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ABSTRACT

Current large language models (LLMs) are far from reliable: they are prone to
generating non-factual information and, more crucially, to contradicting them-
selves when prompted to reason about relations between entities of the world.
These problems are currently addressed with large scale fine-tuning or by dele-
gating reasoning to external tools. In this work, we strive for a middle ground
and introduce a loss based on neuro-symbolic reasoning that teaches an LLM
to be logically consistent with an external set of facts and rules and improves
self-consistency even when the LLM is fine-tuned on a limited set of facts. Our
approach also allows to easily combine multiple logical constraints at once in a
principled way, delivering LLMs that are more consistent w.r.t. all constraints
and improve over several baselines w.r.t. a given constraint. Moreover, our
method allows LLMs to extrapolate to unseen but semantically similar factual
knowledge, represented in unseen datasets, more systematically. Code available
at https://github.com/ddidacus/loco-llm.

1 INTRODUCTION

Developing reliable large language models (LLMs) and safely deploying them is more and more
crucial, particularly when they are used as sources of knowledge (Petroni et al., 2019; Ji et al., 2023;
Bommasani et al., 2021; Andriopoulos & Pouwelse, 2023). To do so, one would need LLMs to be
factual (Wadden et al., 2020), i.e., agreeing on single facts that appear in a knowledge base (KB),
and logically consistent (Li et al., 2019; Mitchell et al., 2022), i.e., being able not to contradict
themselves or a KB when prompted to perform complex reasoning. It has been abundantly shown
that training on large datasets for question answering (QA) (Tafjord & Clark, 2021) alone cannot
meet these desiderata (Evans et al., 2021; Lin et al., 2021; Liu et al., 2023; Elazar et al., 2021).

Factuality and consistency are intimately related. Enforcing factuality alone generally boils down
to fine-tuning an LLM on a large KB of atomic facts (Kassner et al., 2021). When predicting the
truth values of these facts, several works try to enforce the simplest form of consistency: that the
probability of a true fact shall be one minus the probability of its negation (Burns et al., 2022). More
sophisticated heuristics are possible, e.g., contrastive fine-tuning on a large QA dataset by jointly
optimizing for truthfulness of model answers (Liu et al., 2023). All these approaches require large
KBs and more crucially are tailored towards specific logical constraints.

When it comes to self-consistency w.r.t. more complex reasoning scenarios, e.g., ensuring that
LLMs can perform modus ponens reasoning without contradicting themselves (Tafjord et al., 2022;
Mitchell et al., 2022), one line of research focuses on employing external reasoning tools such as
MAX-SAT solvers (Battiti, 2009) at inference time (Mitchell et al., 2022; Jung et al., 2022; Kassner
et al., 2023). However, these approaches depend on the constant availability of a reasoner (and
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Figure 1: Pipeline of our Logically Consistent (LoCo) LLMs. LOCO-LMS are made factual and
logically (self-)consistent by fine-tuning a base LLM according to a knowledge base of facts and
rules (Section 3). The constraints αi – which can be arbitrary propositional logic formulas – are
compiled into a circuit (just once) and then used to encourage the model to allocate non-zero prob-
ability only to factual and consistent facts via a semantic loss (Xu et al., 2018), see Equation (SL).viva la semantic loss antifascista

sometimes also of a natural language inference model (Mitchell et al., 2022)) which can increase
the cost of inference for every reasoning step. At the same time, training the LLM to reason is not
possible or hindered by the hardness of backpropagating through the solver (Pogancic et al., 2020).

In this work, we show how to improve factuality and self-consistency of LLMs without external
components by leveraging recent advancements in neuro-symbolic (NeSy) reasoning (De Raedt
et al., 2021). This is done by turning complex reasoning tasks into logical constraints that can be
compiled into computational graphs (Vergari et al., 2021). Specifically, we fine-tune an LLM by a
principled objective: maximising the exact probability of a constraint to hold, which goes under the
name of weighted model counting (Chavira & Darwiche, 2008) in probabilistic reasoning or seman-
tic loss (Xu et al., 2018) when used as a regularizer in deep learning (Zhang et al., 2023; van Krieken
et al., 2024). This in turn encourages the LLM to perform exact probabilistic reasoning at training
time by maximising the probability of beliefs that comply with the provided set of constraints.

We empirically show how given incomplete factual knowledge, e.g., by providing only a limited
number of known facts, the LLM can learn truth beliefs for new facts while keeping logical consis-
tency w.r.t. prior knowledge. Moreover, our approach is agnostic to the logical constraints consid-
ered and can deliver a single training objective that can improve multiple consistency scores at once.
In our experiments, with a single offline training session, LLMs trained with our objective outper-
form models relying on external solvers, and are more factual and logically consistent in low-data
regimes when compared to standard supervised fine-tuning over KBs of facts.

Contributions. Summarizing, we: i) introduce Logically-Consistent LLMs (LOCO-LMS), a novel
and principled fine-tuning strategy designed to improve factuality and (self-)consistency of LLMs
based on probabilistic NeSy reasoning (Section 3), and ii) we rigorously evaluate the ability of
LOCO-LMS to improve self-consistency w.r.t. several reasoning scenarios – when fine-tuned for
certain constraints and evaluated over others – without hurting fluency (Section 5).

2 CONSISTENCY THROUGH THE LENSES OF PROBABILISTIC REASONING

We formalize the different reasoning scenarios we would like an LLM to be (self-)consistent with,
and highlight the shortcomings of commonly used LLMs when prompted to reason in this way.

Factuality. We view a pre-trained LLM as a collection of truth beliefs about facts over which it
can reason. The simplest reasoning task is factual reasoning, i.e., determining the veridicity of a
fact. For example, consider the fact f in textual form “an albatross is a bird”. It can be commonly
encoded in knowledge bases (KBs) such as BeliefBank (Kassner et al., 2021) as a (subject-relation,
property) pair, for instance, (albatross-is, bird). To inspect whether an LLM believes a fact to be
true, we can prompt it with a question like “Is an albatross a bird?”, the LLM can supply a binary
prediction of the form “Yes”/“No” or “True”/“False”,1 encoding its belief that the fact f holds
or not. Therefore, given an LLM modeling a parameterized distribution pθ, we can consider the
probability of generating a token xt encoding a binary answer, according to pθ, after observing the
token sequence x1, . . . , xt−1 encoding the question about the fact, to be the probability of the LLM
believing that the truth value zf of fact f is either true (⊤) or false (⊥). That is, for true facts,

pθ(zf = ⊤) = pθ(xt = ℓtrue | x1, . . . , xt−1 = “Is an albatross a bird?”) (1)
1 We note that such an answer can be highly dependent on the format of the prompt. For this reason, in our

experiments we use several prompts, whose format is detailed in Section 5.
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where ℓtrue is an affirmative token, e.g., one among “yes”, “true”, “Y”, “T”, etc. Analogously, we
can compute pθ(zf = ⊥) by checking if the LLM answers a token ℓfalse is “no”, “false”, “N”, “F”,
etc. To determine the model’s belief, we query 2 the most likely next token x̂t and check whether it
falls in ℓtrue or ℓfalse, and set it to “undetermined” if it falls into neither.

Given an external KB, we say an LLM is factually consistent, or simply factual, w.r.t. a fact f in
the KB with truth value z∗f , if its answer (mapped to a truth assignment as described above) matches
z∗f , and factually inconsistent otherwise.3 This perspective leads to interpreting factual reasoning
as a binary question answering (QA) task (Burns et al., 2022; Kassner et al., 2021; Mitchell et al.,
2022). From Equation (1), one can see that a simple strategy to make an LLM more factual is that of
minimizing the cross-entropy (XENT) of pθ over an external KB containing training questions with
ground truth answers. We compare against it in our experiments (Section 5).

Negation consistency. While effective for many QA scenarios (Liu et al., 2023; Tian et al., 2023),
increasing factual consistency by XENT minimization does not prevent the LLM from being log-
ically inconsistent under other simple constraints, e.g., contradiction (Kassner & Schütze, 2019;
Cohen et al., 2023; Jang & Lukasiewicz, 2023). Given a textual representation for a fact f , e.g., “an
albatross is a bird”, and another one f̃ encoding its negation, e.g., “an albatross is not a bird”, we
say negation self-consistency holds if

zf ⊕ zf̃ ⇐⇒ (zf ∧ ¬zf̃ ) ∨ (¬zf ∧ zf̃ ), (NEG)

where ⊕ denotes the logical operator XOR. In other words, we would like an LLM to consistently
answer either affirmatively or negatively when asked about the truth of a statement and its negation.
Negation consistency is very challenging for LLMs (Kassner & Schütze, 2019; Elazar et al., 2021;
Jang & Lukasiewicz, 2023). For example, in our experiments LLaMa-2 70b (Touvron et al., 2023)
answers “true” to both questions “Is an albatross an organism?” and “Is an albatross not an organ-
ism?”. From a probabilistic perspective, a simple sufficient condition for negation consistency is
that pθ(zf = ⊤) = 1−pθ(zf̃ = ⊤). This is hard to be systematically guaranteed and in practice has
been addressed by applying ad-hoc heuristics during fine-tuning (Burns et al., 2022), which however
cannot be exploited to enforce consistency to other constraints, such as implication, discussed next.

