
Published in Transactions on Machine Learning Research (04/2024)

E(n)-equivariant Graph Neural Cellular Automata

Gennaro Gala g.gala@tue.nl
Department of Mathematics and Computer Science
Eindhoven University of Technology, The Netherlands

Daniele Grattarola daniele.grattarola@gmail.com
Independent researcher

Erik Quaeghebeur e.quaeghebeur@tue.nl
Department of Mathematics and Computer Science
Eindhoven University of Technology, The Netherlands

Reviewed on OpenReview: https: // openreview. net/ forum? id= 7PNJzAxkij

Abstract

Cellular automata (CAs) are notable computational models exhibiting rich dynamics emerging
from the local interaction of cells arranged in a regular lattice. Graph CAs (GCAs) generalise
standard CAs by allowing for arbitrary graphs rather than regular lattices, similar to how
Graph Neural Networks (GNNs) generalise Convolutional NNs. Recently, Graph Neural
CAs (GNCAs) have been proposed as models built on top of standard GNNs that can be
trained to approximate the transition rule of any arbitrary GCA. We note that existing
GNCAs can violate the locality principle of CAs by leveraging global information and,
furthermore, are anisotropic in the sense that their transition rules are not equivariant to
isometries of the nodes’ spatial locations. However, it is desirable for instances related
by such transformations to be treated identically by the model. By replacing standard
graph convolutions with E(n)-equivariant ones, we avoid anisotropy by design and propose
a class of isotropic automata that we call E(n)-GNCAs. These models are lightweight,
but can nevertheless handle large graphs, capture complex dynamics and exhibit emergent
self-organising behaviours. We showcase the broad and successful applicability of E(n)-
GNCAs on three different tasks: (i) isotropic pattern formation, (ii) graph auto-encoding,
and (iii) simulation of E(n)-equivariant dynamical systems.

1 Introduction

The design of collective intelligence, i.e. the ability of a group of simple agents to collectively cooperate
towards a unifying goal, is a growing area of machine learning research aimed at solving complex tasks
through emergent computation (Ha & Tang, 2022). The interest in these techniques stems from their striking
similarity to real biological systems—such as insect swarms and bacteria colonies—and from their natural
scalability as distributed systems (Mitchell, 2009).

Cellular automata (CAs) (von Neumann, 1963) represent a natural playground for studying collective
intelligence and morphogenesis (shape-forming processes), because of their discrete-time and Markovian
dynamics (Turing, 1952). CAs are computational models inspired by the biological behaviors of cellular
growth. As such, they are capable of producing complex emergent global dynamics from the iterative, possibly
asynchronous application of localized transition rules (a.k.a. update rules), that can but do not need to have
an analytical formulation (Adamatzky, 2010).

Research on applying neural nets for learning and designing CA rules can be traced back to Wulff & Hertz
(1992), with subsequent notable contributions by Elmenreich & Fehérvári (2011), Nichele et al. (2018), and
Gilpin (2019). Recently, Neural Cellular Automata (NCAs) have been proposed as CAs with transition

1

https://openreview.net/forum?id=7PNJzAxkij

Published in Transactions on Machine Learning Research (04/2024)

rules encoded as—typically light-weight—neural networks. They have been successfully applied for designing
self-organizing systems for morphogenesis in 2D and 3D (Mordvintsev et al., 2020; Sudhakaran et al., 2021),
image generation and classification (Palm et al., 2022; Randazzo et al., 2020), reinforcement learning (Huang
et al., 2020), pathfinding and graph-diameter computation Earle et al. (2023)), and many other subdomains
of machine learning. This line of work has a common theme: It assumes a fixed discrete geometry for the CA
cells, which are typically arranged in n-dimensional, equispaced, and oriented lattices.

Subsequently, Grattarola et al. (2021) introduced GNCAs (Graph NCAs) by extending NCAs to the general
setting of graphs, and showed that Graph Neural Networks are natural and universal engines for learning any
desired transition rule. Their architecture, however, does not allow nodes to have hidden states, which have
been proven to be useful for encoding perception and evolution history (Mordvintsev et al., 2020). More
crucially, their formulation allows nodes to be aware of their global locations and sticks to a fixed frame of
reference, therefore ignoring the possible symmetries in the state space even for states representing spatial
information like position and velocity.

By building on E(n)-equivariant Graph Neural Networks (Satorras et al., 2021b), we elegantly overcome
these relevant issues and present GNCAs that respect isometries in the state space by design, leading to truly
self-organizing systems. Our contributions are twofold:

• We propose the first isotropic-by-design GNCAs, which we name E(n)-GNCAs. More specifically,
these models are E(n)-equivariant and, crucially, cannot globally localise the nodes. In this way,
unlike standard GNCAs, it is impossible to violate the core locality principle of CAs, making it
essential to solve a unifying, shared goal;

• We provide extensive guidelines on how to train E(n)-GNCAs and showcase their broad, successful
applicability on three different tasks: (i) pattern formation, (ii) graph auto-encoding, and (iii)
simulation of (self-organizing) E(n)-equivariant dynamical systems.

Our model and results represent a step forward in the design of self-organizing neural systems and can have
concrete impact in modeling and understanding natural systems governed by strong local interactions, ranging
from chemical to social phenomena (Ha & Tang, 2022).

2 Preliminaries and Related Work

We here introduce necessary concepts of and relevant prior work on cellular automata and (equivariant) graph
neural networks. These support and contextualize the model we propose.

Graphs A graph G = (V, E) consists of an unordered set of nodes V = {1, . . . , |V|} and a set of edges
E ⊆ V × V. Its neighbourhood function N is defined for every node i ∈ V by N (i) = {j ∈ V : (i, j) ∈ E}.
A graph can be equivalently defined with an adjacency matrix A ∈ {0, 1}|V|×|V|, where Aij is 1 if and only if
(i, j) ∈ E .

We can attach a state si ∈ S to each node i and an attribute eij ∈ A to each edge (i, j), where for now we
leave the state space S and attribute set A unspecified. A node state si typically consists of components such
as location xi, velocity vi, and (hidden) node features hi. Jointly for all nodes and edges, we write S—with
components X, V, and H—and E respectively, which implicitly carry with them the underlying graph.

2.1 Graph (Neural) Cellular Automata

Graph Cellular Automata A Graph Cellular Automaton (GCA) is a triple (G,S, τ), where G = (V, E) is
a graph and S is a discrete or continuous state space. The map τ : S × 2S → S is used as a local transition
rule to update the state si ∈ S of each of the graph’s nodes i ∈ V as a function of its current state and its
neighbour’s states:

s′
i = τ

(
si, {sj : j ∈ N (i)}

)
. (1)

We will compactly write S′ = τ(S) to indicate the synchronous application of τ to all nodes in G. Standard
CAs—like elementary CAs (Wolfram, 2018) and Conway’s Game of Life (Adamatzky, 2010)—use a simple

2

Published in Transactions on Machine Learning Research (04/2024)

grid for the underlying graph G, have integer-valued locations xi ∈ Zn and use a single binary value for their
features hi.

Anisotropy & Isotropy Of great importance for CAs are the properties anisotropy and isotropy: The
former implies being directionally dependent, as opposed to the latter, which indicates homogeneity in all
directions. Anisotropic transition rules account for not only the neighbor states of a given node, but also
their absolute position in a (vector) space of reference. Furthermore, anisotropic transition rules are not
invariant to rotations, translations and reflections of the states, thus resulting in nodes being oriented in a
specific direction and prohibiting the existence of differently oriented states of interest (Mordvintsev et al.,
2022; Grattarola et al., 2021). In contrast, isotropy allows transition rules to act similarly regardless of how
the nodes are oriented, thus allowing proper design of self-organising (and living) systems.

Neural Cellular Automata A neural cellular automaton (NCA) uses a light-weight neural net with
parameters θ for its transition rule τθ (Mordvintsev et al., 2020). In this setting, states are represented as
typically low-dimensional vectors. The differentiability of the transition rule allows for optimisation of its
parameters θ via backpropagation through time (Lillicrap & Santoro, 2019). Recent work has shown the
successful application of deep learning techniques for NCAs, showing that neural transition rules can be
efficiently learned to exhibit complex desired behaviors (Mordvintsev et al., 2020; 2022; Tesfaldet et al., 2022;
Grattarola et al., 2021; Palm et al., 2022).

Note that (N)CAs are unaware of time and their execution is not constrained by a finite time interval.
Furthermore, they can only be inspected via simulation from a state of interest and that represents a key
feature of these models. For instance, elementary CAs (Wolfram, 2018), e.g. Rule 30, can run forever and,
crucially, an arbitrary future state cannot be predicted from a current one unless via simulation, i.e. by
iteratively applying the transition rule up to the time step of interest.

As already pointed out by Tesfaldet et al. (2022), NCAs are not structurally equivalent to (deep) feed-forward
neural nets, where an acyclic directed computation graph induces a finite impulse response. Instead, NCAs
can be viewed as Recurrent Neural Networks (Rumelhart et al., 1986), where a cyclic directed computation
graph induces an infinite impulse response, enabling feedback and time-delayed interactions. Notably, RNNs
and CAs—and by consequence NCAs—are known to be Turing complete (Pérez et al., 2019).

