

000 001 002 003 004 005 006 007 008 009 010 WINNER-TAKE-ALL SPIKING TRANSFORMER FOR LANGUAGE MODELING

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Spiking Transformers, which combine the scalability of Transformers with the
 012 sparse, energy-efficient dynamics of Spiking Neural Networks (SNNs), have
 013 achieved strong results in neuromorphic and vision tasks and attracted increasing at-
 014 tention. However, existing directly trained spiking transformers primarily focus on
 015 vision tasks with encoder-only architectures. In language modeling, convergence
 016 relies heavily on softmax-based spiking self-attention, which incurs high energy
 017 costs and poses challenges for neuromorphic deployment. To address this issue,
 018 we introduce Winner-Take-All (WTA) mechanisms into spiking transformers and
 019 propose two novel softmax-free, spike-driven self-attention modules: WTA Spik-
 020 ing Self-Attention (WSSA) and Causal WTA Spiking Self-Attention (CWSSA).
 021 Based on these, we design WTA-based Encoder-only Spiking Transformer (WE-
 022 SpikingFormer) for masked language modeling and WTA-based Decoder-only
 023 Spiking Transformer (WD-SpikingFormer) for causal language modeling, system-
 024 matically exploring direct-training-based softmax-free fully spike-driven transfor-
 025 mers for natural language processing. Extensive experiments on 16 datasets spanning
 026 natural language understanding, question-answering tasks, and commonsense rea-
 027 soning tasks validate the effectiveness of our approach and highlight the promise of
 028 spiking transformers for general language modeling and energy-efficient artificial
 029 intelligence.

030 1 INTRODUCTION

032 Spiking Neural Networks (SNNs), regarded as the third generation of neural networks (Maass,
 033 1997), offer high biological plausibility and energy efficiency through their event-driven dynamics,
 034 making them strong contenders to Artificial Neural Networks (ANNs) (Roy et al., 2019). Specifically,
 035 by transmitting information through binary spikes, SNNs replace traditional high-power multiply-
 036 accumulate (MAC) operations with low-power accumulate (AC) operations, thereby achieving
 037 substantial energy savings.

038 Spiking transformers, which combine the architectural strengths of Transformers with the event-
 039 driven, sparse, and energy-efficient properties of spiking neural networks, have achieved great
 040 progress on both neuromorphic datasets and large-scale vision datasets (Zhou et al., 2023b;a; Yao
 041 et al., 2023a; 2024; Zhou et al., 2024; Yao et al., 2025) and have attracted significant attention.
 042 Spiking Transformers process information through discrete spikes with low-power operation, naturally
 043 capturing temporal dynamics that enhance biological plausibility and suitability for neuromorphic
 044 hardware. At the same time, they achieve performance comparable to that of ANN counterparts while
 045 offering superior energy efficiency.

046 Current directly trained spiking transformers have primarily targeted computer vision tasks (Zhou
 047 et al., 2023b;a; Yao et al., 2023a; 2024; Zhou et al., 2024; Yao et al., 2025) with encoder-only
 048 architectures. Spiking transformers with softmax-free self-attention function well in visual tasks
 049 because image patches are locally correlated and highly redundant. Repeated low-level features, such
 050 as edges and textures, allow softmax-free attention to achieve competitive performance.

051 By contrast, as the extension to spiking LLM is a growing trend, language signals are sparse and
 052 heavily depend on long-range dependencies, making softmax-free spiking transformers far more
 053 difficult to design for language modeling. SpikeBert (Lv et al., 2023) is an early attempt in this
 direction. As a softmax-free spiking transformer, SpikeBert adapts Spikformer (Zhou et al., 2023b)

for language tasks by proposing a two-stage knowledge distillation training method, and achieves 59.7% accuracy on the natural language understanding benchmark (GLUE dev datasets) (Wang et al., 2018). The substantial performance gap between SpikeBert and BERT (Devlin et al., 2019) (19.9%) highlights the difficulty of directly applying spiking self-attention from a vision-based spiking transformer (spikformer) to language modeling. More recently, SpikeLM (Xing et al., 2024b) proposes a spike formulation with bi-directional ternary firing for language modeling and achieves promising results in language modeling. SpikeLLM (Xing et al., 2024a) proposes generalized integrate-and-fire (GIF) neurons and an optimal brain spiking framework for spiking transformers. However, SpikeLM retains non-spiking activation GeLU (Hendrycks & Gimpel, 2016) in MLP blocks, and SpikeLLM retains SiLU (Hendrycks & Gimpel, 2016) in MLP blocks. In particular, both SpikeLM and SpikeLLM are softmax-based spiking transformers. The softmax with complex exponential and division operations brings huge challenges to energy consumption and neuromorphic deployment (Zhou et al., 2023b;a).

To address these limitations, we explore softmax-free fully spike-driven transformers, tailor-made for language modeling. Firstly, we introduce a brain-inspired mechanism: Winner-Take-All (WTA) for spiking transformers to replace the softmax operation in language modeling. Winner-take-all mimics biological lateral inhibition to enforce sparsity and focus attention on the most relevant tokens, serving as an extremely sparse alternative to softmax, which makes it particularly suitable for spiking language modeling. Through incorporating Winner-Take-All biological mechanisms, we developed two kinds of softmax-free, fully spike-driven transformers without floating-point multiplications: WTA-based Encoder-only SpikingFormer for masked language modeling and WTA-based Decoder-only SpikingFormer for causal language modeling. These architectures expand the spiking transformer family and advance both neuromorphic intelligence and energy-efficient artificial intelligence. Our main contributions are as follows :

- 1) Leveraging spike-driven and Winner-Take-All (WTA) biological mechanisms, we proposed two novel spike-driven self-attention for language modeling: **WTA Spiking Self-Attention (WSSA)** and **Causal WTA Spiking Self-Attention (CWSSA)**. The self-attention floating-point multiplication operator between Query, Key, Value is replaced by sparse addition with high energy efficiency.
- 2) We developed a WTA-based Encoder-only Spiking Transformer (**WE-SpikingFormer**) with WSSA for masked language modeling, and a WTA-based Decoder-only Spiking Transformer (**WD-SpikingFormer**) with CWSSA for causal language modeling, systematically exploring direct-training-based softmax-free fully spike-driven transformers in language modeling.
- 3) We evaluate our models on 16 datasets covering natural language understanding, question answering, and commonsense reasoning tasks. Extensive experiments demonstrate the promise of directly trained spiking transformers for general language modeling and energy-efficient artificial intelligence.

