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ABSTRACT

Physics-informed machine learning (PIML) integrates prior physical information,
often in the form of differential equation constraints, into the process of fitting ML
models to physical data. Popular PIML approaches, including neural operators,
physics-informed neural networks, and neural ordinary differential equations, are
typically fit to objectives that simultaneously include both data and physical con-
straints. However, the multi-objective nature of this approach creates ambiguity in
the measurement of model quality. This is related to a poor understanding of epis-
temic uncertainty, and it can lead to surprising failure modes, even when existing
metrics suggest strong fits. Working within a Gaussian process regression frame-
work, we introduce the Physics-Informed Log Evidence (PILE) score. Bypassing
the ambiguities of test losses, the PILE score is a single, uncertainty-aware metric
that provides a selection principle for hyperparameters of a physics-informed model.
We show that PILE minimization yields excellent choices for a wide variety of
model parameters, including kernel bandwidth, least squares regularization weights,
and even kernel function selection. We also show that, prior to data acquisition, a
special “data-free” case of the PILE score identifies a-priori kernel choices that are
“well adapted” to a given PDE. Beyond the kernel setting, we anticipate that the
PILE score can be extended to PIML at large, and we outline approaches to do so.

1 INTRODUCTION

A great challenge in machine learning (ML) in general and Scientific ML (SciML) in particular
involves the development of models that can combine in principled ways data-driven information (as
is common in ML) and domain-driven information (as is common in physical and other sciences).
Strategies that attempt to achieve this are grouped under the umbrella of physics-informed machine
learning (PIML). These approaches consist of general purpose tools for scientific computation that
also enjoy the scalability and flexibility of high-dimensional ML. PIML methods include Physics-
Informed Neural Networks (PINNs) (Raissi et al., 2019) (which led to a large body of empirical
(Krishnapriyan et al., 2021; Karniadakis et al., 2021; Sirignano & Spiliopoulos, 2018; Sahli Costabal
et al., 2020; Jin et al., 2021; Geneva & Zabaras, 2020; Xu & Darve, 2020) and theoretical (Minakowski
& Richter, 2023; Lu et al., 2021; Doumèche et al., 2024b) analyses), Neural Ordinary Differential
Equations (Neural ODEs) (Chen et al., 2018; Krishnapriyan et al., 2023), Neural Operators (Kovachki
et al., 2023), and Neural Discrete Equilibrium (NeurDE) (Benitez et al., 2025). Unfortunately, PINNs
and related methods are notoriously difficult to train (Krishnapriyan et al., 2021); they lack robust
a posteriori error estimates that are typically available for classical numerical partial differential
equation (PDE) solvers; and they lack a strong grounding in statistical theory. These issues are
exacerbated by the multi-objective nature of PINNs, as well as other PIML methods that incorporate
domain knowledge as a soft regularization.

It is (easy and thus) popular to view physical constraints in terms of regularizers, in a manner
analogous to ridge regression (Karniadakis et al., 2021). However, practical implementations involve
a delicate trade-off between errors to noisy observations and adherence to the imposed (or assumed)
physical equations. Indeed, one interpretation of the “failure modes” results of Krishnapriyan et al.
(2021) is that while reducing physical error is of interest, this strategy becomes nuanced (and error-
prone) when the model is unable to satisfy the physical constraints perfectly, or when the constraints
are misspecified. In these cases, without sufficient validation data (which is common in scientific
settings), it becomes challenging to determine whether a model is a suitable fit. These challenges are
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not limited to neural network models—they are common to many other methods that aim to combine
data-driven ML models with domain-driven physical models. It is critical to understand how to
quantify the quality of PIML models, in a manner analogous to how one quantifies model quality
in statistical learning theory.

In this paper, we provide a first step toward solving this PIML model selection problem, addressing
the problem under the Physics-Informed Kernel Learning (PIKL) framework (Pförtner et al., 2024).
PIKL considers a Gaussian process (GP) model for solving linear PDEs under known conditions, and
it offers a powerful, uncertainty-aware approach to PIML. One advantage of the GP framework is
that it offers a structured, probabilistic approach that allows for rigorous uncertainty quantification
(UQ) (which is often missing in other physics-informed models1). Another advantage of GPs lies in
their ability to seamlessly incorporate multiple forms of data acquisition, including noisy pointwise
observations of the solution and derivative data derived from the governing PDE. This flexibility
enables a principled integration of prior knowledge about the system, while maintaining a Bayesian
framework for uncertainty estimation.

Our main contributions are as follows:

(I) We introduce a model selection criterion called the Physics-Informed Log Evidence (PILE)
(Section 3). The PILE criterion provides a theoretically-grounded way to assess the suitability
of different kernel choices for PIML tasks; and it can be used, e.g., to optimize hyperparameters
of the GP model, including the kernel function, its bandwidth, and regularization parameters.

(II) We provide an empirical evaluation demonstrating that the PILE criterion is a reliable
indicator of model performance (Section 5). Models optimized using PILE exhibit strong
predictive accuracy and adherence to physical constraints. By studying the challenging wave-
equation setting introduced in Krishnapriyan et al. (2021), we show that the PILE score can not
only diagnos model misspecification, but it can be used to identify the ‘best’ kernel function
for the problem at hand, leading to vastly improved performance.

Overall, we claim that free energy metrics provide the solution to the multi-objective bottleneck
in PIML, establishing a single number that can be optimised to ensure both a strong fit to existing data
and adherence to a governing differential equation. Diagnostics using free energy can be conducted
both a priori using our Fredholm determinant metric, at the stage of architecture selection before
fitting to data, and a posteriori using our PILE score, after the model has been fitted to data. Our case
studies demonstrate how the use of these tools can bypass well-known pitfalls in PIML, highlighting
scenarios where a model choice will lead to an undesirable fit.

