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Abstract

Real-time understanding of continuous video streams is essential for intelligent
agents operating in high-stakes environments, including autonomous vehicles,
surveillance drones, and disaster response robots. Yet, most existing video un-
derstanding and highlight detection methods assume access to the entire video
during inference, making them unsuitable for online or streaming scenarios. In
particular, current models optimize for offline summarization, failing to support
step-by-step reasoning needed for real-time decision-making. We introduce AHA,
an autoregressive highlight detection framework that predicts the relevance of each
video frame against a task described in natural language. Without accessing future
video frames, AHA utilizes a multimodal vision-language model and lightweight,
decoupled heads trained on a large, curated dataset of human-centric video la-
bels. To enable scalability, we introduce the Dynamic SinkCache mechanism that
achieves constant memory usage across infinite-length streams without degrading
performance on standard benchmarks. This encourages the hidden representation
to capture high-level task objectives, enabling effective frame-level rankings for in-
formativeness, relevance, and uncertainty with respect to the natural language task.
AHA achieves state-of-the-art (SOTA) performance on highlight detection bench-
marks, surpassing even prior offline, full-context approaches and video-language
models by +5.9% on TVSum and +8.3% on Mr.Hisum in mAP (mean Average
Precision). We explore AHA’s potential for real-world robotics applications given
a task-oriented natural language input and a continuous, robot-centric video. Both
experiments demonstrate AHA’s potential effectiveness as a real-time reasoning
module for downstream planning and long-horizon understanding.

1 Introduction

Real-time understanding of continuous video streams is crucial for intelligent agents operating in high-
stakes environments, from autonomous vehicles and surveillance drones to field-deployed robotics in
disaster relief scenarios [1H4]. Despite this need, while earlier explorations into Online Highlight
Detection (OHD) existed (e.g., using LSTMs [3])), the trajectory of contemporary HD research,
particularly leveraging powerful modern transformer based architectures, has overwhelmingly cen-
tered on offline, full-context processing [6H8]. Even approaches incorporating task-conditioning via
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natural language queries operate offline assume the entire video is available during inference [9, [10].
This fundamental reliance on full-context renders existing HD methods unsuitable for streaming
applications requiring step-by-step reasoning and immediate action based on unfolding events.

Concurrently, a separate area of research has explored streaming video analysis, often leveraging
Large Language Models (Video-LLMs) for tasks like dense video captioning or generating dialogue
responses about ongoing events [[11} [12]. While some of these models have explored HD as an
auxiliary capability, their application to OHD faces significant limitations. These Video-LLMs often
necessitate modifications to standard HD benchmarks, employ post-hoc smoothing techniques that
violate strict online constraints by implicitly using future information, and ultimately yield suboptimal
HD performance [[13]]. This leaves a critical gap: a robust method designed specifically for accurate,
online, task-conditioned highlight detection on standard benchmarks.

We address this gap by introducing a novel framework built for OHD. We define OHD as the method
of analyzing a streaming video by observing frames strictly one at a time and, for each current frame,
predicting its highlight score using only past and present information, without accessing any future
frames. This sequential, causal processing is fundamental for enabling real-time decision-making
in dynamic environments. Given a natural language task description, our model, AHA, performs
OHD by employing a lightweight, autoregressive scoring mechanism focused directly on highlight
detection. This allows AHA to operate effectively on traditional HD benchmarks in a truly online
fashion, without requiring benchmark modifications or non-causal smoothing, and achieving SOTA
performance even in zero-shot settings. Our main contributions are:

AHA Framework for Efficient OHD: We propose AHA, an autoregressive framework featuring
lightweight prediction heads (scoring relevance, informativeness, uncertainty) and our novel Dynamic
SinkCache memory for efficient, constant-cost, OHD under natural language conditioning, and a
video quality dropout mechanism to enhance robustness against real-world noise.

A Large-Scale Dataset for OHD [ We construct and release the Human Intuition Highlight Dataset
(HIHD), a novel dataset of ~23k videos incorporating user engagement signals and task-driven
captions, specifically designed to train and benchmark task-conditioned OHD models.