2 RELATED WORK

2.1 SPIKING TRANSFORMERS IN VISION TASKS

Spiking transformers with encoder-only architectures have been widely adopted, particularly in visual tasks (Zhou et al., 2023b;a; Yao et al., 2023a; 2024; Zhou et al., 2024; Yao et al., 2025). Spikformer (Zhou et al., 2023b) introduced Spiking Self-Attention (SSA), which replaces softmax with sparse spike-form Query, Key, and Value, achieving 74.81% accuracy on ImageNet-1k with only four time steps—the first strong evidence of the potential of transformer-based SNNs. Building on this, Spikingformer (Zhou et al., 2023a) employed a pre-activation shortcut to eliminate floating-point multiplications and reduce firing rates, further improving accuracy to 75.85%. Spike-driven Transformer (Yao et al., 2023a) proposed Spike-Driven Self-Attention (SDSA), which relies solely on masking and addition, reaching 77.07% on ImageNet-1k with significantly lower computational cost. Recently, hierarchical visual spiking transformers (Yao et al., 2024; Zhou et al., 2024; Yao et al., 2025) has achieved a performance of over 80% on ImageNet while maintaining high energy efficiency.

108
109

2.2 SPIKING TRANSFORMERS IN LANGUAGE TASKS

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

SpikeBert (Lv et al., 2023) is a softmax-free spiking transformer, which improves Spikformer (Zhou et al., 2023b) to process language tasks and propose a two-stage knowledge distillation method for training it. The two-stage knowledge distillation method combines pre-training by distilling knowledge from BERT with a large collection of unlabelled texts and fine-tuning with task-specific instances via knowledge distillation from the BERT fine-tuned on the same training examples, and achieves 59.7% accuracy on the natural language understanding benchmark (GLUE dev datasets) (Wang et al., 2018), while also indicating that directly applying vision-based spiking self-attention leads to suboptimal performance on language tasks. SpikeGPT (Zhu et al., 2023) is an RWKV architecture-based spiking language model and retains the exponential and division operations similar to the softmax operation. SpikeLM (Xing et al., 2024b) demonstrates promising results in language modeling; however, they typically retain key components of vanilla attention, such as floating-point matrix multiplications, softmax operations, and non-spiking activation(GeLU (Hendrycks & Gimpel, 2016)) in MLP blocks. SpikeLLM (Xing et al., 2024a) is also a softmax-based decoder-only spiking transformer. Besides, SpikeLLM retains a large number of nonlinear operations of the llama (Touvron et al., 2023), such as SiLU (Hendrycks & Gimpel, 2016) non-spiking activation in the MLP block and retains rotary position embedding (Su et al., 2024) with non-spike-driven computation in Query and Key. By contrast, our proposed WE-SpikingFormer and WD-SpikingFormer eliminate these non-spiking components to realize a fully spike-driven transformer architecture. In short, this work focuses on designing softmax-free, energy-efficient spike-driven transformers for language modeling.

129

3 METHOD

130
131
132

3.1 SPIKING NEURON MODEL

133
134
135

In this part, to explore more expressive yet efficient spiking neurons for language modeling, we adopt two variants of the Leaky Integrate-and-Fire (LIF) neuron model (Maass, 1997) for direct training: T-LIF (Xing et al., 2024b) and NI-LIF (Lei et al., 2025).

136
137
138
139

Ternary-spiking-based Leaky Integrate-and-Fire (T-LIF) model. Compared to the original LIF neuron, the ternary spiking in SpikeLM (Xing et al., 2024b) extends binary spikes $\{0, 1\}$ to ternary values $\{-\alpha, 0, \alpha\}$ based on membrane potential intensity. The dynamics of the Ternary spiking-based Leaky Integrate-and-Fire (T-LIF) model are formulated as:

140

$$U[t] = H[t-1] + X[t], \quad (1)$$

141
142
143
144
145
146

$$S[t] = \begin{cases} -1 \cdot \alpha[t], & \text{if } U[t] < -\alpha[t], \\ 0 \cdot \alpha[t], & \text{if } U[t] \in (-\alpha[t], +\alpha[t]), \\ +1 \cdot \alpha[t], & \text{if } U[t] > +\alpha[t], \end{cases} \quad (2)$$

$$H[t] = V_{\text{reset}} |b| + (\beta U[t])(1 - |b|), \quad (3)$$

147
148
149
150
151
152
153

where $X[t]$ is the input current at time step t , $S[t] = b \cdot \alpha[t]$ and $b \in \{-1, 0, 1\}$. $U[t]$ represents the membrane potential after the triggered event, which will decay directly to $H[t]$ if no spike is generated (where $\beta < 1$ is the decay factor) and otherwise equals to the reset potential V_{reset} .

Normalized Integer Leaky Integrate-and-Fire (NI-LIF) Model. This neuron adopts integer-training and spike-inference way (Luo et al., 2024), the dynamics of the normalized integer leaky integrate-and-fire model are formulated as follows:

154
155
156
157

$$U[t] = H[t-1] + X[t], \quad (4)$$

$$S[t] = \text{clip}(\text{round}(U[t]), 0, D)/D, \quad (5)$$

$$H[t] = \beta(U[t] - S[t] \times D), \quad (6)$$

158
159
160
161

where $\text{clip}(U[t], \text{min}, \text{max})$ denotes the operation of clipping $U[t]$ to $[\text{min}, \text{max}]$, D indicates the maximum quantized integer value and unfold into D time steps when inference on neuromorphic chips. That is, the total time step T of the spike sequence is $T * D$, where T is the normalized integer time step. For example, NI-LIF(1×4) unfolds into a binary spike sequence of time step $T = 4$. In our experiments, we apply T-LIF to WE-SpikingFormer and NI-LIF(1×4) to WD-SpikingFormer.