2 BACKGROUND AND RELATED WORK

2.1 LINEAR PARTIAL DIFFERENTIAL EQUATIONS

An s-th order linear differential operator D : Cs(Ω) → C0(Ω) for integer s ≥ 1 has the form

Df(x) =
∑

∥α∥1≤s

cα(x)
∂α1

∂xα1
1

· · · ∂αd

∂xαd

d

f(x),

where Ω is an open, bounded subset of Rd with C1 boundary, where α ∈ Zd
≥0 is a multi-index, and

where {cα : ∥α∥1 ≤ s} are C0(Ω) coefficient functions. Given g ∈ C0(Ω) and h ∈ C0(∂Ω), we say
that f solves the Dirichlet boundary value problem (BVP) if

Df(x) = g(x) for x ∈ Ω, f(x) = h(x) for x ∈ ∂Ω. (1)

Under our assumptions, f solves the Dirichlet BVP if and only if it minimizes the energy functional

E(f) := ∥Df − g∥2L2(Ω) + ∥f − h∥2L2(∂Ω). (2)

This variational problem is a key ingredient in the formulation of equation 1 as a ML problem. Note,
however, that we can extend our formulation far beyond the Dirichlet setting to encompass a wide
range of mixed boundary conditions. To simplify matters, observe that the formulation is no less
general if g = 0, as we can instead take the differential operator D − gId. Let D be as before, but

1Some exceptions exist, including Neural Processes (Garnelo et al., 2018; Kim et al., 2019), but they will
prove to be disadvantageous in our framework due to intractable marginal likelihoods.
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now let Bi : C
s(Ω) → C0(Γi), i = 1 . . . p be a family of operators, where each Γi ⊂ ∂Ω. We can

now consider the general mixed boundary condition

Df(x) = 0 for x ∈ Ω, (Bif)(x) = 0 for x ∈ Γi, i = 1 . . . p

This formulation can encode the following boundary conditions:

• Dirichlet: p = 1, Γ1 = ∂Ω, and B1f = (f − h)|∂Ω is the restriction of f to ∂Ω.
• Neumann: p = 1, Γ1 = ∂Ω, and B1f = (ν · ∇f − h)|∂Ω, where ν is the unit normal to ∂Ω.
• Robin: p = 1, Γ1 = ∂Ω, and B1f = (af + bν · ∇f − h)|∂Ω for a, b ∈ R.
• Cauchy: p = 2, Γ1 = Γ2 = ∂Ω, B1f = (f − h1)|Γ1

, and B2f = (ν · ∇f − h2)|Γ2
.

Now any solution f is a minimizer of the energy functional

E(f) := ∥Df∥2L2(Ω) +

p∑
i=1

∥Bif∥2L2(Γi)
. (3)

Letting Af(x) = (Df(x)1Ω,B1f(x)1Γ1 , . . . ,Bpf(x)1Γp) ∈ Rp+1, we can define a measure µ that
is Lebesgue on Ω and Hausdorff on each Γi so that E(f) = ∥Af∥2

L2(Ω̄,µ,Rp+1)
. This notation will

become convenient later. While integral constraints can also be incorporated naturally within this
setup (Hansen et al., 2023), but here we restrict attention to differential operator constraints to avoid
complicating our analysis.

2.2 GAUSSIAN PROCESS REGRESSION

A Gaussian process (GP) f on Ω ⊆ Rd, denoted f ∼ GP(m, k), is a stochastic process where for
some mean function m : Ω → R and a kernel function k : Ω × Ω → [0,∞), any projection onto
finitely many points X = {xi}ni=1 ⊆ Ω is multivariate Gaussian:

(f(x1), . . . , f(xn)) ∼ N ((m(xi))
n
i=1, (k(xi, xj))

n
i,j=1).

As covariance matrices are necessarily symmetric positive semi-definite, we require that the Gram
matrix (k(xi, xj))

n
i,j=1 is a positive semi-definite matrix, for any {xi}ni=1. (Any function k with this

property is said to be positive semi-definite.) We further require k to be continuous on Ω× Ω and to
have

∫
Ω
k(x, x)dx < ∞.

GP regression is a framework which provides a Bayesian perspective on kernel regression, along with
a probabilistic interpretation of the commonly-used kernel ridge regularization. Given independent
and identically distributed inputs xi ∈ Rd and outputs yi ∈ R for i = 1 . . . n, a Gaussian likelihood

yi | (f, xi) ∼ N (f(xi),
1
2γ), p(yi | f, xi) ∝ exp(− 1

γ (yi − f(xi))
2), i = 1, . . . , n,

is imposed, where γ > 0 is a hyperparameter representing the assumed noise level of the observations.
In the noise-free setting, one can take γ → 0+. For notational convenience, let X = (xij)

n,d
i,j=1 ∈

Rn×d, and Y = (yi)
n
i=1 ∈ Rn. To apply Bayes’ theorem, the practitioner chooses a GP prior

f ∼ GP(m,λ−1k), for λ > 0 a regularization hyperparameter. In the absence of prior information,
it is common to choose m ≡ 0. To perform inference, the prediction and uncertainty for the output of
a new input x′ is measured using the posterior predictive distribution (Rasmussen & Williams, 2006,
Equation 2.19)

f(x′) | (x1, y1), . . . , (xn, yn) ∼ N (f̄(x′), λ−1σ(x′)),

where f̄(x) = k⊤x′(KX + λγI)−1Y and σ(x′) = k(x′, x′) − k⊤x′(KX + λγI)−1kx′ for
kx′ = (k(xi, x

′))ni=1 and KX = (k(xi, xj))
n
i,j=1. In addition to the point estimate f̄(x), the

posterior variance kx′ can be taken as a calibrated measure of predictive uncertainty.

