017) discretized
continuous states using hash functions, and Machado et al. (2020) incorporated the successor repre-
sentation. Although tractable, these methods often require extensive storage resources or inference
time. Following the pseudo-count concept, neural network-based methods have been developed.
Ostrovski et al. (2017) used PixelCNN (Van den Oord et al., 2016) for density estimation; Martin
et al. (2017) used the feature representation from value approximation networks; Lobel et al. (2023)
derived the pseudo-counts by averaging samples from the Rademacher distribution; and Burda et al.
(2018) introduced Random Network Distillation to assess state novelty, while Yang et al. (2024) fur-
ther improved the precision of bonus allocation. Our work extends the RND approach to efficiently
count state visitations in high-dimensional spaces.

Hidden Values as shaping rewards effectively guide the optimization direction of agents to acceler-
ate the convergence. One common approach is to extract reward models from expert demonstrations
(Inverse RL) (Arora & Doshi, 2021; Cheng et al., 2021) or human feedback (RLHF) (Christiano
et al., 2017), which have been popularly applied in robotic control (Ellis et al., 2021; Schultheis
et al., 2021; Bıyık et al., 2022) and large language models (LLMs) (Sumers et al., 2021; Ghosal
et al., 2023; Wu et al., 2023; Hwang et al., 2023; Dai et al., 2024). However, these methods re-
quire considerable human-generated data, which is often challenging to obtain, especially in highly
specialized or advanced domains. Another line of research has emerged to derive beneficial infor-
mation directly from the agent’s own learning experiences (Zheng et al., 2018; Hu et al., 2020; Park
et al., 2023; Gupta et al., 2023). Representatively, Trott et al. (2019) used the state-goal distance as
heuristics, Memarian et al. (2021) ranked different trajectories via a trained classifier indicated by
the preferences, Ma et al. (2024b) introduced an assistant reward agent to collaboratively generate
rewards guiding the policy agent, Ma et al. (2024a) derived the success ratio based on Thompson
sampling framework to evaluate a state’s contribution to task completion. However, although these
methods effectively accelerate agent convergence, their reliance on the underlying algorithm’s ex-
ploration strategies may lead to suboptimal policies due to insufficient sample diversity. Our work
seeks to combine the shaping rewards of hidden value with exploration bonuses, aiming to achieve
efficient exploration and fast convergence.

Other reward shaping methods have been explored, leveraging diverse strategies. Potential-based
algorithms defined rewards as the temporal difference of a potential function, ensuring that the
optimal policy remains consistent with the original MDP (Asmuth et al., 2008; Devlin & Kudenko,
2012). Information gain based approaches used the prediction errors in dynamics to model how
surprising the states are to motivate exploration (Houthooft et al., 2016; Pathak et al., 2017; Hong
et al., 2018; Burda et al., 2019; Sun et al., 2022). However, both branches require an environmental
transition model, which makes them challenging in adapting to large-scale scenarios with complex
dynamics. Additionally, some studies incorporated concepts of uncertainty or diversity (Eysenbach
et al., 2019; Pathak et al., 2019; Raileanu & Rocktäschel, 2020), or involved multiple agents or
hierarchical structures to shape rewards (Stadie et al., 2020; Yi et al., 2022; Mguni et al., 2023).

4 METHODOLOGY

4.1 OVERVIEW OF THE DURND FRAMEWORK

In our DuRND framework, the shaping reward is defined by integrating two auxiliary rewards:

RDuRND(s) := Renv(s) + λRnov(s) + ωRcon(s), (1)

where λ and ω are parameters that control the relative scales of the rewards. Here, Renv(s) is the
environment reward, Rnov(s) is the novelty reward, serving as the exploration bonus, and Rcon(s) is
the contribution reward, which assesses the states’ hidden value in achieving overall performance.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Success RN module

sucf

sucf̂

suc suc 2f̂f -‖ ‖
suce

Target net

PredictorPredictor

observation

Failure RN module

fai fai 2f̂f -‖ ‖
Target net

Predictor

nov suc fair e e= +

Environment
action

1 1 1, , , ,N Na a ss −=

faie

AgentAgentSuccess?
NoYes

DuRND Reward Shaping

Agent Interaction

faif

faif̂

con suc fai~ (/ /)1, 1r B e N eN + +

DuRND env nov conr r rr  = + +

Figure 1: An overview of the Dual Random Networks Distillation (DuRND) framework. The ob-
servation is processed through both Success and Failure RN modules to derive errors that reflect
its novelty in successful and failed scenarios, respectively. The two errors jointly form the DuRND
shaping rewards used to train the agent. At the end of each trajectory, the corresponding RN module
is updated based on the trajectory’s outcome, as indicated by the sparse environmental reward.

Both Rnov(s) and Rcon(s) are jointly computed by two distinct Random Network (RN) modules,
referred to as the success RN and the failure RN. They are updated based on successful and failed
trajectories, respectively, throughout the training process. A high-level overview of the DuRND
framework is illustrated in Figure 1.

4.2 REWARD SHAPING VIA DUAL RANDOM NETWORKS

4.2.1 DUAL RANDOM NETWORK MODULES

We introduce two distinct RN modules: the success RN moduleRS and the failure RN moduleRF .
Each module consists of two separate networks: a fixed and randomly initialized target network
fX(o) : O → Rk, and a differently initialized predictor f̂X(o; θX) : O → Rk, parameterized
by θX , where X ∈ {S, F}. It is worth noting that to prevent estimation bias from differences
between the two modules, both the architecture and weights of the target networks in RS and RF

are identical. Similarly, the predictors in both modules are also initialized identically.