2.2 Graph Neural Networks

Graph Neural Networks (GNNs) (Gori et al., 2005) have become the go-to method for representation learning
on graphs. The core functionality of GNNs is the message-passing scheme. Let si ∈ Rs represent the feature
vector of node i and eij ∈ Re the (possibly available) feature vector of edge (i, j). A message-passing layer
updates the features of node i as follows:

s′
i = γ

(
si,

⊕
j∈N (i) ϕ(si, sj , eji)

)
, (2)

where ϕ is the message function,
⊕

is a permutation-invariant operation to aggregate the set of incoming
messages, and γ is the node update function. The differentiable operators ϕ,

⊕
, and γ allow message-passing

layers to be stacked sequentially and then optimised with (stochastic) gradient descent.

2.3 E(n)-equivariant Graph Neural Networks

Our work builds on E(n)-equivariant GNNs (EGNNs) (Satorras et al., 2021b). In this setting, every graph
node i has coordinates xi ∈ Rn and node features hi ∈ Rh, and an edge (i, j) ∈ E can possibly have attributes
eij ∈ Re. EGNNs represent a class of GNNs explicitly designed to be permutation equivariant with respect
to the nodes (like any GNN), and translation, rotation and reflection equivariant with respect to nodes’
coordinates. The isometry group corresponding to these symmetries is called the Euclidean group E(n). We
will formally discuss the key features of EGNNs while presenting our method in Section 3.

E(n)-equivariant Graph Convolutions Given a graph G, node coordinates
{

xi

}
, node features

{
hi

}
and optional edge attributes

{
eij

}
an E(n)-equivariant Graph Convolution (EGC) sequentially performs:

3

Published in Transactions on Machine Learning Research (04/2024)

mij = ϕm(∥xi − xj∥2,hi,hj , eij) (3)
mi =

∑
j∈N (i) mij (4)

x′
i = xi + 1

|N (i)|
∑

j∈N (i)(xi − xj)ϕx(mij) (5)

h′
i = ϕh(hi,mi) (6)

where ϕm : R1+2h+e → Rm, ϕx : Rm → R1 and ϕh : Rh+m → Rh′ are MLPs. Concisely, we write
X′,H′ = EGC(X,H,E). If h′ = h, a skip connection can be used in Equation 6 as follows:

h′
i = ϕ+

h (hi,mi) = ϕh(hi,mi) + hi. (7)

E(n)-equivariant Graph Convolutions with Attention To assign different weights when aggregating
messages, we can use attention and replace Eq. 4 with:

mi =
∑

j∈N (i) ϕa(mij)mij (8)

where ϕa : Rm → [0, 1]1 is an MLP that takes a message mij as input and outputs its attention weight ϕa(mij).
We will use this formulation in Section 4.3. Note that, attention weights are particularly advantageous when
a very dense (possibly fully connected) graph is used (Satorras et al., 2021b; Vaswani et al., 2017).

E(n)-equivariant Graph Convolutions with Velocity When nodes represent bodies with velocities,
we can extend the previous formulation to explicitly account for velocity. Given node velocities

{
vi

}
we can

replace the coordinate update in Equation 5 with the following two steps:

v′
i = ϕv(hi, ∥vi∥)vi + 1

|N (i)|
∑

j∈N (i)(xi − xj)ϕx(mij) (9) x′
i = xi + v′

i (10)

where ϕv : Rh+1 → R1 is an MLP. Without affecting equivariance, and different from Satorras et al. (2021b),
ϕv has not only hi, but also ∥vi∥ as an argument, since we found it to be very beneficial in practice (cf.
Section 4.3). Concisely, we write X′,V′,H′ = EGC(X,V,H,E).

E(n)-equivariant GNNs An E(n)-equivariant GNN is a stack of ℓ ≥ 1 EGCs applied sequentially.
Concisely, we write X′,H′ = EGNNℓ(X,H,E) to denote the application of an EGNN with ℓ layers.

3 E(n)-equivariant Graph Neural CAs

Our work builds on the connection between isotropic GCAs and EGNNs. This becomes apparent by comparing
Equation 1 with Equations 5 and 6. Specifically, we consider a setting in which a neural parametrised transition
rule τθ is implemented with a single E(n)-equivariant Graph Convolution (EGC) acting on a continuous state
space S ≡ Rn+h, or S ≡ R2n+h when velocity is included. We call such model E(n)-equivariant GNCAs,
E(n)-GNCAs for short. Similarly to standard CAs, τθ is repeatedly applied over time:

X′,H′ = τ t
θ([X,H]) = τθ ◦ · · · ◦ τθ︸ ︷︷ ︸

t times

([X,H]), (11)

where X represents input node coordinates and H represents input node features. Note that (i) to avoid
clutter in Equation 11 we did not consider possibly available edge attributes E, (ii) a similar formulation is
possible when velocities V are available (cf. Equation 9), and (iii) the dependency of τθ on a static graph G
is left implicit in order to keep notation uncluttered. The overall state configuration S of an E(n)-GNCA is
defined as S = [X,H], or S = [X,H,V] when velocity is available, and consequently we denote the t-times
application of the model transition rule as S′ = τ t

θ(S). Note that the transition rules we consider is 1-step
Markovian, meaning that automaton state at step t+ 1 is fully determined by the state at step t.

On the single-layered architecture Using a single layer for τθ entails (i) optimizing less parameters and
(ii) having the strictest possible locality bottleneck, i.e. nodes are exclusively influenced by their immediate
surroundings and do not have direct access to the global state of the entire system. In fact, using more
layers would make the tasks we will study (cf. Section 4) less local—and less challenging—because the model

4

Published in Transactions on Machine Learning Research (04/2024)

can account for a larger and more informative receptive field when transitioning from St to St+1. This is
a common design choice in NCA literature (Mordvintsev et al., 2020; 2022; Palm et al., 2022; Grattarola
et al., 2021). However, a layered EGNN is still a viable approach for τθ if we want to account for higher-order
neighbours when performing a state update, as in the artificial life system Lenia (Chan, 2019).

Figure 1: E(n)-GNCA commutative diagram: For
any number of steps t the transition rule τθ is
run, output coordinates X′ and node features
H′ are respectively E(n)-equivariant and E(n)-
invariant to isometries of input coordinates X.
Node features are represented with 3 colored dots.

E(n)-equivariance, E(n)-invariance and Isotropy
Analogously to plain EGNNs (Satorras et al., 2021b), for
any positive integer t ∈ N+, orthogonal matrix Q ∈ Rn×n

and translation vector b ∈ Rn, our neural transition rule
τθ satisfies

ψ(X′),H′ = τ t
θ([ψ(X),H]), (12)

where X′,H′ = τ t
θ([X,H]) and ψ(X) = QX + b is short-

hand for (Qx1 + b, . . . , Qx|V| + b) 1. The function ψ is an
isometry, and represents a rotation-reflection-translation
of the coordinates. As such, ψ preserves the Euclidean
distance between every pair of nodes. In other words,
applying ψ to input coordinates X and then running tran-
sition rule τ t

θ will give the same results as first running
τ t

θ and then applying ψ to X′, as shown in Figure 1. As
a consequence, output coordinates X′ and output node
features H′ are respectively E(n)-equivariant and E(n)-
invariant to isometries of input coordinates X. Intuitively,
these properties are a consequence of only processing rel-
ative positions and never being aware of absolute node
locations (cf. Equations 3 and 5).2 3 The E(n)-invariance
of the node features and the E(n)-equivariance of the node
coordinates make E(n)-GNCAs isotropic by design.

Hidden States & Perception Similarly to Mordvintsev et al. (2020; 2022), Palm et al. (2022), and Chan
(2019), but different from Grattarola et al. (2021), our model has the necessary inductive bias for modelling
hidden states, as it offers location-independent node features H. These features are crucial because they can
encode past evolutionary history as well as higher-order geometric information. This is not possible with
original GNCAs, where node locations represent the whole state of the system (i.e. X = S), without hidden
states allowing to encode other kind of information. As Mordvintsev et al. (2020), we interpret our hidden
states as a signal mechanism for orchestrating morphogenesis: All nodes share the same genome, i.e. the
transition rule, and only differ from the information encoded by the signaling they receive, emit, and store
internally, i.e. their node features. In case node features H are not available in advance, we can either set
them to 1 or randomly initialize them, and give the model the freedom to learn and use them while evolving.
Further, messages

{
mij

}
(cf. Equation 3) are similar in spirit to the perception vectors of Mordvintsev

et al. (2020; 2022), as they encode what nodes perceive of the environment from communicating with their
neighbors.

Given (i) the interest in what would happen as t → ∞ and (ii) the recurrent architecture of our model, we
normalise node feature H after each transition rule application so as to mitigate problems like over-smoothing,
exploding/vanishing gradients, and training instabilities. Specifically, after every transition rule application,
we normalise node features H with either PairNorm (Zhao & Akoglu, 2020) or NodeNorm (Zhou et al., 2021),
helpful parameter-free normalisation techniques for deep GNNs. Furthermore, we use the hyperbolic tangent
TanH() as non-linear activation function—a common design choice in RNNs (Lipton et al., 2015)—and the
skip connection defined in Equation 7, which has proven to be beneficial for deep GNNs (Xu et al., 2021;
Zhao & Akoglu, 2020).

1Note that if velocity V is involved, it would be transformed as QV.
2Satorras et al. (2021b, Appendix) provide a formal proof of the equivariance/invariance of EGNNs.
3In the image domain, similar behavior is exhibited by CNN-based NCAs: Rotating the perceptive field of the Sobel

convolutional kernels leads to equivalently rotated target images (Mordvintsev et al., 2020, experiment 4).