Kernel ridge regression (KRR) is a prediction method (with limited UQ) that estimates the output
f(x) for a given input x by minimizing a regularized loss over a reproducing kernel Hilbert space
(RKHS). Recall that every positive-definite kernel k induces a RKHS, H , generated by the span of
{k(x, ·)}x∈Ω with norm ∥ · ∥H (see Appendix A for details). KRR considers estimators of the form:

f̂ = argmin
f∈H

1

γ

n∑
i=1

(f(xi)− yi)
2 + λ∥f∥2H . (4)
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From Kanagawa et al. (2018, Theorem 3.4), it turns out that f̂ = f̄ , the mean predictor from
the GP formulation, and so GP regression extends KRR to include an estimate of the uncertainty.
Simultaneously, any optimization problem of the form (4) has a natural interpretation in terms of an
underlying GP, providing uncertainty estimates for solutions to (4). We will make significant use of
this relationship to construct our uncertainty-aware diagnostics.

2.3 UNCERTAINTY AND DIAGNOSTICS IN GP

One of the advantages with treating a prediction task through the lens of statistical models is the
capacity to analyse and estimate uncertainty. Bayesian methods, including GPs, naturally account
for prediction uncertainty in the posterior predictive distribution, offering credible intervals for
any quantile of uncertainty (Gelman et al., 1995). For GPs, the uncertainty about the prediction
is contained in the posterior covariance kernel x 7→ Σ(x, x). Estimates of uncertainty are only as
effective as the underlying model. Fortunately, the treatment of uncertainty often unlocks a wide
array of diagnostic techniques, providing valuable feedback to the practitioner. In Bayesian statistics,
the fundamental indicator of the quality of a particular prior is the marginal likelihood, also known as
the evidence, given by

Zn = Ef∼GP(0,λ−1k)[p(Y | f,X)]. (5)

This quantity can be thought of as the likelihood assigned by the prior to the observed data. It is
typically convenient to work instead with the quantity

Fn := − logZn =
1

2
Y ⊤(KX + γI)−1Y +

1

2
log det(Kx + γI)− n

2
log

(
λ

2π

)
, (6)

which is called the (negative) log-marginal likelihood, alternatively the Bayes free energy. In practice,
it is common to perform model selection by maximizing the marginal likelihood (equivalently,
minimizing Fn) with respect to hyperparameters of the prior. This is called an empirical Bayes
procedure (Krivoruchko & Gribov, 2019), and it is the main inspiration of the PILE score which
we introduce in Section 3. Aside from model selection, the free energy is also effective for model
tuning. This process is referred to as empirical Bayes (Efron, 2024); and, provided that not too many
parameters are tuned this way, it is often effective (Lotfi et al., 2022). For GPs, bandwidth tuning
in the kernel, and the selection of the noise level γ, are both often conducted by minimizing Bayes
free energy (Rasmussen & Williams, 2006, 5.4.1); see also Gribov & Krivoruchko (2020). However,
information criteria—especially Bayesian ones—are not equivalent to test or cross-validation error,
which leads to the question: when do they behave similarly? Fortunately, for GPs, it is known that the
Bayes free energy behaves similarly to test error—at least when the number of training and test points
are large; see, for example, Hodgkinson et al. (2023a); Luxburg & Bousquet (2004); Jin et al. (2022).

3 PHYSICS-INFORMED KERNEL LEARNING

The GP formulation of PIKL is based on a finite sample approximation of equation 2, using (possibly
noisy) observations of the graph (f,Af) at points x ∈ Ω. Following Doumèche et al. (2024a), we
consider minimizers of the physics-informed empirical risk over f in a RKHS H:

Ln(f) :=
1

γ
· 1
n

n∑
i=1

(f(xi)− yi)
2

︸ ︷︷ ︸
data loss

+
1

ρ
∥Af∥2L2(Ω̄,µ,Rp+1)︸ ︷︷ ︸

physics loss

+
1

η
∥f∥2H︸ ︷︷ ︸

regularization

. (7)

The first term is the data loss, prescribing adherence of f to collected observations in the form of
input-output pairs (xi, yi), with xi ∈ Ω̄ and yi ∈ R. These can be used in addition to, or in place of
boundary conditions. The second term is the physics loss, which enforces that f obey the prescribed
equation Af = 0. The third term biases the estimator towards a more regular solution, avoiding
spikes and other singular behavior. For example, the RKHS Hν associated with the Matern kernel
of smoothness parameter ν > 0 is equivalent to the Sobolev space W ν+d/2,2(Ω) (Wendland, 2004,
Corollary 10.13), and so we have ∥f∥2

Hν(Ω̄)
≍ ∥f∥2

W ν+d/2,2(Ω̄)
, the sum of the L2 norm of the first s

derivatives of f . The temperatures γ, ρ, η > 0 are arbitrary and control the relative importance of
these three terms. Since scaling Lη,ρ,γ does not change its minimizer, it is typical to fix one parameter
and vary the other two. For quantifying the uncertainty in model predictions pointwise in space,
however, selecting the correct scale of Lη,ρ,γ is required to have accurate and calibrated estimates of
the pointwise posterior variance, and thus all three parameters are needed.

