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ABSTRACT
The quest for robust and generalizable machine learning models has driven recent
interest in exploiting symmetries through equivariant neural networks. In the
context of PDE solvers, recent works have shown that Lie point symmetries can be
a useful inductive bias for Physics-Informed Neural Networks (PINNs) through
data and loss augmentation. Despite this, directly enforcing equivariance within
the model architecture for these problems remains elusive. This is because many
PDEs admit non-compact symmetry groups, oftentimes not studied beyond their
infinitesimal generators, making them incompatible with most existing equivariant
architectures. In this work, we propose Lie aLgebrA Canonicalization (LieLAC),
a novel approach that exploits only the action of infinitesimal generators of the
symmetry group, circumventing the need for knowledge of the full group structure.
To achieve this, we address existing theoretical issues in the canonicalization
literature, establishing connections with frame averaging in the case of continuous
non-compact groups. Operating within the framework of canonicalization, LieLAC
can easily be integrated with unconstrained pre-trained models, transforming inputs
to a canonical form before feeding them into the existing model, effectively aligning
the input for model inference according to allowed symmetries. LieLAC utilizes
standard Lie group descent schemes, achieving equivariance in pre-trained models.
Finally, we showcase LieLAC’s efficacy on tasks of invariant image classification
and Lie point symmetry equivariant neural PDE solvers using pre-trained models.

1 INTRODUCTION

The deep learning revolution of the 2010s has demonstrated the remarkable effectiveness of deep
learning (DL) models in various domains, from text generation to computer vision. This widespread
success has led to the adoption of DL in numerous scientific fields, including biology (Abramson et al.,
2024), physics (Merchant et al., 2023) and engineering (Degrave et al., 2022). The training of such
models often requires access to large amounts of high-quality data and computing resources, which
can be challenging to obtain in practice. However, many tasks in these domains involve structured
data, including data with symmetries induced by fundamental physical principles. Physics-informed
neural networks (PINNs) seek to leverage such structure to mitigate the aforementioned challenges.

DL models have been observed to significantly benefit from the inductive bias of symmetries. Notable
examples include translation invariance in imaging data and time-series, translation and rotation
symmetries of molecules, resulting in position and momentum conservation. Incorporating these
symmetries into the design of neural networks can enhance their performance and generalization
capabilities. This has been analyzed empirically (Esteves et al., 2023; Wang et al., 2020) and through
the lens of learning-theoretic trade-offs (Mei et al., 2021; Bietti et al., 2021; Kiani et al., 2024b).

Prior work on equivariant neural networks focuses on “simple” groups, resulting in frameworks that
are often not rich enough to encode the complex geometric structure found in scientific applications.
For example, the heat equation in Appendix D.3 was recently shown by Koval & Popovych (2023) to
admit a group of point symmetries SL(2,R)⋉ϕ H(1,R), which is not only non-compact, it also does
not act in a representation on the underlying jet space. This renders most of the currently available
equivariant architectures unusable. To overcome this, we introduce a novel framework that is able to
encode a wider range of symmetries, not requiring a priori knowledge of the full group structure. This
flexibility allows for integration with existing models, notably pre-trained models, with the potential
of leveraging the benefits of geometric inductive biases beyond classical equivariant architectures.
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1.1 EQUIVARIANCE IN NEURAL NETWORKS

Incorporating group symmetries inside neural networks, in the form of equivariance, is one of the
fundamental tasks in geometric deep learning (Bronstein et al., 2021). The translational equivariance
of convolutional neural networks (CNNs) (Fukushima & Miyake, 1982; LeCun et al., 1989) has
been suggested as an important reason for their successes in tasks such as image classification
(Krizhevsky et al., 2012; He et al., 2016). Because datasets may have symmetries more intricate
than just translations, the past decade has seen a push towards generalizing this approach to allow
for other (Lie group) symmetries, starting from works on roto-translationally equivariant CNNs
(Dieleman et al., 2015; 2016; Cohen & Welling, 2016), to more recent methods, efficiently utilizing
knowledge of the Lie algebra for more general groups (Kumar et al., 2024; MacDonald et al., 2022;
Finzi et al., 2020a; McNeela, 2023) and computationally efficient methods (Mironenco & Forré,
2024). Notably, convolution-based approaches to equivariance satisfy a type of local equivariance
too (Weiler & Cesa, 2019): with compactly supported filters, if features in the data are sufficiently
separated, these networks are equivariant to transformations localized to the features. Despite all
of the work in this direction, construction of efficient and accurate equivariant architectures is not
simple, see Appendix A.

True distribution Sampled distribution N=30

Canonicalized kNN classification Standard kNN classification

Figure 1: Effect of canonicalization on decision bound-
aries in k-NN classification for separating the inner and
the outer rings Section 4.1.

More recently, there has been a drive to-
wards publicly available foundational mod-
els (Bommasani et al., 2021) for vari-
ous tasks, pretrained on massive datasets.
These models, however, are often not equiv-
ariant. For example, Alphafold 3 (Abram-
son et al., 2024) no longer utilises equivari-
ant architectures, unlike the initial version
(Jumper et al., 2021). For this reason a
direction of research has been investigat-
ing the possibility of utilizing the general-
ization offered by equivariance, while be-
ing able to use pre-trained models. The
main two approaches to achieve this are
canonicalization1 Kaba et al. (2023); Mon-
dal et al. (2023) and frame averaging Puny
et al. (2022); Basu et al. (2023) (also re-
ferred to as symmetrization). However,
there still remain a number of open the-
oretical questions regarding the possibility
of continuous canonicalization (Dym et al.,
2024), connections between frame averag-
ing and canonicalizations Ma et al. (2024)
and constructibility of frames Dym et al.
(2024); Puny et al. (2022).

1.2 PHYSICS-INFORMED MACHINE LEARNING

In a separate direction, deep neural networks are being increasingly used in scientific computing,
particularly in simulating physical systems modeled by partial differential equations (PDEs). This
surge in interest is largely driven by limitations of traditional numerical solvers, as they often struggle
with demanding scenarios, such as those involving non-linear PDEs on complex domains necessitating
fine discretization, or high-dimensional problems where the curse of dimensionality kicks in (Han
et al., 2018). This is further exacerbated if there is a need to solve PDEs across varying domain
geometries, parameters, and initial/boundary conditions, requiring independent simulations for each
unique configuration.

The main prominent approach that has emerged is based on integrating physical laws and constraints
into the learning process to solve PDEs (Raissi et al., 2019), called physics-informed neural networks
(PINNs), bypasses the need for direct discretization. However, classical PINNs are not without

1The idea of canonicalization in many ways is not new, see Appendix D.1.
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(a) DeepONet operator for the Heat
equation Appendix D.3.
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(b) DeepONet operator for the Burg-
ers’ equation Appendix D.4.
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(c) POSEIDON operator for the
Allen–Cahn equation Section 4.3.1.

Figure 2: Canonicalization pipeline for numerical PDE evolution Section 4.3.

limitations (Grossmann et al., 2023; Krishnapriyan et al., 2021). See Appendix A for a further
discussion. To address the challenge of solving PDEs across diverse scenarios, Neural Operator
models have emerged as a promising solution (Li et al., 2021a; Raonic et al., 2024). Unlike standard
DNNs, which approximate functions over finite-dimensional vector spaces, neural operators learn
mappings between infinite-dimensional function spaces. These learned operators map parameters
or IBCs to corresponding PDE solutions. Combining such Neural Operator models with a physics-
informed loss has resulted in physics-informed neural operators (Li et al., 2021b; Wang et al., 2021b),
oftentimes improving generalization and physical validity, compared to their physics un-informed
variants. In what follows, we concern ourselves precisely with this class of approaches.

1.3 EQUIVARIANCE IN PINNS

Based on the discussions above, a natural question arises - can generalization of physics-informed
neural networks be improved by utilizing symmetries arising in the study of PDEs? A few strides
have been made towards understanding ways in which to take advantage of the Lie point symmetries
(LPS) of differential equations in neural solvers. The simplest ways to add symmetry information
into neural PDE solvers is through data augmentation (Brandstetter et al., 2022; Li et al., 2022),
resulting in more expensive training, or loss augmentation (Akhound-Sadegh et al., 2023; Li et al.,
2023; Zhang et al., 2023), resulting in more difficult training. Both of these, however, oftentimes
result in improved generalization. Similar benefits have also been observed in Gaussian process
based solvers Dalton et al. (2024). Alternatively, exact equivariance can be seeked. As an example,
in Wang et al. (2021a), neural PDE solvers were combined with standard approaches to designing
equivariant architectures for simple symmetries such as translations, roto-translations and scalings.
Still, differential equations may have significantly more complicated Lie point symmetry groups than
the groups for which there are off-the-shelf equivariant architectures. The concept of moving frames
has been applied to the problem of using PINNs to solve ODEs with LPS in Arora et al. (2024).
Here, the approach taken was to invariantize the ODE in question, and apply a PINN to this equation,
before mapping back to an (approximate) solution of the original ODE. Similarly, Lagrave & Tron
(2022) uses equivariant neural networks to first approximate differential invariants, before passing to
a classical numerical scheme for evolving the solution. Overall, the literature so far has illustrated
that Lie point symmetries can provide useful inductive biases for Neural PDE solvers, and from a
practical point of view can even be approximated from observed data (Gabel et al., 2024). However it
still remains an open question, whether it is possible to make existing physics-informed approaches
equivariant. In this paper we directly tackle this question. Preliminaries are provided in Appendix A.

1.4 OVERVIEW OF CONTRIBUTIONS

Motivated by limitations of existing equivariant architectures, we turn to energy-based canonical-
ization as a means for inducing equivariance in existing models. This approach was first introduced
in Kaba et al. (2023), but remains largely unexplored. In this paper we revisit and extend this
approach, and explore its utility in scientific machine learning applications. Noting that many existing
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definitions and results in the prior literature do not extend readily to the general setting, we extend
and refine existing definitions to handle non-discrete and non-compact groups. Our key contribution
is an energy-based canonicalization approach that provides a unifying theoretical framework for
constructing frames and canonicalizations (Section 2.2). To define energy-based canonicalization we
introduce a generalization of standard canonicalization, allowing use with non-compact Lie groups,
which we call weighted canonicalization. This new framework encapsulates prior work of Dym et al.
(2024) on weighted frames, and our energy-based canonicalizations live naturally in this framework.

We emphasize that our proposed approach is generic, in that it has the potential to apply to a wide
range of models and learning tasks. The energy canonicalization framework developed here is
readily applicable for an arbitrary group with an arbitrary action, including those not acting linearly,
therefore being extendable to gauge and local symmetries. For Lie groups with smooth actions, one
only requires knowledge of the action of some basis of the Lie algebra, without requiring a global
parametrization of the group.

This flexibility stems from the choice of energy functional, which directly influences empirical
performance and the size of resulting canonicalizations. We offer guidelines for constructing energy
functionals and for performing Lie group optimization in Section 3. We showcase the effectiveness
of our method on image classification tasks under homography and affine group invariance in
Section 4.2. We further discuss turning neural operators Lie point symmetry equivariant on three
examples, including the pre-trained POSEIDON foundation model (Herde et al., 2024) in Section 4.3.

2 GENERAL FRAMEWORK FOR CANONICALIZATIONS AND FRAMES

For this section let G be a Lie group acting smoothly on a manifold X . Let C0
b (X) be the bounded

continuous R-valued functions on X . Let PMeas(X) be the set of Radon probability measures on
X , with respect to the Borel σ-algebra on X . We will set ϕ ∈ C0

b (X) some function to be acted on.

The two main ways of imposing equivariance on arbitrary models: frame averaging and canonical-
ization, both arise from the study of the Reynolds operator. For finite groups G, defined as

RG(ϕ)(x) =
1

|G|
∑

g∈G

g · ϕ(g−1 · x).

Evaluating this equivariant functionRG(ϕ) can become prohibitively expensive, requiring summation
over the entire group for every input x. Therefore one seeks ways to restrict the range of this summand
while preserving the equivariance of the resulting function. Frames are defined, for each element
x ∈ X , as a subset of the group G for which to average over, with an equivariance condition
detailed below to ensure equivariance of the resulting function. Canonicalizations2 are the opposite
perspective, for each element x ∈ X , directly providing a subset of X over which to directly average
the function over with an invariance condition to ensure the resulting function is equivariant. The
presentation here was reduced to fit the page limit; for a full description see Appendix H.

2.1 FRAMES

Definition 2.1. Frames are functions F : X → 2G \ {∅} such that for any x ∈ X and g ∈ G:
F(gx) = gF(x). We call the space of frames FraG(X).

A frame F acts on ϕ by frame averaging F(ϕ)(x) = 1
|F(x)|

∑
g∈F(x) ϕ(g

−1x). As F(x) = GxF(x)
for any frame F , frame averaging is inherently limited to the case that the frames are finite at each
point, i.e. that the set F(x) is finite ∀x ∈ X . For frames this can only be the case when the group
acts with finite stabilizers at all points. This leads to the following definition of Dym et al. (2024). A
weighted frame µx acts on ϕ similarly by averaging µ(ϕ)(x) =

∫
G
ϕ(g−1 · x) dµx(g).

Definition 2.2. (Weakly)-Equivariant Weighted Frames are functions µ[·] : X → PMeas(G) s.t. ∀x ∈
X, g ∈ G : µgx = g∗µx (respectively: (πgx)∗µgx = (πgx)∗g∗µx where πgx : G → G/Ggx is the
quotient map. See Lemma F.2). We call the space of weakly-equivariant weighted frames WFraG(X).

2Original proposal of Kaba et al. (2023) relied on these being singletons, requiring authors to introduce relaxed
equivariance. Treating these as sets turns out to be natural for both energy canonicalizations (Section 2.3), and
for providing (equivalence) isomorphism of (weighted) canonicalizations with (weighted) frames (Theorem G.3
and Ma et al. (2024)).
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2.2 CANONICALIZATIONS

We briefly recall the definitions of (finite) canonicalizations from Ma et al. (2024).
Definition 2.3. A canonicalization is a function C : X → 2X \ {∅} s.t. ∀x ∈ X, g ∈ G : C(gx) =
C(x). We call the space of canonicalizations CanG(X).
Definition 2.4. An orbit canonicalizations is a canonicalization s.t. ∀x ∈ X , C(x) ⊆ Gx. We call
the space of orbit canonicalizations OCanG(X).

A canonicalization C acts on ϕ similarly to frames by C(ϕ)(x) = 1
|C(x)|

∑
y∈C(x) ϕ(y). By the orbit-

stabilizer theorem, orbit canonicalizations are equivalent to frames. In this isomorphism, frames
are always larger by a factor equal to the size of the stabilizer group. Thus from a computational
perspective orbit canonicalizations are prefered, and we will consider the canonicalization perspective
from now on. We shall also see that this is indeed the correct perspective to work with when G is a
non-compact Lie group.