Implication consistency. Given two textual representations of facts f1 (antecedent, e.g., “an alba-
tross is a bird”) and f2 (consequent, “an albatross is an animal”) we say that the first implies the
second if it holds that

(zf1 → zf2) ⇐⇒ (¬zf1 ∨ zf2). (IMP)

As with factuality, consistency (resp. self-consistency) holds if the answers of the LLM to a prompt
satisfy the truth values according with the above implication and an external KB (resp. the inner
beliefs of the LLM). Furthermore, letting z∗f1 be the truth value of f1 recorded in the KB, we can
define a factual variant of the implication that restricts the constraint to take z∗f1 into account, that
is, when the LLM is prompted about f2, it should derive its truth value zf2 according to

(zf1 = z∗f1) ∧ (zf1 → zf2) (F-IMP)

This can be seen as a relaxation of classical modus ponens reasoning (Robinson & Voronkov, 2001).
While simpler to capture from text corpora, implication consistency can still be challenging for
LLMs (Kassner et al., 2023; Yang et al., 2024). For example, given the rule f1 → ¬f2, where
f1: “an albatross is an animal” and f2: “an albatross is a virus”, we wish the LLM to answer with
“Yes” and “No” respectively, which maps to the truth assignment zf1 = ⊤, zf2 = ⊥. LLaMa-2
70b violates the provided rule with the inconsistent belief, zf2 = ⊥, i.e. “an albatross is a virus” is
labeled as a true statement.

Reverse implication consistency. Equation (IMP) is logically equivalent to ¬zf2 → ¬zf1 , never-
theless an LLM that is logically consistent w.r.t. the implication of f1 over f2 it might not necessarily
be consistent w.r.t. the implication of f̃2 over f̃1, representing the negation of f2 and f1 respectively.

2We keep a default temperature t = 1.0. Dropout is disabled to generate outputs systematically.
3Similarly, an LLM is factually self-consistent w.r.t. f if it answers in the same logically consistent way

(e.g., zf is always ⊤) when asked to answer the same or semantically equivalent prompts different several
times. Since this is harder to measure – as it strongly depends on the sampling strategy – we focus on factual
consistency only.
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For example, while LLaMa-2 70b is logically consistent w.r.t. zf1 → zf2 with f1 : “an albatross is
an organism”, f2 : “an albatross is a living thing”, it violates zf̃2 → zf̃1 as it classifies zf̃2 : “an alba-
tross is not a living thing” as false but zf̃1 : “an albatross is not an organism” as true. Furthermore,
an LLM that is logically consistent w.r.t. reverse implication and factual w.r.t. a KB should satisfy

(zf̃2 = ¬z∗f2) ∧ (zf̃2 → zf̃1) (REV-F-IMP)

where ¬z∗f2 indicates the opposite of the truth value stored in the KB for f2. This factual reverse
implication scenario can be thought as a relaxation of modus tollens (Robinson & Voronkov, 2001).

More complex constraints. As just discussed, constraints such as negation, logical implication and
reverse implication already pose challenges to state-of-the-art LLMs in terms of consistency. While
we will focus on the Llama 2 LLM family in this work, similar shortcomings have been highlighted
for even larger models such as ChatGPT and GPT-4 (Jang & Lukasiewicz, 2023). Nevertheless, they
constitute only a small fraction of the possible real-world reasoning scenarios LLMs can be asked
to deal with. Consider for example the following textual representations of facts, as extracted from
EntailmentBank (Dalvi et al., 2022): f1 : “melting is a kind of phase change”, f2 : “the ice melts”,
f3 : “the ice undergoes a phase change”, f4 : “phase changes do not change mass”, f5 : “the mass
of the ice will not change”. They obey the following logical constraint

(zf1 ∧ zf2 → zf3) ∧ zf4 → zf5 . (2)
In the next section, we will introduce our general framework that can improve logical consistency
of fine-tunable LLMs w.r.t. any logical constraint expressible in propositional logic.

3 LOGICALLY-CONSISTENT LLMS VIA NESY INTEGRATION

We assume we are given a KB comprising a set of textual statements and associated truth values
DF = {(f1, z∗f1) . . . , (fn, z∗fn)}, encoding simple facts such as “an albatross is a bird” (true) and “a
computer is a bird” (false), and a set of logical constraints DC = {α1, . . . , αm} – e.g., implications,
negations or more complex constraints like those defined in Section 2 – over the facts in DF .

Given a pre-trained LLM encoding a distribution pθ over tokens, our objective is to fine-tune it to
be more consistent w.r.t. DF , DC and itself. As an important side benefit, we expect the fine-tuned
LLM to generalize to – and be consistent with – the truth values of unseen facts fn+1, fn+2, . . . ,
that can be either logically inferred by applying the constraints in DC to DF (e.g., by applying
modus ponens) or that are semantically similar to facts in DF . E.g., since albatross and cockerel are
semantically similar for an LLM, we expect an LLM consistent with the constraint “an albatross is
a bird” → “an albatross can fly” to correctly infer that “a cockerel can fly” too.

A principled probabilistic approach to do so is to encourage the LLM pθ to allocate all probability
mass to configurations of truth values that are consistent with the constraints αi ∈ DC , for instance
by penalizing it proportionally to the probability it allocates to inconsistent truth values for all facts
in the KB. For every αi, the total probability allocated to the consistent configurations is

Pr(αi) := Ez∼pθ(z)[1{z |= αi}] =
∑

z|=αi

pθ(z) (3)

where z is a vector containing the truth assignments z1, . . . , zK of all the K facts appearing in the
constraint αi, and z |= αi indicates that the assignment z satisfies the constraint, and the individual
probabilities pθ(z) are obtained using Equation (1). For example, consider two facts f1 : “a daffodil
is a flower” and f2 : “a daffodil is mortal” and the constraint α′ : zf1 → zf2 stating that being a
flower entails that the daffodil is mortal. Then, all the configurations of z = (zf1 , zf2) would satisfy
α′ with the exception of (⊤,⊥) which clearly violates it. Equation (3) is a special instantiation of
computing the weighted model count (WMC) (Chavira & Darwiche, 2008; van Krieken et al., 2024)
of a logical formula αi, where the weights associated to each model (a satisfying assignment to the
formula) are given by the probabilities encoded by the LLM.

Furthermore, we can rewrite such probabilities pθ(z) as the product the probabilities of the truth
values of each fact, noting that for many LLM architectures they are conditionally independent
given the embeddings at the last layer. By taking the logarithm and reversing it into a minimization
problem, we obtain the semantic loss (SL) (Xu et al., 2018) objective that our LOCO-LMS minimize:

L(αi, pθ) = − log
∑

z|=αi

∏
j:z|=zfj

pθ(zfj )
∏

j:z|=¬zfj
(1− pθ(zfj )) (SL)
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where j : z |= zfj (resp. j : z |= ¬zfj ) indicates that the j-th fact in αi is associated ⊤ (resp.
⊥). Consider the implication constraint α′ as defined before for encoding that a daffodil is mortal
for being a flower. Its satisfying assignments are z |= α′ ∈ {(⊤,⊤), (⊥,⊤), (⊥,⊥)}. Then, the
summation in Equation (SL) amounts to computing:

pθ(zf1 = ⊤)pθ(zf2 = ⊤)+(1−pθ(zf1 = ⊤))pθ(zf2 = ⊤)+(1−pθ(zf1 = ⊤))(1−pθ(zf2 = ⊤)))

where we can obtain the individual probabilities of facts being true directly by reading off the like-
lihood of utterances produced by the LLM, that is:

pθ(zf1 = ⊤) = pθ(xt = ℓtrue | x1, . . . , xt−1 = “Is a daffodil a flower?”)
pθ(zf2 = ⊤) = pθ(xt = ℓtrue | x1, . . . , xt−1 = “Is a daffodil a mortal?”).

In the case of a constraint such as Equation (F-IMP), the inner summation of the SL would re-
duce to a single configuration z = (⊤,⊤) when z∗f1 = ⊤, which can be interpreted as a special
kind of cross-entropy computed only on pairs of facts considered to be jointly true in the KB, and
to the set {(⊥,⊤), (⊥,⊥)} when z∗f1 = ⊥. Note that Equation (SL) is agnostic to the kind of
logical constraint involved, and therefore makes our approach general enough to tackle several set-
tings where consistency-preserving solutions have been devised for specific constraints (Burns et al.,
2022; Kassner et al., 2023; Mitchell et al., 2022).

Crucially, the procedure to compute the models of a logical constraint can be automated. Now,
naively computing the sum in Equation (SL) would require exponential time w.r.t. the number of
possible facts in z. In fact, computing the WMC of a logical formula is a #P-hard problem in general
(Chavira & Darwiche, 2008). However, thanks to recent advancements in neuro-symbolic reasoning,
we can compute that probability and differentiate through it efficiently (Darwiche, 2011; Xu et al.,
2018; Ahmed et al., 2022a). Specifically, we rely on modern compilers that translate a logical
formula αi into compact and differential computational graphs called circuits (Darwiche, 2003;
Vergari et al., 2019), such as sentential decision diagrams (Darwiche, 2011; Oztok & Darwiche,
2015; Choi & Darwiche, 2013), cf. Appendix A for details. In our scenario, compilation is extremely
fast taking only 2.5 milliseconds to compile a single logical formula and compute the loss on
BeliefBank (Section 5).

To recap (cf. Figure 1), during training we loop over every constraint in αi ∈ DC , prompt the LLM
to gather the probabilities of every fact participating in αi to be true and plug them in our only loss,
as described in Equation (SL). Then, we backpropagate as to fine-tune (some of) the parameters θ
of the LLM, by using LoRA (Hu et al., 2021) and quantization (Dettmers et al., 2023) if necessary.
This simple and principled recipe is able to scale well and is extremely effective at improving logical
consistency on a number of well-known benchmarks, as discussed in Section 5.