4
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One approach to solving (7) using KRR, taken in Doumèche et al. (2024a;b), is to identify a new
RKHS H ′ with norm ∥f∥2H′ = ∥f∥2H + η

2ρ∥Af∥2
L2(Ω̄,µ,Rp+1)

. Alternatively, our approach relies on
the observation that for a GP f ∼ GP(m, k) over Ω supported on a Banach space B ∋ f : Ω → R,
the pushforward of the process by a bounded linear operator A : B → B′ is itself a GP, supported on
B′, with parameters

Af ∼ GP(Am, (A⊗A)k).

This observation has been applied numerous times in the literature to enforce PDE or other linear
constraints on a GP via conditioning on the value of Af (Härkönen et al., 2023, Lemma 2.1), (Pförtner
et al., 2024, Corollary 2), Macêdo & Castro (2010), Solin et al. (2018). While optimal in theory, the
corresponding kernel of this space requires deep knowledge of the operator A and its eigenspectrum.
Furthermore, samples drawn from a GP can be drastically less regular than the functions contained in
the RKHS associated with its covariance kernel.2

To avoid this technical issue and to weaken our required assumptions on k, one can approximate
equation 2 by a physics-informed version of KRR by estimating the L2 norm using a quadrature rule
{(wi, zi) : i = 1, . . . ,m} for µ on Ω̄. One option is a Monte Carlo rule that selects zi uniformly at
random over Ω and each Γi with equal weighting wi = m−1. For improved precision, we opt for
Gaussian quadrature rules. Our estimated loss function becomes

Lm,n(f) :=
1

γn

n∑
i=1

(f(xi)− yi)
2 +

1

ρ

m∑
i=1

wi(Af(zi))
2 +

1

η
∥f∥2H . (8)

The advantage of this approach is that, provided we can formulate {(f,Af) : f ∈ H} as a RKHS, (8)
can be solved using the representer theorem. Let H be a fixed RKHS with reproducing kernel k. For a
multi-index α ∈ Zd

+, we denote by ∂α
1 k(x, x

′) and ∂α
2 k(x, x

′) the iterated partial derivative of the first
argument and second arguments, respectively: ∂α

1 ∂
β
2 k(x, x

′) = ∂α1
x1

· · · ∂αd
xd

∂β1

x′
1
· · · ∂βd

x′
d
k(x, x′),

where ∂αi
xi

denotes the αi-th partial derivative in xi. To proceed, we require assumptions on k and A.

Assumption 3.1 (Kernel Differentiability). Assume that k has continuous s-th partial derivative, that
is, for any multi-index α ∈ Zd

≥0, ∥α∥1 ≤ s, ∂α
x ∂

α
x′k(x, x′) ∈ C0(Ω× Ω).

Assumption 3.2 (Bounded Coefficients). Assume that the coefficients {cα : α ∈ Zd
≥0} for D and

each Bi are all uniformly bounded max∥α∥1≤s ∥cα∥L∞(Ω̄) ≤ C < ∞ for some C > 0.

By Proposition A.1 in Appendix A, under these assumptions, the RKHS associated with k is contained
in the image of A. Indeed, as in Proposition A.3, the graph {(f,Af) : f ∈ H} itself an RKHS.
Using this fact, in Theorem A.4, we obtain a representer theorem which can be used to solve (8).
Theorem A.4 is the basis for our variant of the PIKL procedure. Given input-output pairs {(xi, yi)}ni=1
and a quadrature rule {(wj , zj)}mj=1, a solution to (8), and therefore an approximate solution to (7),
can be obtained by finding the coefficients (α, β) that minimize (13). This procedure is general and
particularly effective when n and m are not too large (Doumèche et al., 2024a).

4 PHYSICS-INFORMED LOG EVIDENCE (PILE)

Now that we have demonstrated how PIML can be posed in terms of a KRR problem, we consider the
interpretation of this finding in terms of GP regression, which encodes a natural notion of uncertainty.
As discussed in Section 2.2, the estimator f̂ of Theorem A.4 coincides with the posterior predictive
mean of a GP model. It can be verified that this model is prescribed by

(f, g) ∼ GP(0, ηkA), yi | f(xi) ∼ N (f(xi),
1
2γ), rj | g(zj) ∼ N (g(zj),

1
2ρwj), (9)

where each rj is interpreted as an observation of a boundary condition, which can be taken to be zero
to enforce the constraint Af = 0. Our formulation targets situations where a practitioner may also
have potentially noisy access to the boundary data and forcing function in equation 1. In this case,
one might take rj to be nonzero. Our goal is to remain as flexible as possible with respect to modes
of data acquisition (i.e., possibly corrupted boundary data, interior observations of f(x) or Df(x) at

2This can be seen by the fact that if the Cameron-Martin space associated with GP(m, k) is infinite
dimensional, then it has zero Gaussian measure (Bogachev, 1998, Thoerem 3.5.1). In other words, with
probability one, f ∼ GP(m, k) has ∥f∥H = ∞ whenever H is not finite dimensional.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

arbitrary x ∈ Ω̄) as well as with respect to the model used to represent f . This is a key benefit of the
PIML approach.

The uncertainty in the prediction f̂ is encoded in the covariance of this GP: for x′, z′ ∈ Ω̄,

Cov(f(x′),Af(z′)) = η
(
kA((x

′, z′), (x′, z′))− ς⊤x′,z′Σ−1
m,nςx′,z′

)
where

Σm,n =

[
Kxx + ηγIn Hxz

H⊤
xz Gzz + ηρW−1

]
, ςx′,z′ =

[
k(x′, X) (Id⊗A)k(x′, Z)

(Id⊗A)k(X, z′)⊤ (A⊗A)k(z′, Z)

]
.