SOTA OHD: AHA surpasses prior methods, including offline approaches, on the HD benchmarks
TVSum [14] (+5.9% mAP) and Mr.Hisum [15] (+8.3% mAP). We validate AHA’s robustness and
real-world applicability through comprehensive experiments, ablations, and on a challenging long-
horizon, noisy robotics video from SCOUT [16]], demonstrating task-relevant understanding where
offline processing is infeasible.

2 Related Works

Offline and OHD. HD research, especially with modern architectures, has predominantly focused on
offline, full-context processing. Techniques evolved from early handcrafted features to deep attention
models [17H19,[10], but fundamentally require offline access. These methods, while achieving strong
offline results, require bidirectional temporal access, making them unsuited for streaming. To the best
of our knowledge, one of the few recent attempts at dedicated OHD using sequential models was
Lal et al. [5] with LSTMs; yet, the challenge of frame-wise highlight prediction under strict online
causality remains mostly open.

A central and persistent challenge in HD is the difficulty of obtaining labels that accurately reflect
what constitutes a highlight, and, critically, generalizing this understanding across diverse video
domains and content types [20, [15]. While early benchmarks like TVSum [14] offered rich but
small-scale human annotations (50 videos), later datasets like Mr.Hisum [[15] leveraged large-scale
user engagement signals (e.g., replay spikes) for scalability and capturing broader interest. Their
underlying hypothesis, which we also explore, is that these large-scale engagement patterns effectively
capture moments of high viewer interest that align with highlight-worthy content, which correspond
to human intuition. While existing datasets capture this intuition, robust OHD for diverse, raw
streaming is often hindered by limitations such as the small-scale of benchmarks (e.g., TVSum)
or, even in larger collections, by ‘clearer’ signals and content less representative of the variable
quality and uncurated nature of many live streams. Building on prior theory to address these gaps, we
introduce a new large-scale dataset that utilizes engagement-style signals akin to these datasets about

2The instructions on how to download the dataset will be included in the github.



human intuition, but is distinctively curated for broader visual quality variance and explicit support
for task-conditioned learning.

Streaming Video-Language Models. Recent Streaming Video-Language Models (Video-LLMs) [10,
12, [11} 21]] have significantly advanced multimodal reasoning for streaming video, offering archi-
tectural inspirations, particularly in memory-efficient processing (e.g., StreamingLLM [21]], Token
Turing Machines [22]]), which inform our work. However, their direct application to robust OHD
reveals limitations. These models often prioritize interactive tasks (e.g., dialogue, VQA) over the
continuous, fine-grained scoring essential for OHD.

Consequently, when highlight detection is addressed, it is often as an auxiliary function, with modified
evaluation criteria that is not aligned with traditional HD benchmarks or strict online constraints,
leading to performance that can be suboptimal for specialized HD [13]]. Moreover, their evaluations
often use short clips, rarely demonstrating sustained OHD performance on long videos (>10 minutes).

AHA diverges from this trend by being specifically architected for efficient, high-performance OHD.
It adapts memory-efficient streaming concepts for the video-language domain by employing task-
aware scoring heads that process video as a continuous stream against a persistent task. Crucially,
AHA demonstrates its effectiveness not only by outperforming traditional highlight detection bench-
marks under strict online settings but also by maintaining robust performance on long-form videos,
addressing a key gap in current streaming literature.

Uncertainty-Aware Online Modeling Unlike HD models offering deterministic scores, AHA
incorporates an uncertainty head drawing from probabilistic sequence learning [23H25]] to model
predictive uncertainty, crucial for online settings with limited context. To our knowledge, AHA is the
first application of explicit probabilistic uncertainty modeling for task-conditioned, frame-level OHD.
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Figure 1: AHA architecture, showing the flow from video stream and text prompts through the visual
encoder, multimodal projector, decoder, to the multi-objective prediction heads.