4 RELATED WORK

LLMs and factual reasoning. LLMs are increasingly being employed as implict KBs (Petroni
et al., 2019; AlKhamissi et al., 2022), however ensuring they are factually consistent is still an
open challenge (Wang et al., 2023; Augenstein et al., 2023). A number of works augment LLMs
with external KBs, especially in the context of QA, and with the primary aim of improving answer
factuality (Kassner et al., 2023; Mitchell et al., 2022; Li et al., 2024b). A popular approach to do
so is retrieval augmented generation (Lewis et al., 2020; Li et al., 2024a), which however is not yet
suited for more complex reasoning scenarios. Alternatively, external KBs have been used to improve
reasoning, e.g., via prompt learning (Palagin et al., 2023) or ex-post model editing (Shi et al., 2023).
However, current knowledge editing methods, including supervised fine-tuning, do not guarantee
the propagation of factuality between units of knowledge related by logical relations (Cohen et al.,
2023; Akyürek et al., 2024). Mitigating hallucinations in LLMs (Andriopoulos & Pouwelse, 2023;
Rawte et al., 2023) is related to enforcing factuality, but as generated inconsistencies might not map
to a single entry in a KB, they are harder to detect and prevent (Hong et al., 2024).

More complex reasoning with LLMs. Much less attention has been posed to composite forms of
reasoning, e.g., combining modus ponens and consistent negation. Even when this is done, reasoning
is generally cast as a QA task, where an LLM has to predict the satisfiability of logical formulas of
different complexities, as in benchmarks such as SimpleLogic (Zhang et al., 2022) or LogicBench
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(Parmar et al., 2023). Implication or entailment (MacCartney, 2009; Evans et al., 2018) are also
usually cast as a QA prediction task (Raj et al., 2023). BeliefBank (Kassner et al., 2021) provides
collections of implication constraints to test this, while more sophisticated benchmarks such as En-
tailmentBank (Dalvi et al., 2022) include more complex implications, e.g., trees of natural language
statements. Shortcomings in consistent reasoning have been recently highlighted for larger LLMs
such as ChatGPT and GPT-4 variants (Jang & Lukasiewicz, 2023), which are however harder to
fine-tune efficiently. Other works (Berglund et al., 2023) highlighted how (even large) LLMs suffer
from not being able to recognize the logical equivalence of “A is-a B” and “B is-a A” relationships.

For complex reasoning scenarios, logical consistency can be improved in a number of ways, the
most successful of which involves external tools, such as MaxSAT solvers, which flip the predictions
of an LLM to be (approximately) consistent with a set of related questions, as done by ConCoRD
(Mitchell et al., 2022) and maieutic prompting (Jung et al., 2022). Analogously, self-consistency can
be ameliorated by first constructing a belief graph – a factor graph relating the beliefs of an LLM
fine-tuned on implications such as Entailer (Tafjord et al., 2022) – over which a MaxSAT solver
is applied (Kassner et al., 2023). Higher level constraints can also be checked and enforced with
external verifiers (Wang et al., 2024). Differently from LOCO-LMS, backpropagating through these
tools is hard (Pogančić et al., 2019). Moreover, while they can guarantee self-consistency among
facts within every call to a solver, this cannot be done for the same facts across different calls.

Semantic loss & other NeSy approaches There is a vast literature on NeSy integration meth-
ods (De Raedt et al., 2019; 2021), most of which are used for enforcing constraint on tabular data
(Giunchiglia & Lukasiewicz, 2020), image data (Xu et al., 2018; Shindo et al., 2021; Ahmed et al.,
2022a) and more recently video recognition (Giunchiglia et al., 2023) with the purpose of building
trustworthy predictors. Several variants of the semantic loss (Xu et al., 2018; Ahmed et al., 2022b;
2024) and neural weighted model counting (van Krieken et al., 2024) have been proposed. Closer to
our work, Zhang et al. (2023) applied a semantic loss to instill first-order rule constraints in the em-
bedding space of entities in encoder-only models to reason on the CLUTTR benchmark (Sinha et al.,
2019), comprising semi-synthetic stories involving hypothetical families. Richardson & Wijnholds
(2024) propose to combine LLMs and a semantic loss for consistency analogous to ours. Faghihi
et al. (2023) approximate a semantic loss via sampling to improve consistency of only implications
for small BERT-like models. We do not need approximations as we rely on exact computations via
compilation while scaling to larger constraints and combining different constraints together. Fuzzy
logic (van Krieken et al., 2022) can be used to distill regularizers that can promote consistency (Li
et al., 2019). Differently from our probabilistic logic approach however, they are syntax-dependent,
i.e., rewriting a constraint into a logically equivalent one would yield a different penalty term and
can greatly influence optimization (Di Liello et al., 2020).

5 EXPERIMENTS

We aim to answer the following research questions: RQ1: Can LOCO-LMS achieve comparable
or superior consistency to methods using external reasoners using less training data? RQ2: Can
LOCO-LMS retain good consistency to unseen types of constraint at training time? How much does
training on all the constraints jointly improve consistency overall? RQ3: Can LOCO-LMS transfer
consistent knowledge to domains out of the training distribution?

5.1 RQ1: HOW DO LOCO-LMS PERFORM COMPARED TO EXTERNAL SOLVERS?

We reproduce the experimental setting of Mitchell et al. (2022) to compare against ConCoRD,
a symbolic layer that uses a MaxSAT solver to impose self-consistency for implication ex-post.
Maieutic prompting employs essentially the same strategy (Jung et al., 2022).

Data. We train LOCO-LMS on the BeliefBank (Kassner et al., 2021). We use the three splits as in
Mitchell et al. (Mitchell et al., 2022): a “calibration” set of 1, 072 annotated facts about 7 entities
of the form (subject, property, true/false) used for training, a “silver” set of 12, 636 facts about 85
entities used for evaluation, and a set of 2224 valid abstract logical implications. We generate ground
implication rules (DC) by looking up the subjects of all facts in the training set: if the antecedent
or the consequent fact of the general constraint is known for that subject, we add the subject ground
implication constraint to the dataset. Appendix B.1.1 details the whole process.
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Table 1: LOCO-LMS achieve
better logical self-consistency
and factuality than ConCoRD
(Mitchell et al., 2022) as mea-
sured via Equation (4) and F1

scores when fine-tuned only on
T1 facts only and boost perfor-
mance in the presence of a small
fraction of T1+T2 facts (5-10%).
A similar trend is visible on train-
ing data (Appendix B.1.1).

METHOD TRAIN SUBSET ANT F1 CON F1 TOT F1 IMP

CONCORD 0.91 0.91
MACAW-LARGE 0.52 0.90 0.81 0.83
MACAW+XENT T1 0.13 0.01 0.03 0.72
LOCO-MACAW T1 0.79 0.98 0.96 0.99

MACAW+XENT T1+T2 (5%) 0.23 0.78 0.72 0.82
LOCO-MACAW T1+T2 (5%) 0.67 0.83 0.81 0.92

MACAW+XENT T1+T2 (10%) 0.55 0.97 0.91 0.90
LOCO-MACAW T1+T2 (10%) 0.45 0.97 0.89 0.93

MACAW+XENT T1+T2 (75%) 0.85 0.99 0.97 0.98
LOCO-MACAW T1+T2 (75%) 0.79 0.99 0.95 0.98

To measure generalization across entities, we generate two controlled splits of the training cali-
bration set: T1 facts, appearing either as antecedents or consequents in the constraints; T2 facts,
appearing exclusively as consequents. The goal is to correctly guess the consequents by seeing only
the antecedents and the constraints. We subsequently test the effects of pure supervised fine-tuning
on a portion of random facts from the whole calibration set (T1+T2).

Models. As in Mitchell et al. (2022), we use Macaw-Large (Tafjord & Clark, 2021) (770M pa-
rameters), a sequence-to-sequence language model capable of multi-angle QA with fixed prompt
templates. We keep the same prompts used for Macaw, reported in Appendix F.1. At test time, we
verify the validity of the answer format and consider any invalid or negative response as a belief
with label ”false”. We adopt a similar set of hyperparameters as for Macaw (Tafjord & Clark, 2021):
we fine-tune our models for 3 epochs with a learning rate fixed to γ = 3 · 10−4, batch size 4 with
gradient accumulation (64/16 steps), on one nVidia A30 24GB GPU. We use AdamW (Loshchilov
& Hutter, 2016) as optimizer with a default weight decay λ = 10−2.

Competitors and Metrics. We compare ConCoRD as applied to Macaw-Large, using RoBERTa-
ANLI (Liu et al., 2019) for relationship inference, versus a pre-trained Macaw-Large model from
Tafjord & Clark (2021) as zero-shot baseline and our LoCo version of it (LoCo-Macaw). We eval-
uate our models for factuality and implication self-consistency. We measure the former with the F1

score to account for the unbalance between false and true facts (Kassner et al., 2021). Factuality is
measured on the two splits (antecedents and consequents) and the complete facts set (Tot) for both
calibration and silver splits. For implication self-consistency, sometimes named just “consistency”
(Li et al., 2019), we query beliefs from LLMs about the complete facts set and count the fraction of
violated constraints in Dtest

C according to the implication rule (IMP), that is, when a true antecedent
for the model implies a false consequent, to then compute:

1− |{αi = (zj → zk) : zj = ⊤, zk = ⊥}| / |{αi = (zj → zk) : zj = ⊤}|. (4)

Results. Table 1 reports all metrics for all models. We firstly observe a net improvement in both
factuality and logical consistency with our LOCO-LMS, compared to pre-trained Macaw-Large and
the ConCoRD variant. Standard supervised fine-tuning with the XENT loss on antecedent facts
is insufficient: due to a class imbalance between true facts (∼ 10%) and false facts (∼ 90%),
the model tends to label any statement as “false”. This is accentuated in the training distribution
(see Appendix B.1.1). Assuming the language model can access to a portion of consequent facts,
LOCO-LMS still yields better logical consistency and factuality for unseen consequents in low-data
regimes (e.g., 5-10% of the T1+T2 dataset) compared to canonical supervised fine-tuning. When
they are allowed to see more data (e.g., 75% of the T1+T2 dataset), traditionally fine-tuned models
can “cheat” and directly learn about the consequents (somehow equivalent to memorizing a single
row of the truth table). In this scenario, LOCO-LMS achieve comparable logical self-consistency
and factuality over consequents, but less on the antecedents.