2.3 ENERGY-BASED CANONICALIZATION

We are now in a position to introduce the definition of our energy-based canonicalization method.
We start with an energy function E : X → [0,+∞] which we then minimize over the orbits of the
group action Gx. First, in the case where G is finite, every orbit in X necessarily has a minimum of
E, and we note that energy minimization naturally results in a frame (Proposition G.1):

FE(x) = argmin
g∈G

E(g−1x) (1)

Moving onto canonicalizations, we want to note that intuitively the best energy would be some
approximation of the negative log likelihood for the sampled distribution. Therefore finding the
minimizers of the energy within an orbit has the effect of finding those examples in the orbit which
are most likely to have been trained on. In keeping with this intuition, we would like to define the
energy minimizing canonicalization to be:

CE(x) = argmin
y∈Gx

E(y) (2)

In the non-compact cases we wish to consider, this definition isn’t suitable for two main reasons: the
set of minima may not be finite or there may be no minima. Dealing with the first naturally leads us
to defining weighted canonicalizations, in analogy with weighted frames:
Definition 2.5. A weighted canonicalization is a G-invariant function κ[·] : X → PMeas(X). We
call the space of weighted canonicalizations WCanG(X).
Definition 2.6. A weighted orbit canonicalization is a weighted canonicalization κ such that for every
x ∈ X , suppκx ⊆ Gx. We denote the set of weighted orbit canonicalizations as WOCanG(X).

A weighted canonicalization κx acts on ϕ similarly as κ(ϕ)(x) =
∫
X
ϕdκx. As in the non-weighted

case, we have a similar equivalence between weighted orbit canonicalizations and weakly-equivariant
weighted frames given by Theorem G.3. Weighted canonicalizations do not address the second
issue however, as orbits of a non-compact Lie group are not necessarily compact or even closed.
The non-compactness of these orbits is easy to solve by making the standard assumption that E is
topologically coercive: for any N ∈ R+ there is a compact K ⊆ X such that E|X\K > N . The
non-closedness of orbits is more subtle, as shown by the following example.
Example. Let X = R2 and G = R>0 with its standard multiplicative Lie group structure. Note that
G is a non-compact Lie group. Let t ∈ G act by t · x = tx. Then one sees that the orbits of this
action are exactly the non-closed rays R>0x emanating from origin as well as simply the origin. In
practice, this might represent a scale-invariant learning problem.

Now consider the energy minimization problem defined by taking the energy to be E(x) = |x|2. The
global minima of this function is clearly the origin, which isn’t in the domain. On the other hand, any
of the non-closed rays have the origin as their limit points, therefore E does not have a minima on
any of these orbits.

To get around the non-closedness issue we introduce the following notion. This may seem like an
artificial solution to the non-closedness problem, but in fact weighted closed canonicalizations is the
most natural extension, as they are simply limits of weighted orbit canonicalizations by Theorem G.5.

5



Published as a conference paper at ICLR 2025

Definition 2.7. A weighted closed canonicalization is a weighted canonicalization κ : X →
PMeas(X) such that for every x ∈ X , suppκx ⊆ Gx. Call the set of weighted closed canonicaliza-
tions WCCanG(X).

By taking the closures of orbits, we solve the problem of E not having minima, so we are naturally
led to constructing weighted closed canonicalizations. First, we define the energy-minimizing set,
ME(x) = argminy∈Gx E(y), set of minima of E on the closure of the orbit of x.

Proposition 2.1. (Proposition G.2)ME(x) is G-invariant and non-empty.

If ME(x) is finite for each x ∈ X , then we define the (non-weighted) closed canonicalization
κE ∈WCCanG(X) by taking κE(x) to be the normalized counting measure onME(x) as usual.

For a general E, we may not be able to put any reasonable probability measure on the setME(x), for
example ifME(x) has highly fractal geometry. We therefore must assume that E is such that for all
x, the Hausdorff measure ofME(x) is non-zero. As eachME(x) is compact, the Hausdorff measure
is finite, hence combined with this assumption we may normalize it to obtain a probability measure
onME(x) which is a weighted canonicalization κE(x) ∈WCCanG(X). Refer to Appendix E for
more discussion on the Hausdorff measure and on why this assumption is reasonable. Note that if
ME(x) is finite, then the normalized Hausdorff measure constructed agrees with the normalized
counting measure. Hence this construction is a generalization of the purely finite case.

2.4 CONTINUITY PRESERVING CANONICALIZATIONS

* *

Dym et al. (2024)

Ma et al. (2024)

 finite

Finite canonicalization

 compact & Finite frames  compact  non-compact

Figure 3: Connections between various notions introduced
previously and in this work. Top row: finite frames and canon-
icalizations, mapping vertically into weighted versions via
normalized counting measures. Inside each, contained a se-
quentially closed subspace of those that preserve continuity.

Using the setup above we may now write
down our main diagram connecting all the
different notions of canonicalization and
framing together, shown in Figure 3.

In practice, it is often desired for conti-
nuity to be preserved under canonicaliza-
tion/frame averaging. In Dym et al. (2024)
it is shown that there are many topolog-
ical obstructions to constructing continu-
ous canonicalization functions. In anal-
ogy with Dym et al. (2024), we may now
ask whether energy canonicalizations pre-
sented here take continuous functions to
continuous functions. In our framework
this is a simple condition to add.
Definition 2.8. A weighted canonicalization κ is continuous if for every ϕ ∈ C0

b (X), κ(ϕ) is
continuous. Call the space of continuous weighted canonicalizations WCancts

G (X). We similarly
define continuous weighted (orbit) canonicalizations and weighted frames.
Proposition 2.2. A weighted canonicalization κ is continuous if and only if for every convergent
sequence xn → x in X , the sequence of measures κxn converges weakly to κx.

It turns out, that for energy canonicalizations this completely provides a characterization of which
energies give rise to continuous weighted canonicalizations.
Lemma 2.3. (Lemma G.7) Let E be a lower semi-continuous energy function. Then κE is continuous
if and only if for every convergent sequence xn → x we have LiME(xn) =ME(x).
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3 PRACTICAL CONSIDERATIONS

In Section 2.3 we proposed energy canonicalization as a constructive way of achieving equivariance,
but a question remains - how to choose the energy3? Unfortunately there is no unique way to choose
the energy or the optimization routine to find the minima. In this section we instead outline key
considerations to guide these choices, with Section 4.1 serving as a guiding example. In complex
settings of Sections 4.2 and 4.3.1 we choose it to be a neural network, as explained in Appendix B,
while for Section 4.1 and appendices D.3 and D.4, the energy is hand-crafted.

As we may not directly have access to parameterizations of the orbits for Equation (2), we instead
implement group descent algorithms for Equation (1), e.g. illustrated in Algorithm 1, and then
consider the resulting canonicalizations, as this are much smaller than frames and often.

Algorithm 1: Canonicalization with a global retraction
Data: Non-canonical input x
parameters :N, steps ηi, ξ0 ∈ g, Energy E : X → R,

Retraction τ : g→ G
Result: Canonicalized input x̂ = g−1 · x; inverse g−1;

canonicalizing group element g.
# Do gradient descent on ξ ∈ g
ξ ← ξ0;
for i = 0 . . . N do

ξ ← ξ − ηi∇ξE(τ(ξ) · x)
end
return τ(ξ) · x; τ(ξ); [τ(ξ)]−1

In what follows, we clarify the interplay between the four
primary problem aspects. We assume to be given a specific
choice of group and action on a domain, as well as infor-
mation about the domain itself (either through samples or
in the case of synthetic data, full knowledge is available).
Based on these, we need to construct two things: (1) the en-
ergy function, based on the domain information; and (2) the
group-based optimization routine for the problem in Equa-
tion (2), based on the domain information and the energy
choice (potentially leading to problem relaxation as e.g. in Section 4.3.1 or improved initialization
for iterative optimization as e.g. in Appendix D.3).

Domain information Models trained on a specific domain oftentimes do not generalize beyond
their training data. To ensure the canonicalized input remains within the domain of the trained model,
domain-specific information should be directly incorporated into the energy function. To give a
concrete example, consider a setting in which some neural network is trained on samples living on
a compact setM. In such a setting we would only be interested in canonicalizations, which are
either close to the set, or live on the set itself. Thus, choosing the energy function to include the
characteristic function of the set χM is particularly suitable when the action is regular (or transitive).
Otherwise, there may not be any elements in the set M that can be mapped to, in which case a
relaxation using the distance function dM(x) = miny∈M ∥x− y∥ can be used. Such choices turn
out to be beneficial, especially in the setting of Section 4.3.

In the case of data sampled from an underlying distribution x ∼ pX , one natural choice would
be to consider as energy function the negative log likelihood E(x) = − log pX (x), which may be
available in closed form if trained on synthetic data. Otherwise, an approximation can be used. For
this, there exist quite a few choices, including normalizing flows (Dinh et al., 2016) or score-based
diffusion models (Song et al., 2020) to approximate the true likelihood or its gradient. In this paper,
for examples in Sections 4.2 and 4.3.1 we opt for a simpler variational autoencoder (Kingma, 2013),
using the ELBO, being a lower bound, instead of the likelihood for the energy.

Non-convexity and Flatness Even with a convex energy, minimization with respect to g ∈ G
introduces non-convexity. The orbit Gx is often non-convex, e.g. see Figure 5, where this is a circle.
Invoking a parameterization of a group element through its Lie algebra and considering its action
on the space leads to further non-convexity. In the worst cases, such as those considered in PDE
examples in Section 4.3, we may not have access to a global group parameterization, significantly
complicating the process. What is worse, the energy may exhibit many flat regions, with the gradients
being noisy, as in Figure 5.

Thus the problem requires the use of non-convex optimization methods. We find, that in all examples
in Section 3, utilizing a multi-initialization strategy with a fixed number of gradient steps is sufficient
for convergence. Altenatively, relaxation to the problem in Equation (2) to be performed over x,
subject to an orbit distance constraint can be used.

3We note that unlike Kaba et al. (2023), there is no canonicalization network. Constructing a canonicalization
network requires one to use equivariant architectures, which may not exist (or may be too expensive) for the
groups considered in this paper. Instead, when needed, the energy functional is parameterized as a network.
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Figure 4: t-SNE plots: For MNIST, homNIST and canonicalized homNIST (Section 4.2).

To address the problem of flat zero-likelihood regions, alternative energy functions can be considered,
e.g. empirical distance E(x) = EX∼pX d(X,x). However, in Sections 4.2 and 4.3.1 we make a
simpler choice to utilize extra regularization. Due to the difficulty in handcrafting regularization
for various specific cases, we utilize learned convex regularization, trained adversarially on real and
partially transformed data, based on the recent proposals in adversarial regularization Mukherjee et al.
(2024); Shumaylov et al. (2024; 2023). Ideally, the regularization would also ensure uniqueness of
minimizers to the problem in Equation (2), however it is not clear how to achieve this. Generically,
we would want to construct an energy such that level sets are transverse to group orbits, similar to
Panigrahi & Mondal (2024), which is indeed achieved by utilizing adversarial regularization.

Non-parameterizability Moving from compact groups to non-compact presents further challenges.
Even with access to the exponential mapping, it may not be surjective, making global parameterization
of the group using the Lie algebra potentially impossible, if the group is not Noetherian. However, Lie
algebras of many PDE symmetry groups are solvable, which can be used for group parameterizations
that simplify the optimization problem: if the Lie algebra is solvable, any group element can be
decomposed using the derived subalgebras (Varadarajan, 2013, Theorem 3.18.11) as a train of
exponentials. For example, for the 1D heat equation (Appendix D.3), we can represent any element
of the group as exp(a6v6) . . . exp(a1v1), reducing optimization over the group to optimization over
(a1, . . . , a6) ∈ Rdim(g). In this case one can utilize Algorithm 1.

When the algebra is not solvable, one has to revert to Lie algebra based descent schemes. However,
for Lie point symmetry groups, oftentimes only actions of specific basis vectors of the Lie algebra
are available, making it necessary to use a coordinate descent (CD) approach. CD has received
considerable attention in classical optimization (see Wright (2015)) and has recently been studied in
geometric settings such as Riemannian manifolds and Lie groups (Han et al., 2024). The algorithms
for both of these cases can be found in Algorithms 2 and 3. If a global parameterization is available,
then classical schemes may be utilized in the same way (Lezcano Casado, 2019; Absil et al., 2008).

4 EXPERIMENTS

4.1 2D TOY EXAMPLE

To illustrate the universality of the approach, we consider one simple two dimensional example
without any machine-learned components. We consider the problem of classification under inherent
rotation invariance illustrated on Figure 5. To mimic a realistic setting, we assume to have samples
only. In this case, we can approximate the density using kernel density estimation with a Gaussian
kernel, illustrated in the second column on Figure 5. As one would expect, without knowledge of the
symmetries of the distribution, the approximation is far from the ground truth. In what follows, the
energy is chosen to be the negative log-likelihood of the approximated distribution.

This example illustrates the main issue with energy based canonicalization, which also extensively
arises in more complex examples: even when the energy is convex, it is not convex when viewed
as a function of g. This results in a non-convex optimization problem with (potentially many) local
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minima, which one can get stuck in when running standard descent schemes, and as discussed in
Section 3, one has to revert to more complex optimization routines. In this case, as shown in Figure 5,
it is possible to find global minimizers, despite the non-convexity, by running gradient descent for a
fixed number of iterations, but for a number of different initializations. The power of canonicalization
can then be seen in Figure 1, turning a non-equivariant kNN classifier rotation equivariant.

4.2 INVARIANT CLASSIFICATION

Table 1: MNIST test accuracy for Affine and
Homography groups, compared with affConv
and homConv of MacDonald et al. (2022).

Name MNIST affNIST

CNN 0.985 0.629
LieLAC [CNN] 0.979 0.972
affConv 0.982 0.943

Name MNIST homNIST

CNN 0.985 0.644
LieLAC [CNN] 0.982 0.960
homConv 0.980 0.927

To illustrate the effectiveness of LieLAC in achieving
invariance of pre-trained models, we first test it on in-
variant image classification with respect to the groups
of affine and homography transformations. We take
MacDonald et al. (2022) as the baseline for compar-
ison due to the similarity in the required knowledge
of the group required for implementation.

Here, we take a pre-trained convolutional classifer,
trained on the original MNIST dataset. The combi-
nation with the canonicalizer, as described in Sec-
tion 3, is then tested on the affine-perturbed MNIST
(affNIST) (Gu & Tresp, 2020) and the homography-perturbed MNIST (homNIST) (MacDonald
et al., 2022). The overall performance results for this example are reported in Table 1. We can see
that the canonicalization based approach achieves improved equivariance compared to the baseline,
as illustrated by improved test accuracy on the datasets. We can also directly analyse achieved
equivariance, as it appears only through canonicalization. We provide examples, visualising achieved
equivariance in Figure 6. We can also analyze the effect of canonicalization globally by considering a
t-SNE plot (Van der Maaten & Hinton, 2008) in Figure 4, showing that energy canonicalization turns
the dataset into the usual MNIST form, clearly separating the classes, unlike homNIST.

4.3 EQUIVARIANT PDE EVOLUTION

In analogy with Akhound-Sadegh et al. (2023), we first consider two simple examples with non-trivial
symmetry groups: the 1D Heat and Burgers’ equations, which also admit global parameterisations of
the group elements (Koval & Popovych, 2023). Due to space restrictions, evaluation can be found
in Appendix D.3 for the Heat and Appendix D.4 for the Burgers’ equation. Full description of
the experimental setting, further visualisations and theoretical background can also be found in the
appendix. Examples of canonicalized solutions are shown in Figure 2.