3 Methodology

We treat task-conditioned OHD in streaming video as follows: given a continuous stream of video
frames { fo, f1,. .., ft}, the goal at each timestep ¢ is to predict a scalar highlight score ¢; for the
current frame f;, indicating its relevance to a user-specified natural language task objective. This
objective, @ = {q1, - - ., qx }, and an optional system prompt S = {s1, ..., s, } are provided once at
the beginning of the video and remain fixed throughout inference. At each inference timestep, the
model observes (1) the current frame f;, (2) the fixed task and system prompt embeddings Q and
S, and (3) a memory mechanism (e.g., a KV cache [26])) that stores previously computed tokens for
efficient autoregressive decoding. The model must emit a scalar highlight score §; without access
to future frames, full-sequence context, or bidirectional attention, enabling real-time, low-latency
operation. During training, instead of a KV cache, the model uses a fixed-length window of preceding
frame and text tokens. This constrained context ensures the model learns to operate under streaming
conditions while still allowing for full gradient flow. Auxiliary objectives (e.g., language modeling or
captioning) may be incorporated to enhance semantic representations, but the training regime mirrors
the causal constraint: the model sees only the current and past tokens within a limited window.



To solve this OHD problem, we propose AHA, a lightweight autoregressive framework built on recent
advances in streaming multimodal LLM:s. Its architecture (Fig.|1)) consists of four key components: (1)
A Frozen Visual Encoder (pretrained SigLIP [27]) extracts frame features, facilitating generalization
without visual fine-tuning [13}[12]]. (2) A Minimal Multimodal Projection, a single linear layer that
maps visual embeddings to the LLM token space for fast per-frame tokenization. (3) A Token-Level
Autoregressive Decoder, a decoder-only transformer [28} [29], processes interleaved text (including
S and Q initially) and visual tokens in a unified sequence, enabling continuous, single-pass decoding
for streaming inference. (4) Multi-Objective Prediction Heads (relevance, informativeness [13l],
uncertainty) are added on top of the decoder’s final hidden layer h; to capture frame-level semantics
for HD, which are then combined to produce ¢;. An auxiliary language modeling head (LM head) [12]
also enriches representations during training. The selection of SigLIP and the Qwen2-based decoder
is grounded in their SOTA performance and widespread adoption in recent vision-language literature

(see Appendix [C.3).

3.1 Training Objectives

We supervise AHA by jointly training four lightweight prediction heads, each targeting a distinct
objective: task-conditioned relevance, informativeness, uncertainty, and auxiliary captioning. The
total loss is a fixed, weighted sum of these objectives, a simple yet theoretically grounded multi-task
learning strategy (see Appendix [C.5] for a detailed justification of this approach and our model
backbone selection).

Relevance Head. The relevance head estimates task-conditioned highlight relevance for frame
f: via a scalar prediction 7, = W,.hy, where h, € RPridden is the decoder’s final hidden state and
W, € RPriaaen X1 gre Jearned linear projection weights. This prediction is supervised against human
engagement scores 7 (Sec. using a Smooth L1 loss [30], Lelevance (Eq- . To encourage smooth
temporal predictions reflecting common user engagement patterns often observed in video data (e.g.,
gradual build-up and fall-off of interest around key moments, as noted in datasets like Mr.Hisum), we
incorporate an additional total variation (TV) regularizer [31]], Ltv (Eq. . These are given by:
1 Tuin—1 o,

Lrevnce = SMOOthL1 (7, 7¢)  (1a) bv=go =7 2 wl=fe)® A
where v; € {0,1} in Eq. (Ib) indicates if both #; and 7;_1 are valid within a temporal window of
size Thin. The total relevance objective, Lielevance-total, COMbines these terms:

Erelevance-total = Lrelevance + )\TV »CTV (2)

Informativeness Head. Informativeness measures whether a frame introduces new information
relative to recent context. Following prior work in dialog-based VideoLLMs [13]], we incorporate
a binary classification head to estimate if frame f; introduces new information, outputting a score
iy = softmax(W;h;), where W; € RPnriaden*2 gare learned weights projecting h; to a 2D output for
binary classification. It is trained to recognize temporally novel or redundant frames using Binary
Cross-Entropy (BCE) with ground truth i, € {0, 1} (Sec.[3.3):

Linto = BCE(iy, i) 3)