In conclusion, we observe our fine-tuning method allows Macaw-large to be more logically self-
consistent than with an external solver. We conjecture that this is possible thanks to the high
semantic similarity between facts in the train and test splits (Appendix E.1). In terms of inference
speed, our LOCO-LMS take less time that querying the same base model and an additional rea-
soner4, at the cost of a one-time training step that can be amortized. Moreover, our semantic loss

4On BeliefBank, LOCO-LMS take 2405.28s at test time, compared to ConCoRD, 3669.33s.
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is more sample-efficient than XENT fine-tuning to achieve higher logical consistency especially
with small portions of ground-truth data. We point out that our LOCO-LMS can be combined with
external solvers at inference time, improving even more (self-)consistency.

5.2 RQ2: HOW DO LOCO-LMS DEAL WITH DIFFERENT LOGICAL CONSTRAINTS?

Setting. As in Section 5.1, we use BeliefBank to train and evaluate LOCO-LMS on different types
of logical rules. We use 90% and 10% of T1 facts for training and validation, respectively; T2 facts
for testing. We employ two sets of labels to make our models less sensitive to the prompt format; at
training time, one format is chosen with 50% chance for each batch; details in Appendix F.2.

Models. To train larger language models, we choose the LLaMa-2 (Touvron et al., 2023) family
of decoder-only models, widely adopted in literature for its performance across a variety of tasks
and domains. We consider three baselines: the available pre-trained 7b and 70b models, 4-bit Nor-
malFloat quantized (Dettmers et al., 2023), with greedy sampling strategy, temperature t = 1.0 and
dropout disabled; we also perform supervised fine-tuning of the 7b model (4-bit, with LoRA (Hu
et al., 2021)) on the ground truth T1+T2 facts set, namely “LLaMa-2-7b + XENT”. We derive our
LOCO-LMS fine-tuning with our proposed method LLaMa-2 7b, with 4-bit quantization and LoRA.
We limit the generation to 4 tokens following the input. We adopt a similar set of hyperparameters
to LoRA: we fine-tune our models for 5 epochs keeping the learning rate fixed to γ = 3 · 10−4,
batch size 64, on 1 nVidia A100-40GB GPU. We use AdamW (Loshchilov & Hutter, 2016) as opti-
mizer with a default weight decay λ = 10−2. We use the SL to finetune three LOCO-LM variants:
for negation (NEG), factual implication consistency (F-IMP) and their conjunction, i.e., given an
implication f1 → f2 we provide the SL with the constraint:

(zf1 ⊕ zf̃1) ∧ (zf1 = z∗f1) ∧ (zf1 → zf2) ∧ (zf2 ⊕ zf̃2) (SUPER)

where f̃1 and f̃2 encode the textual negation of f1 and f2, generated via ConCoRD’s templates.
We compare against orthogonal baselines such as chain-of-thought (CoT) and zero- and few-show
prompting, which we note can be combined to LOCO-LMS.

Metrics. We fine-tune on NEG, F-IMP or SUPER and evaluate on all constraints. Specifically, we
measure the implication self-consistency, cf. Equation (4), as well as the implication consistency:

1− |{αi = (zj → zk) : z
∗
j = ⊤, zk = ⊥}| / |{αi = (zj → zk) : z

∗
j = ⊤}| (5)

where z∗j is the ground truth value of a fact. We also measure reverse implication consistency

1− |{αi = (zk̃ → zj̃) : ¬z∗k = ⊤, zj̃ = ⊤}| / |{αi = (zk̃ → zj̃) : ¬z∗k = ⊤}| (6)

and the reverse implication self-consistency variant:

1− |{αi = (zk̃ → zj̃) : zk̃ = ⊥, zj̃ = ⊤}| / |{αi = (zk̃ → zj̃) : zk̃ = ⊥}| (7)

where zk̃ and zj̃ are the truth values of the textual negations of facts k and j according to the model.
For negation self-consistency we compute

1− |{αi = (zj ⊕ zj̃) : zj = zj̃}| / |αi = (zj ⊕ zj̃)|. (8)

As in Section 5.1, we measure factuality (FAC) as the F1 score on a set of ground truth facts. Finally,
we account for possible shifts in the language modeling distribution by computing its perplexity
(PPL) on WikiText (Merity et al., 2016), formatted as a single token sequence.

Results. In Table 2, we first observe an overall boost in factuality for all LOCO-LMS over the
7b baselines. Compatibly with Table 1, supervised fine-tuning is not sufficient to improve logi-
cal consistency significantly and outperforms baselines such as CoT and few-shot prompting. Our
LOCO-LM trained exclusively on IMP constraints performs best in factuality and implication con-
sistency; at the same time, scores on negation consistency and reverse implication are lower. We
remark this is expected and common when doing multi-objective optimization. Note that, however,
the great majority are cases of positive transfer, i.e., optimizing for one constraint also benefits oth-
ers. For example, optimizing for NEG improves all columns of Table 2 wrt the baseline (C-FAC:
+19%, C-IMP: +20%, C-REV: +42%, SC-REV: +35%) but self-consistency IMP, and optimizing F-
IMP only degrades self-consistency REV and NEG (C-FAC: +74%, C-REV: +8%), as it rightly does
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Table 2: LOCO-LMS achieve higher (self-)consistency than off-the-shelf baselines and models
trained with supervised fine-tuning (+XENT) on the BeliefBank test split. Scores are averaged
across four sets of prompts and truth labels, for which results are reported in Tables 13 and 18.

CONSISTENCY SELF-CONSISTENCY

MODEL TRAIN PPL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B ZERO SHOT 52.30 0.27 0.45 0.47 0.34 0.45 0.48 0.41
LLAMA-2-7B FEW SHOT 52.30 0.53 0.70 0.40 0.35 0.47 0.39 0.48
LLAMA-2-7B COT 52.30 0.52 0.64 0.67 0.40 0.64 0.67 0.59
LLAMA-2-70B ZERO SHOT 44.90 0.47 0.69 0.81 0.13 0.31 0.91 0.55
LLAMA-2-7B + XENT T1+T2 116.85 0.21 0.42 0.30 0.10 0.76 0.30 0.35
LOCO-LLAMA-2-7B (NEG) T1 62.21 0.22 0.50 0.72 0.48 0.14 0.68 0.46
LOCO-LLAMA-2-7B (F-IMP) T1 67.15 0.98 0.98 0.52 0.01 0.99 0.52 0.66
LOCO-LLAMA-2-7B (SUPER) T1 62.23 0.75 0.79 0.84 0.82 0.76 0.82 0.80

LLAMA-3.1-8B ZERO SHOT 78.22 0.45 0.58 0.54 0.42 0.54 0.54 0.52
LLAMA-3.1-8B FEW SHOT 78.22 0.41 0.54 0.51 0.36 0.45 0.51 0.47
LOCO-LLAMA-3.1-8B (SUPER) T1 78.22 0.73 0.80 0.80 0.80 0.76 0.80 0.78

Table 3: LOCO-LMS improve Logical consistency in class-knowledge transfer as measured on
ConceptNet when trained on high-level class properties for 10 epochs.

CONSISTENCY SELF-CONSISTENCY

MODEL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B-ZERO SHOT 0.21 0.41 0.84 0.26 0.63 0.84 0.53
LLAMA-2-7B-FEW SHOT 0.47 0.69 0.20 0.10 0.31 0.20 0.33
LOCO-LLAMA-2-7B (SUPER) 0.72 0.80 0.59 0.42 0.80 0.59 0.65

not consider negation, while delivering much better performance over all cases than using XENT.
Finally, fine-tuning a moderately-sized LOCO-LM on the combination of both constraints (SU-
PER), yields on average the most consistent language model, which on average surpasses even
Llama 2 70B, a much larger model. Overall, fine-tuning with our method does not impact nega-
tively fluency, as measured by perplexity.

5.3 RQ2: CLASS KNOWLEDGE-TRANSFER IN CONCEPTNET

Setting We further investigate how our fine-tuning method affects the internal knowledge of an
LLM by querying specific properties across hierarchies of entities. For this purpose, the Con-
ceptNet dataset (Speer et al., 2018b), is a rich source of knowledge about entity properties
and relationships. We thus construct a train split by selecting 6 high level entities ([human,
dog, cat, mammal, car, boat] and properties of type [CapableOf, AtLocation,
IsA], spawning 1.227 constraints with the format e.g. (dog, IsA, mammal)→(dog,
CapableOf, mother of a puppy); similarly to experiments with BeliefBank, we fine-tune
LLaMa 2 7b with our objective on the conjunction of all the considered logical constraints (SUPER)
with the same hyperparameters.