One of our main contributions of this work is to propose the negative log-marginal likelihood of
this GP as an intrinsic uncertainty-aware measurement of model quality. We refer to this as the
Physics-Informed Log Evidence (PILE). Inspired by standard protocol for tuning GPs, the PILE score
doubles as a model selection criterion for optimizing hyperparameters, including ρ, γ, η, and any
other hyperparameters for the kernel k, including bandwidth.
Definition 4.1 (Physics-Informed Log Evidence (PILE)). The Physics-Informed Log Evidence (PILE)
criterion is 2

m+nFm,n where Fm,n is the Bayes free energy of the GP equation 9:

Pm,n :=
1

m+ n
Ỹ ⊤Σ−1

m,nỸ +
1

m+ n
log detΣm,n + log(2πη).

where Ỹ = (y1, . . . , yn, r1, . . . , rm)⊤. The PILE criterion is to be interpreted as lower is better.

Unlike the empirical risk (8) which can be computed in quadratic time by the equation (13), computing
the PILE score generally requires cubic time. Fortunately, for large m,n, several algorithms exist to
compute the marginal likelihood quickly and under memory constraints Gardner et al. (2018); Ameli
et al. (2025).

Connection to the Fredholm Determinant. Let us now consider the scenario where no data
(xi, yi) is prescribed and the PIKL framework is applied to find a solution f ∈ H to Af = 0. In
this case, ri = 0 can also be chosen and the PILE score simplifies to its last two terms. By taking
m → ∞, minimizers of (8) should become minimizers of our original problem (7). This is imposed
by the following assumption.
Assumption 4.2. For any f ∈ C0(Ω̄), as m → ∞, the quadrature rule converges, that is,∑m

j=1 wjf(zj)
m→∞−→

∫
Ω̄
f(z)dµ(z).

Our next objective is to show that as m → ∞, the PILE score in this scenario converges in a suitable
sense to a Fredholm determinant, which provides a surprising quantifier of the effectiveness of a
particular choice of kernel k to solve a given problem. The Fredholm determinant is a fascinating
object with a complex history; and it typically appears only in the study of random matrices and
determinantal point processes (Derezinski & Mahoney, 2021). We refer to Appendix B for its
definition (and for the proof of the following result) and to Bornemann (2010) for details of its
computation in practice.
Theorem 4.3. Let G : L2(Ω̄, µ,Rp+1) → L2(Ω̄, µ,Rp+1) be the integral operator

(Gf)(x, z) = 1

ηρ

∫
Ω×Γ

(A⊗A)k(z, z′)f(z′)dz′.

Letting Cm = mηρ −
∑m

i=1 logwi +m log(2πη), as m → ∞, the sequence of normalized PILE

scores converge to the Fredholm determinant: mPm,0 − Cm
m→∞−→ P0 = log det(I + G).

Note that one can also choose ρ = 1
mη

∑m
i=1 log(

wi

2πη ) so that the normalized PILE score becomes
equal to the PILE score. This choice of ρ provides an avenue to calibrate uncertainty. Theorem 4.3
provides a new interpretation of the Fredholm determinant of integro-differential operators of the form
of G in terms of the base model difficulty of solving differential equations within the corresponding
RKHS induced by k. In turn, model selection for a given problem prescribed by the operator A
can be achieved in a data-independent fashion by comparing values of P0. In Appendix 5.2, we
provide a case study, in which we use the Fredholm determinant to select the best kernel from a
family of anisotropic RBF kernels. When used to solve a 1D convection PDE, we observe a drastic
improvement in the capacity of the PIML model to fit the target solution.
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Figure 1: Automatic hyperparameter selection with PILE. PILE score and relative PPL2-G error
sources for varying bandwidth, physics regularization, and data regularization parameters. Error bars
show ±2σ̂ coverage, where σ̂ is the empirical standard deviation of PPL2-G (blue bars) and PILE (red
bars). (Left) Bandwidth selection via minimizing the PILE score provides an accurate fit, balancing
the data and physics generalization errors. (Middle, Right) After selecting the optimal bandwidth
h∗, we sequentially minimize PILE first with respect to the physics regularization parameter ρ, then
with respect to the data regularization parameter γ. For small values of ρ and γ, PILE diverges as the
regression model overfits the noisy observations.

5 CASE STUDIES

In this section we demonstrate how the PILE score can be used to select hyperparameters such as
kernel bandwidth, loss regularization, and can even be used to select the kernel function from a
parametrized family.

5.1 HYPERPARAMETER SELECTION USING THE PILE SCORE

Our first case study, shown in Figure 1, examines the baseline efficacy of the PILE score, and the
Bayes free energy at large, for solving the multi-objective ambiguity in the PIML problem. The point
of the study is to demonstrate the practicality of our method by using it to automatically select all
the relevant hyperparameters for the problem. As a simple test case, we focus on solving a Poisson
equation with Dirichlet boundary conditions, on the domain Ω = (−1, 1)2,

∆f(x) = g(x) for x ∈ Ω, f(x) = 0 for x ∈ ∂Ω, (10)

and with forcing function g(x) = 10 + 10 sin(2πx) sin(2πy). A 2D (type-1) Chebyshev quadrature
scheme is used to determine the gridpoints z(i,j) and corresponding weights w(i,j) for i, j = 1, . . . ,m

at which to evaluate the derivative loss: letting si = cos( 2k+1
2mgrid

π), we set z(i,j) = (si, sj) ∈ R2

and w(i,j) = 4/m2. The type-1 Chebyshev grid points are known to have excellent properties for
numerical approximation of integrals on (−1, 1): for example, if f, g ∈ C∞(Ω), then the integration
error ∥g−Df∥L2(Ω) converges as e−Ω(m) (Trefethen, 2019, Chapters 7, 8). This choice of quadrature
scheme enables us to closely approximate the true L2(Ω̄) norm of the PDE residual.