We explicitly emphasize that in this paper we only consider symmetries for initial value problems,
where there is no dependence of g · x and g · t on u. I.e. for (x′, t′, u′) = g · (x, t, u), we have
x′(x, t, u) = x′(x, t). In this case the action on x, t can be separated from the action on u, making
the desired equivariance for the physics-informed neural operator to be:

Oθ[u0, x0, t0](xf , tf ) = g · Oθ[g
−1 · u0, g

−1 · x0, g
−1 · t0](g−1 · xf , g

−1 · tf ) (3)

4.3.1 ALLEN–CAHN EQUATION

We test the POSEIDON (Herde et al., 2024) foundation model, fine-tuned on the Allen–Cahn equation
(ACE) on data it was trained on, and on transformed data (using Lie-point symmetry group of ACE).

ut = uxx + uyy − ϵ2u
(
u2 − 1

)
(4)

We consider solving Equation (4) on a 2D domain with periodic boundary conditions for t ∈
[0, 1], x ∈ Ω = [0, 1]2. This equation admits a 4-dimensional Lie algebra, see Appendix D.5, with
SE(2) as the point symmetry group.

Choice of Energy In order to justify the choice of energy, we need to understand the POSEIDON
(Herde et al., 2024) model itself. Firstly, x0 and t0 in Equation (3) are implicitly defined in the model
to be fixed to the standard domain x0 = Ω, and t0 = 0. As such, the only input is the initial condition
u0|Ω. Therefore, we are going to have to only consider transformations, that preserve x0 and t0. This

9



Published as a conference paper at ICLR 2025

can be imposed directly within the energy canonicalization framework as described in Section 3 by
considering the characteristic functions as follows:

EAC(x0, t0, u0, xf , tf ) = χ{Ω}(x0) + χ{0}(t0) + χ[0,1](tf ) + χΩ(xf ) + E(u0) (5)
Note, that this is able to significantly reduce the computational cost of optimization, as the group
generated by v4 in 28, resulting in rotations of the underlying domain, can be reduced to a discrete
subgroup C4 ≤ SO(2), as the only transformations such that g−1Ω = Ω. Further information on the
training and testing data is available in Appendix D.5. The overall performance is reported in Table 2.

Table 2: ACE Test error evaluated over 90 trajectories for in-dsitribution (ID) and out-of-
distribution (OOD). All errors are (×10−4).

Name (×10−4) ID Error eq. (29) OOD Error eq. (30) Avg

POSEIDON 6.93 ± 2.83 75.76 ± 6.80 41.35
LieLAC [POSEIDON] 16.69 ± 5.42 29.19 ± 5.64 22.94
POSEIDON + ft (can). 8.45 ± 2.87 20.09 ± 3.32 14.27
LieLAC [POSEIDON+ ft.] 10.23 ± 3.36 11.34 ± 2.92 10.79

POSEIDON + ft. (data aug) 8.41 ± 3.48 8.50 ± 3.11 8.46

Finetuning As seen in prior works (Mon-
dal et al., 2023), the canonicalized data
may end up misaligned with the original
data. For this reason finetuning of the
model/canonicalization may be desired.

It is important to emphasize that finetuning
is not necessary, and even without finetuning the out of distribution errors go down significantly, as
seen in Table 2. All of the examples above, including kNN (Section 4.1), MNIST (Section 4.2), Heat
and Burgers (Appendices D.3 and D.4) did not require finetuning. That is due to tasks not being as
complex, and not requiring the same level of precision. POSEIDON, being pre-trained in a regressive
manner, turns out to be very good to begin with, and finetuning is performed to illustrate that baseline
accuracy of data-augmentation (Brandstetter et al., 2022) can be matched.

While it may seem that finetuning the resulting operator on canonicalized data is as hard as augmenting
the original data, it turns out to not be, as fine-tuning can be done on a very small data-pool (in this
case only 100 trajectories). This stems from the energy minima in Equation (2) residing near, but not
necessarily on, training data. If the orbits are well-sampled in training, finetuning is not necessary,
e.g. seen in Section 4.2. However, based on the training data in eq. (29), the orbits under C4 are
well-sampled, while the orbits under SE(2) are not, illustrated in Table 2, wherein the error falls
2/3-fold after finetuning. An example is shown on Figure 2c, with further illustrations in Figure 13.

5 CONCLUSION

In this paper we provided a unified theoretical framework for defining frames and canonicalizations
over non-compact and infinite groups. We showed that energy-based canonicalization can be used
constructively to obtain both, and provide a Lie algebra based approach for turning any pre-trained
network equivariant. We showcased that the proposed method is effective in turning image classifiers
invariant, as well as neural operators Lie point symmetry equivariant.

Future work Our example in Section 4.3.1 illustrates the promise of the proposed framework for
fine-tuning foundation models. Due to the typically high cost of (re-)training foundation models,
further exploration of such applications is an important direction for future work.

Of particular interest are “realistic” scientific machine learning applications: In such applications
collecting sufficiently large training data sets may be prohibitively expensive or technically impossible,
i.e., available data not sufficient for retraining existing models/ using standard fine-tuning approaches.
Encoding symmetries explicitly allows for more efficient fine-tuning, which may be more accessible
in settings with little data.

Limitations Energy-based canonicalization suffers from slow inference (resulting in 5 − 30×
slowdown). Improvements to the optimization are possible via non-convex optimization techniques
(e.g., simulated annealing (Baudoin et al., 2008; Rutenbar, 1989), particle swarm (Huang et al., 2023),
consensus-based (Totzeck, 2021; Fornasier et al., 2024)), particularly applicable as Lie groups are
oftentimes low-dimensional, while the ambient space is not. The majority of these, however, are not
easily adaptable to the setting of Lie groups.

Implementing Lie point symmetries in existing neural operators is difficult due to hard-coded
boundary conditions. Future work should focus on foundation models handling initial/boundary
conditions and parameters, or explore alternative PDE symmetries (Brandstetter et al., 2022). This
could include studying infinite-dimensional symmetry groups, which would also naturally arise when
studying equivariance to local transformations.
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Figure 5: LieLAC optimised sample from a mix of Gaussian distributions.

A EXTENDED BACKGROUND

A.1 EQUIVARIANT CONVOLUTIONS

An important fact that comes up repeatedly in the design of equivariant neural networks is that ordinary
convolutions on Euclidean spaces can be generalized to any group on which we can integrate against
an invariant measure (as is the case for any Lie group, for example), giving rise to equivariant linear
maps in the form of group convolutions. Furthermore, converse results can be established, showing
that a linear equivariant map (under general conditions) must take the form of a group convolution.
This is the approach taken in Cohen & Welling (2016) for discrete groups of roto-translations acting
on images. Since group convolutions are applied to signals defined on the group, it is necessary to
apply an initial equivariant linear lifting operation to convert a signal on the original domain to a
signal on the group. Incompatibility of continuous groups and grid-based discretizations of signals is
a major issue in methods that take this approach, and for general groups, it is not necessarily clear
how one should discretize the integral defining a group convolution. For Lie groups, there have been
various proposals for approximation methods for these integrals based on finite samples, including
the works in Bekkers (2020); Finzi et al. (2020b) and works following them, which focus more
heavily on using the Lie algebra for approximating group convolutions (MacDonald et al., 2022;
Kumar et al., 2024). The corresponding methods have been shown to result in more efficient use of
training data and more robustness to transformations not seen during training, and have been applied
successfully in areas such as medical image analysis (Bekkers et al., 2018; Winkels & Cohen, 2019),
computational molecular sciences (Batzner et al., 2022; Batatia et al., 2022) and inverse problems
in imaging (Celledoni et al., 2021; Chen et al., 2023). Beyond construction of equivariant neural
networks, information about the symmetries can be extracted directlty from data (Moskalev et al.,
2022; Gruver et al.).

It is worth noting that some specific groups allow for construction of more efficient equivariant
architectures. For example, recent work on geometric and clifford algebra networks Zhdanov et al.
(2024); Ruhe et al. (2024) provides an efficient parameterization for groups of symmetries of vector
spaces, like Euclidean (Brehmer et al., 2024) and Minkowski groups (Spinner et al., 2024).

A.2 PHYSICS-INFORMED MACHINE LEARNING

In a separate direction, deep neural networks are being increasingly used in scientific computing,
particularly in simulating physical systems modeled by partial differential equations (PDEs). This
surge in interest is largely driven by limitations of traditional numerical solvers, as they often struggle
with demanding scenarios, such as those involving non-linear and non-smooth PDEs necessitating
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fine discretization, or high-dimensional problems where the curse of dimensionality kicks in (Han
et al., 2018). This is further exacerbated if there is a need to solve PDEs across varying domain
geometries, parameters, and initial/boundary conditions, requiring independent simulations for each
unique configuration.

The main prominent approach that has emerged is based on integrating physical laws and constraints
into the learning process to solve PDEs (Raissi et al., 2019). These neural networks have been dubbed
PINNs, and have been shown to be useful for solving forward and inverse problems for PDEs (Raissi
et al., 2019; Sun et al., 2020; Zhu et al., 2019; Karumuri et al., 2020; Sirignano & Spiliopoulos, 2018),
and regularizing learning (Zhang et al., 2024).

PINNs are able to handle irregular domains and complex geometries, overcoming some of the
challenges of classical methods. However, classical PINNs are not without limitations (Grossmann
et al., 2023; Krishnapriyan et al., 2021).The original method is unable to handle varying parameters
or input and boundary conditions (IBCs), and often faces challenges with training due to unbalanced
gradients and non-convex loss landscapes, requiring careful hyperparameter tuning or preconditioning
Müller & Zeinhofer (2024).

To address the challenge of solving PDEs across diverse scenarios, neural operator models have
emerged as a promising solution. Unlike standard DNNs, which approximate functions over finite-
dimensional vector spaces, neural operators learn mappings between infinite-dimensional function
spaces. These learned operators map parameters or IBCs to corresponding PDE solutions, overcoming
the computational burden of performing independent simulations for each scenario. Combining
such neural operator models with a physics informed loss has resulted in physics-informed neural
operators (Li et al., 2021b; Wang et al., 2021b), oftentimes improving generalization and physical
validity, compared to their physics un-informed variants. In what follows, we concern ourselves
precisely with this class of approaches.

A.3 WHY LIE POINT SYMMETRIES?

What is appealing about LPS, is that for a given PDE, under certain regularity conditions, all such
(simply connected) symmetries can be derived in the form of one-parameter transformation groups
(Olver, 1993). For many classic PDEs these have been derived and can e.g. be found in (Ibragimov,
1995). There further exists symbolic software packages, e.g. Baumann (1998), to derive symmetries
for general PDEs.
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A.4 SYMMETRIES OF PARTIAL DIFFERENTIAL EQUATIONS

Partial differential equations (PDEs) are the most generic mathematical model used to describe
dynamics of various systems in sciences. In what follows, we will be working primarily with open
subsets of euclidean space, but these ideas generically extend to more complicated spaces. The formal
presentation here closely follows Olver (1993), and an interested reader is referred there for more
in-depth discussions of the concepts.

This subsection introduces the concept of PDE point symmetries – transformations that map solutions
of a given PDE to other solutions of the same PDE. To analyze these symmetries, traditionally focus
is shifted to Jet spaces, where the problem of studying PDE symmetries is transformed into the
simpler task of studying symmetries of algebraic equations. By employing one-parameter groups of
transformations, it becomes possible to systematically derive all such symmetries by examining their
infinitesimal actions.

Suppose we are considering a system ∆ of n-th order differential equations involving p independent
variables x =

(
x1, . . . , xp

)
∈ X = Rp, and q dependent variables u =

(
u1, . . . , uq

)
∈ U = Rq.

PDEs define relations between various derivatives of the function, for denoting which we use the
following multi-index notation for J = (j1, . . . , jk), with ∂Jf(x) =

∂kf(x)

∂xj1∂xj2 ···∂xjk
.

Jet spaces and Prolongations: Consider f : X → U smooth and let Uk be the Euclidean space,
endowed with coordinates uα

J = ∂Jf
α(x) so as to represent the above derivatives. Furthermore,

set U (n) = U × U1 × · · · × Un to be the Cartesian product space, whose coordinates represent all
the derivatives of functions u = f(x) of all orders from 0 to n. The total space X × U (n), whose
coordinates represent the independent variables, the dependent variables and the derivatives of the
dependent variables up to order n is called the n-th order jet space of the underlying space X × U .
Given a smooth function u = f(x), there is an induced function u(n) = pr(n) f(x), called the n-th
prolongation of f , defined by the equations uα

J = ∂Jf
α(x). Thus pr(n)f is a function from X to the

space U (n), and for each x in X , pr(n) f(x) is a vector representing values of f and all its derivatives
up to order n at the point x.

PDE Symmetry groups: With the notation defined, we can now write down the PDE, given as a
system of equations ∆

(
x, u(n)

)
= 0, with ∆ : X × U (n) → Rl smooth. The differential equations

themselves tell where the given map ∆ vanishes on X × U (n), and thus determine a subvariety

S∆ =
{(

x, u(n)
)
: ∆
(
x, u(n)

)
= 0
}
⊂ X × U (n)

Solutions of the system will be of the form u = f(x). A symmetry group of the system ∆ will be
a local group of transformations, G∆, acting on some open subset M ⊂ X × U in such that “G
transforms solutions of ∆ to other solutions of ∆”.

Prolongations of group actions and vector fields Now suppose G is a local group of transforma-
tions acting on an open subset M ⊂ X × U of the space of independent and dependent variables.
There is an induced local action of G on the n-jet space M (n), called the n-th prolongation of G de-
noted pr(n)G. This prolongation is defined so that it transforms the derivatives of functions u = f(x)

into the corresponding derivatives of the transformed function ũ = f̃(x̃). Consider now v a vector
field on M , with corresponding (local) one-parameter group exp(εv). The n-th prolongation of v,
denoted pr(n)v, will be a vector field on the n-jet space M (n), and is defined to be the infinitesimal
generator of the corresponding prolonged one-parameter group pr(n)[exp(εv)]. In other words,

pr(n)
∣∣∣
(x,u(n))

=
d

dε

∣∣∣∣
ε=0

pr(n)[exp(εv)]
(
x, u(n)

)

for any
(
x, u(n)

)
∈M (n). These can be derived using Olver (1993, Theorem 2.36).