At the end of each episode, samples from the entire trajectory are used to update the corresponding
RN module, identified as successful or failed based on environmental rewards. The criteria for
trajectory classification are further detailed in Section 4.2.3. Specifically, for a given trajectory of
states τX = {s1, s2, . . . , sT }, the predictor is updated to minimize the MSE loss:

eX(st; θX) =
∥∥∥fX(st)− f̂X(st; θX)

∥∥∥2 , ∀st ∈ τX , X ∈ {S, F}. (2)

By updating the predictors with the states observed by the agent, we harness the epistemic uncer-
tainty inherent in deep neural network training, where error progressively decreases as the volume
of training data increases (Burda et al., 2018). Consequently, this error, eX , itself effectively func-
tions as a density estimation for the states previously encountered by the agent, with larger errors
indicating less frequently visited states. Moving forward, we introduce how the two RN modules
collaboratively compute the two types of rewards.

4.2.2 NOVELTY AND CONTRIBUTION REWARDS

Novelty Reward. Since all historical states are delivered to update eitherRS orRF , the novelty of a
state regarding all previously encountered samples is naturally assessed by combining the prediction
errors from both modules, thus the novelty reward is defined as:

Rnov(s) = eS(s) + eF (s), (3)

where eS and eF are the prediction errors fromRS andRF , respectively, calculated by Equation 2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Contribution Reward. To evaluate the hidden value of a state, we consider its success ratio, which
is defined as the proportion of times a state appears in successful trajectories relative to its total his-
torical occurrences. In sparse-reward environments, a higher success ratio signifies a state’s greater
likelihood of contributing to successful task completion, aligning closely with the agent’s overall
objective. Given the prediction errors eS(s) and eF (s), which are related to the respective state’s
infrequency, the historical success ratio SR is estimated as:

SR(s) =
1

eS(s)
/
(1

eS(s)
+

1

eF (s)

)
=

eF (s)

eS(s) + eF (s)
. (4)

However, directly using a static success ratio may lead to local optima due to premature overcon-
fidence, as noted by Ma et al. (2024a). To address this, a Beta distribution is constructed from
which we sample the contribution reward. The Beta distribution for a specific state involves two
parameters, ÑS(s) and ÑF (s), which are positively correlated with the actual pseudo-counts for
state s encountered in successful and failed trajectories, respectively, based on the RN errors, can be
estimated as:

ÑX(s) =
N(t)

eX(s)
, X ∈ {S, F}, (5)

where N(t) is the total number of states observed by the agent up to time t. Then the contribution
reward is derived as:

Rcon(s) = r̂, r̂ ∼ Beta(r; ÑS(s) + 1, ÑF (s) + 1) =
rÑS(s)(1− r)ÑF (s)

B
(
ÑS(s) + 1, ÑF (s) + 1

) , (6)

where r denotes the random variable and B(·, ·) is the normalization factor.

The theoretical foundation for using Beta distribution is supported by Thompson Sampling frame-
work (Thompson, 1933). A key intrinsic property of the Beta distribution is that as the sample size
increases, i.e., ÑS(s) and ÑF (s) grow, it gradually converges to the true success ratio, demon-
strating an adaptive convergence in response to increasing confidence level. Notably, due to the
non-linear nature of neural networks, the pseudo-counts derived from RN modules are not necessar-
ily linear to the actual counts. However, this discrepancy does not compromise our approach as we
primarily require a relative measure of success and failure counts, not precise values.

Finally, to effectively balance exploration and exploitation, we dynamically adjust the weights of
the novelty and contribution rewards, λ and ω, in Equation 1. We set λ to decrease linearly from 1
to 0, and ω to increase from 0 to 1 throughout the training process, which has been validated to be
effective in practice. This ensures that the agent initially focuses on exploration and gradually shifts
to exploitation by strategically scheduling the two rewards.

4.2.3 SUCCESSFUL AND FAILED TRAJECTORIES

In our DuRND framework, trajectories are classified as successful or failed based on environmental
rewards. For scenarios with task-completion indication rewards, which are typically issued at the
end of a trajectory, success is straightforwardly inferred from the final reward. For example, in a
maze navigation task, a reward is given only upon reaching the destination.

To extend DuRND to environments where rewards do not directly indicate overall trajectory success,
yet are still sparse and assigned to key milestones or sub-goals, we introduce a sub-trajectory ap-
proach. This strategy is based on a fundamental assumption that a trajectory can be divided into mul-
tiple sub-trajectories, each independently labeled as successful or not. The cumulative reward ob-
tained by the entire trajectory is then considered a collective contribution of all these sub-trajectories.
We define a hyperparameter Tmax, representing the maximum length for a sub-trajectory. If no re-
ward is received within Tmax consecutive steps, the sub-trajectory is considered failed; conversely,
receiving any reward within Tmax marks the preceding sequence as a successful sub-trajectory. This
approach enables DuRND to flexibly adapt to more general sparse-reward structures.