Metrics. We construct a test set with 432 sub-entities deriving from the 6 entities considered in the
train set: we consider only ground truth facts that are shared with the parent class; the underling
assumption is that the LM knows the relationship (sub-class, IsA, class) and thus some
properties should be inherited. We thus look for gains in class-knowledge transfer by comparing
LOCO-LMS with the pre-trained baseline in logical consistency on sub-entity properties, which are
sparse and scarce in the LM distribution. To tackle class imbalance, we augment the training set
with properties that entities don’t have, e.g. ¬(human, CapableOf, live underwater).

Results. Table 3 indicates consistent gains from our fine-tuning method in factuality, implication
(self and objective) consistency and negation self-consistency; on average, LOCO-LMS surpass base
models with zero or 2 examples of factuality queries, e.g. "Fact: the earth is round.
Label: true". Increased factuality in LOCO-LMS directly reflects in implication consis-
tency, suggesting antecedent facts learned about one class are transferred to the subordinate.
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5.4 RQ3: CAN FINETUNING LOCO-LMS HELP CONSISTENCY ON UNSEEN KB?

Data. We evaluate LOCO-LMS on the EntailmentBank (Dalvi et al., 2022) test split, as proposed
by Kassner et al. (2023) to reason on entailment trees. It consists of 302 implication trees spawning
805 constraints, with an average of 6.57 statement nodes and 2.66 constraints per tree; we consider
each node of each tree as a statement with natural language with truth label set to 1. We limit
the tree depth to 5. An illustrated example is provided in Appendix 2. As in 5.2, we test two
prompt and label formats. We assume that a possible semantic overlap between the training and
test distributions, BeliefBank and EntailmentBank respectively, could underlie higher consistency
scores across entailment trees; we estimate such overlap in Appendix E.2. Note that constraints in
EntailmentBank involve more than one implication step and are akin to multi-hop reasoning.

Competitors and Metrics. We test our LOCO-LMS based on LLaMa-2 7b and previously trained
in 5.2 on BeliefBank, without applying any changes. As baseline model, we consider LLaMa-2 7b
without quantization. This experimental setup is inspired by Kassner et al. (2023), from whom we
derive the notion of self-consistency on trees of entailments: each entailment tree t ∈ T is a direct
acyclic graph with a single root encoding the hypothesis to be proved; a subtree t′ consists in each
parents-child relationship in t, representing an entailment between the parent nodes (antecedents
in logical conjunction) and the child (consequent). See Figure 2 in the Appendix for an example.
For each tree t, we count the amount of violated subtrees t′, that is when a true conjunction of
antecedents does not imply a true consequent. Finally, we measure logical consistency as the fraction
of the total violated subtrees over the total number of subtrees in T .

Results. In Table B.3 we report logical consistency across several depths. Scores are averaged
across two sets of prompts and labels, detailed results are reported in Appendix B.2. We observe the
consistency decreases across depths for the baseline model, until it flattens out, as more implications
are evaluated. Conversely, LOCO-LM (F-IMP) and LOCO-LM (Super) achieve higher consistency
across depths, validating the usefulness of our approach. Fine-tuning LOCO-LMS on a set of con-
straints allows to generalize over unseen constraints of the same type. As expected, fine-tuning for
negation does not bring any added benefit (and can worsen performance) as the in EntalimentBank
only implications are considered. Therefore, our recommendation for practitioners is to fine-tune
for the constraints that are considered in the downstream task, and when in doubt use a conjunc-
tion of all constraints as in our LOCO-LMS SUPER which still improves w.r.t. a vanilla LLM when
chaining more than two implications together.

6 DISCUSSION AND FURTHER WORK

Our results show that LOCO-LMS have improved (self-)consistency compared to recently intro-
duced consistency layers which rely on external solvers, such as ConCoRD or maieutic prompt-
ing. This is especially important for small and medium-sized LLMs, that suffer from (self-
)inconsistency and for which prompting techniques are not the final panacea (see our experiments
in Section 5). In future work, we plan to extend our analysis to more complex logical operators
(Vergari et al., 2021) and to consider more advanced probabilistic reasoning techniques that sport
improved consistency guarantees (Ahmed et al., 2022a). Another promising direction we have not
explored is that of first materializing the beliefs of an LLM such as in REFLEX (Kassner et al.,
2023) and variants (Akyürek et al., 2024) and use the SL to improve consistency while potentially
storing and re-using derived rules in a writable external KB (Modarressi et al., 2023; 2024).

One limitation of our approach is relying on finetuning, and thus implying sensitivity to the choice of
prompt format (White et al., 2023). This can be partially addressed by fine-tuning using a mixture of
formats, as we do in Section 5. While our SL is constraint-agnostic, in practice we fine-tune LOCO-
LMS only against a combination of constraints known in advance. LOCO-LMS fine-tuning relies
on two assumptions: that the probabilities of facts are conditionally independent given the LLM’s
inner state, and that the constraints in the KB are correct. The former readily applies to many LLMs,
but assuming independence can bias the solutions learned by the SL (van Krieken et al., 2024). For
the latter, most KBs are well-curated, but fine-tuning models against incorrect or inconsistent rules
can compromise consistency and fluency.
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A BACKGROUND ON CIRCUITS, COMPILATION AND WMC

In this section, we provide additional background and report classical results from the circuit litera-
ture (Choi et al., 2020; Vergari et al., 2021).

Circuits (Vergari et al., 2019; Choi et al., 2020) are constrained computational graphs that enable
tractable computations. For our purposes, they enable the tractable computation of the Weighted
Model Count (WMC) encoded in the semantic loss (Equation (SL)).
Definition A.1 (Circuit). A circuit c is a parameterized directed acyclic computational graph over
variables Z encoding a function c(Z), and comprising three kinds of computational units: input,
product, and sum units. Each product or sum unit n receives the outputs of other units as inputs,
denoted with the set in(n). Each unit n encodes a function cn defined as: (i) fn(sc(n)) if n is an
input unit, where fn is a function over variables sc(n) ⊆ Z, called its scope, (ii)

∏
j∈in(n) cj(sc(j))

if n is a product unit, and (iii)
∑

j∈in(n) wjcj(sc(j)) if n is a sum unit, with wj ∈ R denoting the
weighted sum parameters. The scope of a product or sum unit n is the union of the scopes of its
inputs, i.e., sc(n) =

⋃
j∈in(n) sc(j).

Tractable WMC can be achieved by ensuring that these computational graphs abide certain structural
properties: smoothness, decomposability and determinism (Vergari et al., 2021).
Definition A.2 (Smoothness & Decomposability). A circuit is smooth if for every sum unit n, its
inputs depend on the same variables: ∀ c1, c2 ∈ in(n), sc(c1) = sc(c2). It is decomposable if
the inputs of every product unit n depend on disjoint sets of variables: in(n) = {c1, c2}, sc(c1) ∩
sc(c2) = ∅.

The next step is to translate a logical constraint αi into a smooth and decomposable circuit c(z). To
this end, we employ a special type of PCs, defined as follows.
Definition A.3 (Constraint circuits). A PC c over variables Z is a constraint circuit encoding prior
knowledge αi if it computes 1{z |= αi} for every configuration z.

As a practical way to realize such a circuit, we will consider constraint circuits that have all sum
unit parameters equal to 1 and input functionals that are indicator functions over their scope. Fur-
thermore, we require each sum unit in it to be deterministic.
Definition A.4 (Determinism). A sum unit n is deterministic if its inputs have disjoint supports, i.e.,
∀ c1, c2 ∈ in(n), c1 ̸= c2 =⇒ supp(c1) ∩ supp(c2) = ∅.

Compilation. We use standard compilation tools from the knowledge compilation community to
turn a logical constraint into a smooth, decomposable and deterministic circuit. Specifically, we use
PySDD5 (pys, 2017) a python SDD compiler (Darwiche, 2011; Choi & Darwiche, 2013). Note that
SDDs are just smooth, decomposable and deterministic circuits (Vergari et al., 2019).

Consider the following facts:

f1 :“an albatross is a bird”
f2 :“an albatross breathes”
f3 :“an albatross is an animal”

and their corresponding truth values represented as three binary variables z1, z2, z3. We want to
represent the following constraint

(z2 =⇒ z3) ∧ (z1 =⇒ z3). (9)

We will now sketch how a circuit compiler would proceed: the objective of compilation is to encode
the above logical constraint into a compact form representing all possible assignments to z1, z2, z3.
We refer the reader to Choi & Darwiche (2013) for details. Our compiler proceeds in a bottom
up fashion, where bottom-up compilation can be seen as composing Boolean sub-functions whose
domain is determined by a variable ordering (Darwiche, 2011; Choi & Darwiche, 2013). It would
start by compiling a constraint circuit that is a function of z1 and z2, and compose it with a constraint
circuit that is a function of z3 We first introduce input functionals representing indicators associated

5https://github.com/wannesm/PySDD
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with each fact truth value. We will denote by zi the indicator 1{zi = 1} and by ¬zi the indicator
1{zi = 0}.

1{z1 = 0} 1{z1 = 1} 1{z2 = 0} 1{z2 = 1} 1{z3 = 0} 1{z3 = 1}

We start by disjoining the indicator z1 with ¬z1. This corresponds to introducing deterministic and
smooth sum units in our circuits.

1{z2 = 0}

1{z2 = 1}

Deterministic sum units represent disjoint solutions to the logical formula, meaning there exists
distinct assignments, characterized by the children, that satisfy the logical constraint.