In the physics informed setting, there are two sources of error: data error, measuring the fit of f̂ to f ;
and physics error, measuring the fit of ĝ to g = Df . Following Hodgkinson et al. (2023a), we define
the (unnormalized) data PPL2-G error as

R̃data(f̂) :=
∫
Ω̄
Ef̂(z)[(f̂(z)− f(z))2] dz ≈

∑meval
i,j=1 wiE[(f̂(z(i,j))− f(z(i,j))

2],

over f̂(z) ∼ N (m|y,r,Σ|y,r), marginalized over ĝ. Analogously,

R̃phys(ĝ) :=
∫
Ω̄
Eĝ(z)

[
(ĝ(z)−Df(z))2

]
dx ≈

∑meval
i,j=1 wiE[(f̂(z(i,j))− f(z(i,j))

2],

is the (unnormalized) physics PPL2-G error, marginalized over f̂ . The quadrature points z(i,j) depend
on meval, chosen to be large (meval = 30 ≫ m) to ensure accurate L2(Ω̄) approximations. For

appropriate comparison, we normalize errors: Rdata(f̂) = R̃data(f̂)
∥f∥L2(Ω̄)

, and Rphys(f̂) =
R̃phys(f̂)

∥Df∥L2(Ω̄)
.

Both should be small, but since they cannot generally vanish simultaneously, the optimal point on the
Pareto front of these losses (the best solution to the PDE) is unclear.
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Figure 2: PILE prevents under- and over-smoothing. Qualitative plot of the negative effects of
oversmoothing and undersmoothing in PIKL. Each panel shows f̂ , ĝ on the left and right, respectively.
When h is too small, the derivative estimate is undersmoothed and irregular. When h is too large,
oversmoothing effects prevent the model from fitting the derivative.

A typical challenge in RKHS and GP regression is selecting the bandwidth of a shift invariant kernel.
A shift invariant kernel with bandwidth h > 0 has the form kh(x, y) = k(x−y

h ). These kernels enjoy
special analytical properties and fast randomized approximations (Rahimi & Recht, 2007), making
them popular in practice. It is important to tune the kernel bandwidth for optimal performance: if too
large, the kernel becomes oversmoothed and the resulting regression estimator has high bias; whereas
if it is too small, the resulting regression estimator may overfit observations or take near-zero values
on unseen data. In this experiment, we train the regression model using grid size n = m = 13, so
that there are a total of 132 noisy observations y(i,j) = f(z(i,j)) + ϵ(i,j), z(i,j) = Df(z(i,j)) + ϵ′(i,j)
for independent ϵ(i,j), ϵ′(i,j) ∼ N (0, 1), with i, j = 1 . . . 13. Despite the high noise level and the
relatively small number of samples, the regularized regression estimator matches the target function
when fit with the optimal bandwidth according to PILE score; the PILE score has successfully
overcome the multi-objective problem. When used to select ρ, γ > 0, divergence of the PILE score is
an accurate indicator of model overfitting.

5.2 DIAGNOSING AND AVOIDING MODEL FAILURE WITH THE DATA-FREE PILE SCORE

s [0.5, 1.5]

[
,

]

* = 1.41, s * = 0.50

0.92

0.90

0.88

0.86

0.84

Figure 3: Data-free PILE landscape
for anisotropic RBF kernel. Fredholm
determinants of kθ,s plotted for θ ∈
[−π, π] and s ∈ [0.5, 1.5]. This quantity
is empirically minimized at θ∗ ≈ 1.41,
s∗ ≈ 0.5 (shown in red), but there are
evidently symmetries in the landscape.

In this case study, we analyze the well-known wave equa-
tion baseline introduced by Krishnapriyan et al. (2021),
which was shown to break vanilla multilayer perceptron
methods. We observe thatfor an isotropic RBF kernel,
there is no bandwidth that simultaneously achieves good
physics and data fits, and PILE diagnosis this by selecting
an oversmoothed ‘all zero’ solution. Perhaps more surpris-
ingly, when we consider a broader class of ‘anisotropic
RBF’ kernels, we find that optimizing the data-free PILE
score with respect to kernel function yields a model with
excellent physics and data fit. The PILE-optimal kernel
can be identified automatically, prior to data acquisition,
and with no domain knowledge. Following (Krishnapriyan
et al., 2021, Section 3.1), consider the convection PDE of
the form

{∂f
∂t (t, x) + β ∂f

∂x (t, x) = 0, t ∈ [0, 1], x ∈ [0, 2π],

f(0, x) = sin(x).

(11)

We set n = 1000, m = 202, and assume access to observations of the form yi = f(xi) + ϵi,
i = 1 . . . n, for xi ∼ Unif([0, 1]× [0, 2π]). We observe empirically that fitting an RBF kernel as in
Section 5 leads to pathological behavior, summarized in Figure 4. As shown in Figure 4 (left), the
data loss is only small at bandwidths h ≈ 0.1, while physics loss blows up at bandwidths ≤ h ≈ 0.15.
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Figure 4: PILE diagnosis model failure. Fitting the convection PDE equation 11 with an RBF
kernel. There is no appropriate bandwidth for this problem and the PILE score diagnosis this by
selecting the ‘all zeros’ solution.