4.3 DURND ENHANCED RL ALGORITHM

We integrate the DuRND framework into Proximal Policy Optimization (PPO), a well-known, ad-
vanced on-policy RL algorithm (Schulman et al., 2017). PPO consists of two modules: a policy

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

to select actions given states (actor) and a value function to evaluate the policy’s behavior (critic).
The enhancement is to use the DuRND-defined reward structure in Equation 1 to shape the sparse
environmental rewards. Let πθ be the parameterized policy network and Vϕ be the parameterized
Value network. We define the enhanced advantage given the DuRND reward as:

Ât =

T−t−l∑
l=0

γlδt+l, δt =
(
renv
t + λrnov

t + ωrcon
t

)
+ γVϕold(st+1)− Vϕold(st). (7)

Then the enhanced loss function for policy πθ is defined as:

L̂(θ) = E
[
min

(
rt(θ)Ât, clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
Ât

)]
, (8)

where rt(θ) =
πθ(at|st)
πθold(at|st)

is the probability ratio, and ϵ is the clipping parameter. The enhanced

loss function for the value function is defined as:

L̂(ϕ) = E
[(

Vϕ(st)−
(
Ât + Vϕold(st)

))2
]
. (9)

By leveraging real-time computed novelty and contribution rewards, alongside their linearly up-
dated weights, the augmented DuRND rewards effectively broaden the exploration horizon in early
training and progressively evolve to density, meaningful rewards later, improving convergence. We
implement the DuRND framework within the PPO algorithm, primarily following the vanilla RND
model (Burda et al., 2018). The trajectory-based optimization nature of PPO also fits well with
the DuRND’s updates. Besides, DuRND can be easily adapted to more model-free RL algorithms,
such as SAC (Haarnoja et al., 2018), TD3 (Fujimoto et al., 2018), and others. We summarize the
DuRND-enhanced PPO algorithm in Algorithm 1.

Algorithm 1 Dual Random Networks Distillation enhanced Proximal Policy Optimization

Require: Environment E , parameterized πθ and Vϕ

Require: Random Network modulesRS andRF

1: for iteration = 1, 2, . . . do
2: for each epoch and T = ∅ do
3: (st, at, r

env
t , st+1)← Interact(πθold , E) ▷ collect transitions by executing current policy

4: eS(st) ∼ RS , eF (st) ∼ RF ▷ compute prediction errors from two RN modules
5: rnov

t = eS(st) + eF (st) ▷ compute novelty reward
6: rcon

t ∼ Beta(r;N(t)/eS(st) + 1, N(t)/eF (st) + 1) ▷ sample contribution reward
7: T ← T ∪ {(st, at, rnew

t , rnov
t , rcon

t , st+1)} ▷ store augmented transitions
8: end for
9: if trajectory is successful: RS ← Update(RS , T) ▷ update success RN module

10: else: RF ← Update(RF , T) ▷ otherwise, update failure RN module
11: θ ← θ − αθ∇θL̂(θ) ▷ optimize πθ by Equation 8
12: ϕ← ϕ− αϕ∇ϕL̂(ϕ) ▷ optimize Vϕ by Equation 9
13: end for

5 EXPERIMENTS

Experiments are designed to evaluate the DuRND framework across various environments with
sparse rewards. We select ten challenge tasks from three domains: Atari games, classic 2D games
from the arcade learning environment (ALE) platform (Bellemare et al., 2013), VizDoom, a 3D
first-person shooting game environment (Kempka et al., 2016; Tomilin et al., 2022), and Mini-
World, a simulated 3D interior maze environment (Chevalier-Boisvert et al., 2023). Specifically, the
two MiniWorld environments provide task-completion indication rewards only at the end of each
episode, while other environments assign rewards for achieving specific milestones, but the overall
distribution of rewards remains highly sparse. To ensure consistency in reward scaling across all
environments, we standardize rewards: 1 for task completion or milestone achievement and 0 other-
wise. Illustrations of all tasks can be found in Figure 2, with detailed descriptions of these tasks and
the environmental reward structures provided in Appendix A.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Freeway (b) Frogger (c) Solaris (d) BeamRider (e) DefendLine

(f) SaveCenter (g) CollectKit (h) SlayGhosts (i) ThreeRooms (j) TMaze

Figure 2: Ten sparse-reward tasks evaluated in our experiments.

0 200 400 600 800 1000

0

5

10

15

20

25

Ep
is

od
e

re
tu

rn
s

Freeway

0 200 400 600 800 1000

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Frogger

0 200 400 600 800 1000

0

10

20

30

40

Solaris

0 200 400 600 800 1000

5

10

15

20

25

30

BeamRider

0 200 400 600 800 1000

0

2

4

6

8

10

12

DefendLine

0 200 400 600 800 1000

Steps ×103

0

2

4

6

8

10

12

Ep
is

od
e

re
tu

rn
s

SaveCenter

0 200 400 600 800 1000

0

10

20

30

40
CollectKit

0 200 400 600 800 1000

0

5

10

15

20

SlayGhosts

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

ThreeRooms

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

TMaze

DuRND ExploRS RND #Explo ReLara ROSA SORS

Figure 3: The learning performance of DuRND compared with baselines.

5.1 COMPARISON TO BASELINES

We compare DuRND with six widely-recognized reward shaping baselines, covering the two main
categories we have discussed. For approaches that incorporate exploration bonuses as auxiliary re-
wards, we include ExploRS (Devidze et al., 2022), RND (Burda et al., 2018), and #Explo (Tang
et al., 2017); For approaches that extract hidden value-based rewards, we include ReLara (Ma et al.,
2024b), ROSA (Mguni et al., 2023), and SORS (Memarian et al., 2021). All baselines are imple-
mented based on the RLeXplore library (Yuan et al., 2024) or the codes attached in the respective
papers. Further experimental details, like hyperparameters, neural network architectures, and hard-
ware configurations, are provided in Appendix A.2.

The learning results averaged over ten runs with different random seeds, are illustrated in Figure 3,
with the quantified data presented in Table 1. The DuRND framework demonstrates distinct advan-
tages mainly from three aspects: efficient and directed exploration, rapid and stable convergence,
and considerably low training resource demands.