5

Published in Transactions on Machine Learning Research (04/2024)

Global propagation from local interactions Message-passing GNNs require ℓ layers to allow communi-
cation between nodes that are ℓ-hops away. Several tasks in graph ML tend to be very challenging when
the diameter of the underlying graph G is larger than the number of layers used, and that is because the
receptive field of the network may not comprise the whole graph (Zhao & Akoglu, 2020; Alon & Yahav,
2021). Further, to avoid severe over-smoothing (Li et al., 2018), most popular GCN-style networks (Kipf
& Welling, 2017) tend to be shallow, with narrow receptive fields, leading to under-reaching (Wenkel et al.,
2022). To avoid this limitation, it is common to exchange messages among all nodes and provide the edge
information (i, j) ∈ E as a Boolean flag within the edge attributes (Liu et al., 2019; Satorras et al., 2021b;a).
This is computationally quadratic in the number of nodes, and therefore very challenging and computationally
expensive when processing large graphs.

In our setting, due to the 1-step Markovian property of τθ, the effective receptive field of E(n)-GNCA localized
message-passing grows larger with each state update until eventually encompassing the whole graph. In this
way global propagation of information arises from localized interactions of nodes. In other words, iterative
local message-passing circumvents the quadratic complexity and related challenges of exchanging messages
among all nodes at each step. This self-organizing process does not require any external control or centralized
leader: nodes communicate with their neighbors to make collective decisions about the final configuration
of the nodes. This globally consistent and complex behaviour, which arises from strictly local interactions,
is a particular feature of (N)CAs as we show in our experiments. Finally, we emphasise that—despite the
localized model computation—we are allowed to express global information within the loss function used for
training. In other words, the training signal can account for the distance between two nodes that are actually
not connected via an edge, as we will do in Equations 13 and 15.

On locality & time Very often in the literature, GNN computation graphs are decoupled from the
input graphs. For instance, Satorras et al. (2021b) and Satorras et al. (2021a) use layered EGNNs with
fully-connected computation graphs despite input graphs being sparse (e.g. molecules). E(n)-GNCAs, instead,
always use sparse computation graphs. Moreover, GNN-based diffusion models—and often also neural
simulator (Chen et al., 2018)—are aware of time, which is usually included in node features via concatenation
(Hoogeboom et al., 2022) and that allows training using mini-batches of sub-trajectories extracted at different
time steps (Yang et al., 2022). E(n)-GNCAs are instead unaware of time, making tasks only solvable through
simulation from an initial state of interest. These are fundamental design choices which highly impact the
tasks we will study. Finally, note that diffusion-based models and neural simulators often only care about a
finite rollout, whereas, as we show in our experiments, we care about open-endedness, i.e. infinite rollouts.

4 Experiments

We showcase the successful applicability of E(n)-GNCAs in three different tasks: (i) pattern formation, (ii)
graph autoencoding and (iii) simulation of E(n)-equivariant dynamical systems. We set h = 16 (hidden
dimension) and m = 32 (message dimension) throughout all experiments, leading to an overall automaton size
of only 5K parameters irrespective of the coordinate dimension being used. We are grateful to the developers
of the main software packages used for this work: Pytorch (Paszke et al., 2019), PyTorch Geometric (Fey
& Lenssen, 2019) and Lightning (Falcon & The PyTorch Lightning team, 2019). Our code is available at
github.com/gengala/egnca. All experiments are run on an NVIDIA Quadro P1000 16GB, and each run does
not take more than 2.5 hours to complete.

4.1 Pattern Formation

Inspired by prior work on CA morphogenesis (Mordvintsev et al., 2020; 2022; Grattarola et al., 2021), we
show how E(n)-GNCAs can be trained to converge to a given fixed target state. In our case, the target is a
sparse geometric graph G that visually defines a recognisable 2D or 3D shape. Specifically, the goal is to
learn a transition rule τθ that morphs randomly initialised coordinates X to a given target point cloud X̂ by
convolving over G and assuming a prior 1-to-1 correspondence between nodes in X and X̂.

6

https://github.com/gengala/egnca

Published in Transactions on Machine Learning Research (04/2024)

t = 0 INV = 1.78143 t = 8 INV = 1.31179 t = 16 INV = 0.00684 t = 24 INV = 0.00101 t ′ = 24 INV = 0.00969 t = 210 INV = 0.00021

t = 0 INV = 2.34665 t = 8 INV = 1.19499 t = 16 INV = 0.00655 t = 24 INV = 0.00212 t ′ = 24 INV = 0.00327 t = 210 INV = 0.00031

t = 0 INV = 2.35641 t = 8 INV = 2.14854 t = 16 INV = 0.00400 t = 24 INV = 0.00258 t ′ = 24 INV = 0.00472 t = 210 INV = 0.00219

Figure 2: E(n)-GNCA convergence to a 2D grid (top), a 3D torus (middle) and the Stanford geometric bunny
(bottom). The first 4 columns show E(n)-GNCA states at different time steps. The second to last column
shows either a local or global damage of coordinates at t = 24. Finally, the last column shows regeneration
and persistency abilities by running the transition rule for 1000 extra steps after perturbation has occurred.
Note that, if we were to apply any isometry at any point in time, convergence and persistency would still be
guaranteed. We report LINV (cf. Equation 13) for the state in each figure. The nearest-neighbor edges of the
Stanford bunny are not shown so as to avoid clutter. We report complete trajectories in Appendix A. Best
viewed digitally and zoomed in.

E(n)-invariant objective Contrary to Grattarola et al. (2021), we are not interested in a specific orientation
of X̂ and therefore we do not optimise the model by minimising the MSE between coordinates reached by
the model and target coordinates, i.e. ∥X′ − X̂∥2 where [X′,H′] = τ t

θ([X,1]). The former, moreover, would
not be a suitable objective for our automata since it accounts for specific global locations which are unknown
to our model that only uses relative positions during its computation (cf. Equations 3 and 5). Therefore,
for every pair of nodes (i, j) ∈ V × V, we minimise the MSE between their distance in the model’s final
configuration and the target one. Formally, we define an E(n)-invariant objective as follows:

LINV = 1
|V|2

∑
(i,j)∈V×V

(∥x′
i − x′

j∥ − ∥x̂i − x̂j∥)2. (13)

This objective accounts for all pairwise distances, as this is necessary to uniquely identify the target state,
which cannot be done if we only considered the edges of the graph.4 However, this does not make the
model less local: Even if global information is used in the loss function, the model itself still only uses local
communication to perform the task. Equation 13 provides a much weaker supervision signal than the one
by Grattarola et al. (2021), therefore leading to a much more challenging task. That is because in their
model every node is aware of its global location and has only a single constraint to satisfy, i.e. being
close to a specific global location. Moreover, being aware of global location violates the locality principle of
CAs and makes pattern formation rather easy to hack: We found that a 3-layer MLP with Fourier features
(Tancik et al., 2020) can transform any given initial state to a target one in a few optimisation steps, without
relying on a neighborhood graph. In our case, however, nodes are not aware of their global location, and

4For instance, consider a simple square: If we only minimize for the distances of its edges, the model could converge to a
state whose loss value is zero but that does not form a square (e.g., when two opposite vertices share the same location).

7

Published in Transactions on Machine Learning Research (04/2024)

have |V| − 1 constraints to satisfy, i.e. its distances w.r.t. all the other nodes in G, not only its neighbors.
Interestingly, optimizing for Equation 13 results in learning a transition rule τθ such that [X′,H′] = τ t

θ([X,1])
and X′ = ψ(X̂) for any arbitrary isometry ψ. In other words, our objective gives the model the freedom to
converge in any possible orientation of the target. In practice, one could avoid evaluating O(|V|2) distances
by only considering a randomly sampled subset of node pairs when computing Equation 13. Our objective is
similar in spirit to the one by Mordvintsev et al. (2022), where a rotation-reflection invariant objective is used
in the image domain. Similarly, Equation 13 is an E(n)-invariant loss function that uniquely characterizes a
target point cloud up to isometries when it is equal to zero, and fits well with the model isotropy. However,
the objective is not node-permutation invariant as it relies on a 1-to-1 correspondence between initial and
target nodes: If the initial and target states were equal (up to isometries) but the correspondence between
nodes did not match, the loss value would not be zero. Although this represents a limitation of the current
loss function and may lead to sub-optimal dynamics, the feasibility of the task still entirely depends on local
communication, which represents the core of our experimental investigation.

Training We mostly follow the experimental setup in (Mordvintsev et al., 2020; Grattarola et al., 2021).
First, we create a large pool (a.k.a. cache) of K states {S(k)}K

k=1 = {[X(k),H(k)]}K
k=1, each initialised as

[X,1], where X ∼ N (0, σ1). Then, we randomly sample a mini-batch from the pool and use it as input to
transition rule τθ, which runs for a number of time steps t sampled uniformly from the interval [15, 25]5. Once
a mini-batch is processed, we apply backpropagation through time (BPTT) (Lillicrap & Santoro, 2019) to
update parameters θ according to Equation 13. To promote persistency, we use the pool as a replay memory,
i.e. once an optimisation step is performed, we replace the pool state S(k) with τ t

θ(S(k)) for every S(k) in the
current mini-batch. This allows further training iterations to account for states that already result from a
repeated application of the transition rule, thus encouraging the model to persist in the target state after
reaching it. Furthermore, before processing a mini-batch, the state with the highest loss value is replaced with
the initial state [X,1] so as to both stabilise training and, more importantly, avoid catastrophic forgetting.
Finally, to also promote regeneration, we perturb half of the point clouds in the batch by adding Gaussian
noise: A part is perturbed globally and another only locally.