Instead, we could consider an anisotropic family of kernels defined by hyperparameters θ ∈ [−π, π],
s > 0, and given by

kθ,s(x, y) := e−
1
2 (x−y)TΣθ,s(x−y), Σθ,s :=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
s2 0
0 s−2

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

To find an appropriate kernel among this family, we select θ, s to minimize the data free PILE score,
whose loss landscape is shown in Figure 3. After kernel selection, the loss basins of the physics and
data loss become drastically better conditioned, leading to an excellent model fit shown in Figure 5.
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Figure 5: Illustration of Fredholm determinant. Fitting the convection PDE, equation 11, with
an anisotropic RBF kernel. By choosing the kernel with minimum Fredholm determinant, we can
automatically identify a “good” kernel for the continuity PDE.

6 CONCLUSIONS

We have introduced the PILE score, a model selection metric and diagnostic tool for physics-informed
kernel learning to avoid failure modes. Our method amounts to hyperparameter selection via Empirical
Bayes, thereby removing ambiguities involved in parameter selection under two competing loss terms.
While already practical, it is useful to recognize how PILE can extend to other contexts.

• Nonlinear Operators. We studied linear differential operators with kernel-based models, but PIKL
also extends to nonlinear PDEs (Chen et al., 2021), following the framework of Dashti et al. (2013).
The nonlinear operator A is linearised via its Frèchet derivative DA at the solution f̂ ; and the PIKL
setup and PILE score is applied using DA in place of A. The justification for this PILE score
follows the arguments of (Wacker, 2017).

• Neural Networks. The PIKL framework is distinct from both PINNs and Neural ODEs (since
neural network regression differs from KRR). Approximations of the free energy are typically
derived using Laplace approximations, such as in the derivation of the BIC (Schwarz, 1978),
although extensions exist when these approximations fail (Drton & Plummer, 2017). Of particular
relevance is the Interpolating Information Criterion (IIC) (Hodgkinson et al., 2023b), designed for
models that interpolate data, akin to GP-based PIML. Inspired by IIC, one could evaluate the PILE
score for trained PINNs using the empirical neural tangent kernel (Novak et al., 2022; Jacot et al.,
2018) in place of k. At present, this is expensive, although approximations such as those seen in
Ameli et al. (2025) suggests this might yet become tractable.
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A REPRODUCING KERNEL HILBERT SPACES

We provide a brief summary of reproducing kernel Hilbert spaces; for more details, we refer the
interested reader to Steinwart & Christmann (2008). Let H be a Hilbert space of functions f : X → R
with an inner product ⟨·, ·⟩H . H is called a reproducing kernel Hilbert space if for every f ∈ H ,
the evaluation functional ιx : H → R defined for x ∈ X by ιxf = f(x), is bounded, i.e.,
|f(x)| ≤ Mx∥f∥H for some Mx < +∞ and all f ∈ H . By the Riesz representation theorem, this
implies that for any x ∈ X , there exists kx ∈ H such that f(x) = ⟨f, kx⟩H . These elements kx are
called the feature maps. The reproducing kernel of the Hilbert space is given by

k(x, y) = ⟨kx, ky⟩H .

The Moore-Aronszajn theorem (Steinwart & Christmann, 2008, Theorem 4.21) implies that every
positive-definite kernel induces a unique reproducing kernel Hilbert space, so the kernel completely
defines H . One can also deduce the class of functions contained in the RKHS from the kernel. For
example, if the kernel is differentiable, this implies that elements of H are also differentiable, as in
the following proposition.
Proposition A.1 (Corollary 4.36 of Steinwart & Christmann (2008)). Let f ∈ H . For α ≤ ⌈s⌉ the
derivative ∂αf(x) ∈ C0(Ω) exists and admits the bound:

|∂αf(x)| ≤ ∥f∥H · (∂α
1 ∂

α
2 k(x, x))

1/2.

Hence Df ∈ C0(Ω) for each f ∈ H .

Furthermore, the image of H under a linear operator is typically also an RKHS. The following
proposition shows that the image of H under a linear differential operator is an RKHS with a new
kernel defined in terms of the operator.
Proposition A.2. The space G := {g ∈ H : ∃ f ∈ H with g(x) = Df(x)} endowed with the norm

∥g∥G = inf
f :Df=g

∥f∥H

is the unique RKHS associated with the kernel

g(x, y) := (D ⊗D)k(x, x′).

Moreover, g(x, x′) = ⟨gx, gx′⟩H where the feature map gx ∈ H is given by gx(x
′) = (D ⊗

Id)k(x, x′).

Proof. It is sufficient to consider the case Df(x) = cα(x)∂
αf(x) for some α ∈ Z, as the general

result follows from summing over terms of Df . For any α, it holds y 7→ ∂α
x k(x, y) ∈ H by repeated

application of Lemma 4.34 of Steinwart & Christmann (2008). Hence,

∥(D ⊗ Id)(x, ·)∥H = |cα(x)| · ∥(∂α ⊗ Id)k∥H < ∞,

and

⟨f,D∗kx⟩H = cα(x)⟨f, (∂α ⊗ Id)k(x, ·)⟩H
= cα(x)∂

α
x ⟨f, kx⟩H

= Df(x),

by the chain rule.