Exploration. DuRND inherits its exploratory capability from the RND’s intrinsic exploration
bonus. Rewarding novelty allows the agent to assign higher rewards to less frequently visited states,
thus encouraging more targeted exploration. For the baselines, ReLara relies on random reward
injections and random action space sampling that mainly introduce noise to amplify uncertainty;
ROSA and SORS depend on the agent’s underlying exploration strategies. All these three baselines
lack explicit guidance on which areas to explore. Consequently, DuRND is observed to collect tra-
jectories with higher episodic returns earlier in training due to the novelty reward, enhancing sample
efficiency. Furthermore, while ReLara, ROSA, and SORS can also converge to optimal policies
in many settings, they sometimes remain trapped in local optima. For instance, in the SaveCenter
tasks, DuRND achieves higher returns by continuously defeating 12 enemies in one episode, while
the baselines only defeat about 6 within the same training periods.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison of DuRND with baseline models: the average episodic returns with standard
errors (↑ higher is better).

Environments DuRND ExploRS RND #Explo ReLara ROSA SORS

Freeway 23.22 ± 0.01 17.46 ± 0.00 14.77 ± 0.01 15.16 ± 0.01 15.47 ± 0.00 3.68 ± 0.00 7.30 ± 0.01
Frogger 14.36 ± 0.00 10.19 ± 0.00 8.59 ± 0.00 1.81 ± 0.00 9.30 ± 0.01 3.45 ± 0.00 7.79 ± 0.00
Solaris 18.91 ± 0.02 9.82 ± 0.01 6.07 ± 0.00 2.06 ± 0.00 2.96 ± 0.00 1.87 ± 0.00 2.50 ± 0.00

BeamRider 18.05 ± 0.01 16.19 ± 0.01 11.96 ± 0.00 9.03 ± 0.00 11.84 ± 0.00 10.57 ± 0.00 10.56 ± 0.00
DefendLine 8.52 ± 0.00 1.63 ± 0.00 1.11 ± 0.00 1.62 ± 0.00 4.27 ± 0.00 5.33 ± 0.00 1.28 ± 0.01
SaveCenter 6.33 ± 0.00 2.03 ± 0.00 2.37 ± 0.00 1.30 ± 0.00 2.64 ± 0.00 0.83 ± 0.00 1.78 ± 0.01
CollectKit 20.87 ± 0.01 11.97 ± 0.01 14.59 ± 0.01 0.90 ± 0.00 12.43 ± 0.01 6.80 ± 0.00 1.60 ± 0.00
SlayGhosts 15.60 ± 0.00 2.82 ± 0.00 10.18 ± 0.00 1.27 ± 0.00 10.61 ± 0.00 5.01 ± 0.00 5.07 ± 0.01

ThreeRooms 0.86 ± 0.00 0.48 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.12 ± 0.00 0.18 ± 0.00
TMaze 0.96 ± 0.00 0.80 ± 0.00 0.97 ± 0.00 0.39 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.30 ± 0.00

Exploitation. DuRND progressively shifts from rewarding novelty to rewarding contribution, en-
hancing the agent’s focus on states that are more likely to result in successful task completion,
thereby continuously reinforcing beneficial behaviors. However, for the baselines that only incor-
porate exploration bonuses, such as ExploRS, RND, and #Explo, agents struggle to derive effective
guidance from novelty rewards as training progresses to later stages. More critically, the agents’
overemphasis on novel yet low-value states hinders the recovery from the shaping rewards, leading
to policies that diverge from the original task objectives. Observations in tasks like Freeway, De-
fendLine, and SlayGhosts reveal that while these baselines may initially achieve high environmental
returns, their performance declines in later stages, deviating from the optimal policies. Conversely,
DuRND maintains a steady convergence towards the optimal policy, demonstrating its effectiveness
in balancing exploration and exploitation.

Memory Efficiency. DuRND is space-efficient as it only introduces two lightweight RN modules to
compute both types of rewards. In comparison, ReLara and ROSA both demand additional agents,
which are generally more complex and computationally expensive. ExploRS and #Explo both in-
volve pseudo-counts but are not RND-based, relying instead on density models that require sub-
stantial extra space for storing historical states (at least partially). To empirically validate DuRND’s
memory efficiency, we report the maximum memory consumption in Table 2. To provide a more
intuitive comparison, we normalize the data relative to our DuRND. To keep the comparison fair
between off-policy and on-policy methods, we exclude the memory consumption of replay buffers.

Table 2: The maximum memory consumption during training across three domains, normalized
relative to DuRND to report intuitively (↓ lower is better).

Domains DuRND ExploRS RND #Explo ReLara ROSA SORS

Atari games 1 10.94 0.91 0.84 3.67 3.84 1.1
VizDoom 1 11.94 0.93 0.84 3.97 4.24 1.06

MiniWorld 1 11.41 0.90 0.83 3.58 3.91 1.12

5.2 EXPLORATION-EXPLOITATION TRADE-OFF

In this section, we further study the exploration-exploitation trade-off in DuRND by demonstrating
the differences in state visitation distributions under different reward shaping methods and explo-
ration strategies. For an intuitive illustration, we consider a toy task in a one-dimensional chain of
length 31, with states as s0, s1, · · · , s30 from left to right. The agent starts at the midpoint, s15, at
the beginning of each episode. There are 15 states on either side of the starting point, but only the
far-right state, s30, is the successful terminal state with Renv(s30) = 1, while all other states are
rewarded as 0. Each episode is limited to a maximum of 20 steps. The agent can take three actions:
moving to the left, moving to the right, and staying in the current state.