Results We consider 8 different geometric graphs, and succeed with all of them, although only a repre-
sentative subset is reported in the main text due to limited space: A 2D grid (256 nodes), a 3D torus (256
nodes) and the Stanford bunny (2503 nodes) (Defferrard et al., 2017). Figure 2 shows (part of) E(n)-GNCA
trajectories as well as the loss value (Equation 13) w.r.t. the coordinates at each time step shown. Remarkably,
our model learns to converge to a stable attractor of the given geometric graph, i.e. the model can maintain
the target state after any number of time steps t > 15, as shown in the last column of Figure 2. Furthermore,
the model exhibits regeneration abilities by being robust against perturbations of the nodes. More details,
animations and results can be found in Appendix A and supplementary material.

On Isotropic Pattern Formation Isotropy is a well-established property in CAs and it is very desirable
in our context. In fact, isotropic pattern formation—besides being more challenging to achieve—is more
general and subsumes its anisotropic counterpart. This means that if directional dependence is needed, we
could manipulate the automata such that the target states will be placed at any desired orientation. This is
not possible with original GNCAs, given their awareness of global locations, which violates locality. We refer
the reader to Figure A.9 for a visual example of the concept above.

4.2 Graph autoencoding with Cellular Automata

In this section, we show how E(n)-GNCAs can be deployed as performant Graph AutoEncoders (GAEs) (Kipf
& Welling, 2016), despite their single-layered architecture and recurrent computation. In graph autoencoding
one has available a set of (possibly featureless) graphs {Gn} and wants to learn node representations that can
be used to reconstruct the underlying ground-truth adjacency matrices (Satorras et al., 2021b; Liu et al.,
2019). Specifically, we will deal with graph autoencoding in Euclidean space, i.e. two nodes will be connected

5The interval considered represents a trade-off between computational complexity, stability during training, and a sufficient
number of time steps to allow the model to learn dynamical patterns for the desired behavior.

8

Published in Transactions on Machine Learning Research (04/2024)

if their distance is below or equal to a given threshold t̂, which can be fine-tuned on the validation set after
training. For this task, we report more details and additional results in Appendix B.

Datasets We consider five datasets of featureless graphs of varying size, connectivity and properties: comm-
s (100 graphs, 2 communities, 12–20 nodes) (Liu et al., 2019), planar-s (200 planar graphs, 12–20 nodes),
planar-l (200 planar graphs, 32–64 nodes), sbm (200 stochastic block model graphs, 2–5 communities,
44–187 nodes) (Martinkus et al., 2022) and proteins (918 graphs, 100–500 nodes) (Dobson & Doig, 2003).
Figure B.10 shows some examples of such graphs. Planar graphs are generated by first uniformly sampling
2D points in [0, 1]2 and then applying Delaunay triangulation. We split all datasets into training (80%),
validation (10%) and test (10%) sets.

t = 0 BCE = 13.28 t = 4 BCE = 9.01 t = 8 BCE = 6.60 t = 16 BCE = 0.39 t = 24 BCE = 0.19 t = 1000 BCE = 0.18

Figure 3: E(n)-GNCA coordinates at different time steps for a test-set graph in comm-s. In each figure, we
plot the ground-truth edges and report the binary cross-entropy (cf. Equation 15).

Training For each training graph Gn we create a small pool of K states {[X(n,k),H(n,k)]}K
k=1. Every

H(n,k) is again initialised as 1 whereas input node coordinates X(n,k) now follow an isotropic Gaussian
N (0, σ1).6 As such, the model can be viewed as a generative model conditioned on G. A mini-batch is now
created by first considering a random subset of training graphs and then sampling a random pool state each.
Every mini-batch state S(n,k) is then run by τθ for t ∈ [t1, t2] random time steps, eventually reaching state
[X′,H′] = τ t

θ(S(n,k)). Finally, we apply an E(n)-invariant decoding scheme based on distances between nodes
X′ so that the reconstructed soft adjacency matrix Â ∈ [0, 1]|V|×|V| is defined as:

Âij = 1
1 + exp(δ2(∥x′

i − x′
j∥2

2−δ1)) ∈ [0, 1], (14)

where δ1 and δ2 are learnable positive scalars. The model is trained by minimising the binary cross-entropy
(BCE) between the ground-truth adjacency A and the predicted soft one Â, namely:

LBCE = −
∑

ij
Aij ln(Âij) + (1 −Aij) ln(1 − Âij). (15)

Equation 15 can be seen as a more relaxed version of Equation 13, although it still requires the 1-to-1
correspondence, but is E(n)-invariant. Furthermore, we require our autoencoders to be persistent, namely, it
should always be possible to correctly decode a graph G after a sufficient number of time steps. This is a
particular feature of our model, that differ from standard autoencoders, which are not trained to be stable
over time. To promote persistency, we use a multi-target replay strategy—similar to the one-target version in
Section 4.1—so as to ensure an adequate exploration of the state space during training. Specifically, after
every optimisation step, we replace the reached state [X′,H′] with the pool state that originated it, and
randomly re-initialise pool states after a given number of maximum replacements so as to avoid catastrophic
forgetting.

A 3D demo In a first demo experiment, we use comm-s and planar-s and set n = 3 so as to visualise
automaton trajectories in 3D. The experiment shows persistent autoencoding, conditional generation of 3D
point clouds and graph drawing abilities (Eades, 1984; Tamassia, 2013). We randomly sample t in [15, 25]

6Injecting Gaussian noise as initial node features has originally been proposed by Liu et al. (2019), and then also used as a
way of overcoming the symmetry problem and over-smoothing (Satorras et al., 2021b; Sato et al., 2021; Godwin et al., 2022).

9

Published in Transactions on Machine Learning Research (04/2024)

E(n)-GNCA EGNN4 EGNN30 GNCA GNN4 GNN30

comm-s 1.00±0.00 0.91±0.03 1.00±0.00 0.95±0.01 0.88±0.04 1.00±0.03
planar-s 0.99±0.01 0.83±0.01 0.99±0.02 0.88±0.01 0.82±0.05 0.98±0.03
planar-l 0.98±0.01 0.88±0.35 0.99±0.03 0.85±0.09 0.84±0.25 0.97±0.05
proteins 0.95±0.04 0.84±0.01 0.97±0.03 0.82±0.08 0.82±0.03 0.95±0.05

sbm 0.92±0.02 0.76±0.01 0.96±0.04 0.86±0.11 0.75±0.07 0.93±0.03

Table 1: Autoencoding results. F1 scores (the higher the better) averaged over 10 different runs. (E(n)-)
GNCAs are evaluated at time t = 100. More details can be found in Figure B.11

at each optimisation step. We reach an average and persistent F1 score of 0.98 and 0.96 for comm-s and
planar-s respectively over 10 different runs. Figure 3 shows the learned dynamics of our autoencoder.

Autoencoding Results E(n)-GNCA autoencoders can scale to higher Euclidean spaces and significantly
larger graphs, without increasing the size of the models nor losing persistency. We set n = 8 for all datasets
except sbm where it is set to 24, and randomly sample t in [25, 35]. We compare against standard 4- and
30-layered GNNs (Kipf et al., 2018), 4- and 30-layered EGNNs, and GNCAs (Grattarola et al., 2021). For a
fair comparison, we do not allow fully connected GNN computational graphs, as opposed to Satorras et al.
(2021b), but instead use as computation graph the same graph to autoencode. Table 1 reports autoencoding
results. Remarkably, E(n)-GNCA outperforms a 4-layered (E)GNN and achieves a comparable level of
performance of a 30-layer (E)GNN. Several examples of graph reconstructions are available in Figure B.10.
Different from standard (E)GNN autoencoders, E(n)-GNCA autoencoders also exhibit persistent dynamics
(cf. Figure B.11) for all datasets except sbm, which, given the variable clustered topology, represents the
most challenging dataset.

E(n)-GNCAs are multi-target E(n)-GNCA autoencoders are multi-target as they can reach many
target states, contrary to what is shown in our previous task and previous work (Grattarola et al., 2021;
Mordvintsev et al., 2020; 2022). We suppose this to be the consequence of a more relaxed training objective
(cf. Equation 15) than the previous one (cf. Equation 13). In graph autoencoding, in fact, target states are
not explicitly given but rather a condition that they must satisfy is (cf. Equations 14 and 15). Therefore,
since we are only interested in reconstructing the ground-truth A via Equation 14, E(n)-GNCAs can converge
to any possible configuration from which decoding is possible.

4.3 Simulation of E(n)-equivariant dynamical system

We show the applicability of E(n)-GNCAs as simulators of E(n)-equivariant dynamical systems. The goal is to
learn the transition rule underlying observed trajectories. Specifically, we train E(n)-GNCAs to simulate the
Boids Algorithm (Reynolds, 1987), a Markovian and distributed multi-agent system designed to simulate flocks
of birds using a set of hand-crafted rules. The graph G is obtained as a fixed-radius nearest neighbourhood of
the nodes at each time step—G changes dynamically over time. This dynamical system (i) can be formulated
as a GCA (cf. Equation 1) and (ii) is E(n)-equivariant. This task is very different from the previous ones as
we want to approximate existing dynamics and not discover some that converge to a given state.

Dataset We extend the 2D simulation of Grattarola et al. (2021) to a 3D space. We create a dataset of
500 trajectories using the ground-truth simulator. Each trajectory has a duration of 500 time steps and is
obtained by evolving 100 boids initialised with random positions and velocities.