Uncertainty Head. Uncertainty captures the model’s confidence in its frame-level predictions under
partial observability. This head predicts the logarithm of Gaussian variance. From the hidden state
hy, its linear projection W, outputs a raw log-variance Zt = Wy h;. This is clamped to a predefined
range [Loin, Lmaz] (yielding lAm) to obtain the predicted variance 67 = exp(lAm). The primary loss
component is the Gaussian negative log-likelihood (NLL) [25]]. For this, the mean p, is taken as the
linear output of the relevance head (i.e., u; = 74), used alongside the ground truth relevance r; and
the predicted variance 52

(re —pm)?* | 1 -2
LNl = ——— + = log(2 1 4
NLL = o5 +20g(7mt+) @
where § is a small stability constant (e.g., 10~%). However, relying solely on the NLL loss can lead to
mode collapse: a known pitfall where the model learns a degenerate solution by predicting a single,
uninformatively high variance for all frames to trivially minimize the loss [32]. To counteract this,

we introduce a variance diversity penalty, Lg;, (Eq.[5a), based on the batch standard deviation of the



clamped log-variances. This regularizer forces the model to produce a dynamic and meaningful range
of uncertainty values. The final uncertainty loss, Luncertainty (Eq- @]) combines the expected NLL
with this penalty. A detailed derivation and justification for this uncertainty formulation is provided

in Appendix [C.3]

Laiv = —Aaiv - td({Ls.c Yicvaen)  (52) Luncerainy = Max(0, E[Lxi1] + Laiv)  (Sb)

LM Head. Following prior streaming LLMs [13}[12]], an auxiliary LM head encourages semantically
rich hidden representations. At randomly sampled training timesteps, the model generates short
captions (Sec. [3.3) for the current frame conditioned on prior context using standard cross-entropy
loss for next token prediction:

Lim = CrossEntropy (LMHead(h;), y:) (6)
Generated text is not injected back into the context, focusing on unidirectional frame-wise scoring.

Total Loss. The final training objective, Lo, is @ weighted combination of the L ejevance-total (EQ- ,
Einfo (Eq 7 Euncertainty (Eq @7 and [-:LM (Eq @:

£tolal = /\rﬁrelevance—tolal + )\i[finfo + )\u[funcertainly + )\LM[fLM (7)

Fixed weights A are used during training (see Appendix for values). We use fixed weights to
ensure training stability and interpretability, avoiding the complexity of joint optimization or dynamic
reweighting across heterogeneous objectives. Additional implementation details and motivation for
each loss component are provided in Appendix [C.1]

3.2 Inference and Memory Management

Transformer self-attention scales quadratically with sequence length [33]], making streaming inference
costly. To mitigate this, we adopt a KV Cache [26], storing previously computed attention keys and
values at each layer, avoiding redundant computation. Each layer’s cache grows with sequence length
L, storing tensors of shape [B, H, L, D], where B is batch size, H is number of heads, and D is head
dimension. However, for long videos (L > 127k in our evaluations), this unbounded growth leads
to GPU out-of-memory (OOM) errors, highlighting the need for a memory-efficient alternative.

Dynamic SinkCache. To solve this, our framework introduces the Dynamic SinkCache, a novel
modification of the hybrid memory approach from SinkCache [21]]. Unlike the standard method that
uses the first few generic tokens as its sink, our mechanism creates a more targeted long-term memory.
It dynamically constructs the sink to contain exclusively the natural language task objective tokens
(Q), while the sliding window is dedicated to recent visual context. This design carries a constant
memory footprint, supporting inference over arbitrarily long videos. In our implementation, the task
objective sink averages ~45 tokens, which we pair with a sliding window of 2048 recent tokens. This
configuration, requires only 17% of the standard cache (L, = 12,421) and conserves memory while
achieving improved performance (see Section i.2).

Formally, the highlight score at timestep ¢ is computed as §; = fo(f:, Q,S,K¢). The term K; =
{Q, ki_n.+} represents the memory accessible at timestep ¢. Here, the sink is precisely the set of task
objective tokens Q, and k;_,.; is the sliding window of n recent visual tokens.