We compare the complete DuRND with two variants: (1) DuRND with only the novelty reward
λRnov, and (2) DuRND with only the contribution reward ωRcon; as well as three reward shaping or
exploration approaches: (3) vanilla RND, that only rewards novelty; (4) SORS, that defines shaping
rewards by ranking trajectories with environmental feedback; and (5) ϵ-greedy, the popular strategy
that selects a random action with probability ϵ and the greedy action with probability 1− ϵ. For each

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: The state visiting distributions of different methods for each 25k steps in the toy task.

method, we track the state visitation over a total of 100k steps in the toy task, presenting the results
for every 25k steps in Figure 4.

From the presented results, we observe that DuRND demonstrates an efficient trade-off between
exploration and exploitation. In the early stage (around 0 to 50k steps), DuRND shows a more
balanced state visitation across the entire chain, while in the later stage (around 50k to 100k steps),
the agent increasingly focuses on the right side of the starting point, as only these states yield task
completion. In comparison, RND maintains a broader exploratory behavior but is less effective
at the exploitation stage, still visiting states on the left side even in the last 25k steps. DuRND
with only λRnov performs better than RND because of the novelty reward scheduling; however it
performs worse than the complete DuRND, indicating the effectiveness of the ωRcon term. SORS
and DuRND with only ωRcon converge slower than complete DuRND, and their exploration ranges
are more limited. For ϵ-greedy, which lacks a clear exploratory direction, the initial exploration is
more concentrated, consequently, it fails to reach the terminal state within the 100k steps.

5.3 NOVELTY AND CONTRIBUTION REWARDS

5.3.1 ANALYSIS OF THE LEARNED REWARDS

We discuss how the novelty and contribution rewards evolve during training. Figure 5 shows the
normalized rewards received by the agent throughout learning. Over time, the novelty reward de-
creases while the contribution reward increases, both nonlinearly. The decline in the novelty reward
indicates the diminishing differentiation among states after extensive exploration, i.e., states become
uniformly non-novel, thus, the information provided by novelty rewards loses significance in later
training, highlighting again the limitation of relying only on novelty may hinder convergence. The
contribution reward increases and eventually stabilizes at a high level, dominating the shaping re-
wards. This is attributed to the continuous reinforcement of successful trajectories, which directs the
agent’s focus towards states conducive to success, thereby causing the contribution rewards to con-
verge to a stable level. In summary, the transition from exploration-driven to task-oriented rewards
is a critical factor underpinning DuRND’s superior performance.

5.3.2 ABLATION STUDY: EFFECTS OF TWO TYPES OF REWARDS

To further understand the effects of two types of rewards, we conduct an ablation study to compare
the complete DuRND framework with two variants: (1) DuRND with only the novelty reward (only
Rnov), and (2) DuRND with only the contribution reward (only Rcon). The learning curves are shown
in Figure 6, with the quantitative results provided in Appendix A.3.

The experimental results show that both rewards are essential for DuRND’s performance. When
relying only on the novelty reward, agents struggle to recover the environmental rewards, leading to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ep
is

od
e

re
tu

rn
s

Freeway

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Frogger

0 200 400 600 800 1000

0.2

0.4

0.6

0.8

1.0

1.2

Solaris

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

BeamRider

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

DefendLine

0 200 400 600 800 1000

Steps ×103
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ep
is

od
e

re
tu

rn
s

SaveCenter

0 200 400 600 800 1000

0.2

0.4

0.6

0.8

1.0

1.2

CollectKit

0 200 400 600 800 1000

0.2

0.4

0.6

0.8

1.0

1.2

SlayGhosts

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

ThreeRooms

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

TMaze

novelty rewards Rnov contribution rewards w/o Rcon

Figure 5: The novelty and contribution rewards learned in DuRND framework.

0 200 400 600 800 1000

0

5

10

15

20

25

Ep
is

od
e

re
tu

rn
s

Freeway

0 200 400 600 800 1000

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Frogger

0 200 400 600 800 1000

0

10

20

30

40

Solaris

0 200 400 600 800 1000

5

10

15

20

25

30

BeamRider

0 200 400 600 800 1000
0

2

4

6

8

10

12

DefendLine

0 200 400 600 800 1000

Steps ×103

0

2

4

6

8

10

12

Ep
is

od
e

re
tu

rn
s

SaveCenter

0 200 400 600 800 1000

0

5

10

15

20

25

30

35

40
CollectKit

0 200 400 600 800 1000

0

5

10

15

20

SlayGhosts

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

ThreeRooms

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

TMaze

DuRND complete DuRND with only Rnov DuRND with only Rcon

Figure 6: Ablation study: the learning performance of DuRND with a single type of reward.

unstable convergence and deviations from the task’s original objectives. But this variant outperforms
the vanilla RND, as the decreasing on the novelty reward over time alleviates the agent’s distrac-
tion. In contrast, using only the contribution reward hinders efficient exploration, delaying favorable
outcomes and potentially trapping the agent in local optima.

6 CONCLUSION AND DISCUSSION

Conclusion. This paper introduced the DuRND framework, designed to separately estimate the
visitation frequencies of states from both successful and failed (sub-)trajectories. The dual RN
modules compute two types of rewards, guiding the agent from directed exploration to stable conver-
gence. Experimentally, we demonstrate that compared to the novelty-based RS approaches, DuRND
avoids the pitfalls of continuous novelty-driven exploration, instead shifting to provide more mean-
ingful rewards for desired behaviors; while compared to the hidden value based RS approaches,
DuRND effectively broadens the exploration scope and collects more diverse information. In sum-
mary, DuRND combines the advantages of both approaches, achieving an efficient tradeoff between
exploration and exploitation. Moreover, DuRND operates with low computational overhead in high-
dimensional environments, making it a scalable solution for a wide range of RL tasks.