Theorem A.1 (2.31 in Olver (1993)). Suppose ∆
(
x, u(n)

)
= 0, is a system of differential equations

of maximal rank defined over M ⊂ X × U . If G is a local group of transformations acting on M ,
and

pr(n) v
[
∆
(
x, u(n)

)]
= 0, whenever ∆

(
x, u(n)

)
= 0

for every infinitesimal generator v of G, then G is a symmetry group of the system.
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A.5 DEEP LEARNING FOR PDES

The abstract discussion of symmetries of PDEs above only concerned itself with transformations
leaving the set of solutions invariant. In practice, we are often interested in problems, for which the
solution is unique due to either initial or boundary conditions (IBCs). In this paper, we primarily
concern ourselves with temporal PDEs in the form of

∆ = ut +Dx[u] = 0, and u(0, x) = f(x), x ∈ Ω, t ∈ [0, T ]

u(t, x) = g(t, x), x ∈ ∂Ω, t ∈ [0, T ]

where u(t, x) ∈ Rdimu is the solution to the PDE, t denotes the time, and x is a vector of spatial
coordinates. Ω ⊂ Rdim x is the domain and Dx is a (potentially non-linear) differential operator. f(x)
is known as the initial condition function and g(t, x) describes the boundary conditions. As discussed
in Section 1.2, we are interested in physics-informed approaches, wherein u(t, x) is parameterised
as a neural network uθ(t, x) with parameters θ, and the network is trained by minimizing a loss
comprised of two parts: L(θ) = LPDE + LData. The first term encourages the network to satisfy the
PDE, while data-fit is a supervised loss, enforcing IBC and ensuring a good fit with the training data.
Specific forms of the losses, and further discussion can be found in Appendix D.2.

A.6 LIE GROUPS

In this section we briefly recall some necessary notions from Lie group theory. For a more compre-
hensive introduction, see Kirillov (2008). A Lie group G is a group with a smooth manifold structure
such that both the inverse and multiplication maps are smooth. A Lie algebra is a finite dimensional
vector space V with an alternating bilinear map [·, ·] : V × V → V called the Lie bracket, satisfying
the Jacobi identity. Given a Lie group G, the tangent space at the identity g = TeG naturally has the
structure of a Lie algebra. A 1-parameter subgroup of G is simply a group homomorphism R→ G,
where R is a group under addition. For every Lie algebra vector v there is a unique 1-parameter
subgroup ϕv such that ϕv(0) is the identity and ϕ′

v(0)(∂t) = v. There is a smooth map exp : g→ G
which sends v to ϕv(1). This has image contained inside G0, the connected component of the identity
e ∈ G. If G0 is compact then exp surjects onto G0, but in the non-compact case it doesn’t necessarily
surject.

For a Lie group G acting smoothly on a manifold X we have a version of the orbit-stabilizer theorem.
Theorem A.2. The stabilizer Gx ⊆ G is a closed Lie subgroup, and the natural map G/Gx → X is
an injective immersion with image Gx.
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B CHOOSING THE ENERGY

Based on discussion in Section 3, we wish to construct an energy, which contains information about
the domain (or dataset) and the energy levels are transverse to orbits. The first we achieve by using
a variational autoencoder, and choosing the ELBO as the energy itself; and second by training an
appropriate (convex) adversarial regularizer. Thus the overall energy E = L+αR, for some constant
α > 0 and terms below. We emphasize once again that this is simply a construction, which have
observed to work well in practice. Effectively all that is required is to align minimas of such an
energy with the training set - doing this directly is not that simple and should be a fruitful direction
for future work.

Variational Autoencoders Variational Autoencoders (VAEs) (Kingma, 2013) are a class of genera-
tive models that learn the underlying probability distribution of a dataset. VAEs consist of two main
components:

1. Encoder: This component maps an input data point x to a lower-dimensional latent
representation z. Instead of directly mapping to a single point in latent space, the en-
coder outputs parameters for a probability distribution, typically a Gaussian distribution,
q(z|x) = N (z;µ(x), σ2(x)). Here, µ(x) and σ2(x) are the mean and variance of the latent
distribution, respectively, and are outputs of the encoder network.

2. Decoder: This component takes a point in the latent space z and maps it back to the
original data space, reconstructing the input data x̂. This is achieved through a probability
distribution p(x|z), also often modeled as a Gaussian.

VAEs are trained by maximizing a lower bound on the data log-likelihood, known as the Evidence
Lower Bound (ELBO):

L(x) = Eqθ(z|x)[log pθ(x|z)]−DKL(qθ(z|x)||p(z)) (6)

The first term in the ELBO encourages the decoder to reconstruct the input data accurately. The
second term is the Kullback-Leibler (KL) divergence between the learned latent distribution q(z|x)
and a prior distribution p(z), typically a standard normal distribution. This term acts as a regularizer,
encouraging the latent space to be well-structured and preventing overfitting.

Adversarial Regularization Adversarial regularization Lunz et al. (2018); Mukherjee et al. (2024)
is a framework for solving inverse problems that incorporates a discriminator network to learn and
impose data-driven regularization. The discriminator network is trained to distinguish between
unregularized reconstructions and real solutions obtained from ground truth data. The regularizer
is trained with the objective of favoring solutions that are similar to the ground-truth images in the
training dataset and penalizing reconstructions with artifacts.

The adversarial loss function for the regularizer can be formulated as:

Ladv(R) = EpX(x)[R(x)]− Epn(x̂)[R(x̂)] (7)

where R is the regularizer, x is a ground truth image, x̂ is a noisy measurement, pX and pn are the
data distributions. This loss encourages the regularizer to produce a small output when a true image
is given as input and a large output when it is presented with an unregularized reconstruction.

In our setting, the noisy measurement distribution is chosen to be x̂ = g · x, for x ∼ pX and g ∈ G
sampled randomly. Thus the regularizer learns to discern between true looking images and group
transformed ones - leading to level sets lying transverse to the orbits.

Adversarial regularization has been shown to provides a flexible data-driven approach to impose
priors in inverse problems, which lends it readily to be used in our problem.
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True Canonicalized Distorted Distorted Canonicalized

(a) Affine MNIST examples

True Canonicalized Distorted Distorted Canonicalized

(b) Homography MNIST examples

Figure 6: MNIST canonicalization images for both Affine and Homography groups, as described
in Section 4.2. From left to right: Original MNIST image; Canonicalization of the original image;
Original image distorted by a random homography transformation; Canonicalization of the distorted
image. This figure illustrates the equivariance properties of energy canonicalization.

C FURTHER MNIST VISUALISATION

Of particular interest are the failure modes of canonicalization, warranting further theoretical investi-
gation. We present the failure modes in Figure 7c, and as we can see from the examples provided - in
majority of the cases the reason why failure modes exists is due to existence of group transformations
resulting in completely different digits! As such, the overall distribution is not exactly equivariant.
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E = 100.84 E = 100.35 E = 103.64 E = 100.79
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E = 100.46 E = 100.21 E = 110.60 E = 100.63

(a) Affine MNIST examples
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Distorted
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E = 100.33 E = 99.28 E = 113.83 E = 100.88
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E = 102.23 E = 100.68 E = 109.76 E = 101.64

E = 99.78 E = 98.42 E = 107.90 E = 99.03
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E = 100.76 E = 100.22 E = 106.54 E = 100.76

E = 100.94 E = 99.50 E = 112.74 E = 102.89

E = 100.37 E = 100.19 E = 107.49 E = 100.61

(b) Homography MNIST examples

Class 7

True

Class 0

Canonical

Class 3 Class 5

Class 3 Class 2

Class 2 Class 0

Class 2 Class 6

Class 8 Class 4

Class 4 Class 9

Class 0 Class 6

Class 9 Class 4

Class 1 Class 3

(c) Misclassification examples

Figure 7: Expanded Visualisations
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TSNE MNIST TSNE Canonicalized MNIST

(a) TSNE post-affine canonicalization

TSNE MNIST TSNE Canonicalized MNIST

(b) TSNE post-homography canonicalization

Figure 8: TSNE plots

D FURTHER PDE DISCUSSION

D.1 CANONICALIZATION AS A UNIFYING VIEW

The idea of putting the evolutionary equation and initial into a canonical form prior to evolving is not
novel, and in fact quite standard in all numerical analysis textbooks. The first step in solving an ODE
numerically is to normalize the equations and remove units and normalize the domain. For example,
when solving a time evolution equation on the domain x ∈ [0, 15], one would first normalize the x
variable by rescaling it to be in [0, 1], and solve on this domain instead. Floating point representations
are much coarser for smaller values and as such, this can lead to lower numerical errors.

Another example is the recent work on achieving exact unit equivariance - which is precisely
scaling group canonicalization (Villar et al., 2023). A similar problem also often arises in the
problems of image registration (Kanter & Lellmann, 2022) with an infinite-dimensional Lie algebra
of diffeomorphisms. Another particular example being Procrustes analysis (Gower, 1975), when
considering only the homography group.

In this work, we present that canonicalization can be seen as the unifying approach, especially through
the lens of energy canonicalization. Insights from the problems above can then be used to improve
the optimization, and used for PDE symmetry groups.

D.2 ON DEEP LEARNING FOR PDES

In what follows we demonstrate the effectiveness of canonicalization across three example PDEs Heat,
Burgers, Allen–Cahn with baseline models taken from three recent state of the art physics-informed
machine learning papers Akhound-Sadegh et al. (2023); Wang et al. (2021b); Herde et al. (2024)
respectively. In each case we take the pre-trained neural PDE solver and demonstrate a failure mode
when evaluating on out-of-distribution initial conditions. We then optimize for a group action derived
from the Lie algebra based energy minimization and report results after the canonicalization technique
is applied. Results and additional experimental details for each PDE are provided in the following
sections. In PINNs, the PDE solution u(t, x) is parameterised as a neural network uθ(t, x) with
parameters θ. The loss function is then compromised of two parts, with different weightings:

L(θ) = αPINNLPDE + γdataLdata-fit

The first term is the physics-informed objective of Raissi et al. (2019), ensuring the neural network
satisfies the PDE. The PDE loss is the calculated as the residual, with derivatives are calculated using
automatic differentiation, as calculated on a finite set of points (t, x)1:Ndom

which are sampled from
inside the domain [0, T ]× Ω to obtain the PDE loss:

LPDE =
1

Ndom

Ndom∑

i=1

∥∂tuθ(ti, xi) +Dx [uθ(ti, xi)]∥22 (8)

The second term, is a supervised loss enforcing initial and boundary conditions:

Ldata-fit =
1

Nic

Nic∑

i=1

∥∥uθ

(
0, x0

i

)
− f

(
x0
i

)∥∥2
2
+

1

Nbc

Nbc∑

i=1

∥∥uθ

(
tbi , x

b
i

)
− g

(
tbi , x

b
i

)∥∥2
2
, (9)
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with
(
x0
)
1:Nic

∈ Ω sample at which the initial condition function f is evaluated.
(
tb, xb

)
1:Nbc

are
Nbc points sampled on the boundary [0, T ]× ∂Ω. The two loss terms are then weighted by αPINN

for PDE loss equation 8 and γdata for data-fit equation 9 to be consistent with Akhound-Sadegh et al.
(2023). Within the field of neural operators, it is desirable that the trained network generalizes across
various initial conditions, and the above mentioned loss is evaluated for a number of initial conditions
Nf,train.

D.3 HEAT EQUATION

This and following sections primarily recap the relevant facts regarding the symmetry groups of
the PDEs considered, which act to motivate the need for new equivariant architectures due to
the non-compactness of the resulting symmetry groups, and the difficulty of constructing global
parametrisations of either the action or the group considered.

D.3.1 POINT SYMMETRIES

Simplest PDE example is the heat equation, admitting a non-trivial group of Lie point symmetries,
beyond space isometries.

ut − νuxx = 0 (10)

This equation admits the following 6-dimensional Lie algebra (note the typo in Akhound-Sadegh
et al. (2023)), see Olver (1993); Koval & Popovych (2023):

v1 = ∂x, v2 = ∂t, v3 =
1

ν
u∂u, v4 = 2t∂t + x∂x −

1

2
u∂u, (11)

v5 = t∂x −
1

2ν
xu∂u, v6 = t2∂t + tx∂x −

1

4ν

(
x2 + 2νt

)
u∂u. (12)

The resulting one parameter flows are:

exp[v1](ϵ) : t̃ = t, x̃ = x+ ϵ, ũ = u,
exp[v2](ϵ) : t̃ = t+ ϵ, x̃ = x, ũ = u,
exp[v3](ϵ) : t̃ = t, x̃ = x, ũ = eϵ/νu,

exp[v4](ϵ) : t̃ = e2ϵt, x̃ = eϵx, ũ = e−
1
2 ϵu,

exp[v5](ϵ) : t̃ = t, x̃ = x+ ϵt, ũ = e−
1
4ν (ϵ

2t+2ϵx)u,

exp[v6](ϵ) : t̃ = t
1−ϵt , x̃ = x

1−ϵt , ũ =
√
|1− ϵt|e ϵx2

4ν(ϵt−1)u,

The only non-zero Lie brackets are:

[v4, v2] = −2v2, [v4, v6] = 2v6, [v2, v6] = v4, (13)
[v2, v5] = v1, [v4, v5] = v5, [v4, v1] = −v1, [v6, v1] = −v5, (14)

[v5, v1] =
1

2
v3. (15)

In particular, these would be enough for LieLAC, however in this particular example it is possible to
show more. To be precise, as shown in Koval & Popovych (2023), the global structure, as explained
below, of the symmetry group (the finite simply connected component) is GH = SL(2,R)⋉ϕH(1,R),
where H(1,R) is the rank one polarized Heisenberg group.
Theorem D.1 (Koval & Popovych (2023) for ν ̸= 1). The point symmetry pseudogroup G of the
(1 + 1)-dimensional linear heat equation is constituted by the point transformations of the form

t̃ =
αt+ β

γt+ δ
, x̃ =

x+ λ1t+ λ0

γt+ δ
,

ũ = σ
√
|γt+ δ| exp

(
γ (x+ λ1t+ λ0)

2

4ν(γt+ δ)
− λ1

2ν
x− λ2

1

4ν
t

)
(u+ h(t, x)),

where α, β, γ, δ, λ1, λ0 and σ are arbitrary constants with αδ − βγ = 1 and σ ̸= 0, and h is an
arbitrary solution of the heat equation.
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We now describe the product on G. First we note that there is a subgroup R consisting of those
elements for which λ1 = λ0 = 0 and σ = 1. This is evidently isomorphic to SL(2,R). Therefore

we shall group the α, β, γ, δ terms into a matrix A =

(
α β
γ δ

)
. Further we note that there are two

connected components of this group, corresponding to sign of σ, and the group can be written as a
direct product corresponding to this sign

G = G′ × Z2 (16)

Thus we may simply describe the product on G′. For this we may assume that the two elements we
multiply have σ > 0. For clarity, we shall write out the product rule in terms of the logarithm of σ.
The product can now be written as

(A′, λ′
1, λ

′
0, lnσ

′) · (A, λ1, λ0, lnσ) = (A′A, λ1 + αλ′
1 + γλ′

0, λ0 + βλ′
1 + δλ′

0,

lnσ + lnσ′ +
1

4
(λ′

0λ
′
1 − (αλ′

1 + γλ′
0)(βλ

′
1 + δλ′

0))−
λ0

2
(αλ′

1 + γλ′
0))

We see that the subgroup F consisting of those elements for which α = δ = 1, β = γ = 0 and σ > 0
is isomorphic to the rank one polarized Heisenberg group H(1,R) via