A comprehensive explanation of the Dynamic SinkCache mechanism, including its operational details,
comparisons against other caching mechanisms, the role of sink tokens in maintaining long-term
context, and an illustrative diagram, is provided in Appendix [F}

Scoring. The final highlight score 3, is computed by fusing the relevance (7;), informativeness
(i), and uncertainty (i) heads using an uncertainty-aware, piecewise scoring function. Specifically,
let 7; be the predicted relevance (W.hy), %t the predicted informativeness (softmax(W;h;)), and
the predicted uncertainty score (taken as the clamped log-variance lAt’C output by the uncertainty

head, where lAt,c = clamp(Wyh¢, Limin, Limas ). We then apply an uncertainty-aware linear weighting
function:

L a%t + By, if uy <7, (low uncertainty) ®)
Y7 iy + By — ety — 1), if @iy > 7, (high uncertainty)
The parameters («, 3, €, 7,,) are set using a static approach, which our analysis shows is more robust

than unstable dynamic alternatives (see Appendix|C.4). This framework offers a flexible trade-off:



for a truly zero-shot configuration, we use a fixed heuristic (based on a 10:7 ratio for « : ). For
optimal domain-adapted performance, all four parameters are tuned via a lightweight grid search.
Our results in Section[d.T]are presented for both settings to demonstrate the model’s capabilities.

3.3 Video Datasets for Prediction Head Supervision

We train AHA using a combination of existing video-language datasets and a novel dataset tailored
for highlight relevance in videos. These datasets supervise different model heads and are critical for
enabling frame-level semantic understanding.

To effectively supervise the multi-objective prediction heads of AHA, particularly the core relevance
head, we construct a novel, large-scale dataset, named the Human Intuition Highlight Dataset
(HIHD). The construction of HIHD begins with the Mr.HiSum benchmark [[15]: for each video entry
therein, we retrieve its original full version from YouTube [34] via webscraping. Videos with fewer
than 70,000 original views are subsequently discarded to ensure data quality. From the retained
videos, we systematically sample frames at 1 fps to align with our model’s visual processing rate.
The corresponding YouTube replay counts (engagement scores [13]]) are then normalized to a [0, 1]
range, serving as our primary relevance signal r;, the ground truth scores for the relevance head’s
Smooth L1 loss (Eq.[Ta). While this engagement based signal enables scalability far beyond manually
labeled datasets, we acknowledge it is an imperfect proxy for true importance. It may introduce
biases by amplifying content designed for high engagement (e.g., "clickbait") and misaligning with
expert judgment in safety-critical domains. We provide detailed discussion of these limitations in
Appendix [land Section [5] respectively. For our task-conditioned setting, relevant task objectives
Q are generated by programmatically transforming each video’s original YouTube title into diverse
natural language queries using predefined templates (e.g., a title “Exploring the Riemann Hypothesis”
might become “What segment of the video addresses ‘Exploring the Riemann Hypothesis’?”’); see
Appendix [H] Finally, to simulate real-world video stream degradation and enhance model robustness,
we introduce "quality dropouts": 5-20% of each video’s duration is randomly selected, and frames
within these segments undergo perturbations such as resolution reduction, block noise, color banding,
or blackouts, with corresponding dropout masks generated (detailed in Appendix [E.T). Crucially,
HIHD adopts the exact train/validation/test splits from Mr.HiSum to ensure fair comparability, and
its training set explicitly excludes videos present in common highlight detection evaluation datasets.

The resulting HIHD comprises 22,463 videos, each with frame-level normalized engagement scores
(1), a synthetic task objective Q, and quality dropout masks. This dataset provides rich, frame-level
supervision specifically designed for training and evaluating task-conditioned OHD models like
AHA. By combining large-scale implicit human engagement signals with synthetically generated task
conditioning and targeted robustness augmentations, HIHD aims to foster the development of models
that can model human intuition in dynamic, task-driven, and imperfect streaming environments.