Limitations. We find that in non-task-completion-indication reward scenarios, DuRND remains
sensitive to the maximum sub-trajectory length Tmax, as it affects the accuracy of classifying states as
successful or failed. This hyperparameter also varies across environments, depending on the degree
of reward sparsity. Thus, determining the appropriate Tmax requires some environment-specific prior
knowledge. To adapt to diverse settings, a dynamic Tmax that adjusts according to the environment’s
average reward cycle could be considered. Additionally, while linearly adjusting the weights of the
two rewards has been empirically effective, this approach may not be optimal. Identifying the right
moment to shift from rewarding novelty to rewarding contribution may need better metrics to gauge
whether exploration has been sufficient. This presents a valuable direction for future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
ods and progress. Artificial Intelligence, 297:103500, 2021.

John Asmuth, Michael L Littman, and Robert Zinkov. Potential-based shaping in model-based
reinforcement learning. In AAAI Conference on Artificial Intelligence, pp. 604–609, 2008.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, et al. Never
give up: Learning directed exploration strategies. In International Conference on Learning Rep-
resentations, 2020.

Gianluca Baldassarre, Marco Mirolli, et al. Intrinsically motivated learning in natural and artificial
systems. Springer, 2013.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in Neural Information Pro-
cessing Systems, 29, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Erdem Bıyık, Dylan P Losey, Malayandi Palan, Nicholas C Landolfi, Gleb Shevchuk, and Dorsa
Sadigh. Learning reward functions from diverse sources of human feedback: Optimally inte-
grating demonstrations and preferences. The International Journal of Robotics Research, 41(1):
45–67, 2022.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2018.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. In International Conference on Learning Repre-
sentations, 2019.

Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. Heuristic-guided reinforcement learn-
ing. Advances in Neural Information Processing Systems, 34:13550–13563, 2021.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Mod-
ular & customizable reinforcement learning environments for goal-oriented tasks. Advances in
Neural Information Processing Systems, 36, 2023.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong
Yang. Safe rlhf: Safe reinforcement learning from human feedback. In The Twelfth International
Conference on Learning Representations, 2024.

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping
for reinforcement learning under sparse rewards. Advances in Neural Information Processing
Systems, 35:5829–5842, 2022.

Sam Michael Devlin and Daniel Kudenko. Dynamic potential-based reward shaping. In Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent Systems, pp. 433–
440. IFAAMAS, 2012.

Christian Ellis, Maggie Wigness, John Rogers, Craig Lennon, and Lance Fiondella. Risk averse
bayesian reward learning for autonomous navigation from human demonstration. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 8928–8935. IEEE, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representa-
tions, 2019.

Lior Fox, Leshem Choshen, and Yonatan Loewenstein. Dora the explorer: Directed outreaching
reinforcement action-selection. In International Conference on Learning Representations, 2018.

Justin Fu, John Co-Reyes, and Sergey Levine. Ex2: Exploration with exemplar models for deep
reinforcement learning. Advances in neural information processing systems, 30, 2017.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR, 2018.

Gaurav R Ghosal, Matthew Zurek, Daniel S Brown, and Anca D Dragan. The effect of modeling
human rationality level on learning rewards from multiple feedback types. In Proceedings of the
AAAI Conference on Artificial Intelligence, pp. 5983–5992, 2023.

Dhawal Gupta, Yash Chandak, Scott Jordan, Philip S Thomas, and Bruno C da Silva. Behavior
alignment via reward function optimization. Advances in Neural Information Processing Systems,
36, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, pp. 1861–1870. PMLR, 2018.

Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, Tsu-Jui Fu, and Chun-Yi Lee.
Diversity-driven exploration strategy for deep reinforcement learning. Advances in neural infor-
mation processing systems, 31, 2018.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. Advances in neural information processing sys-
tems, 29, 2016.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu, and
Changjie Fan. Learning to utilize shaping rewards: A new approach of reward shaping. Advances
in Neural Information Processing Systems, 33:15931–15941, 2020.

Minyoung Hwang, Gunmin Lee, Hogun Kee, Chan Woo Kim, Kyungjae Lee, and Songhwai Oh. Se-
quential preference ranking for efficient reinforcement learning from human feedback. Advances
in Neural Information Processing Systems, 36, 2023.

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. Viz-
doom: A doom-based ai research platform for visual reinforcement learning. In 2016 IEEE
conference on computational intelligence and games (CIG), pp. 1–8. IEEE, 2016.

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement
learning: A survey. Information Fusion, 85:1–22, 2022.

Sam Lobel, Akhil Bagaria, and George Konidaris. Flipping coins to estimate pseudocounts for
exploration in reinforcement learning. In International Conference on Machine Learning, pp.
22594–22613. PMLR, 2023.

Haozhe Ma, Zhengding Luo, Thanh Vinh Vo, Kuankuan Sima, and Tze-Yun Leong. Highly effi-
cient self-adaptive reward shaping for reinforcement learning. arXiv preprint arXiv:2408.03029,
2024a.

Haozhe Ma, Kuankuan Sima, Thanh Vinh Vo, Di Fu, and Tze-Yun Leong. Reward shaping for
reinforcement learning with an assistant reward agent. In Forty-first International Conference on
Machine Learning, volume 235, pp. 33925–33939. PMLR, 2024b.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with the
successor representation. In Proceedings of the AAAI Conference on Artificial Intelligence, pp.
5125–5133, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jarryd Martin, S Suraj Narayanan, Tom Everitt, and Marcus Hutter. Count-based exploration in fea-
ture space for reinforcement learning. In Proceedings of the 26th International Joint Conference
on Artificial Intelligence, pp. 2471–2478, 2017.