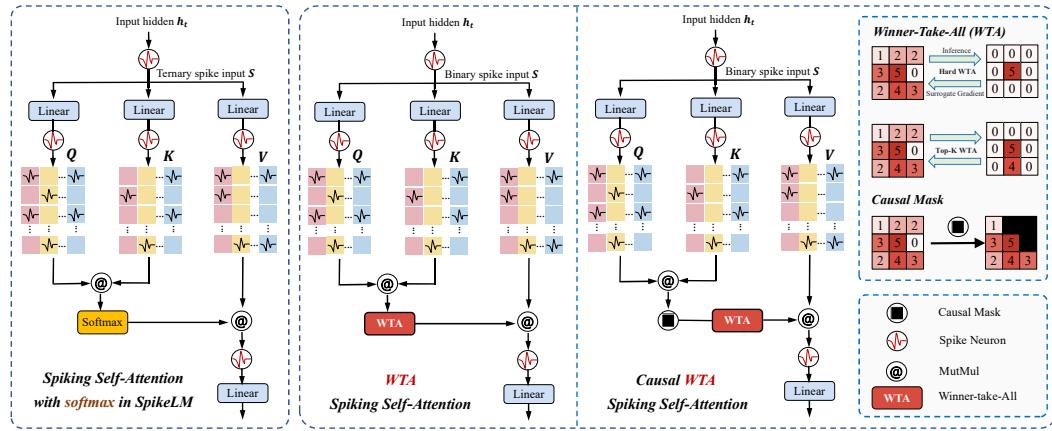


Figure 1: Overview of WTA-based Spiking Self-Attention (WSSA) and Causal WTA-based Spiking Self-Attention (CWSSA). The left shows the Softmax-based spiking self-attention in SpikeLM (Xing et al., 2024b). The right shows our WSSA in WE-SpikingFormer for masked language modeling and CWSSA in WD-SpikingFormer for causal language modeling.

3.2 WINNER-TAKE-ALL LAYER

In the visual system, multiple neurons are sensitive to different directions at the same location. The neurons with the strongest response (such as detecting vertical edges) will suppress other direction detectors, leaving only a dominant signal. The winner-take-all computation (Maass, 2000), inspired by this biological mechanism, is incorporated into spiking neural networks as a biologically plausible strategy for enforcing sparsity. It simulates the "lateral inhibition" phenomenon in biological nervous systems - that is, the strongest signal inhibits other competing signals, ultimately forming a single dominant response and ensuring that attention remains focused on the most relevant token. In this part, we mainly introduce the theory of WTA and its extensions.

Hard WTA. Hard WTA is an extremely sparse neural activation mechanism. In a group of competing units, only the unit with the highest activation value is allowed to retain the original output, and the outputs of all other units are forced to zero. Given an input vector $A = [a_1, \dots, a_n]$, the output layer of WTA is $Y = [y_1, \dots, y_n]$. Hard WTA can be formulated as follows:

$$y_i = \begin{cases} a_i & \text{if } i = \arg \max_{j \in (1, \dots, N)} a_j, \\ 0 & \text{otherwise.} \end{cases} \quad (7)$$

Top-K WTA. As a sparse neural activation mechanism, Top-K WTA selects the K units with the highest scores from a set of input signals, retains only their original values, and sets the outputs of all other units to zero. Top-K WTA allows a limited number of "winners" to coexist, thus achieving a balance between sparsity and expressiveness. Hard WTA can be formulated as follows:

$$y_i = \begin{cases} a_i & \text{if } a_i \in \text{Top-}k(a_1, \dots, a_n), \\ 0 & \text{otherwise.} \end{cases} \quad (8)$$

Sparsemax. Sparsemax is a differentiable, adaptively sparse neural mechanism that can automatically generate some zero values in the output; that is, only a few significant elements are given non-zero probability, and the remaining elements are precisely truncated to zero, thereby achieving adaptive sparsity. Sparsemax can be formulated as follows:

$$y_i = \max \{a_i - \tau, 0\}, \quad i = 1, \dots, N. \quad (9)$$

Eq. 9 needs to satisfy $\sum_i y_i = 1$, and τ is the adaptive threshold.

Surrogate Gradient for WTA Layer. The Winner-Take-All mechanism is non-differentiable because it produces discrete, discontinuous outputs with zero gradients almost everywhere and undefined gradients at decision boundaries. Therefore, we choose the surrogate gradient for winner-take-all

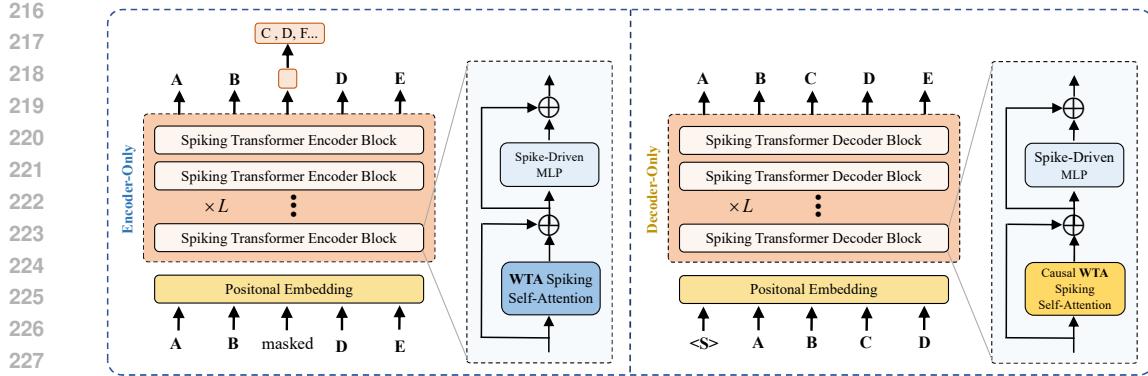


Figure 2: The overview of WE-SpikingFormer and WD-SpikingFormer. The left shows WE-SpikingFormer (WTA-based Encoder-only Spiking Transformer) for spike-based masked language modeling. The right shows WD-SpikingFormer (WTA-based Decoder-only Spiking Transformer) for spike-based causal language modeling.

during training, which does not affect the high energy efficiency of the model during inference. Specifically, we use the gradient of softmax to approximate the "gradient" of the winner-take-all layer, which is shown as follows:

$$\frac{\partial y}{\partial a} = \text{softmax}'(a). \quad (10)$$

where $\text{softmax}'(\cdot)$ is the derivative of the softmax function.