To supervise the informativeness head, which predicts whether frame f; introduces new information,
we adapt strategies from MMDuet [13]], a streaming framework. Ground truth labels i; € {0,1}
are derived from segment-level captions in the human-annotated subset of Shot2Story [35] and
procedural videos from COIN [36]]. For each segment, a “point of sufficient understanding” is
randomly sampled between 50% and 75% of its duration. Frames from the 50% mark up to this
point are labeled informative (i; = 1); others before or after are labeled non-informative (i; = 0).
This reflects the intuition that early frames lack context and later ones become redundant once
understanding is achieved. The informativeness head is trained using BCE loss (Eq. [3)), with the
hypothesis that this signal correlates with highlight moments in OHD. Crucially, our framework
is designed to explicitly decouple this signal of informational novelty from task-relevance, using
separate heads to learn these distinct concepts. We provide a detailed justification and a qualitative
analysis demonstrating its effectiveness on a real-world robotics video in Appendix [D.1]

To enhance semantic representations, we train an auxiliary LM head using the same Shot2Story
and COIN annotations. At random timesteps, AHA generates a short caption for the current frame
conditioned on prior context and the task prompt, supervised via next-token cross-entropy (Eq.[6).
Unlike interactive systems (e.g., MMDuet), AHA does not re-inject generated text into the context or
use it during inference. This preserves its unidirectional, non-dialogue streaming setup. The LM task
solely improves the quality of hidden representations h; used by the highlight prediction heads (see
Appendix [D|for details).



4 Experiments

This section details the comprehensive experimental evaluation of AHA. We first assess its core perfor-
mance as an OHD model under strict streaming constraints on two standard HD benchmarks, TVSum
and Mr.HiSum (Section[4.T)). We then evaluate its robustness to common video degradations and con-
duct ablation studies to analyze the contributions of its key components (Section[4.2)). To demonstrate
its practical applicability in challenging real-world conditions, we further test AHA’s capabilities on
a long-form robotics video (Section[#.3)), and generalization potential to other unoptimized video
understanding tasks (Section[#.4). Our results are averaged over 5 runs.

4.1 Highlight Detection

The widely-used TVSum HD benchmark [14]] provides multi-rater frame-level importance scores for
50 diverse videos. However, its small size can cause topic bias in standard splits, hindering reliable
generalization assessment [[15]. Therefore, to rigorously assess generalization from its pre-training
(Sec.[3.3), we evaluate AHA on TVSum zero-shot (i.e., without TVSum-specific fine-tuning) and with
a lightweight grid search. Following [[10], we report Kendall’s 7 (ordinal association) and Spearman’s
p (monotonic relationship) rank correlations. We also report top-5 mAP (mean Average Precision for
top 5 summary segments) per established TVSum protocols.

On TVSum (Table[I)), AHA establishes a new SOTA demonstrating remarkable performance even
in a truly zero-shot setting. Using a fixed heuristic without any domain specific tuning, our model
achieves 91.6 top-5 mAP, significantly outperforming the previous best tuned model, TR-DETR [19]
(87.1 mAP). This zero-shot configuration also produces the most faithful overall frame ranking,
setting a new SOTA on both Kendall’s 7 (0.304) and Spearman’s p (0.433).

Furthermore, performance on summary retrieval can be pushed even higher. By adapting the scoring
parameters via a lightweight grid search on the TVSum validation set, the top-5 mAP is boosted to
93.0. This domain-adapted configuration slightly alters the global ranking but excels at the primary
goal of identifying the most critical highlight segments.

Table 1: TVSum Performance. We report top-5 mAP, 7, and p. ‘Tuned?’ indicates if fine-tuned on
TVSum (Y) or not (N). Modalities: V (visual), T (text), A (audio). Bold is SOTA. (Per-category

details: Appendix[B.2).

Model Tuned? Modality mAP Kendall 7 Spearman p
Human [20] N \% - 0.177 0.204
PGL-SUM [18]] N A% 57.1 0.206 0.157
LLMVS [10] N V+T - 0.211 0.275
UniVTG [17] N A% 84.6 - -
QD-DETR [37] Y V+A 86.6 - -
TR-DETR [19] Y V+A 87.1 - -

AHA (Zero-Shot) N V+T 91.6 0.304 0.433
AHA (Domain-Adapted) N V+T 93.0 0.285 0.406

The large-scale Mr.Hisum HD benchmark [[15] uses YouTube replay statistics (“most replayed” data
reflecting broad viewer engagement) as scalable ground truth, forming a key component of our HIHD
(Sec.[3.3). Since AHA’s training (via HIHD) uses only Mr.Hisum’s training split data, our evaluation
on its fest set is strictly on held-out data. Per protocol [[15], we report mAP@50 and mAP@15 (top
50/15 ranked segments) to assess relevance assignment to frequently rewatched frames.