(λ1, λ0, lnσ) 7→



1 − 1

2λ1 lnσ
0 1 λ0

0 0 1


 (17)

where we use the standard embedding of H(1,R) into the group of 3× 3 real valued matrices. Note,
that while the parameterization here looks the same as the one from Koval & Popovych (2023), it is
different (resulting in different ϕ), as in that paper, the Heisenberg group and the polarized Heisenberg
group are conflated, making the product rule unclear. Here we fix a specific form of the Heisenberg
group as a subgroup of the group of 3 × 3 real matrices, with standard matrix multiplication as
the product rule. The product formula can then be described in terms of F and R as well. Let
ϕ : SL(2,R)→ Aut(H(1,R)) be the antihomomorphism defined by

ϕ(A) =

(
λ1

λ0

lnσ

)
7→




αλ1 + γλ0

βλ1 + δλ0

lnσ + 1
4λ0λ1 − 1

4 (αλ1 + γλ0)(βλ1 + δλ0)


 (18)

where write H(1,R) using the identification F ∼= H(1,R). Then we can write

G′ = SL(2,R)⋉ϕ H(1,R) (19)

As the semidirect product with an antihomomorphism is rarely written out in literature, we write
out explicitly what this entails. We have that the underlying set of G′ is SL(2,R)×H(1,R) and the
product is

(A′, H ′) · (A,H) = (A′A, ϕ(A)(H ′)H) (20)

In order to decanonicalize, we also require access to the inverse group element. Particularly, for
our implementation we can either find the action of the inverse of exp(e6v6) . . . exp(e1v1) as
exp(−e1v1) . . . exp(−e6v6), but given access to a global parametrization of the group, we can
write down an inverse of a given element in the form of A,H . This is

(
A−1, ϕ(A−1)

(
H−1

))
. I.e.

for α, β, γ, δ, λ0, λ1, σ, the inverse is

A−1 =

(
δ −β
−γ α

)
H−1 =



1 1

2λ1 − lnσ − 1
2 (λ1λ0)

0 1 −λ0

0 0 1




Writing this out in coordinates this becomes

δ,−β,−γ, α, βλ1 − αλ0,−δλ1 + γλ0,− lnσ − 1

4
λ0λ1 −

1

4
(−δλ1 + γλ0)(βλ1 − αλ0)
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Heat (Original) Heat (+ data aug.) Burgers (Original)
Model ID (21) OOD (21) ID (21) OOD (21) ID (D.4.2) OOD (D.4.2)

DeepONet 0.0498± 0.0072 0.6572± 0.1235 0.0504± 0.0014 0.0687± 0.0044 0.0832± 0.0547 0.8369± 0.0987
LieLAC [DeepONet] 0.0443± 0.0027 0.0435± 0.0017 0.0500± 0.0003 0.0500± 0.0003 0.0916± 0.0632 0.1006± 0.0637

Table 3: L2 relative error for Heat equation and Burgers’ equation averaged over [0, T ]. Original
refers to model trained on in-distribution (ID) data. For heat equation this corresponds to with
fixed ATrain

k = 1 in Equation (21). Data aug refers to model trained on out of distribution data
achieved via symmetry transformations, resulting in ATrain

k ∈ {0.5, 5.0}. For testing ID refers to
ATest

k ∈ {0.95, 1.05}, while OOD refers to ATest
k ∈ {0.5, 5.0}. For Burgers’ equation, ID corresponds

to gaussian random fields as in Appendix D.4.2, while OOD refers to ID plus a constant shift.

D.3.2 NUMERICAL RESULTS

For the numerical experiments, we consider solving Equation (10) with diffusivity ν = 0.1 on
the spatial domain [0, 2π], with periodic boundary conditions for t ∈ [0, 16]. We train a physics
informed DeepONet (Lu et al., 2019; Wang et al., 2021b) with initial conditions of the form following
Akhound-Sadegh et al. (2023); Brandstetter et al. (2022)

u0(x) =

K∑

i=1

Ak sin (2πlkx/L+ ϕk) . (21)

To focus on the effects of data augmentation and canonicalization, we train the model under two
regimes. In the first regime (which we refer to as in-distribution), the amplitude parameter is fixed to
Ak = 1, with the other parameters as K = 1, lk = 2, ϕk = 0, analogous to PINN training. In the
second regime, the amplitude parameter is sampled from A ∼ U [0.5, 5.0], representing a broader
operator training distribution.

The model is then trained using the physics loss with sampling weights of αPINN = 150, γdata = 20,
we use a learning rate of 0.001 and batch size of 8 and train for 100k epochs following Akhound-
Sadegh et al. (2023). Training data consists of Nf,train initial condition functions, evaluated at
Nic = 200 points at t = 0 to evaluate u0, Nbc = 100 points on the boundaries x = 0 or x = 2π to
enforce the periodic boundary conditions and finally Ndom = 500 points in the interior of the domain
where the residual physics loss is enforced. The official implementation of DeepONet from the code
and examples provided by the library DeepXDE (Lu et al., 2021) was used.

We report results for both training regimes, averaged over 10 random seeds, in Table 3. The first rows
in both tables show the accuracy of the standard DeepONet. In both cases, the first column shows a
slight improvement with LieLAC canonicalizing to the average of the tight distribution. In Table 3 the
second column shows DeepONet’s failure to generalize when tested on Nftest = 10 test functions
sampled A ∼ U [0.5, 5.0], which is outside of the training range. Applying LieLAC, following the
canonicalization pipeline shown in Figure 2a, restores test accuracy to in-distribution levels. In
Table 3, extending the training range to A ∼ U [0.5, 5.0] improves generalization by exposing the
model to a broader range of amplitudes. However, even in this setting, LieLAC outperforms data
augmentation by leveraging the canonicalizing group action.

Choice of Energy Given the initial conditions in Equation (21), we see that the distribution of
initial conditions can be described by the bounding box of the jet. The energy is therefore chosen to
be the distance to the trained domain. Letting jet0 = (u0, x0, t0) and jetΩ = (1,Ω, 0), the energy is:

EHeat(x0, t0, u0, xf , tf ) = dist [max(jet0),max(jetΩ)] + dist [min(jet0),min(jetΩ)] (22)
+ dist [xf ,Ω] + dist [tf , 16]

D.3.3 FURTHER HEAT ILLUSTRATIONS

Figure 9 shows canonicalicalisation of the initial conditions, out-of-distribution and canonicalized
DeepONet predictions.
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Figure 9: Canonicalization for the Heat equation given out of distribution u0(x) and improved
equivariant prediction

D.4 BURGERS’ EQUATION

D.4.1 POINT SYMMETRIES

Burgers’ Equation combines diffusion and non-linear advection, which can be related to the linear
heat equation above via the Cole–Hopf transformation. The nonlinearity of the equation results
in more complex dynamics, e.g. via shock formation, while still admitting non-trivial Lie point
symmetries.

ut + uux − νuxx = 0 (23)

This equation admits the following 5-dimensional Lie algebra (note the typo in Akhound-Sadegh
et al. (2023)), see Freire (2010); Koval & Popovych (2023):

v1 = ∂x, v3 = 2t∂t + x∂x − u∂u, v5 = t2∂t + tx∂x + (x− tu)∂u, (24)
v2 = ∂t, v4 = t∂x + ∂u.

The resulting one parameter flows, for ϵ arbitrary constant, are:

exp[v1](ϵ) : t̃ = t, x̃ = x+ ϵ, ũ = u,
exp[v2](ϵ) : t̃ = t+ ϵ, x̃ = x, ũ = u,
exp[v3](ϵ) : t̃ = e2ϵt, x̃ = eϵx, ũ = e−ϵu,
exp[v4](ϵ) : t̃ = t, x̃ = x+ ϵt, ũ = u+ ϵ,
exp[v5](ϵ) : t̃ = t

1−ϵt , x̃ = x
1−ϵt , ũ = u(1− ϵt) + ϵx,

The non-zero brackets are:
[v3, v2] = −2v2, [v3, v5] = 2v5, [v2, v5] = v3, (25)
[v2, v4] = v1, [v3, v4] = v4, [v3, v1] = −v1, [v5, v1] = −v4 (26)

Once again, this would be enough for the LieLAC formulation, however in this particular example,
we can say more:
Theorem D.2 (Koval & Popovych (2023) for ν ̸= 1). The point symmetry group GB of the Burgers’
equation consists of the point transformations of the form

t̃ =
αt+ β

γt+ δ
, x̃ =

x+ λ1t+ λ0

γt+ δ
, ũ = (γt+ δ)u− γx+ λ1δ − λ0γ,

where α, β, γ, δ, λ1 and λ0 are arbitrary constants with αδ − βγ = 1.

And similar to before, the global structure of the group can be inferred, with the group GB isomorphic
to the group SL(2,R) ⋉φ̆

(
R2,+

)
, where φ̆ : SL(2,R) → Aut

((
R2,+

))
is the group antihomo-

morphism defined by φ̆(α, β, γ, δ) = (λ1, λ0) 7→ (λ1, λ0) ϱ1(α, β, γ, δ). Thus, the group GB is
connected.
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ϱ1 = (α, β, γ, δ)αδ−βγ=1 7→
(

α β
γ δ

)
, (λ1, λ0) 7→ (λ1, λ0) .

The standard conjugacy action of the subgroup F̆ < GB on the normal subgroup R̆ ◁ GB is given by
(λ̃1, λ̃0) = (λ1, λ0) ϱ1(α, β, γ, δ). The inverse can be found similar to Appendix D.3.

D.4.2 NUMERICAL RESULTS

For the numerical experiments, we consider solving Equation (23) on the domain x ∈ Ω = [0, 1],
with periodic boundary conditions on t ∈ [0, 1]. An example of a canonicalized solution is shown in
Figure 2, with further illustrations in Figures 10 and 11.

For Burgers’ equation we take the code and pretrained Physics Informed DeepONet (PI-
DeepONet) model weights provided by Wang et al. (2021b). This includes a model trained on
Nf,train = 1000 initial conditions sampled from a Gaussian random field (GRF) parameterised as
N
(
0, 252(−∆+ 52I)−4

)
on the periodic domain Ω = [0, L] × [0, T ] = [0, 1] × [0, 1] discretized

by a meshgrid with 101× 101 points.

In order to sample out-of-distribution initial conditions from the GRF we apply a uniform 0.2 shift to
u0 away from the mean of 0. Figure 11 shows surprisingly even this small perturbation is enough to
break the pre-trained PI DeepONet. Interestingly in both in and out of distribution cases LieLAC
learns a group action that is able to redistribute around zero mean, leading to a more accurate
prediction.

Choice of Energy Given the slightly different form of initial conditions to the heat equation, now
sampled as GRFs we adjust the energy to focus on the bounding box of the domain and mean of u0.
The energy is therefore chosen to be the distance to the training domain. Letting trunk0 = (x0, t0)
and trunkΩ = (Ω, 0), the energy is:

EBurgers(x0, t0, u0, xf , tf ) = dist [max(x0)−min(x0), 1)] (27)
+ dist [t0,Ω] + dist [mean[u0], 0]

+ dist [xf ,Ω] + dist [tf ,Ω]

D.4.3 FURTHER BURGERS’ ILLUSTRATIONS

Figure 10 shows canonicalicalisation of the initial conditions, out-of-distribution and canonicalized
DeepONet predictions.
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Figure 10: Illustration of Burgers’ equation for in distribution GRF u0(x)
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Figure 11 shows canonicalicalisation of the initial conditions, out-of-distribution and canonicalized
DeepONet predictions.
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Figure 11: Canonicalization for Burgers’ equation given out of distribution u0(x) and improved
equivariant prediction

D.5 ALLEN-CAHN EQUATION

The Lie point symmetries of Equation (4) can be found either by hand or using the computational
software of Baumann (1998). Both yield a 4-dimensional Lie algebra with basis vectors:

v1 = ∂t, v2 = ∂x, v3 = ∂y, v4 = −y∂x + x∂y (28)

Noting that there is no coupling between the space, time and the dependent components, we can
identify this group as the connected component of the group of isometries of the underlying space.
It is worth noting here that the full symmetry group can be observed to be E(2), while the group
generated by vectors in 28 is SE(2), i.e. the identity connected component of E(2).

Training data The POSEIDON (Herde et al., 2024) model is trained on random initial conditions4

in the form of:

u0(x, y) =

K∑

i,j=1

aij ·
(
i2 + j2

)−r
sin(πix) sin(πjy), ∀x, y ∈ (0, 1), (29)

where K is an integer drawn uniformly at random from [16, 32], and r ∼ U[0.7,1.0] and aij ∼ U[−1,1].
Based on this, one obvious limitation of the training data is that all sampled initial conditions are zero
on the boundary. However, due to the semi-group property based training of Herde et al. (2024), as
trajectories are sampled at different points, the values on the boundary are not guaranteed to remain
zero over time. As a result, we expect the model to not be equivariant under the group of symmetries
of ACE, as illustrated on Figure 12, but we do not have an obvious way to construct the energy.
Based on the positive results in Section 4.2, we employ the same approach, by training a variational
autoencoder and an adversarial regulariser. For the experiments, we considered the TINY POSEIDON
model from Herde et al. (2024).

Testing data To test the equivariance, we use a dataset of modified initial conditions, achieved by
transformations of Equation (29).

u0(x, y) =

K∑

i,j=1

aij ·
(
i2 + j2

)−r
sin(πi{x− x0}) sin(πj{y − y0}), ∀x, y ∈ (0, 1), (30)

where {·} denotes the sawtooth function, with parameters as in Equation (29), with x0, y0 ∼ U[0,1].

4Note here that this is slightly different from the original paper. The form below was chosen, as the generated
initial conditions provided by (Herde et al., 2024) either due to pre or post-processing turn out to not be periodic.
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Figure 12: Example of failure of equivariance of the original POSEIDON model.

D.5.1 FURTHER ACE ILLUSTRATIONS
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Figure 13: Further canonicalization illustration for the ACE.
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E MEASURE THEORY BACKGROUND

Let X be a set. Then a σ-algebra Σ is a subset of 2X such that

• X ∈ Σ

• If A ∈ Σ then X\A ∈ Σ

• For any countable collection (An)
∞
n=1 of sets in Σ, the union

⋃∞
n=1 An ∈ Σ

A set A ∈ Σ is called measurable. A pair (X,Σ) of a set and a σ-algebra is called a measure space.
Suppose (X,Σ), (Y,Σ′) are measure spaces. Then a function f : X → Y is measurable if for every
measurable set A ∈ Σ′ the set f−1(A) is measurable.

Given a measure space, a measure on it is a set function µ : Σ→ [0,∞] such that

• µ(∅) = 0

• For all countable collections (An)
∞
n=1 of pairwise disjoint sets in Σ

µ(
∞⋃

n=1

An) =
∞∑

i=1

µ(An) (31)

We may also define signed and complex measures, which simply replace the codomain of a measure
with either R ∪ {−∞,+∞} or C respectively.

If f : (X,Σ) → (Y,Σ′) is measurable, and µ is a measure on (X,Σ), we define the pushforward
measure f∗µ as follows

f∗µ(A) = µ(f−1(A)) (32)

There is always a measure on (X,Σ) which simply sends every measurable set to 0, we call this the
zero measure. A finite measure is a measure µ such that µ(X) < ∞. A probability measure is a
measure µ such that µ(X) = 1. Given a finite non-zero measure µ on (X,Σ) we may always define
a probability measure µ′ on (X,Σ) as follows

µ′(A) =
µ(A)

µ(X)
(33)

We will often call this the normalized measure associated to µ.