The compilation process proceeds by conjoining the constraint circuits for z2∨¬z2 with z1, z2∨¬z2
with ¬z1, and ¬z2 with ¬z1.

1{z1 = 0}

1{z1 = 1}

1{z2 = 0}

1{z2 = 1}

×

×

×

A decomposable product unit decomposes functions over disjoint sets of variables. The above prod-
ucts represent the Boolean functions (z2 ∨ ¬z2) ∧ z1, (z2 ∨ ¬z2) ∧ ¬z1, and ¬z1 ∧ ¬z2.

We disjoin (z2∨¬z2)∧z1 with (z2∨¬z2)∧¬z1, and ¬z1∧¬z2 with true, the logical multiplicative
identity.

1{z1 = 0}

1{z1 = 1}

1{z2 = 0}

1{z2 = 1}

×

×

×

So far, we have compiled constraint circuits for the logical formulas

((z2 ∨ ¬z2) ∧ z1) ∨ ((z2 ∨ ¬z2) ∧ ¬z1)) and ¬z1 ∧ ¬z2.

We are left to conjoin the first one with z3, and the second one with ¬z3, and disjoin the resulting
constraint circuits. What we get is a mixture over the possible solutions: If the model says that f1,
f2, or both, are true, then it better predict that f3 is true as well.

1{z1 = 0}

1{z1 = 1}

1{z2 = 0}

1{z2 = 1}

×

×

×

×

1{z3 = 1}

1{z3 = 0}

×
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For our constraints compilation is extremely fast: taking only 2.5 milliseconds to compile a con-
straint and compute the loss on BeliefBank. The loss computation requires computing the WMC
(Equation (SL)) in closed form. This can be done easily after compiling the logical constraint into a
circuit as illustrated above. Its complexity is linear in the size of the circuit (Darwiche, 2003; Vergari
et al., 2021).

Impact on LOCO-LMS. Thank to circuits, we can evaluate loss (Equation (SL)) exactly without
having to explicitly enumerate truth assignments; this operation takes time linear in the size fo the
circuit, yielding efficient fine-tuning.

The compilation step is also extremely fast, taking only 2.5 milliseconds to compile a constraint and
compute the loss on BeliefBank. Moreover, many data points will share the same constraint during
training, enabling caching.

Given ours is a pure fine-tuning approach, it has no inference-time overhead. For reference, ConCord
takes 3669 seconds to perform inference on BeliefBank (silver + calibration sets) for Macaw-large,
whereas LoCo applied to the same model requires only 2405 seconds.

B DETAILED SETTING AND RESULTS

B.1 RQ1

B.1.1 DATA PREPROCESSING

We train LOCO-LMS on the BeliefBank (Kassner et al., 2021), calibration split. This dataset is
derived from ConceptNet (Speer et al., 2018a), a large curated knowledge graph encoding factual
knowledge and logical relations between entities at different levels of abstraction; we use the splits
introduced by Mitchell et al. (Mitchell et al., 2022) for direct comparison. It consists of three pieces:
a “calibration” set of 1, 072 annotated facts about 7 entities of the form (subject, property, true/false)
used for training, a “silver” set of 12, 636 facts about 85 entities used for evaluation, and a set of 2224
valid abstract logical implications. To use our SL, we require defining a set of ground constraints.
We derive these as follows. For each general implication constraint, we lookup the subjects of all
facts in the training set: if the antecedent or the consequent fact of the general constraint is known
for that subject, we add the subject ground constraint to the dataset DC .

We generate two splits: T1 facts, appearing either as antecedents or consequents in the constraints;
T2 facts, appearing exclusively as consequents. The goal is to correctly guess the consequents by
seeing only the antecedents and the constraints. In the calibration set, we count 796 antecedents
and 276 consequents, spawning 14, 005 grounded constraints. In the silver set, we count 9, 504
antecedents and 3, 132 consequents, spawning 169, 913 grounded constraints. We subsequently test
the effects of pure supervised fine-tuning: a portion of random facts from the calibration set (T1+T2)
is taken with the goal to predict the excluded antecedent or consequent facts. We train on T1 facts
and evaluate on T2 facts for RQ2 as well: T1 facts (antecedents) constitute a valid subset for all the
considered logical rules.
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Table 4: LOCO-LMS achieve better logical self-consistency and factuality as measured via
Equation (4) and F1 scores when compared to cross-entropy fine-tuning (XENT) and baselines
using external reasoners such as ConCoRD (Mitchell et al., 2022) measured on train (calibration
set) facts. For RQ1 (Section 5), LOCO-LMS fine-tuned on T1 facts only outperform training-free
baseline for all metrics. For RQ2, they boost performance in the presence of a small fraction of
T1+T2 facts (5-10%). For larger dataset sizes, LOCO-LMS are competitive for consistency and
factuality on consequents.

Method Train size Antecedents F1 Consequents F1 Total F1 Logical consistency

RQ1

ConCoRD 0.91 0.91
MACAW 0.47 0.84 0.78 0.82
MACAW+XENT T1 0.46 0.08 0.14 0.79
LOCO-LM T1 0.98 0.99 0.99 1.00

RQ2

MACAW+XENT T1+T2 (5%) 0.31 0.73 0.69 0.90
LOCO-LM T1+T2 (5%) 0.34 0.77 0.72 0.92

MACAW+XENT T1+T2 (10%) 0.48 0.88 0.85 0.87
LOCO-LM T1+T2 (10%) 0.52 0.95 0.89 0.91

MACAW+XENT T1+T2 (75%) 0.69 1.00 0.97 0.97
LOCO-LM T1+T2 (75%) 0.65 1.00 0.97 0.99

B.2 RQ2

Table 5: LOCO-LMS evaluated on BeliefBank, training (calibration) split. Scores are averaged
across four prompt formats and truth labels. We observe fine-tuning with our method allows for
higher logical consistency to different rules.

CONSISTENCY SELF-CONSISTENCY

MODEL TRAIN SUBSET PPL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B ZERO SHOT 52.30 0.29 0.47 0.48 0.33 0.44 0.50 0.42
LLAMA-2-7B FEW SHOT 52.30 0.55 0.72 0.42 0.36 0.47 0.42 0.49
LLAMA-2-7B + XENT T1+T2 116.85 0.14 0.35 0.47 0.11 0.57 0.47 0.31
LOCO-LLAMA-2-7B (NEG) T1 62.21 0.14 0.41 0.71 0.41 0.28 0.68 0.44
LOCO-LLAMA-2-7B (F-IMP) T1 67.15 1.00 1.00 0.52 0.00 1.00 0.52 0.68
LOCO-LLAMA-2-7B (SUPER) T1 62.23 0.86 0.91 0.81 0.85 0.84 0.82 0.85

LLAMA-3.1-8B ZERO SHOT 78.22 0.44 0.55 0.57 0.38 0.54 0.57 0.52
LLAMA-3.1-8B FEW SHOT 78.22 0.41 0.53 0.48 0.36 0.45 0.48 0.44
LOCO-LLAMA-3.1-8B (SUPER) T1 78.22 0.82 0.89 0.84 0.81 0.81 0.84 0.83
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Table 6: LOCO-LMS evaluated on BeliefBank, training (calibration) split. Prompt format
1 [true, false] is used. We observe fine-tuning with our method allows for higher logical
consistency to different rules.

CONSISTENCY SELF-CONSISTENCY

MODEL TRAIN SUBSET PPL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B ZERO SHOT 52.30 0.43 0.63 0.33 0.38 0.29 0.39 0.41
LLAMA-2-7B FEW SHOT 52.30 0.53 0.74 0.36 0.28 0.42 0.37 0.45
LLAMA-2-7B COT 52.30 0.67 0.76 0.77 0.32 0.74 0.77 0.66
LLAMA-2-70B ZERO SHOT 44.90 0.52 0,76 0.79 0.18 0.35 0.90 0.58
LLAMA-2-7B + XENT T1+T2 116.85 0.37 0.47 0.02 0.16 0.89 0.02 0.32
LOCO-LLAMA-2-7B (NEG) T1 62.21 0.46 0.70 0.85 0.93 0.28 0.72 0.66
LOCO-LLAMA-2-7B (F-IMP) T1 67.15 1.00 1.00 0.08 0.00 1.00 0.08 0.53
LOCO-LLAMA-2-7B (SUPER) T1 62.23 0.88 0.91 0.72 0.94 0.86 0.73 0.84

LLAMA-3.1-8B ZERO SHOT 78.22 0.47 0.58 0.63 0.48 0.61 0.63 0.57
LLAMA-3.1-8B FEW SHOT 78.22 0.45 0.55 0.57 0.47 0.52 0.57 0.52
LLAMA-3.1-8B (SUPER) T1 78.22 0.80 0.89 0.79 0.76 0.81 0.79 0.81

Table 7: LOCO-LMS evaluated on BeliefBank, training (calibration) split. Prompt format 2
[yes, no] is used. We observe fine-tuning with our method allows for higher logical consistency
to different rules.