Winner-take-all is functionally equivalent to an extremely sparse version of softmax, ensuring that attention remains focused on the most relevant token. It uses neural dynamics lateral inhibition instead of exponential normalization. It is more suitable for spiking language modeling due to its sparse dependencies and lateral inhibition, while also offering energy efficiency advantages. In our experiments, we exploit Hard WTA by default owing to its superior energy efficiency and accuracy.

3.3 CAUSAL WTA SPIKING SELF-ATTENTION

In this part, we propose two self-attention mechanisms based on the winner-take-all layer for Spiking language modeling: WTA Spiking Self-Attention (WSSA) and Causal WTA Spiking Self-Attention (CWSSA), which are shown in Fig. 1.

Causal WTA Spiking Self-Attention (CWSSA) is a spike-driven self-attention for spike-based causal language modeling with Decoder-only Transformers. CWSSA can be formulated as follows:

$$\mathbf{X}' = \text{SN}(\mathbf{X}), \quad (11)$$

$$\mathbf{Q} = \text{SN}_Q(\text{Linear}_Q(\mathbf{X}')), \quad (12)$$

$$\mathbf{K} = \text{SN}_K(\text{Linear}_K(\mathbf{X}')), \quad (13)$$

$$\mathbf{V} = \text{SN}_V(\text{Linear}_V(\mathbf{X}')), \quad (14)$$

$$\mathbf{A}_w(\mathbf{Q}, \mathbf{K}) = \text{WTA}(\text{CausalMask}(\mathbf{Q}\mathbf{K}^T * s)), \quad (15)$$

$$\text{Out}(\mathbf{A}_w, \mathbf{V}) = \text{Linear}(\text{SN}(\mathbf{A}_w \mathbf{V})), \quad (16)$$

where s is the scaling factor, same in (Zhou et al., 2023b), \mathbf{A}_w is the attention weights, and SN means the spiking neuron.

WTA Spiking Self-Attention (WSSA) is a spike-driven self-attention for spike-based masked language modeling with Encoder-only Transformers. The attention mechanism is similar to CWSSA, with the main difference that the causal mask in Eq. 16 is removed:

$$\mathbf{A}_w(\mathbf{Q}, \mathbf{K}) = \text{WTA}((\mathbf{Q}\mathbf{K}^T * s)). \quad (17)$$

270 3.4 LANGUAGE MODELING
271

272 Based on WSSA and CWSSA in Section 3.3, we built two spiking transformers for spike-based
273 language modeling: WTA-based Spiking Encoder (WE-SpikingFormer) and WTA-based Spiking
274 Decoder (WD-SpikingFormer) in this part.

275 **Model Architecture.** The overview of WE-SpikingFormer and WD-SpikingFormer is shown in
276 Fig. 2. The decoder block in WD-SpikingFormer can be formulated as follows:

$$278 \quad X'_l = \text{CWSSA}(X_{l-1}) + X_{l-1}, \quad X'_l \in \mathbb{R}^{T \times d}, l = 1 \dots L, \quad (18)$$

$$279 \quad X_l = \text{SMLP}(X'_l) + X'_l, \quad X_l \in \mathbb{R}^{T \times d}, l = 1 \dots L, \quad (19)$$

281 where SMLP means Spike-driven Multi-Layer Perceptron, which is realized by {SN-Linear-SN-
282 Linear} sequence. The encoder block in WE-SpikingFormer is similar to the decoder one in WD-
283 SpikingFormer, with the main difference that CWSSA in Eq. 18 is replaced by WSSA in Eq. 20:

$$284 \quad X'_l = \text{WSSA}(X_{l-1}) + X_{l-1}, \quad X'_l \in \mathbb{R}^{T \times d}, l = 1 \dots L. \quad (20)$$

286 **Masked Language Modeling.** Given a sequence of tokens $x = (x_1, x_2, \dots, x_T)$, randomly select
287 a portion of the locations $M \subseteq \{1, 2, \dots, T\}$ for masking. The masked sequence is obtained:
288 $\tilde{x} = (\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_T)$. The goal of Masked Language Modeling (MLM) (Devlin et al., 2019) is to
289 let the model predict the masked tokens based on the unmasked tokens, which can be formulated as
290 follows:

$$291 \quad p(x_M | \tilde{x}_{\setminus M}), \quad (21)$$

292 where $x_M = \{x_t : t \in M\}$ denotes the masked token, $\tilde{x}_{\setminus M}$ denotes the visible tokens that are
293 retained. Thus, the loss function of MLM can be formulated as follows:

$$295 \quad \mathcal{L}_{\text{MLM}} = - \sum_{t \in M} \log p_{\theta}(x_t | \tilde{x}). \quad (22)$$

297 In our work, we apply WE-SpikingFormer for masked language modeling for pretraining.

299 **Causal Language Modeling.** Causal Language Modeling (CLM) (Radford et al., 2018; Ouyang
300 et al., 2022) is the most widely used language modeling method. Its core idea is autoregressive
301 generation: when predicting the next word, only the context before the current position is allowed
302 to be used, and future words cannot be accessed. Given a sequence of tokens $x = (x_1, x_2, \dots, x_T)$.
303 The training strategy of CLM can be formulated as follows:

$$304 \quad p(x) = \prod_{t=1}^T p(x_t | x_{<t}), \quad (23)$$

307 where x_t represents the t -th token, $x_{<t} = (x_1, x_2, \dots, x_{t-1})$ represents all previous tokens. The
308 optimization goal of CLM is to maximize its conditional probability decomposition. In network
309 modeling, the causal mask is used to ensure the model only focuses on the previous tokens when
310 calculating attention. The loss function of CLM can be formulated as follows:

$$312 \quad \mathcal{L}_{\text{CLM}} = - \sum_{t=1}^T \log p_{\theta}(x_t | x_{<t}). \quad (24)$$

315 In our work, we apply WD-SpikingFormer for causal language modeling for pretraining.

316
317 4 EXPERIMENTS318
319 4.1 NATURAL LANGUAGE UNDERSTANDING

321 We evaluate WE-SpikingFormer on the standard GLUE (General Language Understanding Evalu-
322 ation) benchmark (Wang et al., 2018), which is a widely adopted collection of datasets designed to
323 evaluate and advance natural language understanding capabilities of machine learning models. GLUE
contains 8 subsets for classification and regression, including single-sentence classification (CoLA,

324
 325 Table 1: The results on the Natural Language Understanding task (GLUE datasets). "Avg." denotes
 326 "Average Accuracy (%)" . The results of LIF-BERT, PSN-BERT, and SpikeLM are reported in Xing
 327 et al. (2024b).