Augustine Mavor-Parker, Kimberly Young, Caswell Barry, and Lewis Griffin. How to stay curious
while avoiding noisy tvs using aleatoric uncertainty estimation. In International Conference on
Machine Learning, pp. 15220–15240. PMLR, 2022.

Farzan Memarian, Wonjoon Goo, Rudolf Lioutikov, Scott Niekum, and Ufuk Topcu. Self-supervised
online reward shaping in sparse-reward environments. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2369–2375. IEEE, 2021.

David Mguni, Taher Jafferjee, Jianhong Wang, Nicolas Perez-Nieves, Wenbin Song, Feifei Tong,
Matthew Taylor, Tianpei Yang, Zipeng Dai, Hui Chen, et al. Learning to shape rewards using a
game of two partners. In AAAI Conference on Artificial Intelligence, pp. 11604–11612, 2023.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International Conference on Machine Learning, pp. 2721–2730. PMLR,
2017.

Seohong Park, Kimin Lee, Youngwoon Lee, and Pieter Abbeel. Controllability-aware unsupervised
skill discovery. In International Conference on Machine Learning, pp. 27225–27245. PMLR,
2023.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning, pp. 2778–2787.
PMLR, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In International conference on machine learning, pp. 5062–5071. PMLR, 2019.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for
procedurally-generated environments. In International Conference on Learning Representations,
2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Matthias Schultheis, Dominik Straub, and Constantin A Rothkopf. Inverse optimal control adapted
to the noise characteristics of the human sensorimotor system. Advances in Neural Information
Processing Systems, 34:9429–9442, 2021.

Jonathan Sorg, Richard L Lewis, and Satinder Singh. Reward design via online gradient ascent.
Advances in Neural Information Processing Systems, 23, 2010a.

Jonathan Sorg, Satinder P Singh, and Richard L Lewis. Internal rewards mitigate agent boundedness.
In International Conference on Machine Learning, pp. 1007–1014, 2010b.

Bradly Stadie, Lunjun Zhang, and Jimmy Ba. Learning intrinsic rewards as a bi-level optimization
problem. In Conference on Uncertainty in Artificial Intelligence, pp. 111–120. PMLR, 2020.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

Theodore R Sumers, Mark K Ho, Robert D Hawkins, Karthik Narasimhan, and Thomas L Griffiths.
Learning rewards from linguistic feedback. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 6002–6010, 2021.

Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Exploit reward shifting
in value-based deep-rl: Optimistic curiosity-based exploration and conservative exploitation via
linear reward shaping. Advances in Neural Information Processing Systems, 35:37719–37734,
2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. Advances in Neural Information Processing Systems, 30, 2017.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

Tristan Tomilin, Tianhong Dai, Meng Fang, and Mykola Pechenizkiy. Levdoom: A benchmark for
generalization on level difficulty in reinforcement learning. In 2022 IEEE Conference on Games
(CoG), pp. 72–79. IEEE, 2022.

Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping your distance:
Solving sparse reward tasks using self-balancing shaped rewards. Advances in Neural Information
Processing Systems, 32, 2019.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Con-
ditional image generation with pixelcnn decoders. Advances in neural information processing
systems, 29, 2016.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith,
Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
language model training. Advances in Neural Information Processing Systems, 36, 2023.

Kai Yang, Jian Tao, Jiafei Lyu, and Xiu Li. Exploration and anti-exploration with distributional ran-
dom network distillation. In Forty-first International Conference on Machine Learning. PMLR,
2024.

Yuxuan Yi, Ge Li, Yaowei Wang, and Zongqing Lu. Learning to share in networked multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 35:15119–15131,
2022.

Mingqi Yuan, Roger Creus Castanyer, Bo Li, Xin Jin, Glen Berseth, and Wenjun Zeng. Rlex-
plore: Accelerating research in intrinsically-motivated reinforcement learning. arXiv preprint
arXiv:2405.19548, 2024.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. Advances in Neural Information Processing Systems, 31, 2018.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ENVIRONMENTS CONFIGURATION

All tasks in our experiments provide sparse rewards. The objective descriptions and the criteria for
assigning sparse environmental rewards are detailed in Table 3. Apart from tasks ThreeRooms and
TMaze, which offer episodic rewards, other tasks provide intermediate rewards upon the completion
of some specific milestones. All other states yield zero reward.

Table 3: Objective descriptions and environmental rewards assignments for the ten tasks.

Environments Sparse Rewards Assignment

Freeway Guide the chicken across multiple lanes of heavy traffic.
1. +1 reward for the chicken goes across the screen.
2. Episode ends if all 3 chickens are hit by cars or maximum steps 2000 are reached.

Frogger Guide the frog home across a highway and river while avoiding cars and predators.
1. +2 rewards for reaching home.
2. +1 reward for eating a fly.
3. Episode ends when all 5 frogs are lost or maximum steps 2000 are reached.

Solaris Control a spaceship to blast enemies and explore new galaxies.
1. +1 reward for destroying a target.
2. +1 reward for entering a new galaxy.
3. Episode ends when all ships are destroyed or maximum steps 2000 are reached.

BeamRider Control a spaceship to destroy enemies while avoiding obstacles.
1. +1 reward for each enemy ship destroyed.
2. Episode ends if all ships are lost or maximum steps 2000 are reached.

DefendLine Defend the line by neutralizing incoming enemies.
1. +1 reward for each enemy killed.
2. Episode ends if the player is defeated or the maximum steps 1000 are reached.