Training We use attention weights (cf. Equation 8) and Equations 9 and 10 to explicitly account for
velocities. We create a mini-batch of randomly sampled sub-trajectories of length L = 20. For each mini-batch
sub-trajectory [X(ℓ),V(ℓ)]Lℓ=1 we input τθ with state S(1) = [X(1),V(1),H(1)] and run it for L − 1 steps,
obtaining predicted states [X′(ℓ),V′(ℓ),H′(ℓ)]Lℓ=2. Finally, we optimize the MSE of the estimated velocities
with the ground truth ones, i.e.

10

Published in Transactions on Machine Learning Research (04/2024)

true t = 0 true t = 20 true t = 50 true t = 100 true t = 200 true t = 300

true t = 0 pred t = 20 pred t = 50 pred t = 100 pred t = 200 pred t = 300

Figure 4: Boids simulation. First (Second) row shows a ground-truth (predicted) trajectory at different time
steps. E(n)-GNCA learns a flocking behaviour similar to the target system, although with smoother and less
precise trajectories.

LMSE =
L∑

ℓ=2
∥V(ℓ) − V′(ℓ)∥2. (16)

As Satorras et al. (2021b), node features H(1) are initialised as the output of a linear layer taking ∥V(1)∥ as
input.

Results As already pointed out by Grattarola et al. (2021), one key aspect of simulating continuous (and
chaotic) dynamical systems with GNCAs is that small errors in prediction will quickly accumulate, making it
almost impossible for the model to perfectly simulate the true dynamics. Therefore, despite reaching a small
validation error, the model cannot perfectly approximate the true trajectories. However, following Grattarola
et al. (2021), we can quantitatively evaluate the quality of the learned transition rule by using the sample
entropy (SE) (Richman & Moorman, 2000) and correlation dimension (CD) (Grassberger & Procaccia, 1983),
two measures of complexity for real-valued time series. On average, ground-truth trajectories (of length 500)
report an average SE and CD of 0.04 ± 0.01 and 1.02 ± 0.22 respectively, whereas E(n)-GNCA trajectories
report 0.04 ± 0.02 and 1.08 ± 0.15 for the same measures. The closeness of the measures indicates that
E(n)-GNCA trajectories generate an amount of information comparable to the ground-truth ones, therefore
capturing the essence of the underlying rule, Figure 4.

Note that original GNCAs also succeed at capturing the Boids rule. However, them being aware of the global
locations, the task is easier to solve. Crucially, moreover, the GNCA model would be unable to work in
different reference frames except for the one used during training (e.g. [0, 1]3), while our model can transfer,
by design, to new frames.

5 Discussion

We introduced E(n)-GNCAs, isotropic automata showing and promising a wide range of applicability. E(n)-
GNCA local interactions have been proven powerful enough to reach globally consistent target conditions and
capture complex dynamics. To the best of our knowledge, this is the first work proposing isotropic-by-design
graph neural cellular automata.

Scope of the paper This work does not focus on (E)GNNs, nor physical simulation, nor graph autoencoding.
Instead, our focus is on designing and learning CA rules, as well as showcasing the properties of local, isotropic,

11

Published in Transactions on Machine Learning Research (04/2024)

open-ended and distributed self-organizing systems. To give context, note that in NCA papers (Mordvintsev
et al., 2020; Palm et al., 2022), the focus is not on image generation but image generation through emergent
computation. All our experiments are designed to answer the crucial question underlying CAs: How can we
design a CA transition rule that behaves according to some high-level specification (e.g. forming a grid)?
Since in general the answer to this question requires some (impossible) complex engineering, recent literature
leveraged neural networks to learn these rules.

Isn’t it just an EGNN layer? We make no claim of novelty in the design of EGNN itself (except
Equation 9), but rather in the way that EGNN can be trained and used to implement the open-ended
local computation that characterizes CAs. However, our model differs from EGNNs in very fundamental
aspects like the training procedure, the open-ended inference, and the uncommon single-layered architecture.
Moreover, by definition, NCAs are CAs in which the transition rule is parametrized by a neural net: In
original NCAs (Mordvintsev et al., 2020; Palm et al., 2022) (resp. GNCAs (Grattarola et al., 2021)), the
neural net is a composition of convolutional layers (resp. message-passing layers). In our paper, the neural
net consists of an EGNN layer. The chosen neural net endows the NCA with inductive biases that allow it to
model specific transition rules and self-organizing systems. The study of these families lies at the core of the
NCA literature.

Broader scope The possible implications of our work are evident when considering that distributed and
self-organizing systems are ubiquitous both in nature and technology (Collinet & Lecuit, 2021). Furthermore,
isometries are very common in dynamical systems (e.g. swarming (Reynolds, 1987), particle simulations
(Kipf et al., 2018)), active matter (Cichos et al., 2020), and in many practical applications (e.g. point cloud
processing, 3D molecular structures (Ramakrishnan et al., 2014)). Our model and its inductive biases are
particularly useful in all these scenarios, since they allow to learn and discover—rather than hand-design—the
transition rules underlying these systems, while accounting for symmetries.

Notably, one of the most remarkable demonstrations of self-organisation can be found in swarm robotics
and active matter modeling (Brambilla et al., 2013; Vicsek et al., 1995). Nowadays, we can program tiny
robots to locally interact and form a given pattern, as Mergeable Nervous Systems (Mathews et al., 2017) and
Kilobots (Rubenstein et al., 2012) demonstrated. To the best of our knowledge, such programs are currently
designed by humans. Our work can enable a line of research in which GNNs further unlock the power of
GCAs to implement a desired behavior through differentiable, distributed and emergent computation.

Limitations & Future Work Training E(n)-GNCAs is not easy: We faced problems such as exploding
gradients, which we mitigated using weight decay and gradient clipping. Furthermore, the 1-to-1 correspon-
dence between initial and target nodes does not make Equations 13 and 15 node-permutation invariant, and
this represents a sub-optimal design choice as it leads to abrupt dynamics especially in the first time steps.
In future work, we aim to drop this correspondence by adopting ideas from Optimal-Transport (Peyré &
Cuturi, 2019; Alvarez-Melis et al., 2019). Furthermore, we plan to use more expressive GNNs (Joshi et al.,
2023; Thomas et al., 2018; Batatia et al., 2022; Fuchs et al., 2020), and scale to even bigger graphs using
structured seeds (Mordvintsev et al., 2022).

Acknowledgments

The Eindhoven University of Technology authors received support from their Department of Mathematics
and Computer Science and the Eindhoven Artificial Intelligence Systems Institute.

References
Andrew Adamatzky. Game of life cellular automata, volume 1. Springer, 2010. doi:10.1007/978-1-84996-217-9.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. In
International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
i80OPhOCVH2.

12

https://doi.org/10.1007/978-1-84996-217-9
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2

Published in Transactions on Machine Learning Research (04/2024)

David Alvarez-Melis, Stefanie Jegelka, and Tommi S Jaakkola. Towards optimal transport with global
invariances. In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1870–1879.
PMLR, 2019.

Ilyes Batatia, David P Kovacs, Gregor Simm, Christoph Ortner, and Gábor Csányi. Mace: Higher order
equivariant message passing neural networks for fast and accurate force fields. Advances in Neural
Information Processing Systems, 35:11423–11436, 2022.

Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm robotics: a review from the
swarm engineering perspective. Swarm Intelligence, 7(1):1–41, 2013. doi:10.1007/s11721-012-0075-2.

Bert Wang-Chak Chan. Lenia: Biology of artificial life. Complex Systems, 28(3):251–286, 2019.
doi:10.25088/ComplexSystems.28.3.251.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

Frank Cichos, Kristian Gustavsson, Bernhard Mehlig, and Giovanni Volpe. Machine learning for active
matter. Nature Machine Intelligence, 2(2):94–103, 2020. doi:https://doi.org/10.1038/s42256-020-0146-9.

Claudio Collinet and Thomas Lecuit. Programmed and self-organized flow of information during morphogenesis.
Nature Reviews Molecular Cell Biology, 22(4):245–265, 2021. doi:10.1038/s41580-020-00318-6.

Michaël Defferrard, Lionel Martin, Rodrigo Pena, and Nathanaël Perraudin. PyGSP: Graph signal processing
in Python, 2017. URL https://github.com/epfl-lts2/pygsp/.

Paul D. Dobson and Andrew J. Doig. Distinguishing enzyme structures from non-enzymes without alignments.
Journal of Molecular Biology, 330(4):771–783, 2003. doi:10.1016/S0022-2836(03)00628-4.

Peter Eades. A heuristic for graph drawing. Congressus numerantium, 42:149–160, 1984.

Sam Earle, Ozlem Yildiz, Julian Togelius, and Chinmay Hegde. Pathfinding neural cellular automata, 2023.

Wilfried Elmenreich and István Fehérvári. Evolving self-organizing cellular automata based on neural network
genotypes. In Self-Organizing Systems, volume 6557 of Lecture Notes in Computer Science, pp. 16–25.
Springer, 2011. doi:10.1007/978-3-642-19167-1_2.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, 3 2019. URL https://github.com/
Lightning-AI/lightning. Version 1.4.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019. doi:10.48550/arXiv.1903.02428.

Joël Foramitti. AgentPy: A package for agent-based modeling in Python. Journal of Open Source Software,
6(62):3065, 2021. doi:10.21105/joss.03065.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d roto-translation
equivariant attention networks. Advances in neural information processing systems, 33:1970–1981, 2020.

William Gilpin. Cellular automata as convolutional neural networks. Physcal Review E, 100:032402, Sep
2019. doi:10.1103/PhysRevE.100.032402.