Model	T	MNLI	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avg.
BERT _{base}	–	83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
Q2BERT	–	47.3	67.0	61.3	80.6	0.0	4.7	81.2	52.7	49.1
BERT _{3L}	–	77.1	85.2	85.8	88.1	31.7	85.7	86.4	66.4	75.9
SpikeLM	4	77.2	83.9	85.3	87.0	38.8	84.9	85.7	69.0	76.5
LIF-BERT	4	35.2	0	50.5	50.9	0	0	81.2	52.7	34.6
PSN-BERT	4	35.2	0	50.5	50.9	0	6.8	81.2	52.7	34.7
SpikeBERT	4	71.0	68.2	66.4	85.4	16.9	18.7	82.0	57.5	59.7
WE-SpikingFormer	4	70.1	85.1	77.5	89.0	27.9	42.8	81.6	55.9	66.3

338
 339 SST-2), pairwise sentence comparison (MPRC, QQP, RTE), sentence similarity (STS-B), and natural
 340 language inference (MNLI, QNLI).

341
 342 We pretrain WE-SpikingFormer on Wikipedia-English (Devlin et al., 2019) with masked language
 343 modeling (Devlin et al., 2019) using 8 GPUs, and subsequently fine-tune it on the GLUE dev set.
 344 The ANN baseline includes BERT (Devlin et al., 2019) and Q2BERT (Zhang et al., 2020), the latter
 345 of which employs 2-bit weights and 8-bit activations.

346 The experimental results are shown in Table 1 and all models in Table 1 except BERT_{3L} have 12
 347 encoder blocks and have the same model size with about 0.1B parameters. WE-SpikingFormer
 348 achieves 66.3% average accuracy. In comparison, SpikeLM is a softmax-based spiking transformer
 349 and retains non-spiking activation GeLU (Hendrycks & Gimpel, 2016) in MLP blocks. These factors
 350 led to its relatively higher performance. As a softmax-free, fully spike-driven transformer, WE-
 351 SpikingFormer outperforms other spike-driven methods (LIF-BERT, PSN-BERT, and SpikeBERT)
 352 by a significant margin. WE-SpikingFormer vs. SpikeBERT vs. LIF-BERT. Acc: 66.3% vs. 59.7%
 353 vs. 34.6%.

354 4.2 QUESTION ANSWERING TASKS

355
 356 In this experiment, we use the FineWeb-Edu (Lozhkov et al., 2024) dataset, a high-quality subset
 357 of the FineWeb corpus curated for factual and educational content, and sample 1B tokens from it
 358 for pretraining WD-SpikingFormer across 8 GPUs. We evaluate the model performance of WD-
 359 SpikingFormer on a diverse set of Question-Answering Tasks (QAT), including ARC-e (Clark et al.,
 360 2018), ARC-c (Clark et al., 2018), BoolQ (Clark et al., 2019), HeadQA (Vilares & Gómez-Rodríguez,
 361 2019), and OpenBookQA (OBQA) (Mihaylov et al., 2018). These tasks measure the generalization
 362 and reasoning abilities without task-specific finetuning.

363
 364 Table 2: The results on Question Answering Tasks (QAT). "Avg." denotes "Average Accuracy (%)" .
 365 "E (mJ)" means "Energy consumption (mJ)". "T" means time step.

Model	E (mJ)	T	ARC-e	ARC-c	BoolQ	HeadQA	OBQA	Avg.
SpikeLLM-7B	-	4	31.3	23.6	53.8	-	-	-
DeepSeek-Distill-Qwen-1.5B	3398.3	-	26.2	26.9	60.3	25.7	27.1	33.2
WD-SpikingFormer-0.4B	238.4	4	30.0	22.3	37.8	26.0	26.1	28.4

373
 374 The experimental results are shown in Table 2. On one hand, since SpikeLLM (Xing et al., 2024a) does
 375 not open-source the model file nor report energy consumption and the results of HeadQA and OBQA,
 376 our comparative analysis is limited to the average accuracy on the ARC-e, ARC-c, and HeadQA
 377 benchmarks. Despite being 17.5 times smaller (0.4B vs. 7B parameters), WD-SpikingFormer-0.4B
 achieves a competitive accuracy of 30.0%, approaching the 36.2% accuracy of the much larger

378 SpikeLLM-7B. On the other hand, WD-SpikingFormer-0.4B reduces energy consumption by an order
 379 of magnitude (238.4 mJ vs. 3398.3 mJ, only 7% of the energy) while maintaining a small accuracy
 380 gap (28.4% vs. 33.2%) against DeepSeek-Distill-Qwen-1.5B, showcasing a superior energy-accuracy
 381 trade-off. The two comparisons show that our model WD-SpikingFormer-0.4B enjoys high energy
 382 efficiency.

384 4.3 COMMONSENSE REASONING TASKS

386 In this experiment, we evaluated the model performance of WD-SpikingFormer on a diverse set of
 387 Commonsense Reasoning Tasks (CRT), including the HellaSwag (Zellers et al., 2019), PIQA (Bisk
 388 et al., 2020), and Winograd (Sakaguchi et al., 2021) datasets. The pretraining process is the same as
 389 shown in Section 4.2.

391 Table 3: The results on Commonsense Reasoning Tasks. "Avg." denotes "Average Accuracy (%)".
 392 "E (mJ)" means "Energy consumption (mJ)". "T" means time step.