SaveCenter Protect the center by eliminating enemies.
1. +1 reward for each enemy killed.
2. Episode ends if the player is defeated or the maximum steps 1000 are reached.

CollectKit Collect health kits in a room full of poison.
1. +1 reward for collecting one kit.
2. Episode ends if the player is killed by the poison or the maximum steps 1000 are reached.

SlayGhosts Eliminate ghosts or monsters in a designated environment.
1. +1 reward for each ghost killed.
2. Episode ends if the player is killed or the maximum steps 1000 are reached.

ThreeRooms Navigate through three connected rooms to reach a red cube.
1. +1 reward for reaching the red cube.
2. −0.1 penalty for each time step taken.
3. Episode ends when the cube is reached or the maximum steps 500 are reached.

TMaze Navigate a T-shaped maze to reach the red cube.
1. +1 point for reaching the red cube.
2. −0.1 penalty for each time step taken.
3. Episode ends when the cube is reached or the maximum steps 500 are reached.

A.2 EXPERIMENTS IMPLEMENTATION DETAILS

A.2.1 IMPLEMENTATION DETAILS

In this section, we discuss some details of the implementation of our DuRND framework.

Observation Normalization. Observation normalization is a common practice in deep reinforce-
ment learning, which helps stabilize the learning process. We normalize the observations by sub-
tracting the running mean and dividing by the running standard deviation, following the implemen-
tation introduced in Burda et al. (2018).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Random Networks Error Normalization. For different tasks and different initializations of the
random network modules, the scale of the MSE errors, eS and eF , can vary significantly. To make
it easy to formalize the hyperparameter λ across different tasks, we normalize the MSE errors by
dividing them by the initial error, which is the average of the MSE errors from the first mini-batch
at the beginning of the training process. This is built on the assumption that the errors are gradually
decreasing, so the initial error is a good approximation of the scale of the errors.

State Number Function. In implementation, the state number estimation function N(t) in Equa-
tion 5 is not directly assigned as the corresponding time step t. Instead, we use a factor ϕ to scale
the state number function, which is defined as N(t) = ϕt, where ϕ = 0.01 in our experiments. This
is mainly because that directly using the time step t results in overly large estimated pseudo-counts,
which may lead to premature confidence in the Beta distributions, thus leading to suboptima.

A.2.2 HYPERPARAMETERS

DuRND is relatively robust to hyperparameters, we report the hyperparameters used in our experi-
ments in Table 4.

Table 4: The hyperparameters of DuRND in our experiments.

Hyperparameters Values

discount factor γ 0.99
generalized advantage estimate 0.95

number of mini-batches 32
learning rate 3× 10−4

maximum gradient normalization 0.5
random networks learning rate 10−6

PPO clip coefficient 0.2
PPO entropy coefficient 0.0

PPO value loss coefficient 0.5
Total training steps 106

A.2.3 NEURAL NETWORK ARCHITECTURES

The neural network architecture of the PPO agent used in our experiments is shown in Figure 7. The
PPO agent comprises actor and critic modules, which share the same feature extraction layers.

Figure 7: The neural network architecture of the PPO agent in our experiments.

For the random networks that map one frame of preprocessed observation to a 512-length feature
vector, the architecture is depicted in Figure 8.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 8: The neural network architecture of the random network in our experiments.

A.2.4 HARDWARE CONFIGURATIONS

The experiments are conducted on machines mainly with two kinds of configurations:

1. The GPU is NVIDIA Tesla A100 with 40GB memory. The CPU is Intel Xeon Gold 6326
with 16 cores and 32 threads.

2. The GPU is NVIDIA Tesla H100 with 40GB memory. The CPU is AMD Epyc 9334 with
32 cores and 64 threads.

The experiments are implemented by PyTorch in version 2.0.1 and CUDA in version 11.7.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

To support the main results of the ablation study in our paper, we provide quantified results of
DuRND with a single type of reward in Table 5. The results show that both types of rewards are
essential for the DuRND framework to achieve the best performance.

Table 5: Ablation study: the average episodic returns with standard errors of DuRND with a single
type of reward

Environments DuRND DuRND with only Rnov DuRND with only Rcon

Freeway 23.22± 0.01 19.63± 0.01 15.57± 0.01
Frogger 14.36± 0.00 10.10± 0.00 10.81± 0.00
Solaris 18.91± 0.02 7.83± 0.01 17.61± 0.01

BeamRider 18.05± 0.01 9.45± 0.00 13.07± 0.01
DefendLine 8.52± 0.00 2.65± 0.00 4.09± 0.00
SaveCenter 6.33± 0.00 3.08± 0.00 4.31± 0.00
CollectKit 20.87± 0.01 11.12± 0.01 9.11± 0.01
SlayGhosts 15.60± 0.00 7.22± 0.00 4.03± 0.00

ThreeRooms 0.86± 0.00 0.26± 0.00 0.06± 0.00
TMaze 0.96± 0.00 0.93± 0.00 0.52± 0.00

17

	Introduction
	Background
	Related Work
	Methodology
	Overview of the DuRND Framework
	Reward Shaping via Dual Random Networks
	Dual Random Network Modules
	Novelty and Contribution Rewards
	Successful and Failed Trajectories

	DuRND Enhanced RL Algorithm

	Experiments
	Comparison To Baselines
	Exploration-Exploitation Trade-off
	Novelty and Contribution Rewards
	Analysis of the Learned Rewards
	Ablation Study: Effects of Two Types of Rewards

	Conclusion and Discussion
	Appendix
	Environments Configuration
	Experiments Implementation Details
	Implementation Details
	Hyperparameters
	Neural Network Architectures
	Hardware Configurations

	Additional Experimental Results