To specifically evaluate our relevance head on the task it was trained for, we use a scoring configuration
that isolates its output (3 = 1, with all other weights set to zero). On the Mr.Hisum test set (Table ,
this focused approach achieves a new SOTA of 64.19 mAP@50 and 32.66 mAP@15, a significant
improvement (e.g., +8.3 mAP@50 over PGL-SUM [[18]]). These results validate that our relevance
head, trained on large-scale engagement, successfully identifies salient moments correlated with user
engagement under strict no future access constraints.



Table 2: Overall HiSum performance on the full test set. Bold highlights our SOTA results.

SL-module iPTNet DSNet PGL-SUM AHA

Metric 138] 139] [40] (18] (Ours)
mAP@50 55.31 50.53  50.78 55.89 64.19
mAP@15 24.95 2274 24.35 27.45 32.66

4.2 Ablations

We conduct ablations on TVSum for its evaluation of streaming scoring and ranking; Mr.HiSum
is omitted as it mainly tests the relevance head. AHA is tested with the optimal sliding window
(n = 2048) unless otherwise specified. Core component and SinkCache configuration results are
shown in Table [3] We also demonstrate the efficacy of AHA’s video quality dropout training in
Table @] by evaluating its performance under various visual degradations.

Head Importance. The decoupled prediction heads are crucial (Table [3] left). Removing the
relevance (8 = 0) or informativeness (o = 0) heads severely degrades Top-5 mAP by 15.7 and 9.8
points, respectively, from our 93.0 mAP baseline. Omitting uncertainty (e = 0) results in a smaller
drop (3.2 mAP points), suggesting it aids calibration but is less critical here than the other heads.

Language Conditioning. Eliminating language conditioning (empty task string @) significantly
reduces Top-5 mAP by 11.8 points (93.0 — 81.2) and drastically lowers rank correlations (e.g.,
S-p: 0.406 — 0.342). This highlights the critical role of persistent language grounding for task-
conditioned HD in streaming video, where retaining the task objective enables AHA to maintain
long-range semantic alignment. Furthermore, the model exhibits graceful degradation under imperfect
conditioning. When tested with ambiguous (i.e., overly general) or entirely irrelevant prompts,
performance declines proportionally rather than catastrophically, confirming that the language prompt
strongly guides but does not dominate the underlying visual saliency detection (see Appendix [B.5).

Memory Mechanism Analysis. Our most significant architectural finding comes from ablating
the memory mechanism itself (Table [3] right). We found that simpler strategies relying on only
recent context (‘Sliding Window Only*) or only initial context (‘Static Window Only ‘) performed
poorly. Our proposed Dynamic SinkCache outperforms not only these simpler methods but also
an “Unbounded KV Cache” and the “Standard SinkCache”, proving that a task-focused sink is the
optimal memory strategy for this problem. The choice of a 2048 token window for recent context
provides an excellent balance of performance and efficiency, as detailed in our window size analysis
in Appendix The details of each memory mechanism can also be found in Appendix [F.4]

Table 3: Ablation study on TVSum. Left: Core component ablations. Right: Memory mechanism
ablations. Our default model (top row) uses the Dynamic SinkCache.