Model	E (mJ)	T	HellaSwag	PIQA	Winograd	Avg.
SpikeLLM-7B	-	4	33.9	53.4	51.5	46.3
DeepSeek-Distill-Qwen-1.5B	3398.3	-	26.5	53.7	52.8	44.3
WD-SpikingFormer-0.4B	238.4	4	25.9	53.4	50.2	43.2

400 The experimental results are shown in Table 3. WD-SpikingFormer-0.4B uses smaller parameters
 401 (0.4B vs. 1.5B and 7B) while its accuracy remains close to the larger models (43.2% vs. 44.3%
 402 and 46.3%). These results highlight that WD-SpikingFormer-0.4B delivers competitive performance
 403 despite its much smaller size.

405 4.4 ABLATION STUDY

407 We carry out the ablation study on the natural language understanding task (GLUE datasets), Question-
 408 Answering Tasks (QAT), and Commonsense Reasoning Tasks (CRT). The experimental results are
 409 shown in Table 4 and Table 5.

410 The ablation study on GLUE datasets is shown in Table 4. The three attention versions use the same
 411 model architecture, training process, and other experimental settings. We can find that the model
 412 with vision-oriented spiking self-attention ($Q K^T V *s$) achieves only 55.4% accuracy on the GLUE
 413 set. However, the model in the softmax-based version (Softmax($Q K^T *s$) V) achieves only 66.8%
 414 accuracy, which shows that the softmax layer has a great influence on language modeling, and vision-
 415 oriented spiking self-attention is not suitable for language modeling. The model (WE-SpikingFormer)
 416 in the Winner-Take-All version (HardWTA($Q K^T *s$) V), achieves 66.3% accuracy, which is very
 417 close to the performance of the model in the softmax-based version. These experiments fully verify
 418 the effectiveness of our WTA-based spiking self-attention in masked language modeling.

421 Table 4: Ablation study of Winner-Take-All layer on natural language understanding tasks (GLUE
 422 dev set). "Avg." denotes "Average Accuracy (%)"'. We apply the vision-oriented spiking self-attention
 423 (Zhou et al., 2023b) ($Q K^T V *s$) and softmax-based version (Softmax($Q K^T *s$) V) (Xing et al.,
 424 2024b) in this language task.

Model	T	MNLI	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avg.
$Q K^T V *s$	4	67.6	70.1	68.9	80.3	8.9	16.7	79.4	51.3	55.4
Softmax($Q K^T *s$) V	4	72.5	84.7	76.0	87.2	24.4	54.5	79.7	55.6	66.8
HardWTA($Q K^T *s$) V	4	70.1	85.1	77.5	89.0	27.9	42.8	81.6	55.9	66.3

432
 433 Table 5: Ablation study of Winner-Take-All layer and time steps on Question-Answering Tasks
 434 (QAT), and Commonsense Reasoning Tasks (CRT). Note that "X" means the model does not converge
 435 in pretraining. "T" means time step. "Avg." denotes "Average Accuracy".

Spiking Transformer	T	Method	QAT Avg.(%)	CRT Avg.(%)
Decoder-Only	4	$Q K^T V *s$	X	-
	4	Softmax($Q K^T *s$) V	28.7	-
	4	HardWTA($Q K^T *s$) V	28.4	-
	4	$Q K^T V *s$	-	X
	4	Softmax($Q K^T *s$) V	-	43.3
	4	HardWTA($Q K^T *s$) V	-	43.2
	4	Top-kWTA($Q K^T *s$) V	-	42.9
	4	SparseMax($Q K^T *s$) V	-	43.2
	8	HardWTA($Q K^T *s$) V	-	43.7
	2	HardWTA($Q K^T *s$) V	-	40.1

450
 451 The ablation study on question-answering tasks and commonsense reasoning tasks is shown in Table 5.
 452 The base experimental backbone is the Decoder-only spiking transformer. By combining the results in
 453 Table 4, the experimental results on the three tasks show that: 1) Vision-oriented spiking self-attention
 454 ($Q K^T V *s$) does not work well in language modeling, often leading to convergence difficulties or
 455 suboptimal performance. HardWTA($Q K^T *s$) V vs. ($Q K^T V *s$). GLUE: 66.3% vs. 55.4%; QAT:
 456 28.4% vs. Not converging in pretraining; CRT: 43.2% vs. Not converging in pretraining. 2) The
 457 winner-take-all layer can approximately replace the softmax layer in self-attention computation of
 458 spiking transformers in language modeling while enjoying high energy efficiency during inference.
 459 HardWTA($Q K^T *s$) V vs. Softmax($Q K^T *s$) V. GLUE: 66.3% vs. 66.8%; QAT: 28.4% vs.
 460 28.7%; CRT: 43.2% Vs. 43.3%. The three tasks ablation study verified the effectiveness of WTA's
 461 lateral inhibition, tailor-made for the spiking transformers in language modeling. Furthermore, the
 462 performance of Hard WTA, Top-k WTA, and Sparsemax is very similar on CRT (43.2% vs. 42.9%
 463 vs. 43.2%), making Hard WTA the more cost-effective option. When the time step is increased to 8,
 464 the performance of the WTA-based decoder-only spiking transformer (WD-SpikingFormer-0.4B)
 465 further improves to an average accuracy of 43.7%.

466 5 CONCLUSION

469 In this work, we explore softmax-free fully spike-driven transformers for language modeling by
 470 introducing Winner-Take-All (WTA) mechanisms into spike-driven self-attention. We proposed two
 471 novel attention modules, WTA-based Spiking Self-Attention (WSSA), Causal WTA-based Spiking
 472 Self-Attention(CWSSA), and designed WE-SpikingFormer for masked language modeling and WD-
 473 SpikingFormer for causal language modeling. Our approach systematically extends directly trained
 474 spiking transformers from vision to language. Extensive experiments on 16 datasets spanning natural
 475 language understanding, question-answering tasks, and commonsense reasoning tasks validate the
 476 effectiveness of our models and highlight the potential of spiking transformers as a foundation for
 477 biologically inspired, energy-efficient, and general-purpose language modeling.

478 **Limitation.** This work first explores the direct-training-based, softmax-free, fully spike-driven
 479 transformers in language modeling, including masked language modeling and causal language
 480 modeling. A limitation of our study is the lack of exploration across different model scales, which we
 481 leave for future work.