If X is a topological space there is a canonical σ-algebra associated to it, known as the Borel σ-algebra
B(X). It is the smallest σ-algebra such that all open sets are measurable. Then any continuous
function between X and Y is measurable when X and Y are equipped with their respective Borel
σ-algebras. We often call the pair (X,B(X)) a Borel space and when clear we will simply refer to
this pair by X .

For a topological space S and a real number s ≥ 0 there is an associated Hausdorff measure of
dimension s which we shall denote Hs

S . To S we can also define what is known as the Hausdorff
dimension, dimH(S), which is always non-negative. There is then a Hausdorff measure of that
dimension, which we write asHS . All Borel sets are measurable for this measure. If S is compact
thenHS(S) <∞, but it may still be the zero measure. If it is not zero then we may as above construct
the normalized Hausdorff measure. In this case this will be a Radon measure. For S ∼= [0, 1]n the
Hausdorff dimension is n and the normalized Hausdorff measure is exactly the Lebesgue measure.
Similarly for S finite and discrete, the Hausdorff dimension is 0 and the normalized Hausdorff
measure is the normalized counting measure.

The Hausdorff measure is important to consider beacuse of Frostman’s Lemma Mattila (1995).
Lemma E.1 (Frostman’s Lemma). Let A be a Borel subset of Rn and let s > 0. Then the following
are equivalent.

• Hs(A) > 0

• There is an unsigned Borel measure µ on Rn satisfying µ(A) > 0 and such that

µ(B(x, r)) ≤ rs (34)

for all x ∈ Rn, r > 0.
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* *

Dym et al. (2024)

Ma et al. (2024)

 finite

Finite canonicalization

 compact & Finite frames  compact  non-compact

Figure 14: This diagram illustrates connections between the various notions of frames and canonical-
izations introduced previously and in this work. The top row are the finite frames and canonicaliza-
tions, which all map vertically into their weighted versions by taking normalized counting measures.
Inside of each we have the sequentially closed subspaces of those that perserve continuity.

Let A be compact with Hausdorff dimension greater than zero. Then we know that the Hausdorff
measure at the Hausdorff dimension is finite. By Frostman’s Lemma, the Hausdorff measure of A
being zero means that we cannot find any probability measure on A that interacts nicely with the
metric structure. This shows that our assumption of not allowing sets whose Hausdorff measure is
the zero measure is reasonable.

F MORE ON FRAMES AND CANONICALIZATION

Recall that a frame is defined as a function F : X → 2G\∅ such that for x ∈ X and g ∈ G

F(gx) = gF(x) (35)

Lemma F.1. Let F be frame for the action of a group G on a set X . Then ∀x ∈ X , F(x) is a union
of left cosets of Gx ⊆ G.

Proof. Indeed, let x ∈ X and let g ∈ Gx. Then

F(x) = F(gx) = gF(x) (36)

Hence we see that
F(x) = GxF(x) (37)

Therefore we see that F(x) is a union of left cosets of Gx.

F.1 WEAKLY-EQUIVARIANT FRAMES

In Dym et al. (2024) weakly equivariant frames are introduced. These are maps µ : X → PMeas(G)
satisfying equivariance up to averaging over stabilizers.

In the review process it was noted that this bears similarity to Nguyen et al., and indeed, in our
framework their method is exactly the weighted frame defined by miniziming the energy given
by miniziming orbit distance. Because the symmetry groups they consider are compact and act
algebraically, they are able to obtain more concrete descriptions of these frames than we are able to in
the general case. We do expect that in the compact case with algebraic actions, similar results should
hold for energy minimizing canonicalizations.

First, for any x ∈ X and Radon probability measure τ Dym et al. (2024) define for every measurable
A ⊆ G,

⟨τ⟩x(A) =

∫

s∈Gx

s∗τ(A)ds (38)
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where ds is the normalized Haar measure on Gx. For a frame µ we let µx = ⟨µx⟩x. Then µ is weakly
equivariant if for all x ∈ X and g ∈ G,

µgx = g∗µx (39)

This definition does not extend to the case where the action has non-compact stabilizers.

To deal with this we propose imposing what we call π∗-equivariance. Again we consider simply a
map µ : X → PMeas(G). For a point x ∈ X , let πx : G→ G/Gx be the quotient. We require that

(πgx)∗µgx = (πgx)∗g∗µx (40)

Lemma F.2. If the stabilizer Gx is compact then ⟨µ⟩x = ⟨µ′⟩x if and only if (πx)∗µ = (πx)∗µ′.

Proof. For ease of notation let π = πx. First suppose that ⟨µ⟩x = ⟨µ⟩x. Let A ⊆ G/Gx be a
measurable set. Note that π−1(A) is a union of cosets of Gx. Hence it is invariant under multiplication
by elements in Gx. Therefore for all s ∈ Gx we have s−1π−1(A) = π−1(A). Thus

⟨µ⟩x(A) =

∫

s∈Gx

s∗µ(π
−1(A))ds =

∫

s∈Gx

µ(π−1(A))ds = µ(π−1(A)) (41)

and similarly, ⟨µ′⟩x(π−1(A)) = µ′(π−1(A)). Hence,

µ(π−1(A)) = µ′(π−1(A)) (42)

Therefore, π∗µ = π∗µ′.

Now suppose that π∗µ = π∗µ′. Then for any measurable set A ⊆ G, we have that

µ(π−1(π(A))) = π∗µ(π(A)) = π∗µ
′(π(A)) = µ′(π−1(π(A)) (43)

We have
π−1(π(A)) =

⋃

s∈Gx

sA (44)

Using Fubini’s theorem and the fact that both s and µ are probability measure, we may write
Equation (38) as follows

⟨µ⟩x =

∫

s∈Gx

s∗µ(A)ds (45)

=

∫

s∈Gx

∫

G

χA(sg) dµ(g)ds (46)

=

∫

G

∫

s∈Gx

χA(sg) dsdµ(g) (47)

(48)

Consider the inner integral as a function ϕ on G. We claim that ϕ is Gx-invariant. Indeed, let g′ = s′g
for some s′ ∈ Gx. Then

ϕ(g′) = s(Ag−1(s′)−1) = s(Ag−1) = ϕ(g) (49)

as s is the normalized Haar measure, hence is right-invariant. Therefore ϕ factors through the quotient
map π. Let ϕ′ be the corresponding function on G/Gx, then ϕ = ϕ′ ◦ π. Hence

⟨µ⟩x =

∫

G

ϕ(g)dµ(g) (50)

=

∫

G/Gx

ϕ′([g])d(π∗µ)([g]) (51)

=

∫

G/Gx

ϕ′([g])d(π∗µ
′)([g]) (52)

=

∫

G

ϕ(g)dµ′(g) = ⟨µ′⟩x (53)

Corollary F.2.1. If the G-action on X has compact stabilizers at each point, then π∗-equivariance is
equivalent to weak equivariance.
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F.2 ON PROJECTIONS

For a weighted orbit canonicalization µ, Pµ : B(X,R)→ B(X,R)G turns out to be a projection, as

PµPµ(ϕ)(x) =

∫

X

Pµ(ϕ)(s) dµx(s)

=

∫

Gx

Pµ(ϕ)(s)︸ ︷︷ ︸
G-invariant

dµx(s) = Pµ(ϕ)(x) (54)

F.3 ENERGIES AND CLOSED CANONICALIZATIONS

By the construction of energy minimizing frames, we have a function from energy functions to
weighted closed canonicalizations. We now describe the image of this.
Theorem F.3. Let κ ∈WCCanG(X) satisfying the following:

• κx is the normalized Hausdorff measure on its support.

• For all y ∈ Gy, supp κy = supp κx ∩Gx.

Then there is an energy function E such that κE = κ.

Proof. Suppose κ is a closed canonicalization satisfying the requirements of the theorem. Let
Eκ(x) = 1− χsuppκx(x).

Now we consider the minimum sets

MEκ(x) = min
y∈Gx

Eκ(y) (55)

We have that supp κx is a non-empty closed subset of Gx, hence the minimum of Eκ over Gx is
zero. ThereforeMEκ

(x) = E−1
κ (0) ∩Gx. In other words it is those y ∈ Gx such that y ∈ supp κy .

Further, by assumption, for any y ∈ Gx,

supp µy = supp κx ∩Gy (56)

Therefore y ∈ supp κy if and only if y ∈ supp κx. Hence we see that

MEκ
(x) = supp κx (57)

But the by the assumption that κx is simply the normalized Hausdorff measure on supp κx, we get
that the κEκ

= κ.

G PROOFS

Proposition G.1. FE defines an equivariant frame, i.e. FE(gx) = gFE(x) for any g ∈ G, x ∈ X .

Proof. Suppose that x ∈ X and g ∈ G. Then

FE(gx) = argmin
h∈G

E(h−1gx)

= argmin
gh s.t. h∈G

E((gh)−1gx)

= argmin
gh s.t. h∈G

E(h−1x)

= g[argmin
h∈G

E(h−1x)] = gF(x).

Here, we have simply used that group multiplication is bijective when either of the arguments is
fixed.

Proposition G.2. ME(x) is G-invariant and non-empty.
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Proof. ME(x) is G-invariant, as the infimum is taken over the orbit Gx, and this orbit is G-invariant.
By the coercivity assumption on E, this is non-empty. Indeed, let x ∈ X and let N be large. Let K
be a compact set of X such that E(y) > N for y ∈ X\K. Taking N large enough, we can assume
that K ∩Gx is non-empty. Then we see thatME(x) ⊆ K ∩Gx. K ∩Gx is a closed subset of the
compact set K, hence is compact. Therefore E attains its minimum on this set, henceME(x) is
non-empty.

Theorem G.3. Let G be a Lie group acting smoothly on X a manifold. Let jx : G→ X be defined
as g 7→ g−1 · x. Then we have a map α : WFraG(X)→WOCanG(X) defined by

α(F)(x) = (jx)∗(F(x)) (58)

Then for any F ,F ′ ∈ WFraG(X) such that α(F) = α(F ′) we have that (πx)∗F = (πx)∗F ′ for
every x ∈ X where πx : G→ G/Gx. If each Gx has a probability measure Px, then α has image
exactly the set of weighted orbit canonicalizations with compact support.

Proof. First we check that α as defined above lands in WOCanG(X). Let F ∈WFraG(X). Then
α(F)(x) is G-invariant as for any measurable A ⊆ X .

α(F)(gx)(A) = (jgx)∗(F(gx))(A)

= F(gx)({h ∈ G | h−1 · (gx) ∈ A}
= F(gx)({h ∈ G | h−1 · (gx) ∈ A})
= π∗(F(gx))(π({h ∈ G | h−1 · (gx) ∈ A}))
= π∗g∗(F(x))(π({h ∈ G | h−1 · (gx) ∈ A}))
= g∗(F(x))({h ∈ G | h−1 · (gx) ∈ A})
= F(x)({h ∈ G | (gh)−1 · (gx) ∈ A})
= F(x)({h ∈ G | h−1 · x ∈ A}) = α(F)(x)(A)

Thus we see that α(F) ∈ WCanG(X), as α(F)(x)(X) = F(x)(G) = 1, as F(x) is a probabil-
ity measure. To check that it is a weighted orbit canonicalization, first note that it is clear that
supp α(F)(x) ⊆ Gx, as for any y /∈ Gx we can find an open neighborhood U of y such that
j−1
x (U) = ∅ which is always F(x)-measure zero. Suppose that y ∈ Gx\Gx. F(x) is a weighted

frame, hence it is supported on some compact set K ⊆ G. We claim that there is an open set U
containing y such that j−1

x (U) ⊆ G\K. Suppose not, then for every open neighborhood U of y there
is an gU ∈ K such that jx(g) ∈ U . Then the collection (gU ) over the neighborhoods of y forms a net
in K. As K is compact, this net must have a convergent subsequence. Call this subsequence (gn)
and let g be the limit. As the action of G on X is continuous we have

g · x = lim
n→∞

gn · x (59)

For any U an open neighborhood of y we may, by definition of a net, find an N such that for any
n ≥ N , gn · x ∈ U . As X is Hausdorff, we then must have that the limit lim gn · x is simply y. But
this contradicts y /∈ Gx. Hence there is some open neighborhood U of y such that j−1

x (U) ⊆ G\K.
Then j−1

x (U) is measure zero with respect to F(x). Hence α(F)(x)(U) = 0, so y /∈ supp α(F).
Therefore we see that α(F) ∈WOCanG(X).

Suppose that F ,F ′ are weighted frames such that α(F) = α(F ′). Let x ∈ X . Then for any
measurable A ⊆ X ,

F(x)(j−1
x (A)) = α(F)(x)(A) = α(F ′)(x)(A) = F ′(x)(j−1

x (A)) (60)

Both F and F ′ are compactly supported, say on compact subsets K,K ′ respectively. Consider the
natural map jx : G/Gx → X . This is injective for group-theoretic reasons. Let π : G → G/Gx

be the quotient map. Then π(K) and π(K ′) are compact subsets of G/Gx, as they are continuous
images of compacts. Now as π(K) and π(K)′ are compacts which inject into a Hausdorff space X ,
jx restricts to homeomorphisms π(K) ∼= jx(π(K)) and similar for K ′. Using Equation (60) we see
that for any U ⊆ G/Gx open we have

F(x)(π−1(U)) = F(x)(π−1(U)) (61)
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Therefore π∗F and π∗F ′ agree on the open sets of G/Gx, but then that implies that they agree on
the entire Borel σ-algebra of G/Gx. Hence π∗F = π∗F ′ as desired.

Finally, let v ∈ WOCanG(X) have compact support. Let x ∈ X . Then vx is some probability
measure on X with supp vx ⊆ K ⊆ Gx for some compact K ⊆ Gx. By Theorem A.2 we have that
jx : G/Gx → X is a immersion with image Gx. jx restricts to a homeomorphism on K, and using
this we can define a measure v′x on G/Gx which agrees with vx under this homeomorphism. It is
supported on the preimage K ′ of K which is also compact. π : G → G/Gx is a principal bundle
with fiber Gx. Therefore, locally on G/Gx, π is the trivial fibration. We may cover K ′ by finitely
many open sets over which π is trivial, call them U1, . . . , Un. Let Vi = π−1(Ui) ∼= Ui ×Gx. Now
define

V ′
i = Vi\(

⋃

j<i

Vj) (62)

Then these are disjoint measurable sets which cover π−1(K ′). They are all trivially fibered over
the base. Now we define a measure ν using these, ν will be supported on π−1(K ′). Let A be a
measurable set in G. Firstly we may assume that A ⊆ π−1(K ′). Let Ai = A ∩ V ′

i . Then the Ai are
disjoint measurable sets which cover A. So the value of ν on A is determined by the value of ν on
each Ai. We define this value to be

ν(Ai) = (v′x × Px)(Ai) (63)

where here we use the homeomorphism V ′
i
∼= π(V ′

i ) × Gx to put the product measure on this set.
π∗ν = v′x, and this is equivariant as Ggx = g−1Gx. Hence ν is π∗-equivariant.