13

https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.25088/ComplexSystems.28.3.251
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://doi.org/https://doi.org/10.1038/s42256-020-0146-9
https://doi.org/10.1038/s41580-020-00318-6
https://github.com/epfl-lts2/pygsp/
https://doi.org/10.1016/S0022-2836(03)00628-4
https://doi.org/10.1007/978-3-642-19167-1_2
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://doi.org/10.48550/arXiv.1903.02428
https://doi.org/10.21105/joss.03065
https://doi.org/10.1103/PhysRevE.100.032402

Published in Transactions on Machine Learning Research (04/2024)

Jonathan Godwin, Michael Schaarschmidt, Alexander L Gaunt, Alvaro Sanchez-Gonzalez, Yulia Rubanova,
Petar Veličković, James Kirkpatrick, and Peter Battaglia. Simple GNN regularisation for 3D molecular
property prediction and beyond. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=1wVvweK3oIb.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains. In
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, volume 2, pp. 729–734, 2005.
doi:10.1109/IJCNN.2005.1555942.

Peter Grassberger and Itamar Procaccia. Characterization of strange attractors. Physical Review Letters, 50
(5):346–349, Jan 1983. doi:10.1103/PhysRevLett.50.346.

Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Learning graph cellular automata. In Advances in
Neural Information Processing Systems, volume 34, pp. 20983–20994, 2021. URL https://proceedings.
neurips.cc/paper/2021/file/af87f7cdcda223c41c3f3ef05a3aaeea-Paper.pdf.

David Ha and Yujin Tang. Collective intelligence for deep learning: A survey of recent developments.
Collective Intelligence, 1(1):26339137221114874, 2022. doi:10.1177/26339137221114874.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion for
molecule generation in 3d. In International conference on machine learning, pp. 8867–8887. PMLR, 2022.

Wenlong Huang, Igor Mordatch, and Deepak Pathak. One policy to control them all: Shared modular
policies for agent-agnostic control. In Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 4455–4464. PMLR, 2020. URL
https://proceedings.mlr.press/v119/huang20d.html.

Chaitanya K. Joshi, Cristian Bodnar, Simon V Mathis, Taco Cohen, and Pietro Lio. On the expressive power
of geometric graph neural networks, 2023. URL https://openreview.net/forum?id=Rkxj1GXn9_.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015. doi:10.48550/arXiv.1412.6980.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 2688–2697. PMLR, 2018. URL https:
//proceedings.mlr.press/v80/kipf18a.html.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders. In Bayesian Deep Learning Workshop
(NIPS 2016), 2016. doi:10.48550/arXiv.1611.07308.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017. URL https://openreview.net/forum?id=
SJU4ayYgl.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, pp. 3538–3545.
AAAI Press, 2018. doi:10.48550/arXiv.1801.07606.

Timothy P. Lillicrap and Adam Santoro. Backpropagation through time and the brain. Current Opinion in
Neurobiology, 55:82–89, 2019. doi:10.1016/j.conb.2019.01.011.

Zachary C Lipton, John Berkowitz, and Charles Elkan. A critical review of recurrent neural networks for
sequence learning, 2015. URL https://arxiv.org/abs/1506.00019.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows. In Advances
in Neural Information Processing Systems, volume 32, 2019. URL https://proceedings.neurips.cc/
paper/2019/file/1e44fdf9c44d7328fecc02d677ed704d-Paper.pdf.

14

https://openreview.net/forum?id=1wVvweK3oIb
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1103/PhysRevLett.50.346
https://proceedings.neurips.cc/paper/2021/file/af87f7cdcda223c41c3f3ef05a3aaeea-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/af87f7cdcda223c41c3f3ef05a3aaeea-Paper.pdf
https://doi.org/10.1177/26339137221114874
https://proceedings.mlr.press/v119/huang20d.html
https://openreview.net/forum?id=Rkxj1GXn9_
https://doi.org/10.48550/arXiv.1412.6980
https://proceedings.mlr.press/v80/kipf18a.html
https://proceedings.mlr.press/v80/kipf18a.html
https://doi.org/10.48550/arXiv.1611.07308
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.48550/arXiv.1801.07606
https://doi.org/10.1016/j.conb.2019.01.011
https://arxiv.org/abs/1506.00019
https://proceedings.neurips.cc/paper/2019/file/1e44fdf9c44d7328fecc02d677ed704d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1e44fdf9c44d7328fecc02d677ed704d-Paper.pdf

Published in Transactions on Machine Learning Research (04/2024)

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. SPECTRE: Spectral
conditioning helps to overcome the expressivity limits of one-shot graph generators. In Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
15159–15179. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/martinkus22a.html.

Nithin Mathews, Anders Lyhne Christensen, Rehan O’Grady, Francesco Mondada, and Marco Dorigo.
Mergeable nervous systems for robots. Nature communications, 8(1):1–7, 2017. doi:10.1038/s41467-017-
00109-2.

Melanie Mitchell. Complexity: A guided tour. Oxford university press, 2009.

Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and Michael Levin. Growing neural cellular
automata. Distill, 5(2):e23, 2020. doi:10.23915/distill.00023.

Alexander Mordvintsev, Ettore Randazzo, and Craig Fouts. Growing isotropic neural cellular automata.
arXiv preprint, 2022. doi:10.48550/arXiv.2205.01681.

Stefano Nichele, Mathias Berild Ose, Sebastian Risi, and Gunnar Tufte. CA-NEAT: evolved compositional
pattern producing networks for cellular automata morphogenesis and replication. IEEE Transactions on
Cognitive and Developmental Systems, 10(3):687–700, 2018. doi:10.1109/TCDS.2017.2737082.

Rasmus Berg Palm, Miguel González Duque, Shyam Sudhakaran, and Sebastian Risi. Variational neural
cellular automata. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=7fFO4cMBx_9.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. In Proceedings of the 33rd International Conference on Neural Information Processing
Systems, 2019. doi:10.5555/3454287.3455008.

Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data science.
Foundations and Trends in Machine Learning, 11(5-6):355–607, 2019. doi:10.1561/2200000073. URL
https://arxiv.org/abs/1803.00567.

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural network
architectures. In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=HyGBdo0qFm.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum chemistry
structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014. doi:10.1038/sdata.2014.22.

Ettore Randazzo, Alexander Mordvintsev, Eyvind Niklasson, Michael Levin, and Sam Greydanus. Self-
classifying MNIST digits. Distill, 5(8):e00027–002, 2020. doi:10.23915/distill.00027.002.

Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Computer
Graphics, 21(4):25–34, aug 1987. doi:10.1145/37402.37406.

Joshua S. Richman and J. Randall Moorman. Physiological time-series analysis using approximate entropy and
sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6):H2039–H2049,
2000. doi:10.1152/ajpheart.2000.278.6.H2039.

Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot: A low cost scalable robot system for
collective behaviors. In 2012 IEEE international conference on robotics and automation, pp. 3293–3298.
IEEE, 2012. doi:10.1109/ICRA.2012.6224638.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation.
In Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations,
chapter 8, pp. 318–362. MIT Press, Cambridge, MA, USA, 1986. doi:10.5555/104279.104293. URL
http://www.cs.toronto.edu/~hinton/absps/pdp8.pdf.

15

https://proceedings.mlr.press/v162/martinkus22a.html
https://doi.org/10.1038/s41467-017-00109-2
https://doi.org/10.1038/s41467-017-00109-2
https://doi.org/10.23915/distill.00023
https://doi.org/10.48550/arXiv.2205.01681
https://doi.org/10.1109/TCDS.2017.2737082
https://openreview.net/forum?id=7fFO4cMBx_9
https://openreview.net/forum?id=7fFO4cMBx_9
https://doi.org/10.5555/3454287.3455008
https://doi.org/10.1561/2200000073
https://arxiv.org/abs/1803.00567
https://openreview.net/forum?id=HyGBdo0qFm
https://openreview.net/forum?id=HyGBdo0qFm
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.23915/distill.00027.002
https://doi.org/10.1145/37402.37406
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1109/ICRA.2012.6224638
https://doi.org/10.5555/104279.104293
http://www.cs.toronto.edu/~hinton/absps/pdp8.pdf

Published in Transactions on Machine Learning Research (04/2024)

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural networks. In
Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pp. 333–341. SIAM, 2021.
doi:10.1137/1.9781611976700.38.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling. E(n) equivariant
normalizing flows. In Advances in Neural Information Processing Systems, volume 34, pp. 4181–4192,
2021a. URL https://openreview.net/forum?id=N5hQI_RowVA.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural networks. In
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pp. 9323–9332. PMLR, 2021b. URL https://proceedings.mlr.press/v139/
satorras21a.html.

Shyam Sudhakaran, Djordje Grbic, Siyan Li, Adam Katona, Elias Najarro, Claire Glanois, and Sebastian
Risi. Growing 3D artefacts and functional machines with neural cellular automata. In ALIFE 2021: The
2021 Conference on Artificial Life, 07 2021. doi:10.1162/isal_a_00451.

Roberto Tamassia. Handbook of graph drawing and visualization. CRC press, 2013.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal,
Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn high frequency
functions in low dimensional domains. In Advances in Neural Information Processing Systems, volume 33,
pp. 7537–7547. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf.

Mattie Tesfaldet, Derek Nowrouzezahrai, and Chris Pal. Attention-based neural cellular au-
tomata. In Advances in Neural Information Processing Systems, volume 35, pp. 8174–8186. Cur-
ran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
361e5112d2eca09513bbd266e4b2d2be-Paper-Conference.pdf.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Tensor
field networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv preprint
arXiv:1802.08219, 2018.