486 ETHICS STATEMENT
487488 All experiments in this work are conducted on publicly available datasets without involving private or
489 sensitive information. The proposed methods are intended purely for academic research, and any
490 deployment should carefully consider potential ethical risks such as bias or misuse.
491492 REPRODUCIBILITY STATEMENT
493494 The experimental results in this paper are reproducible. We describe the model architecture and
495 training process details in the main text and appendix. We will release the source code after review.
496497 REFERENCES
498499 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
500 commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
501 volume 34, pp. 7432–7439, 2020.502 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
503 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint*
504 *arXiv:1905.10044*, 2019.
505506 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
507 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
508 *arXiv preprint arXiv:1803.05457*, 2018.509 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
510 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
511 *the North American chapter of the association for computational linguistics: human language*
512 *technologies*, volume 1 (long and short papers), pp. 4171–4186, 2019.513 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint*
514 *arXiv:1606.08415*, 2016.
515516 Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In *2014 IEEE*
517 *International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)*, pp. 10–14.
518 IEEE, 2014.519 Souvik Kundu, Massoud Pedram, and Peter A Beerel. Hire-snn: Harnessing the inherent robustness of
520 energy-efficient deep spiking neural networks by training with crafted input noise. In *Proceedings*
521 *of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 5209–5218, 2021.523 Zhenxin Lei, Man Yao, Jiakui Hu, Xinhao Luo, Yanye Lu, Bo Xu, and Guoqi Li. Spike2former:
524 Efficient spiking transformer for high-performance image segmentation. In *Proceedings of the*
525 *AAAI Conference on Artificial Intelligence*, volume 39, pp. 1364–1372, 2025.526 Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest
527 collection of educational content, 2024. URL <https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu>.
528530 Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, and Guoqi Li. Integer-valued training and spike-driven
531 inference spiking neural network for high-performance and energy-efficient object detection. In
532 *European Conference on Computer Vision*, pp. 253–272. Springer, 2024.533 Changze Lv, Tianlong Li, Jianhan Xu, Chenxi Gu, Zixuan Ling, Cenyuan Zhang, Xiaoqing Zheng,
534 and Xuanjing Huang. Spikebert: A language spikformer learned from bert with knowledge
535 distillation. *arXiv preprint arXiv:2308.15122*, 2023.536 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
537 *Neural networks*, 10(9):1659–1671, 1997.
538539 Wolfgang Maass. On the computational power of winner-take-all. *Neural computation*, 12(11):
2519–2535, 2000.

- 540 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 541 electricity? a new dataset for open book question answering. *arXiv preprint arXiv:1809.02789*,
 542 2018.
- 543
- 544 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 545 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 546 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 547 27744, 2022.
- 548 Priyadarshini Panda, Sai Aparna Aketi, and Kaushik Roy. Toward scalable, efficient, and accurate deep
 549 spiking neural networks with backward residual connections, stochastic softmax, and hybridization.
 550 *Frontiers in Neuroscience*, 14:653, 2020.
- 551
- 552 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
 553 understanding by generative pre-training. 2018.
- 554 Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
 555 with neuromorphic computing. *Nature*, 575(7784):607–617, 2019.
- 556
- 557 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 558 adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106,
 559 2021.
- 560
- 561 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
 562 transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
- 563
- 564 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 565 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 566 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
- 567
- 568 David Vilares and Carlos Gómez-Rodríguez. Head-qa: A healthcare dataset for complex reasoning.
 569 *arXiv preprint arXiv:1906.04701*, 2019.
- 570
- 571 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
 572 A multi-task benchmark and analysis platform for natural language understanding. *arXiv preprint
 573 arXiv:1804.07461*, 2018.
- 574
- 575 Xingrun Xing, Boyan Gao, Zheng Zhang, David A Clifton, Shitao Xiao, Li Du, Guoqi Li, and Jiajun
 576 Zhang. Spikellm: Scaling up spiking neural network to large language models via saliency-based
 577 spiking. *arXiv preprint arXiv:2407.04752*, 2024a.
- 578
- 579 Xingrun Xing, Zheng Zhang, Ziyi Ni, Shitao Xiao, Yiming Ju, Siqi Fan, Yequan Wang, Jiajun Zhang,
 580 and Guoqi Li. Spikelm: Towards general spike-driven language modeling via elastic bi-spiking
 581 mechanisms. In *International Conference on Machine Learning*, pp. 54698–54714. PMLR, 2024b.
- 582
- 583 Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
 584 transformer. *Advances in neural information processing systems*, 36:64043–64058, 2023a.
- 585
- 586 Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi
 587 Li. Attention spiking neural networks. *IEEE Transactions on Pattern Analysis and Machine
 588 Intelligence*, 2023b.
- 589
- 590 Man Yao, JiaKui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, Bo Xu, and Guoqi
 591 Li. Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design of
 592 next-generation neuromorphic chips. *arXiv preprint arXiv:2404.03663*, 2024.
- 593
- 594 Man Yao, Xuerui Qiu, Tianxiang Hu, Jiakui Hu, Yuhong Chou, Keyu Tian, Jianxing Liao, Luzi-
 595 we Leng, Bo Xu, and Guoqi Li. Scaling spike-driven transformer with efficient spike firing
 596 approximation training. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.
- 597
- 598 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 599 really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

- 594 Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin Jiang, and Qun Liu. Ternarybert:
 595 Distillation-aware ultra-low bit bert. *arXiv preprint arXiv:2009.12812*, 2020.
- 596
- 597 Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Zhengyu Ma, Han Zhang, Huihui Zhou, and Yonghong
 598 Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural network.
 599 *arXiv preprint arXiv:2304.11954*, 2023a.
- 600 Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan, Zhengyu
 601 Ma, Huihui Zhou, and Yonghong Tian. Qkformer: Hierarchical spiking transformer using qk
 602 attention. *Advances in Neural Information Processing Systems*, 37:13074–13098, 2024.
- 603
- 604 Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng YAN, Yonghong Tian, and
 605 Li Yuan. Spikformer: When spiking neural network meets transformer. In *The Eleventh Interna-*
 606 *tional Conference on Learning Representations*, 2023b. URL [https://openreview.net/](https://openreview.net/forum?id=frE4fUwz_h)
 607 [forum?id=frE4fUwz_h](https://openreview.net/forum?id=frE4fUwz_h).
- 608 Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K Eshraghian. Spikegpt: Generative pre-trained
 609 language model with spiking neural networks. *arXiv preprint arXiv:2302.13939*, 2023.
- 610

611 A APPENDIX

614 A.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)

615 In this work, we used Large Language Models (LLMs) in a limited and auxiliary capacity. Specifically,
 616 the use of large models is mainly used to improve writing in this work. LLMs were not involved in
 617 designing algorithms, implementing models, or analyzing experimental results. All methodological
 618 innovations are independently conceived, implemented, and validated by the authors. Thus, the role of
 619 LLMs was restricted to improving manuscript writing, without influencing the scientific contributions
 620 of this paper.