Note that for the above theorem to work, we need to assume that each Gx has a probability measure.
This is automatic in the case that each Gx is compact, as in that case we may take that normalized
Haar measure on it. It will also hold in the case that each Gx has non-zero Hausdorff measure.
Theorem G.4. The sequential closure of WOCanG(X) is WCCanG(X)

Proof. First we show WCCanG(X) is sequentially closed. Suppose that (fn) is a sequence in
WCCanG(X) converging to f ∈WCanG(X). Fix x ∈ X and y ∈ X\Gx. Then it is sufficient to
show that y /∈ supp fx. As X is normal Hausdorff, by Urysohn’s lemma there exists continuous
ϕ : X → [0, 1] such that ϕ(Gx) = 1 and ϕ({y}) = 0.

As fn → f , for any ε > 0, we can find N such that for any n ≥ N we have the following

∥fn(ϕ)− f(ϕ)∥ < ε (64)

We may easily compute fn(ϕ)(x) by the fact that supp fn(x) ⊆ Gx.

fn(ϕ)(x) =

∫

Gx

ϕdfn
x = 1 (65)

Similarly,

fn(ϕ)(y) =

∫

Gy

ϕdfn
y = 0 (66)

Hence, by taking the limit we compute that f(ϕ)(x) = 1 and f(ϕ)(y) = 0. Let U = ϕ−1([0, 1/2]),
this is an open neighborhood of y.

1 = f(ϕ)(x) =

∫

X

ϕdfx (67)

=

∫

X\U
ϕdfx +

∫

U

ϕdfx (68)

≤ fx(X\U) +
1

2
fx(U) (69)

= 1− fx(U) +
1

2
fx(U) (70)

= 1− 1

2
fx(U) (71)
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Hence, fx(U) = 0. Therefore y /∈ suppfx.

Clearly, WOCanG(X) ⊆WCCanG(X), hence the sequential closure of WOCanG(X) is contained
inside WCCanG(X). We now show the reverse inclusion. Fix an arbitrary metric on X , this is
possible as X is assumed metrizable.

Suppose we have a weighted closed canonicalization f . Let h be the left invariant Haar measure
on G. Let µx = (ix)∗h, this is a measure supported on Gx. Further it is a σ-finite measure as G is
locally compact. Therefore we can use the Lebesgue decomposition theorem to decompose f(x) as

fx = fac
x + fsc

x + fsd
x (72)

where fac
x is absolutely continuous with respect to µx, fsc

x is singular with respect to µx and
continuous, and fsd

X is singular with respect to µx and discrete.

First we construct a sequence of weighted closed canonicalizations fn converging to f such that
upon decomposing each fn as above, there is no singular continuous factor.

fsc is singular continuous with respect to µx, hence there is a measurable set S ⊆ Gx such that
µx(S) = 0 and fsc

x (Sc) = 0. Fix a point y ∈ S. For l > 0, let Kl = B(y, l) ∩ S. Then we have
⋃

l

Kl = S (73)

By continuity of measure

lim
l→∞

fsc
x (Kl) = fsc

x (S) = fsc
x (S) + fsc

x (S ∩ Sc) = fsc
x (S) (74)

Fix l large enough such that fsc
x (Kl) > fsc

x − 1
n . Kl is compact so we may find finitely many

points x1, . . . , xp(n) such that the 1
n balls around these points cover Kl. Call these open balls Ui.

Let U ′
i = Ui\

⋃
j<i Uj . Then each U ′

i contains only xi and none of the other xj . Define a discrete
measure f ′

n which is non-zero only on the xi and taking the following values at those points

f̂n({xi}) = fsc
x (U ′

i) (75)

Then one easily sees that

f̂n(S) = fsc
x (U ′

1) + fsc
x (U ′

2) + · · ·+ fsc
x (U ′

p(n)) = fsc
x (Kl) (76)

Now let fn = fac
x + f̂n + fsd

x . This is then a measure with no singular discrete part with respect to
µx. We now check that fn → f . Let ϕ ∈ C0

b (X). We may assume that ϕ is non-negative on X by
splitting it up as ϕ = ϕ+ + ϕ− for ϕ+ non-negative and ϕ− non-positive.

fn(ϕ)(x)− f(ϕ)(x) =

∫
ϕd(fn(x)− f(x))

=

∫
ϕd(fsc(x)− f ′

n(x))

=

p∑

i=1

(∫

U ′
i

ϕdfsc(x)− ϕ(xi)f
′
n(U

′
i)

)
+

∫

S\Kn

ϕdfsc(x)

Therefore we see that, with C = maxϕ,

|fn(ϕ)(x)−f(ϕ)(x)| ≤ max(

p(n)∑

i=1

fsc(U
′
i)(max

U ′
i

ϕ−ϕ(xi)),

p∑

i=1

fsc(U
′
i)(ϕ(xi)−min

U ′
i

ϕ))+
C

n
(77)

Let ϵ > 0. Take N large enough such that for all n > N , and i = 1, . . . p

|max
U ′

i

ϕ−min
U ′

i

ϕ| < ϵ (78)

Recall that we can do this as there are finitely many U ′
i , each of which is contained in the 1

n ball
around xi. Plugging this into Equation (77) we get

|fn(ϕ)(x)− f(ϕ)(x)| ≤ C

n
+

p(n)∑

i=1

fsc(U
′
i)ϵ =

C

n
+ ϵfsc(Kn) ≤

C

n
+ ϵfsc(S) (79)
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Taking n large and ϵ small gives the convergence result.

Now we show that we can approximate a weighted closed canonicalization with no singular continuous
part by weighted orbit canonicalizations. As before, decompose fx = fac

x + fsd
x with respect to µx.

For any n, choose Vn(x) to be the 1
n open ball around Gx\Gx. fsd is singular and discrete, hence it

is supported on a (possibly infinite) set of points x1, x2, . . . in Gx. For each xi choose a sequence of
points (xin) in Gx converging to xi. We may choose these such that for a fixed n, each of the xin

are different for every i. Further we assume that these are chosen such that for every i

d(xi, xin) <
1

n
(80)

Then define the singular measure f̂n which is non-zero only on the xin for every i, taking value

f̂n({xin}) = fsd
x ({xi}) (81)

Define the absolutely continuous measure f̃n by

f̃n(U) = fac(U\Vn(x)). (82)

Then let
fn(x) = f̂n + f̃n (83)

This is then a measure supported on Gx and by construction it is G-invariant. Hence this is a weighted
orbit canonicalization. Now we show that fn → f . Let ϕ ∈ C0

b (X) and x ∈ X . Then

|fn(ϕ)(x)− f(ϕ)(x)| =
∣∣∣∣
∫

Gx

ϕdfx −
∫

Gx

ϕdfn
x

∣∣∣∣ (84)

=

∣∣∣∣
∫

Gx

ϕdfac
x −

∫

Gx

ϕdf̃n
x

∣∣∣∣+
∣∣∣∣
∫

ϕdfsd
x −

∫
ϕdf̂n

x

∣∣∣∣ (85)

=

∣∣∣∣∣

∫

Vn(x)

ϕdfac
x

∣∣∣∣∣+
∣∣∣∣∣
∑

i

fsd
x ({xi})(ϕ(xi)− ϕ(xin)

∣∣∣∣∣ (86)

≤ Cfac
x (Vn(x)) +

∑

i

fsd
x ({xi}) |ϕ(xi)− ϕ(xin)| (87)

Now fix ϵ > 0. As fsd
x is a finite measure, there is some I such that

∞∑

i=I

fsd
x ({xi}) < ϵ (88)

Thus we get

|fn(ϕ)(x)− f(ϕ)(x)| ≤ Cfac
x (Vn(x)) + (

I−1∑

i=1

+

∞∑

i=I

)fsd
x ({xi})|ϕ(xi)− ϕ(xin)| (89)

≤ Cfac
x (Vn(x)) +

I−1∑

i=1

fsd
x ({xi})|ϕ(xi)− ϕ(xin)|+ 2Cϵ (90)

Now choose n large enough such that fac(Vn(x)) < ϵ and for each i = 1, . . . , I − 1, |ϕ(xi) −
ϕ(xin)| < ϵ. Then we get a bound

|fn(ϕ)(x)− f(ϕ)(x)| ≤ 3Cϵ+Dϵ (91)

Hence, fn → f .

Theorem G.5. WCanG(X)cont is sequentially closed.

Proof. Suppose that (µn)n is a convergent sequence of continuous weighted canonicalizations,
converging to a weighted canonicalization µ. We will show that µ is continuous. To do this, fix a
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convergent sequence (xm)m in X converging to x. Let ϕ ∈ C0
b (X). Then we have the following

bound

|µ(ϕ)(x)−µ(ϕ)(xm)| ≤ |µ(ϕ)(x)−µn(ϕ)(x)|+|µn(ϕ)(x)−µn(ϕ)(xm)|+|µn(ϕ)(xm)−µ(ϕ)(xm)|
(92)

Fix ϵ > 0. As µn converges to µ we may find a large enough n such that both the first and third terms
are less than ϵ. For this n, as µn is continuous, we may find m large enough such that the middle term
is less than ϵ as well. Hence the right hand side is bounded by 3ϵ, so we see that µ is continuous.

Proposition G.6. Let Y be a topological space. Let f : Y → [0,+∞] be lower semi-continuous.
Then the set

M = {y ∈ Y |f(y) = inf
Y

f} (93)

is closed.

Proof. Let α be the infimum of f . We have that M = f−1({α}). As α is the infimum over Y , we
see that in fact M = f−1([0, α]). Then as f is lower semi-continuous, this set is closed in Y .

Lemma G.7. Let E be a lower semi-continuous energy function. Then κE is continuous if and only
if for every convergent sequence xn → x we have LiME(xn) =ME(x).

Proof. Let E : X → [0,+∞] be an energy function such that the corresponding energy minimizing
canonicalization κE is continuous. Consider a convergent sequence (xn) in X , converging say to
x. ME(x) is closed inside Gx, being the set of minimizers of a lower semi-continuous function.
As Gx is closed in X ,ME is closed in X as well. As X is metrizable, we may choose a countable
neighborhood basis of ME(x), which we shall write as a decreasing sequence (Um) of open
neighborhoods such that ⋂

Um =ME(x) (94)

Let Cm = X\Um, this is closed. As X is normal Hausdorff, we may find ϕm : X → [0, 1]
continuous such that ϕ−1

m ({0}) = Cn and ϕ−1
m ({1}) =ME(x).

Now as κE is continuous we have that the measures κE(xn) weakly converge to κE(x). Hence for
every m we have that

lim
n→∞

∫

ME(xn)

ϕm dµxn
→
∫

ME(x)

ϕm dµx = 1 (95)

Hence
lim

n→∞

∫

ME(xn)

ϕn dµxn = 1 (96)

Let ϵ > 0. We may find N such that for all n > N , the left hand side is greater than 1 − ϵ. As
µxn

(ME(xn)) = 1, we must have that the minimum of ϕn overME(xn) is greater than 1− ϵ. As
Cn = ϕ−1

n ({0}), we then must have thatME(xn) ⊆ Un. Hence by the definition of Kuratowski
convergence we have LiME(xn) ⊆ME(x).

Now suppose that y ∈ ME(x). Then we may as above choose a decreasing sequence (Um) of
open neighborhoods of y which form a neighborhood basis. Then fix for each m, ϕm : X → [0, 1]
continuous such that ϕ−1

m ({0}) = X\Um and ϕ−1
m ({1}) = {y}. By the same estimates as before we

must have that for large enough n, eachME(xn) intersects Um non-trivially. Hence y ∈ LiME(xn).
So LiME(xn) =ME(x).

Conversely suppose that we are given that for every convergent sequence xn → x, LiME(xn) =
ME(x). Let ϕ ∈ C0

b (X). We may assume that ϕ is non-negative. Fix ϵ > 0. AsME(x) is compact,
we may find an open set U containingME(x) such that

max
y∈U

ϕ(y)−min
y∈U

ϕ(y) < ϵ (97)

As LiME(xn) ⊆ ME(x), we may find N large enough such that for all n ≥ N ,ME(xn) ⊆ U .
Then

min
y∈ME(x)

ϕ(y) ≤
∫

ME(x)

ϕdµx ≤ max
y∈ME(x)

ϕ(y) (98)
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and similarly

min
y∈ME(xn)

ϕ(y) ≤
∫

ME(xn)

ϕdµxn
≤ max

y∈ME(xn)
ϕ(y) (99)

Hence we see both of these integrals are bounded between the min and max of ϕ on U . Hence
∣∣∣∣∣

∫

ME(x)

ϕdµx −
∫

ME(xn)

ϕdµxn

∣∣∣∣∣ ≤ 2ϵ (100)

Therefore this converges and we have weak convergence.

H OVERVIEW OF PREVIOUS CONCEPTS

Frames and canonicalization both represent different ways to impose group equivariance or invariance
on arbitrary functions. The most basic approach is simply to average over all group elements,
sometimes refered to as the Reynolds operator. For a finite group G and a continuous bounded
function ϕ it is given by RG(ϕ)(x) =

1
|G|
∑

g∈G ϕ(g−1 · x). This can also be modified to impose
G-equivariance by changing the integrand to g · ϕ(g−1 · x). Frames allow one to not have to integrate
over the full group G while still giving a invariant or equivariant function as output. Specifically,
a frame is a function F : X → 2G\∅ such that for any x ∈ X and g ∈ G: F(gx) = gF(x). In
order to define an action on continuous groups, one must assume that the frame is finite, i.e. that
for every x ∈ X the set F(x) is finite. This is immediate if the group is finite, but if the group is
non-finite this is a very strong restriction, as it implies that the stabilizer groups of the action are
finite, as F(x) = GxF(x). This is detailed further in Appendix F.

In order to deal with this restriction, Dym et al. (2024), introduced the notion of weighted weakly
equivariant frames. These generalize frames to be G-equivariant maps from X to probability
measures on G. Then for any continuous bounded function ϕ we may apply a weighted frame µx

by µ(ϕ)(x) =
∫
G
ϕ(g−1 · x) dµx(g). This is still not enough in the setting of non-compact groups

as discussed in the subsequent section5. Even worse, there is an inherent limitation to using frames:
the input to ϕ may end up outside the training distribution, resulting in worsened performance. The
overall network would therefore need to be retrained, which may be exponentially hard (Kiani et al.,
2024a).

To deal with this, Kaba et al. (2023) proposed canonicalization as simply a G-invariant function
f : X → X such that for each x ∈ X , f(x) ∈ Gx, which upon pre-composing with a function
would make it invariant. In order to preserve continuity of functions, one needs to impose that f
itself is continuous. In Dym et al. (2024) it is shown that there are many topological obstructions to
constructing such continuous canonicalization functions.