CONSISTENCY SELF-CONSISTENCY

MODEL TRAIN SUBSET PPL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B ZERO SHOT 52.30 0.39 0.51 0.08 0.46 0.27 0.09 0.30
LLAMA-2-7B FEW SHOT 52.30 0.52 0.66 0.55 0.48 0.55 0.55 0.55
LLAMA-2-7B COT 52.30 0.38 0.52 0.57 0.48 0.54 0.57 0.51
LLAMA-2-70B ZERO SHOT 44.90 0.46 0.68 0.81 0.05 0.28 0.93 0.54
LLAMA-2-7B + XENT T1+T2 116.85 0.05 0.32 0.00 0.04 0.00 0.00 0.07
LOCO-LLAMA-2-7B (NEG) T1 62.21 0.09 0.33 0.00 0.70 0.82 0.00 0.32
LOCO-LLAMA-2-7B (F-IMP) T1 67.15 1.00 1.00 0.08 0.00 1.00 0.08 0.53
LOCO-LLAMA-2-7B (SUPER) T1 62.23 0.84 0.87 0.79 0.82 0.74 0.80 0.81

LLAMA-3.1-8B ZERO SHOT 78.22 0.43 0.49 0.75 0.44 0.57 0.75 0.57
LLAMA-3.1-8B FEW SHOT 78.22 0.31 0.42 0.51 0.31 0.42 0.51 0.43
LLAMA-3.1-8B (SUPER) 78.22 0.81 0.89 0.84 0.78 0.78 0.84 0.82

Table 8: LOCO-LMS evaluated on BeliefBank, training (calibration) split. Prompt format 3
[correct, incorrect] is used. We observe fine-tuning with our method allows for higher
logical consistency to different rules.

CONSISTENCY SELF-CONSISTENCY

MODEL TRAIN SUBSET PPL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B ZERO SHOT 52.30 0.29 0.42 0.55 0.44 0.51 0.55 0.46
LLAMA-2-7B FEW SHOT 52.30 0.46 0.69 0.00 0.00 0.28 0.00 0.24
LLAMA-2-7B + XENT T1+T2 116.85 0.10 0.31 0.86 0.20 0.65 0.86 0.50
LOCO-LLAMA-2-7B (NEG) T1 62.21 0.00 0.30 1.00 0.02 0.00 1.00 0.39
LOCO-LLAMA-2-7B (F-IMP) T1 67.15 0.99 1.00 0.96 0.01 1.00 0.96 0.82
LOCO-LLAMA-2-7B (SUPER) T1 62.23 0.80 0.92 0.80 0.80 0.85 0.80 0.84

LLAMA-3.1-8B ZERO SHOT 78.22 0.43 0.63 0.13 0.25 0.34 0.13 0.32
LLAMA-3.1-8B FEW SHOT 78.22 0.40 0.56 0.15 0.19 0.31 0.15 0.29
LOCO-LLAMA-3.1-8B (SUPER) T1 78.22 0.79 0.86 0.83 0.80 0.78 0.83 0.82

B.3 RQ3
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Table 9: LOCO-LMS evaluated on BeliefBank, training (calibration) split. Prompt format 4
[right, wrong] is used. We observe fine-tuning with our method allows for higher logical
consistency to different rules.

CONSISTENCY SELF-CONSISTENCY

MODEL TRAIN SUBSET PPL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B ZERO SHOT 52.30 0.05 0.31 0.96 0.05 0.67 0.96 0.50
LLAMA-2-7B FEW SHOT 52.30 0.69 0.78 0.76 0.66 0.64 0.76 0.71
LLAMA-2-7B + XENT T1+T2 116.85 0.02 0.29 0.98 0.04 0.75 0.98 0.34
LOCO-LLAMA-2-7B (NEG) T1 62.21 0.00 0.30 1.00 0.00 0.00 1.00 0.38
LOCO-LLAMA-2-7B (F-IMP) T1 67.15 0.99 1.00 0.96 0.00 1.00 0.96 0.82
LOCO-LLAMA-2-7B (SUPER) T1 62.23 0.91 0.92 0.94 0.83 0.90 0.94 0.91

LLAMA-3.1-8B ZERO SHOT 78.22 0.43 0.50 0.75 0.34 0.63 0.75 0.62
LLAMA-3.1-8B FEW SHOT 78.22 0.48 0.57 0.67 0.46 0.56 0.67 0.52
LOCO-LLAMA-3.1-8B (SUPER) T1 78.22 0.89 0.90 0.90 0.90 0.86 0.90 0.89

Table 10: LOCO-LMS evaluated on BeliefBank, test (silver) split. Prompt format 1 [true,
false] is used. We observe fine-tuning with our method allows for higher logical consistency to
different rules.

CONSISTENCY SELF-CONSISTENCY

MODEL TRAIN SUBSET PPL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B ZERO SHOT 52.30 0.41 0.55 0.22 0.41 0.30 0.25 0.36
LLAMA-2-7B FEW SHOT 52.30 0.53 0.75 0.37 0.27 0.41 0.37 0.45
LLAMA-2-7B COT 52.30 0.67 0.76 0.77 0.32 0.74 0.77 0.67
LLAMA-2-70B ZERO SHOT 44.90 0.50 0.72 0.80 0.20 0.34 0.89 0.58
LLAMA-2-7B + XENT T1+T2 116.85 0.40 0.52 0.02 0.11 0.82 0.02 0.31
LOCO-LLAMA-2-7B (NEG) T1 62.21 0.44 0.64 0.86 0.92 0.28 0.72 0.64
LOCO-LLAMA-2-7B (F-IMP) T1 67.15 0.98 0.98 0.07 0.00 0.98 0.07 0.51
LOCO-LLAMA-2-7B (SUPER) T1 62.23 0.75 0.78 0.72 0.91 0.74 0.72 0.77

LLAMA-3.1-8B ZERO SHOT 78.22 0.46 0.60 0.65 0.50 0.60 0.65 0.59
LLAMA-3.1-8B FEW SHOT 78.22 0.48 0.60 0.65 0.49 0.55 0.65 0.57
LOCO-LLAMA-3.1-8B (SUPER) T1 78.22 0.71 0.81 0.72 0.71 0.74 0.72 0.74

Table 11: LOCO-LMS evaluated on BeliefBank, test (silver) split. Prompt format 2 [yes,
no] is used. We observe fine-tuning with our method allows for higher logical consistency to
different rules.

CONSISTENCY SELF-CONSISTENCY

MODEL TRAIN SUBSET PPL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B ZERO SHOT 52.30 0.37 0.48 0.04 0.43 0.29 0.04 0.28
LLAMA-2-7B FEW SHOT 52.30 0.53 0.67 0.57 0.49 0.58 0.53 0.56
LLAMA-2-7B COT 52.30 0.38 0.52 0.57 0.48 0.54 0.57 0.51
LLAMA-2-70B ZERO SHOT 44.90 0.44 0.65 0.82 0.05 0.29 0.93 0.53
LLAMA-2-7B + XENT T1+T2 116.85 0.11 0.39 0.00 0.03 0.80 0.00 0.22
LOCO-LLAMA-2-7B (NEG) T1 62.21 0.44 0.65 0.00 1.00 0.28 0.00 0.40
LOCO-LLAMA-2-7B (F-IMP) T1 67.15 0.99 0.99 0.07 0.00 0.99 0.07 0.52
LOCO-LLAMA-2-7B (SUPER) T1 62.23 0.73 0.75 0.81 0.83 0.67 0.82 0.77

LLAMA-3.1-8B ZERO SHOT 78.22 0.44 0.55 0.72 0.42 0.61 0.72 0.58
LLAMA-3.1-8B FEW SHOT 78.22 0.33 0.46 0.54 0.32 0.42 0.54 0.43
LOCO-LLAMA-3.1-8B (SUPER) T1 78.22 0.71 0.81 0.75 0.76 0.74 0.75 0.75

C CONCEPTNET
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Table 12: LOCO-LMS evaluated on BeliefBank, test (silver) split. Prompt format 3
[correct, incorrect] is used. We observe fine-tuning with our method allows for higher
logical consistency to different rules.

CONSISTENCY SELF-CONSISTENCY

MODEL TRAIN SUBSET PPL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B ZERO SHOT 52.30 0.25 0.40 0.65 0.45 0.52 0.65 0.49
LLAMA-2-7B FEW SHOT 52.30 0.44 0.64 0.00 0.00 0.28 0.00 0.23
LLAMA-2-7B + XENT T1+T2 116.85 0.12 0.35 0.89 0.17 0.66 0.89 0.51
LOCO-LLAMA-2-7B (NEG) T1 62.21 0.00 0.35 1.00 0.01 0.00 1.00 0.39
LOCO-LLAMA-2-7B (F-IMP) T1 67.15 0.98 0.98 0.96 0.01 0.99 0.96 0.81
LOCO-LLAMA-2-7B (SUPER) T1 62.23 0.73 0.83 0.92 0.76 0.80 0.82 0.81

LLAMA-3.1-8B ZERO SHOT 78.22 0.42 0.60 0.15 0.26 0.34 0.15 0.32
LLAMA-3.1-8B FEW SHOT 78.22 0.40 0.55 0.15 0.19 0.31 0.15 0.31
LOCO-LLAMA-3.1-8B (SUPER) T1 78.22 0.72 0.79 0.83 0.81 0.77 0.83 0.79

Table 13: LOCO-LMS evaluated on BeliefBank, test (silver) split. Prompt format 4 [right,
wrong] is used. We observe fine-tuning with our method allows for higher logical consistency to
different rules.