Proposition A.3. The graph {(f,Af) : f ∈ H} is a RKHS HA with norm

∥(f,Af)∥HA = ∥f∥H
and a multi-valued reproducing kernel kA given by

kA((x, z), (x
′, z′)) =

[
k(x, x′) (Id⊗A)k(x′, z)

(Id⊗A)k(x, z′) (A⊗A)k(z, z′)

]
.

Proposition A.2 is sufficient to prove Proposition A.3. To see this, note that the space HA =
{(f,Af) ∈ H ⊕ H : f ∈ H} can be equipped with the inner product acting only on the first
coordinate: ⟨(f,Af), (g,Ag)⟩HA = ⟨f, g⟩H . The evaluation functionals are guaranteed to be bounded
by Proposition A.2, and the form of the kernel follows.

Here, we let W = diag(wi)
m
i=1, so that W 1/2 can be interpreted as the elementwise square root.
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Theorem A.4 (Representer Theorem). The minimizer f̂ := arg inff∈H Lm,n(f) satisfies

f̂ ∈ span
[
{k(·, xi)}ni=1 ∪ {(Id⊗A)k(·, zj)}mj=1

]
, (12)

and for f̂ =
∑n

i=1 αik(·, xi) +
∑m

j=1 βj(Id⊗A)k(·, zj), the coefficients (α, β) ∈ Rm+n minimize

1

γn
∥Y −Kxx α−Hxz β∥22 +

1

ρ
∥W 1/2(H⊤

xz α−Gzzβ)∥22 +
1

2η

[
α
β

]⊤ [
Kxx Hxz

H⊤
xz Gzz

] [
α
β

]
, (13)

which is now equal to Lm,n(f̂), where [Kxx]i,j = k(xi, xj), [Hxz]ij = (Id ⊗ D)k(xi, zj), and
[Gzz]ij = (D ⊗D)k(zi, zj).

Proof of Theorem A.4. Property equation 12 follows from the fact that the ∥ · ∥H projection of any
f ∈ H onto the span does not affect the values of f(xi) nor Df(zj)). By the representer property
for H ,

⟨kxi , gzj ⟩H = ⟨kxi(·), (Id⊗D)k(·, zj)⟩H = (Id⊗D)k(xi, zj),

and by Proposition A.2 ⟨gzi , gzj ⟩ = (D ⊗D)k(zi, zj). Plugging these identities into ∥f̂∥2H yields

∥f̂∥2H =

[
α
β

]⊤ [
Kxx Hxz

H⊤
xz Gzz

] [
α
β

]
.

Eqn equation 13 is Eqn. equation 12 rewritten in terms of α, β.

B FREDHOLM DETERMINANTS

Let H be a separable Hilbert space with an inner product ⟨·, ·⟩H and let K(H) denote the space of
compact linear operators A : H → H . The spectrum

spec(A) = {λ : ker(λI − C) ̸= {0}},

of any A ∈ K(H) is countable and can accumulate only at zero. Hence, there is a (possibly infinite)
sequence of eigenvalues {λn(A)}n. For any A ∈ K(H), let

σ1(A) ≥ σ2(A) ≥ · · · > 0,

denote the ordered singular values of A, defined as the square root of the eigenvalues of A∗A.

Definition B.1. A compact operator A ∈ K(H) is trace class if
∑

n σn(A) < +∞.

By Holder’s inequality, for any trace class operator A, the Schatten norm satisfying

∥A∥pp =
∑
n

σn(A)p, p ≥ 1,

is finite. Using the definition to verify whether an operator is trace class is a near-impossible task in
general. Fortunately, the following theorem provides conditions that guarantee in our kernel setting
that all operators are trace class.
Theorem B.2. Let k be a symmetric positive-definite kernel on Ω×Ω such that x 7→ k(x, x) ∈ L2(Ω)
for Ω ⊆ Rd. The integral operator K : L2(Ω) → L2(Ω) defined by

(Kf)(x) =

∫
Ω

k(x, y)f(y)dy, is trace class.

We are now ready to define the Fredholm determinant of an operator.

Definition B.3. The Fredholm determinant of a trace class operator A is given for ρ > 0 by

det(I + ρA) =
∏
n

(1 + ρsn(A)).

14
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It is straightforward to verify that the Fredholm determinant can only be defined for a trace class
operator, since (Knopp, 2013, p. 232)

1 + ρ∥A∥1 ≤ det(I + ρA) ≤ exp(ρ∥A∥1).

Note that for H = Rm, the Fredholm determinant reduces to the standard determinant, as a bounded
linear operator A : Rm → Rm can be represented as a matrix Am over the basis elements {ei}mi=1
and

det(I + ρA) =

m∏
n=1

(1 + ρsn(A)) = det(I + ρAm).

In the case of integral operators, the Fredholm determinant is expressed in terms of the infinite series
(Bornemann, 2010, eqn. (3.7))

det(I + ρK) = 1 +

∞∑
n=1

ρn

n!

∫
Ωn

det(k(xi, xj))
n
i,j=1dx1 · · · dxn.

Proof of Theorem 4.3. Starting from the PILE score,

mPm,n = log det(Gzz + ηρW−1) +m log(2πη)

= log det(W 1/2GzzW
1/2 + ηρI) +m log(2πη)−

m∑
i=1

logwi

= log det(I +W 1/2(ηρ)−1GzzW
1/2) + Cm,

and consequently,

mPm,n − Cm = log det(I +W 1/2((A⊗A)k(zi, zj))
m
i,j=1W

1/2).

The result now follows from (Bornemann, 2010, Theorem 6.1).
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