622 A.2 DATASET INTRODUCTION

624 **General Language Understanding Evaluation (GLUE).** GLUE benchmark (Wang et al., 2018) is
 625 a widely adopted framework for assessing natural language understanding (NLU) models across a
 626 variety of tasks, including single-sentence classification, sentence-pair classification, and linguistic
 627 acceptability. In our experiments, we focus on eight representative datasets within GLUE: MNLI
 628 (Multi-Genre Natural Language Inference): Predict whether a hypothesis is entailed, contradicted,
 629 or neutral with respect to a given premise across multiple text genres. QQP (Quora Question Pairs):
 630 Detect whether two questions from Quora convey the same meaning. QNLI (Question Natural
 631 Language Inference): Reformulated from QA, determines whether a sentence contains the answer to
 632 a question. SST-2 (Stanford Sentiment Treebank): Perform binary sentiment classification on movie
 633 reviews. CoLA (Corpus of Linguistic Acceptability): Judge whether a sentence is grammatically
 634 acceptable. STS-B (Semantic Textual Similarity Benchmark): Measure sentence-level semantic
 635 similarity on a scale from 0 to 5. MRPC (Microsoft Research Paraphrase Corpus): Identify whether
 636 two sentences are paraphrases. RTE (Recognizing Textual Entailment): Decide whether a hypothesis
 637 can be inferred from a premise, based on multiple entailment datasets.

638 **Question Answering Tasks (QAT).** ARC-e (Clark et al., 2018) and ARC-c (AI2 Reasoning Chal-
 639 lenge, easy and challenge subsets) assess scientific knowledge and reasoning skills, with ARC-e
 640 focusing on simpler multiple-choice science questions and ARC-c including more complex ones that
 641 require advanced reasoning. BoolQ (Boolean Questions) (Clark et al., 2019) is a yes/no question-
 642 answering dataset derived from natural queries, requiring models to determine the truthfulness of
 643 a statement given a supporting passage. HeadQA (Head Question Answering) (Vilares & Gómez-
 644 Rodríguez, 2019) is a multilingual medical question-answering benchmark composed of exams for
 645 healthcare professionals, testing domain-specific knowledge. OBQA (OpenBookQA) (Mihaylov et al.,
 646 2018) evaluates a model’s ability to answer elementary science questions by combining provided
 647 core facts with external common knowledge.

648 **Commonsense Reasoning Tasks (CRT).** HellaSwag (Zellers et al., 2019) is a large-scale dataset
 649 for grounded commonsense inference, where models must select the most plausible continuation

648 of a given context. PIQA (Physical Interaction Question Answering) (Bisk et al., 2020) focuses
 649 on physical commonsense reasoning, requiring models to choose the more feasible solution to
 650 everyday tasks. Winograd (Winograd Schema Challenge) (Sakaguchi et al., 2021) is a coreference
 651 resolution benchmark designed to test commonsense reasoning by requiring models to resolve
 652 pronoun references that cannot be disambiguated by syntax alone.

653

654 A.3 ENERGY CONSUMPTION

655

656 SNNs replace traditional multiply-accumulate (MAC) operations with low-power accumulate (AC)
 657 operations. For ANNs, the overall energy consumption can be directly evaluated by their MACs. For
 658 example, given a linear layer with input dimension m and output dimension n , its energy consumption
 659 can be calculated by:

$$660 E_{\text{Linear}}^{\text{Ann}} = m \times n \times E_{\text{MAC}}, \quad (25)$$

661 SNNs convert MAC-based matrix multiplications to pure accumulate operations (ACs). For SNNs,
 662 given the same example as the ANN case, the theoretical energy consumption of the linear layer can
 663 be calculated by:

$$664 E_{\text{Linear}}^{\text{Snn}} = m \times n \times E_{\text{AC}} \times fr \times T, \quad (26)$$

665 where fr is the firing rate of the layer, and T is the simulation time step of the spiking neuron. Refer
 666 to previous works(Kundu et al., 2021; Zhou et al., 2023b;a; Panda et al., 2020; Yao et al., 2023b). We
 667 assume that the MAC and AC operations are implemented on the 45nm hardware (Horowitz, 2014),
 668 where $E_{\text{MAC}} = 4.6pJ$ and $E_{\text{AC}} = 0.9pJ$. The energy consumption of the models in the paper is
 669 calculated by reasoning about 512 tokens.

670

671 A.4 VISION-ORIENTED SPIKING SELF-ATTENTION

672

673 Vision-oriented Spiking Self-Attention (Zhou et al., 2023b;a) use a sparse spike-form $\mathbf{Q}, \mathbf{K}, \mathbf{V}$
 674 for vision task modeling without softmax operation and floating-point matrix multiplication. The
 675 calculation process of vision-oriented spiking self-attention is formulated as follows:

$$676 \mathbf{I} = \text{SN}_I(\text{BN}_I(\mathbf{X}(\mathbf{W}_I))), \quad \mathbf{I} \in (\mathbf{Q}, \mathbf{K}, \mathbf{V}), \quad (27)$$

$$677 \text{SSA}'(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{SN}(\mathbf{Q}\mathbf{K}^T\mathbf{V} * s), \quad (28)$$

678 where $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathcal{R}^{T \times N \times D}$, the spike-form $\mathbf{Q}, \mathbf{K}, \mathbf{V}$ are computed by learnable linear layers. s
 679 is a scaling factor. SN means spiking neuron layer. The calculation of SSA avoids floating-point
 680 multiplication, meeting the property of SNNs.

681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701