Alan Mathison Turing. The chemical basis of morphogenesis. Philosophical Transations of the Royal Society
B: Biological Sciences, 237(641):37–72, 1952. doi:10.1098/rstb.1952.0012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, volume 30, 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet. Novel type of phase
transition in a system of self-driven particles. Physical Review Letters, 75(6):1226–1229, Aug 1995.
doi:10.1103/PhysRevLett.75.1226.

John von Neumann. The general and logical theory of automata. In Abraham Haskel Taub (ed.), Collected
works — Design of computers, theory of automata and numerical analysis, volume V, pp. 288–328. Pergamom
Press, 1963.

Frederik Wenkel, Yimeng Min, Matthew Hirn, Michael Perlmutter, and Guy Wolf. Overcoming over-
smoothness in graph convolutional networks via hybrid scattering networks. arXiv preprint, 2022.
doi:10.48550/arXiv.2201.08932.

Stephen Wolfram. Cellular automata and complexity: collected papers. crc Press, 2018.
doi:10.1201/9780429494093.

N. Wulff and J A Hertz. Learning cellular automaton dynamics with neural networks. In Advances in Neural
Information Processing Systems, volume 5, pp. 631–638, 1992. URL https://proceedings.neurips.cc/
paper_files/paper/1992/file/d6c651ddcd97183b2e40bc464231c962-Paper.pdf.

16

https://doi.org/10.1137/1.9781611976700.38
https://openreview.net/forum?id=N5hQI_RowVA
https://proceedings.mlr.press/v139/satorras21a.html
https://proceedings.mlr.press/v139/satorras21a.html
https://doi.org/10.1162/isal_a_00451
https://proceedings.neurips.cc/paper_files/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/361e5112d2eca09513bbd266e4b2d2be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/361e5112d2eca09513bbd266e4b2d2be-Paper-Conference.pdf
https://doi.org/10.1098/rstb.1952.0012
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.48550/arXiv.2201.08932
https://doi.org/10.1201/9780429494093
https://proceedings.neurips.cc/paper_files/paper/1992/file/d6c651ddcd97183b2e40bc464231c962-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/d6c651ddcd97183b2e40bc464231c962-Paper.pdf

Published in Transactions on Machine Learning Research (04/2024)

Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, and Kenji Kawaguchi. Optimization of graph neural networks:
Implicit acceleration by skip connections and more depth. In Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 11592–11602. PMLR,
jul 2021. URL https://proceedings.mlr.press/v139/xu21k.html.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and applications.
arXiv preprint arXiv:2209.00796, 2022.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in GNNs. In International Conference
on Learning Representations, 2020. URL https://openreview.net/forum?id=rkecl1rtwB.

Kuangqi Zhou, Yanfei Dong, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, and Jiashi Feng. Understand-
ing and resolving performance degradation in deep graph convolutional networks. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management, CIKM ’21, pp. 2728–2737,
New York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3459637.3482488.

17

https://proceedings.mlr.press/v139/xu21k.html
https://openreview.net/forum?id=rkecl1rtwB
https://doi.org/10.1145/3459637.3482488

Published in Transactions on Machine Learning Research (04/2024)

A Pattern Formation

A.1 Implementations details

Model Let n, h and m respectively be coordinate, hidden state and message dimensionality. We set h = 16,
m = 32, and n = 2 or n = 3 depending on the target geometric graph. We normalise node features H using
PairNorm (Zhao & Akoglu, 2020). Our MLPs (5,300 parameters overall) are defined as follows:

• Message MLP ϕm : R2h+1 → Rm (cf. Equation 3):[
LinearLayer(2h+ 1,m),TanH(), LinearLayer(m,m),TanH()

]
,

• Coordinate MLP ϕx : Rm → R1 (cf. Equation 5):[
LinearLayer(m,m),TanH(), LinearLayer(m, 1),TanH()

]
,

• Hidden state MLP ϕh : Rh+m → Rh (cf. Equation 7):[
LinearLayer(m+ h, h),TanH(), LinearLayer(h, h)

]
.

Training We train the model by minimising Equation 13, using Adam (Kingma & Ba, 2015) with initial
learning rate of 0.0005. The learning rate is then decreased during training using a reduce-on-plateau schedule.
We use gradient clipping and weight decay as regularisation techniques. We increase the batch size during
training (from a minimum of 4 to 32) so as to promote a faster convergence, and that is because a small
batch size leads to more frequent re-initialisation of the pool states in the early training steps. We train the
model to convergence, by monitoring the validation loss with a fixed patience of training steps. For all details,
we refer the reader to our code. All experiments are run on an NVIDIA Quadro P1000 16GB.

A.2 Full trajectories & Visualizations

In this subsection, we report the full trajectories of our model for the following geometric graphs: a Line
Figure A.1, a 2D grid Figure A.2, an X-shaped pattern Figure A.3, a 3D torus Figure A.4, a 3D cube
Figure A.5, a 3D pyramid Figure A.6, a 3D vase Figure A.7 and the Stanford bunny Figure A.8. Furthermore,
a visual example of the key feature of anisotropic pattern formation is showed in Figure A.9.

18

Published in Transactions on Machine Learning Research (04/2024)

t = 0 INV = 2.24946 t = 1 INV = 2.19703 t = 2 INV = 2.23947 t = 3 INV = 3.71015 t = 4 INV = 3.16096 t = 5 INV = 2.06577

t = 6 INV = 1.78543 t = 7 INV = 1.44209 t = 8 INV = 1.16480 t = 9 INV = 0.98252 t = 10 INV = 0.82668 t = 11 INV = 0.64589

t = 12 INV = 0.46040 t = 13 INV = 0.25936 t = 14 INV = 0.09587 t = 15 INV = 0.01570 t = 16 INV = 0.00639 t = 17 INV = 0.00304

t = 18 INV = 0.00157 t = 19 INV = 0.00097 t = 20 INV = 0.00081 t = 21 INV = 0.00065 t = 22 INV = 0.00060 t = 23 INV = 0.00050

t = 24 INV = 0.00048 t = 25 INV = 0.00043 t ′ = 25 INV = 0.21067 t = 210 INV = 0.00031

Figure A.1: Convergence to a Line. We report the loss value (Equation 13) in each figure. Global damage
occurs at t′ = 25. Best viewed digitally and zoomed in.

19

Published in Transactions on Machine Learning Research (04/2024)

t = 0 INV = 1.78143 t = 1 INV = 1.63576 t = 2 INV = 1.78507 t = 3 INV = 1.73248 t = 4 INV = 2.15508 t = 5 INV = 2.01176

t = 6 INV = 1.81201 t = 7 INV = 1.56206 t = 8 INV = 1.31179 t = 9 INV = 1.02025 t = 10 INV = 0.69949 t = 11 INV = 0.44814

t = 12 INV = 0.23648 t = 13 INV = 0.12143 t = 14 INV = 0.04227 t = 15 INV = 0.01308 t = 16 INV = 0.00684 t = 17 INV = 0.00424

t = 18 INV = 0.00305 t = 19 INV = 0.00234 t = 20 INV = 0.00193 t = 21 INV = 0.00167 t = 22 INV = 0.00141 t = 23 INV = 0.00118

t = 24 INV = 0.00101 t = 25 INV = 0.00097

Figure A.2: Convergence to a 2D grid. We report the loss value (Equation 13) in each figure. Best viewed
digitally and zoomed in. Regeneration and persistency are showed in Figure 2

20

Published in Transactions on Machine Learning Research (04/2024)

t = 0 INV = 1.87819 t = 1 INV = 1.70690 t = 2 INV = 1.58190 t = 3 INV = 1.53403 t = 4 INV = 1.42483 t = 5 INV = 1.76130

t = 6 INV = 1.78204 t = 7 INV = 1.48239 t = 8 INV = 1.33529 t = 9 INV = 1.12703 t = 10 INV = 0.87675 t = 11 INV = 0.60163

t = 12 INV = 0.32965 t = 13 INV = 0.15845 t = 14 INV = 0.05008 t = 15 INV = 0.01623 t = 16 INV = 0.00764 t = 17 INV = 0.00428

t = 18 INV = 0.00268 t = 19 INV = 0.00191 t = 20 INV = 0.00150 t = 21 INV = 0.00130 t = 22 INV = 0.00119 t = 23 INV = 0.00113

t = 24 INV = 0.00114 t = 25 INV = 0.00119 t ′ = 25 INV = 0.00546 t = 210 INV = 0.00122

Figure A.3: Convergence to an X-shaped pattern. We report the loss value (Equation 13) in each figure.
Damage occurs at t′ = 25. Best viewed digitally and zoomed in.

21

Published in Transactions on Machine Learning Research (04/2024)

t = 0 INV = 2.34665 t = 1 INV = 1.93509 t = 2 INV = 1.91898 t = 3 INV = 2.03858 t = 4 INV = 1.75877 t = 5 INV = 1.65041

t = 6 INV = 1.54195 t = 7 INV = 1.46934 t = 8 INV = 1.19499 t = 9 INV = 1.02271 t = 10 INV = 0.91692 t = 11 INV = 0.61402

t = 12 INV = 0.44108 t = 13 INV = 0.18645 t = 14 INV = 0.09873 t = 15 INV = 0.01303 t = 16 INV = 0.00655 t = 17 INV = 0.00504

t = 18 INV = 0.00330 t = 19 INV = 0.00300 t = 20 INV = 0.00248 t = 21 INV = 0.00204 t = 22 INV = 0.00234 t = 23 INV = 0.00194

t = 24 INV = 0.00212 t = 25 INV = 0.00243

Figure A.4: Convergence to a 3D torus. We report the loss value (Equation 13) in each figure. Best viewed
digitally and zoomed in. Regeneration and persistency are showed in Figure 2

22

Published in Transactions on Machine Learning Research (04/2024)

Figure A.5: Convergence to a 3D Cube. We report the loss value (Equation 13) in each figure. To avoid
clutter, nearest-neighbor edges are not shown. Best viewed digitally and zoomed in.