CONSISTENCY SELF-CONSISTENCY

MODEL TRAIN SUBSET PPL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B ZERO SHOT 52.30 0.03 0.35 0.97 0.05 0.67 0.97 0.51
LLAMA-2-7B FEW SHOT 52.30 0.63 0.75 0.67 0.64 0.62 0.67 0.66
LLAMA-2-7B + XENT T1+T2 116.85 0.21 0.42 0.30 0.10 0.76 0.30 0.35
LOCO-LLAMA-2-7B (NEG) T1 62.21 0.00 0.35 1.00 0.00 0.00 1.00 0.39
LOCO-LLAMA-2-7B (F-IMP) T1 67.15 0.98 0.98 0.96 0.01 0.99 0.96 0.81
LOCO-LLAMA-2-7B (SUPER) T1 62.23 0.80 0.80 0.91 0.78 0.81 0.91 0.83

LLAMA-3.1-8B ZERO SHOT 78.22 0.47 0.58 0.63 0.48 0.61 0.63 0.57
LLAMA-3.1-8B FEW SHOT 78.22 0.43 0.53 0.68 0.44 0.52 0.68 0.55
LOCO-LLAMA-3.1-8B (SUPER) T1 78.22 0.77 0.80 0.89 0.90 0.80 0.89 0.84

Table 14: LOCO-LMS can achieve higher consistency across depth than the baseline. Scores
are computed with Format 1 [true, false], reported in Appendix F.2. LOCO-LM fine-tuned
with on the implication rule achieves best consistency.

DEPTH

MODEL 1 2 3 4 5

LLAMA-2-7B 0.73 0.77 0.79 0.80 0.80

LOCO-LLAMA-2-7B (NEG) 0.03 0.03 0.03 0.04 0.05
LOCO-LLAMA-2-7B (F-IMP) 0.97 0.96 0.97 0.97 0.97
LOCO-LLAMA-2-7B (SUPER) 0.75 0.74 0.73 0.73 0.74

D ENTAILMENTBANK
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Table 15: LOCO-LMS can be consistent across unseen trees of entailments when trained for
implication consistency (F-IMP) on BeliefBank and evaluated as is on EntailmentBank (Dalvi et al.,
2022).

depth

model 1 2 3 4 5

LLaMa-2-7b 0.87 0.76 0.59 0.61 0.63

LoCo-LLaMa-2-7b (NEG) 0.51 0.51 0.51 0.52 0.52
LoCo-LLaMa-2-7b (F-IMP) 0.98 0.98 0.98 0.98 0.98
LoCo-LLaMa-2-7b (Super) 0.69 0.68 0.68 0.68 0.69

Table 16: LOCO-LMS can achieve higher consistency across depth than the baseline. Scores
are computed with Format 2 [yes, no], reported in Appendix F.2. LOCO-LM fine-tuned with
on the implication rule and the negation rule achieve best consistency.

DEPTH

MODEL 1 2 3 4 5

LLAMA-2-7B 1.00 0.75 0.38 0.42 0.46

LOCO-LLAMA-2-7B (NEG) 0.99 0.99 0.99 0.99 0.99
LOCO-LLAMA-2-7B (F-IMP) 0.99 0.99 0.99 0.99 0.99
LOCO-LLAMA-2-7B (SUPER) 0.62 0.62 0.63 0.63 0.64

Table 17: Distribution of answer labels from LOCO-LMS for different prompt formats on the
EntailmentBank test split.

LABELS: [YES, NO] LABELS: [TRUE, FALSE]

MODEL YES NO INVALID TRUE FALSE INVALID

LLAMA-2-7B 1188 6 1441 615 1742 278

LOCO-LLAMA-2-7B (NEG) 2538 0 97 940 0 1695
LOCO-LLAMA-2-7B (F-IMP) 2557 0 78 2441 194 0
LOCO-LLAMA-2-7B (SUPER) 2079 486 70 874 1756 5

Table 18: LOCO-LMS evaluated on BeliefBank, train (calibration) split, compared by decod-
ing strategy. All few shot prompts in Appendix F.3 were used. The default configuration consists in
top k = 50, top p = 1.0, temperature = 1.0; greedy decoding consists in top k
= 1, top p = 1.0, temperature = 1.0. We observe no significant difference as in the
current setup, the truth label is represented by a single token and thus changes in the sampling tech-
nique could be better observed on an output sequence.

CONSISTENCY SELF-CONSISTENCY

MODEL DECODING PPL FAC IMP REV NEG IMP REV AVG

LOCO-LLAMA-2-7B (SUPER) DEFAULT 62.41 0.79 0.83 0.82 0.57 0.76 0.82 0.76
LOCO-LLAMA-2-7B (SUPER) GREEDY 62.41 0.79 0.82 0.82 0.57 0.76 0.82 0.76

E SEMANTIC OVERLAP

We base our measurement for semantic overlap on cosine similarity, widely adopted in literature.
We report our results with a note for caution: it is unclear whether embeddings could be similar for
the semantic features we are seeking Steck et al. (2024), suggesting further research on the topic.
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Table 19: Logical consistency in class-knowledge transfer measured in LOCO-LMS on ConceptNet
with Format 2 [yes, no]. On average, LOCO-LMS trained on joint logical constraints surpass
baseline methods, with consistent gains in factuality and implication consistency. LOCO-LMS have
been trained on high-level class properties for 10 epochs.

CONSISTENCY SELF-CONSISTENCY

MODEL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B-ZERO SHOT 0.24 0.41 0.83 0.26 0.63 0.83 0.53
LLAMA-2-7B-FEW SHOT 0.56 0.71 0.56 0.48 0.56 0.56 0.57
LOCO-LLAMA-2-7B (SUPER) 0.74 0.82 0.59 0.41 0.83 0.59 0.66

melting is a kind of 
phase change

the ice melts

the ice undergoes a phase 
change

phase changes do not change 
mass

the mass of the ice will not 
change

Figure 2: An illustration of an entailment tree, namely a “prof”, from EntailmentBank Dalvi et al.
(2022). Blue nodes are premises in logical conjunction, orange nodes are implications and the green
node denote the hypothesis to prove.

E.1 BELIEFBANK

We measure the semantic overlap between the training and test distribution by constructing a
Representation Dissimilarity Matrix (RDM) of Macaw’s embeddings (token average) between
training and test entities. The main assumption is that semantically similar subjects may have
similar properties, as a proxy for domain knowledge transfer.
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Figure 3: Pairwise cosine similarities between entities in the training distribution (calibration, rows)
and the test distribution (silver, columns).

E.2 BELIEFBANK-ENTAILMENTBANK

We consider the training split, namely “calibration” in ConCoRD Mitchell et al. (2022), from Be-
liefBank Kassner et al. (2021), and the test split from EntailmentBank Dalvi et al. (2022) to estimate
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Table 20: Fraction k of facts in BeliefBank with cosine similarity above t with any fact in Entail-
mentBank, for t = {0.80, 0.85, 0.90}.

t k

0.80 0.41
0.85 0.22
0.90 0.02

the knowledge that LOCO-LMS could transfer to entailment trees. We process BeliefBank as a
set of 1, 072 facts, while EntailmentBank as a set of 2, 635 facts. Both sets contain statements in
natural language that are converted into vector embeddings through encoding with LLaMa-2-7b
Touvron et al. (2023); the last layer logits are considered and a sentence representation is obtained
by averaging across tokens. We consequently compute the pairwise cosine similarities between fact
embeddings from both sets. For each fact in BeliefBank, we take the maximum similarity with any
fact from EntailmentBank, which should represent the existance of a unit of a similar knowledge
between the two datasets. Given the volume of pairwise comparisons, we aggregate the results.

F PROMPTS

F.1 PROMPTS FOR MACAW-LARGE

We query the language model for a belief label about a statement in natural language. We adopt the
format:

Prompt

$answer$ ; $mcoptions$ = (A) pos label (B) neg label ; $question$ = Is subject a property?

We fix <pos label> = "Yes." and <neg label> = "No.". We converted the
(<subject>, <property>) tuple in natural language with a formatting function provided
by Mitchell et al. (Mitchell et al., 2022).

Expected answers

$answer$ = pos label ; $answer$ = neg label ;

F.2 ZERO-SHOT PROMPTS FOR LOCO-LMS

We adopt two label sets to make the model less prompt sensitive:

Format 1: [true, false]

Prompt

You can answer only with ”true” or ”false”. Is the fact true? Fact: statement

Expected answers

Answer: true
Answer: false

Format 2: [yes, no]
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Prompt

You can answer only with ”yes” or ”no”. Is the fact true? Fact: statement

Expected answers

Answer: yes
Answer: no

Format 3: [correct, incorrect]

Prompt

You can answer only with ”correct” or ”incorrect”. Is the fact true? Fact: statement

Expected answers

Answer: correct
Answer: incorrect

Format 4: [right, wrong]

Prompt

You can answer only with ”right” or ”wrong”. Is the fact true? Fact: statement

Expected answers

Answer: right
Answer: wrong

F.3 FEW-SHOT PROMPTS FOR LOCO-LMS

We adopt two label sets to make the model less prompt sensitive:

Format 1: [true, false]

Prompt

Fact: the earth is round. Label: true.
Fact: the sun is cold. Label: false.
Fact: {fact}. Label:

Expected answers

Answer: true
Answer: false

Format 2: [yes, no]
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Prompt

Fact: the earth is round. Label: yes.
Fact: the sun is cold. Label: no.
Fact: {fact}. Label:

Expected answers

Answer: yes
Answer: no

Format 3: [correct, incorrect]

Prompt

Statement: the earth is round. Label: yes.
Statement: the sun is cold. Label: no.
Statement: {fact}. Label:

Expected answers

Answer: correct
Answer: correct

Format 4: [right, wrong]

Prompt

Claim: the earth is round. Label: yes.
Claim: the sun is cold. Label: no.
Claim: {fact}. Label:

Expected answers

Answer: right
Answer: wrong
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