To get around these obstructions Ma et al. (2024) proposes canonicalization to now be set-valued
G-invariant function C : X → 2X\∅ for C(x) finite, acting on continuous functions ϕ by
C(ϕ)(x) = 1

|C(x)|
∑

y∈C(x) ϕ(y). Contractive canonicalizations, which we refer to instead as or-
bit canonicalizations, are a specific kind of canonicalization where for every x ∈ X , C(x) ⊆ Gx.
The orbit-stabilizer theorem applies to show these are equivalent to frames. Namely, there is a
map α which sends equivariant frames to orbit canonicalizations. For an equivariant frame F the
corresponding orbit canonicalization α(F) is defined as α(F)(x) = {g−1 · x|g ∈ F(x)}. Ma et al.
(2024, Theorem 3.1) show that for G finite, α is an isomorphism between the set of equivariant frames
and orbit canonicalizations. Energy-based canonicalization was first introduced in Kaba et al. (2023).
In energy-based canonicalization, given an energy function E, the canonicalizing element c : X → G
is defined as c(x) ∈ argming∈G E

(
g−1x

)
. As shown in the subsequent section, considering the

full set of minimizers, instead of a singleton, naturally gives rise to a frame, and naturally results in
set-valued canonicalizations. Extending these to non-compact groups naturally gives rise to weighted
closed canonicalizations.

5Weakly equivariant weighted frames also require compact stabiliser subgroups, while the equivalent π∗
equivariance of F.1 can be defined for non-compact groups.
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H.1 WEIGHTED CANONICALIZATION

For this section let G be a Lie group acting smoothly on a manifold X . Let C0
b (X) be the bounded

continuous R-valued functions on X . Let PMeas(X) be the set of Radon probability measures on
X , with respect to the Borel σ-algebra on X . Let B(X,R) be the space of bounded functions on X
and B(X,R)G is the subspace of G-invariant such functions.

Definition H.1. A weighted canonicalization is a G-invariant function κ[·] : X → PMeas(X). We
call the space of weighted canonicalizations WCanG(X).

Given a weighted canonicalization κ we may define an operator Pκ : B(X,R)→ B(X,R)G via

(Pκ(ϕ))(x) =

∫

X

ϕdκx. (101)

We may write the function Pκ(ϕ) simply as κ(ϕ). As κx ∈ PMeas(X) for each x ∈ X , we have
∥Pκ(ϕ)∥∞ ≤ ∥ϕ∥∞. κ(ϕ) is G-invariant as κ is. We also define the function Pϕ(κ) = Pκ(ϕ).

The entire space WCanG(X) is much too general to be practical. We would like to consider a much
more natural subset from the perspective of canonicalization, namely orbit canonicalizations. We
now define a corresponding weighted notion.

Definition H.2. A weighted orbit canonicalization is a weighted canonicalization κ : X →
PMeas(X) such that for every x ∈ X , suppκ(x) ⊆ Gx. We denote the set of weighted orbit
canonicalizations as WOCanG(X).

In particular, for weighted orbit canonicalizations both operators become projections, see Ap-
pendix F.2. As in the finite case, there is a function α : WFraG(X) → WOCanG(X), which
is surjective and injective up to weak-equivalence, see Appendix F.1.

Given the action on continuous functions, we may equip WCanG(X) with a certain weak topology,
namely the coarsest topology such that all the Pϕ for ϕ continuous and bounded become continuous
functions. Specifically this means that a sequence of weighted canonicalizations κn converges
to κ if and only if for every ϕ ∈ C0

b (X) the sequence κn(ϕ) converges to κ(ϕ) pointwise. For
the canonicalization problem this is a very natural topology to consider, as we only care about
canonicalization through their respective actions on continuous functions.

So far, we have presented a generalization of canonicalization, which is readily applicable to finite or
compact Lie groups. However, non-compact Lie groups may have non-closed orbits, and the space of
weighted orbit canonicalizations is not closed under taking limits in the weak topology. To understand
the closure under taking limits, we introduce the concept of a weighted closed canonicalization.

Definition H.3. A weighted closed canonicalization is a weighted canonicalization κ : X →
PMeas(X) such that for every x ∈ X , suppκ(x) ⊆ Gx. Call the set of weighted closed canonical-
izations WCCanG(X).

The following theorem shows that these allow us to fully characterize the behaviour of weighted orbit
canonicalizations under taking limits.

Theorem H.1. (Theorem G.4) The sequential closure of WOCanG(X) is WCCanG(X)

Using this theorem and the setup above we may now write down our main diagram connecting all
the different notions of canonicalization and framing together, shown in Figure 3. In analogy with
Dym et al. (2024), we may now ask whether such canonicalizations take continuous functions to
continuous functions. In the presented framework this is a simple condition to add.

Definition H.4. A weighted canonicalization κ : X → PMeas(X) is continuous if for ev-
ery ϕ ∈ C0

b (X), κ(ϕ) is continuous. Call the space of continuous weighted canonicalizations
WCancts

G (X). We similarly define continuous weighted orbit canonicalizations and continuous
weighted canonicalizations.

Proposition H.2. A weighted canonicalization κ is continuous if and only if for every convergent
sequence xn → x in X , the sequence of measures κxn

converges weakly to κx.

Theorem H.3. (Theorem G.5) WCancts
G (X) is sequentially closed inside WCanG(X).
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H.2 ENERGY MINIMIZING CANONICALIZATION

In Section 2 so far, we have provided a generalized theoretical understanding of frames and canonical-
ization, encompassing various scenarios with compact/non-compact and discrete/continuous groups.
However, their relevance and how these can be used in practice remains unaddressed. We now move
on to the concept of energy frames and canonicalizations, for general Lie groups. We define an
energy function on X to be a non-constant function E : X → [0,+∞]. We further assume that E is
topologically coercive: for any N ∈ R+ there is a compact K ⊆ X such that E|X\K > N .

In the case where G is finite, every orbit in X necessarily has a minimum of E, and we note that
energy minimization naturally results in a frame

FE(x) = argmin
g∈G

E(g−1x) (102)

Proposition H.4. FE defines an equivariant frame, i.e. FE(gx) = gFE(x) for any g ∈ G, x ∈ X .

However when G is not finite this set is not guaranteed to be finite. If G is additionally non-compact,
then E does not necessarily achieve its minimum on every orbit in X , making this optimization
problem not well-defined. For this reason, we instead turn to weighted canonicalizations. By
taking the closures of orbits, we solve the problem of E not having minima, so we are naturally
led to constructing weighted closed canonicalizations. First, we define the energy-minimizing set,
ME(x) = {x′ ∈ Gx |E(x′) = infy∈Gx E(y)}, set of minima of E on the closure of the orbit of x.

Proposition H.5. (Proposition G.2)ME(x) is G-invariant and non-empty.

If ME(x) is finite for each x ∈ X , then we define the (non-weighted) closed canonicalization
κE ∈WCCanG(X) by taking κE(x) to be the normalized counting measure onME(x) as usual.

For a general E, we may not be able to put any reasonable probability measure on the setME(x), for
example ifME(x) has highly fractal geometry. We therefore must assume that E is such that for all
x, the Hausdorff measure ofME(x) is non-zero. As eachME(x) is compact, the Hausdorff measure
is finite, hence combined with this assumption we may normalize it to obtain a probability measure
onME(x) which is a weighted canonicalization κE(x) ∈WCCanG(X). Refer to Appendix E for
more discussion on the Hausdorff measure and on why this assumption is reasonable. Note that if
ME(x) is finite, then the normalized Hausdorff measure constructed agrees with the normalized
counting measure. Hence this construction is a generalization of the purely finite case.

For lower semi-continuous energy functions, we have the following characterization of which energies
give rise to continuous weighted canonicalizations.
Lemma H.6. (Lemma G.7) Let E be a lower semi-continuous energy function. Then κE is continuous
if and only if for every convergent sequence xn → x we have LiME(xn) =ME(x).

We have the following theorem telling us which weighted closed canonicalizations arise from energy
minimizations.
Theorem H.7. (Theorem F.3) Let κ ∈WCCanG(X) be such that κx is the normalized Hausdorff
measure on its support and for all y ∈ Gy, suppκy = suppκx ∩ Gx. Then there is an energy
function E such that κE = κ.

H.3 ALMOST EVERYWHERE CONTINUITY IS NOT AS IMPOSSIBLE

Canonicalization Let X be a space with a group G acting on it by homeomorphisms. Then a
continuous canonicalization function is a continuous G-equivariant map v : X → X which sends
any element x to an element of the orbit Gx. In Dym et al. (2024) it is shown that in general these
do not exist, as it is much too strong of a condition. In fact, because a continuous canonicalization
function will be a right-inverse to the quotient map X → X/G, a necessary condition to the existence
of v is that the map π1(X) → π1(X/G) induced by the quotient must be a surjection. If the
quotient X → X/G is a covering map then this only holds if G is trivial. For a concrete example
of this, we can consider quotienting R2 by the translation action of Z2. Then π1(R2) = 0 while
π1(R2/Z2) = Z2, showing that a continuous canonicalization function can’t exist.

On the other hand, global existence of a continuous canonicalization function is unnecessary for
machine learning applications. As long as we can construct a canonicalization function which is
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continuous away from a set of measure zero, this will suffice for our applications. Specifically we
introduce the notion of an almost everywhere (a.e.) continuous canonicalization function.

Definition H.5. An a.e. continuous canonicalization function is a function v : X → X such that
there exists a set S ⊂ X of measure-zero such that

(i) G(S) ⊆ S

(ii) v is continuous away from S

(iii) ∀x ∈ S,∃g ∈ G st. v(x) = gx

(iv) v is G-invariant

As with the regular canonicalization functions, we can use such a function v to construct equivariant
and invariant functions. Given an arbitrary function f : X → R it is easy to see that

Iv(f)(x) = f(v(x)) (103)

is G-invariant. Further it is easy to check that this sends a.e. continuous functions to a.e. continuous
functions.

The added freedom of the set S where v can take arbitrary values allows us to avoid the topological
restrictions that prevent the existence of globally continuous canonicalization functions. For a simple
example consider again the presentation of a torus as the quotient of R2 by the translation action.
Then an easy example of an a.e. continuous canonicalization function is the function

v(x, y) = ([x], [y])

where [a] is the decimal part of a real number a ∈ R. This is discontinuous whenever either x or y
are integers, but this set has measure zero.

For another example, consider the action of the orthogonal group O(d) on the space of matrices
Rd×n. The action preserves the rank of a matrix A ∈ Rd×n, so the subset of full rank matrices is
preserved by O(d). This is an open dense set, and if we take µ to just be the Lebesgue measure,
its complement has measure zero. So take S to be the set of matrices with non-full rank. Let A
be a matrix of full rank. Then one of the d × d minors of A is invertible, we may assume that it
is the first one. Thus we can write A = (A0A1) with A0 an invertible d× d matrix. Applying the
Gram-Schmidt procedure to A0, we obtain A0 = QR with Q orthogonal and R upper-triangular.
Now we take v(A) = QTA. Q is given by a polynomial in the elements of A, hence v is smooth.
Further, if O ∈ O(d), then we can decompose OA as OQR with OQ orthogonal. Hence,

v(OA) = (OQ)TOA = QTOTOA = QTA = v(A)

Therefore v is an a.e. continuous canonicalization function, with S the set of non-full rank matrices
in Rd×n.

Invariant Theory Finding and computing G-invariant functions is a rich topic which comes up
in many different situations. In algebraic geometry, one wants to find generators for G-invariant
polynomials, i.e. a set of G-invariant polynomials σ1, . . . , σn such that any other G-invariant
polynomial f can be written as

f = g(σ1, . . . , σn)

for some polynomial g. For linearly reductive groups acting on Cn, there is an algorithm for
computing these generators, which is described in Derksen & Kemper (2015).

In the smooth case, there is a classic result of Schwarz (Schwarz, 1975), telling us that if G is a
compact Lie group acting on a smooth manifold X , with generators for the space of G-invariant
polynomials being σ1, . . . , σn, then any G-invariant smooth functions f can be written as

f = g(σ1, . . . , σn)

where g is an some smooth function on Rn.
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Algorithm 2: Canonicalization function via Lie algebra descent
Data: Non-canonical input x
parameters :Nouter, Ninner, step-sizes ηi, Energy E : X → R
Result: Canonicalized input x̂ = g−1 · x; inverse of canonicalizing group element g−1;

canonicalizing group element g.
g−1 ← id;
steps = {};
for k = 0 . . .Nouter do

# Do gradient descent on ξ ∈ g
ξ ← 0;
for i = 0 . . . Ninner do

ξ ← ξ − ηi∇ξE(g−1 exp(−ξ) · x)
end
steps.append(ξ);
g−1 ← g−1 exp(−ξ) #Recalibrate to be in the right tangent plane

end
g ← id #Reconstruct the element g
for k = Nouter . . . 0 do

g ← exp(steps[k])g
end
return g−1 · x; g−1; g

I ALGORITHMS FOR SOLVABLE AND NON-SOLVABLE LIE ALGEBRAS

As discussed in the main body, in certain cases it is possible to significantly simplify the algorithmic
approach for minimizing Equation (2). We will distinguish to specific cases:

If the group is compact or the algebra is solvable In either of these cases, we are able to
parameterise the group globally using the Liealgebra. Denoting the basis as vi ∈ g, and the
coefficients as αi ∈ R, we have that we can represent any g ∈ G as

g = exp
∑

i

αivi,

if G is compact, or as

g =
∏

i

expαivi,

if the Lie algebra is solvable with vi ordered as to represent the nested subalgebras. In both of these
cases we can reduce the optimization to be done over the vector of coefficients α ∈ Rdim g. Both of
these can be viewed as specific types of global retraction mappings τ : g→ G. For this case we use
Algorithm 2

If the group is non-compact or the algebra is not solvable Such a setting is particularly important
for PDE-based groups, as these naturally result in groups that are non-compact, see section 4.3. In
this case it is no longer possible to find a global retraction, and a natural question arises - can the
infinitesimal actions ever be enough? It turns out that the answer is yes, quite generically, resulting in
Algorithm 1:

Proposition I.1 (Proposition 1.24 from Olver (1993)). Let G be a connected Lie group and U ⊂ G
a neighbourhood of the identity. Also, let Uk ≡ {g1 · g2 · . . . · gk : gi ∈ U} be the set of k-fold
products of elements of U . Then

G =

∞⋃

k=1

Uk.

In other words, every group element g ∈ G can be written as a finite product of elements of U .
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Algorithm 3: Canonicalization function via coordinate Lie algebra descent
Data: Non-canonical input x
parameters :N, step-sizes ηi, Energy E : X → R, τk if using proximal
Result: Canonicalized input x̂ = g−1 · x; inverse of canonicalizing group element g−1;

canonicalizing group element g.
g−1 ← id;
steps = {};
for k = 0 . . .N do

# Do coordinate descent on ξ ∈ g, by picking index j
j ← pick[0, . . . ,dim g]
λk ← argminλ E(g−1 exp(−λvj) · x) ;
# May be desirable to use proximal descent
# λk ← argminλ E(g−1 exp(−λvj) · x) + 1

2τk
∥λ∥2 ;

ξ ← λkvj
steps.append(ξ);
g−1 ← g−1 exp(−ξ) #Recalibrate to be in the right tangent plane

end
g ← id #Reconstruct the element g
for k = N. . . 0 do

g ← exp(steps[k])g
end
return g−1 · x; g−1; g

If the group only provides information about basis vector action In most examples of PDE
symmetries, integrating the action for a generic v ∈ g is impossible, and instead only the action with
respect to certain basis {vi} is known. In this case coordinate descent schemes must be used. For this
we use Algorithm 3.
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