23

Published in Transactions on Machine Learning Research (04/2024)

Figure A.6: Convergence to a 3D pyramid. We report the loss value (Equation 13) in each figure. Damage
occurs at t′ = 25. To avoid clutter, nearest-neighbor edges are not shown. Best viewed digitally and zoomed
in.

24

Published in Transactions on Machine Learning Research (04/2024)

Figure A.7: Convergence to a 3D vase from Shapenet (Chang et al., 2015). We report the loss value
(Equation 13) in each figure. Global damage occurs at t′ = 25. To avoid clutter, nearest-neighbor edges are
not shown. Best viewed digitally and zoomed in.

25

Published in Transactions on Machine Learning Research (04/2024)

Figure A.8: Convergence to the Stanford bunny. We report the loss value (Equation 13) in each figure. To
avoid clutter, nearest-neighbor edges are not shown. Best viewed digitally and zoomed in. Regeneration and
persistency are showed in Figure 2

26

Published in Transactions on Machine Learning Research (04/2024)

Figure A.9: Anisotropic grid pattern formation. First two rows show the formation of a 2D grid starting
from a random initial state at different time steps. Last two rows show the same except that before applying
the model transition rule τθ to go from St to state St+1, we apply a random isometry to all the nodes. The
image aims to show that there is no frame dependency and no awareness of global locations: The model acts
as if nothing had happened since nodes are only aware of their relative positions to their neighbors. This
behaviour is still valid both when perturbations of the nodes occur and when more complex patterns are used
(e.g. Stanford bunny), but easier to show with a simple grid. Such behaviour is not possible with original
GNCAs (Grattarola et al., 2021).

27

Published in Transactions on Machine Learning Research (04/2024)

B Graph autoencoding with E(n)-GNCAs

B.1 Implementation details

Model We use the exact same architecture as the one detailed in Appendix A.

Training We train the model to minimise Equation 14, using Adam (Kingma & Ba, 2015) with initial
learning rate of 0.0005. The learning rate is then decreased during training using a reduce-on-plateau schedule.
We set the batch size to 32 and train the model by monitoring the validation loss with a patience of 20 epochs.
We use negative edge sampling when computing the loss so as to have a balanced supervisory signal when
processing sparse graphs. For all details, we refer the reader to our code.

Testing In order to effectively evaluate the quality of a graph reconstruction, we first need to binarize its
soft adjacency matrix Â ∈ [0, 1]|V|×|V| (cf. Equation 14). Therefore, at test time, we fine-tune a threshold
t̂ ∈ (0, 1) on the validation set as to maximize the F1 score of validation-set graph reconstructions. Once we
have threshold t̂, we can binarize soft adjacency matrices of test-set graphs and then compute the F1 scores
thereof.

B.2 Reconstructions

Figure B.10 shows examples of test-set reconstructions from our autoencoding task (cf. sections 4.2).

B.3 Persistency test

Figure B.11 shows the F1-score trend over time for E(n)-GNCA autoencoders (cf. sections 4.2).

C Simulation of E(n)-equivariant system

C.1 Implementation Details

Model Let n, h and m respectively be coordinate, hidden state and message dimensionality. We set h = 16,
m = 32, and n = 3. Our MLPs (5500 parameters overall) are then defined as follows:

• Message MLP ϕm : R2h+1 → Rm (cf. Equation 3):[
LinearLayer(2h+ 1,m),TanH(), LinearLayer(m,m),TanH()

]
,

• Attention MLP ϕa : Rm → [0, 1]1 (cf. Equation 8):[
LinearLayer(m, 1),Sigmoid()],

• Velocity MLP ϕv : Rh+1 → R1 (cf. Equation 9):[
LinearLayer(m,m),TanH(), LinearLayer(m, 1),TanH()

]
,

• Coordinate MLP ϕx : Rm → R1 (cf. Equation 9):[
LinearLayer(h+ 1, h/2),TanH(), LinearLayer(h/2, 1)

]
,

• Hidden state MLP ϕh : Rh+m → Rh (cf. Equation 7):[
LinearLayer(m+ h, h),TanH(), LinearLayer(h, h)

]
.

Training We train the model to minimise the MSE between ground-truth and predicted trajectories, using
Adam (Kingma & Ba, 2015) with initial learning rate of 0.001. The learning rate is then decreased during
training using a reduce-on-plateau schedule. We set the batch size to 16 and train the model by monitoring
the validation loss with a patience of 20 epochs. For all details, we refer the reader to our code.

28

Published in Transactions on Machine Learning Research (04/2024)

true edges pred edges f1=0.99 true edges pred edges f1=1.00 true edges pred edges f1=1.00

true edges pred edges f1=0.99 true edges pred edges f1=1.00 true edges pred edges f1=1.00

true edges pred edges f1=0.97 true edges pred edges f1=0.99 true edges pred edges f1=1.00

true edges pred edges f1=0.96 true edges pred edges f1=0.95 true edges pred edges f1=0.94

true edges pred edges f1=0.97 true edges pred edges f1=0.96 true edges pred edges f1=0.96

Figure B.10: Test-set graph reconstructions at time step t = 100 for comm-s (1st row), planar-s (2nd
row), planar-l (3rd row), proteins (4th row) and sbm (5th row). In alternating columns, we first have
ground truth graphs and then respective reconstructions with F1 scores attached on top. The position of the
nodes is fixed for both ground-truth and reconstructed graphs so as to visually inspect the quality of the
reconstructions. Best viewed digitally and zoomed in.

29

Published in Transactions on Machine Learning Research (04/2024)

25

30

35

10
0 1K 10
K

20
K

30
K

40
K

50
K

60
K

70
K

80
K

90
K

10
0K

t

0.5

0.6

0.7

0.8

0.9

1.0

f1
 sc

or
e

community

25

30

35

10
0 1K 10
K

20
K

30
K

40
K

50
K

60
K

70
K

80
K

90
K

10
0K

t

0.5

0.6

0.7

0.8

0.9

1.0

f1
 sc

or
e

planar-small
25

30

35

10

0 1K 10
K

20
K

30
K

40
K

50
K

60
K

70
K

80
K

90
K

10
0K

t

0.5

0.6

0.7

0.8

0.9

1.0

f1
 sc

or
e

planar-large

25

30

35

10
0 1K 10
K

20
K

30
K

40
K

50
K

60
K

70
K

80
K

90
K

10
0K

t

0.5

0.6

0.7

0.8

0.9

1.0

f1
 sc

or
e

proteins

25

30

35

10
0 1K 10
K

20
K

30
K

40
K

50
K

60
K

70
K

80
K

90
K

10
0K

t

0.5

0.6

0.7

0.8

0.9

1.0

f1
 sc

or
e

sbm

Figure B.11: Persistency test for E(n)-GNCA autoencoders. We run transition rule τθ for up to 100,000 time
steps and report the F1-score (y-axis) at different time steps (x-axis) for each dataset. Trends are averaged
over 10 different runs. E(n)-GNCAs exhibit a persistent autoencoding trend for all datasets except sbm,
which, given its clustered topology, represents the most challenging dataset.

30

Published in Transactions on Machine Learning Research (04/2024)

C.2 The Boids Algorithm

Our implementation of the Boids algorithm is mainly inspired by the one available in AgentPy (Foramitti,
2021), which in turn is based on the seminal work of Reynolds (1987). Each boid has location x ∈ R3 and
velocity v ∈ R3. The simulation takes place in a squared 3D fix-sized box. We compute the underlying graph
G at each step of the algorithm by connecting the boids that are within a given radius from each other. At
each step of the algorithm, we sequentially apply the following transformations synchronously to all boids to
compute the change in each boid velocity and location:

• A cohesion force is applied to bring the position of each boid closer to its neighbours;

• An alignment force is applied to match the velocity of each boid to the average velocity of its
neighbours;

• If the distance between a boid and its neighbours is lower than a user-defined threshold, a separation
force is applied to steer the boid away from these excessively close neighbours;

• If a boid is within a user-defined radius from the bounding box, a force is applied to steer the boid
towards the centre;

• For each boid, the resulting force is summed to the current velocity thus determining the new velocity;

• Finally, the position of each boid is updated according to the new velocity.

We show trajectories in Figure 4. For all details, we refer the reader to our code.

31

	Introduction
	Preliminaries and Related Work
	Graph (Neural) Cellular Automata
	Graph Neural Networks
	E(n)-equivariant Graph Neural Networks

	E(n)-equivariant Graph Neural CAs
	Experiments
	Pattern Formation
	Graph autoencoding with Cellular Automata
	Simulation of E(n)-equivariant dynamical system

	Discussion
	Pattern Formation
	Implementations details
	Full trajectories & Visualizations

	Graph autoencoding with E(n)-GNCAs
	Implementation details
	Reconstructions
	Persistency test

	Simulation of E(n)-equivariant system
	Implementation Details
	The Boids Algorithm