Variant mAP S-p  K-7 Memory Mechanism mAP S-p  K-7
AHA (Ours) 93.0 0.406 0.285 Dynamic SinkCache (Ours) 93.0 0.406 0.285
a=0 83.2 0.341 0.237 Standard SinkCache 92.6 0.401 0.280
B=0 77.3 0.321 0.221 Unbounded KV Cache 91.7 0.400 0.277
e=0 89.8 0.401 0.278 Sliding Window Only 69.5 0.063 0.043
w/o Q 81.2 0.342 0.238 Static Window Only 632 0 —0.01

Impact of Video Quality Dropout Training. A key design goal for AHA is reliable performance
despite visual degradations common in real-world streaming. Its training incorporates video quality
dropout mechanisms (Appendix [E.I) specifically to build resilience against such artifacts. To
demonstrate the efficacy of this training approach, we evaluated AHA on the TVSum dataset under
both clean conditions and with several simulated visual degradations [41]: color banding, block noise,
quality degradation, and blackout, each applied to 20% of frames within each video. As detailed
in Table[d] AHA exhibits notable resilience. For instance, its Top-5 mAP drops by only (A 4) and
(A1 g) percentage points when subjected to color banding and block noise, respectively. Even when
faced with more severe artifacts like quality degradation and complete blackout, AHA maintains
strong absolute performance with mAP scores of 88.9 (A4 1) and 88.2 (A4 g). These findings confirm
that the video quality dropout strategy employed during AHA’s training is effective in preparing it for



imperfect visual inputs. This enables graceful degradation and underscores its potential for reliable
deployment in real-world streaming environments where video quality can be unpredictable.

Table 4: Robustness to video corruptions on TVSum (Top-5 mAP). A indicates drop from clean.

Clean +ColorBanding +BlockNoise +Quality +Blackout
AHA (Ours)  93.0 92.6 (Ao.4) 91.2 (A1g) 88.9(As1) 88.2(Ass)

4.3 Real-World Evaluation on Long-Form Robotics Video

We evaluate AHA on video from the SCOUT dataset [[16]], a long-horizon (20+ min), egocentric video
captured during indoor robot navigation trials from human-robot collaborative exploration exercisesE]
Unlike web videos, SCOUT features continuous footage with no cuts, degraded quality (e.g., static,
warping), and sparse, mission-relevant events, providing a challenging, real-world testbed for OHD.

AHA generates highlight scores (¢;) in real-time. To facilitate qualitative analysis and enable the
creation of a structured highlight reel from these continuous online scores, we apply Savitzky-Golay
smoothing [42] followed by peak detection as a post-processing step to isolate segments of high
salience. Ground truth video annotations were established by domain experts by aligning these
predicted peaks with human-issued navigation commands (obtained from experiment transcripts)
and key visual transitions observed in the video footage. In an 8-minute analysis (Fig. [2), 16 of
18 predicted peaks aligned with human-issued commands or meaningful actions (e.g., “robot take
a better picture of the shoes”, “enter the room”). Despite the aforementioned noise and visual
corruption, AHA remained stable. This stability is consistent with its designed resilience to such
artifacts (as demonstrated in Sec. and Table [), and AHA also showed strong alignment with
semantic shifts. These results, while preliminary in application to this dataset, suggest that AHA can
detect high-salience moments in real-time, supporting both operator alerting and automated highlight
generation in field robotics deployments (see Appendix [G]for more details).
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Figure 2: SCOUT results. Colored lines mark annotated events from video (e.g., room entry, turns).
Highlighted regions indicate degraded video. Black line is AHA’s predicted highlight scores.

4.4 Generalization to Broader Streaming Video Understanding

Beyond its primary application in highlight detection, AHA’s architectural design and learned
representations demonstrate strong potential for broader video understanding. When evaluated on a
streaming moment retrieval (MR) protocol [13]] using the Charades-STA dataset [43]], AHA achieves
SOTA performance among streaming methods, yielding 50.7% R@1 at an IoU of 0.5, and 27.9%
R@1 at an IoU of 0.7. This result highlights the robustness of our approach for fine-grained temporal
understanding in streaming video. Full details of this streaming MR evaluation, including comparative
results, are provided in Appendix [B.1} Additionally, AHA’s capabilities on other video-language
tasks such as dense captioning and multi-answer grounding are discussed in Appendix [B]

3A subset of video frames available in SCOUT repository. Full videos planned for near-term public release.



5 Conclusion

We introduced AHA, a real-time, task-conditioned OHD framework. Its lightweight prediction
heads and novel Dynamic SinkCache-based memory achieve SOTA performance on standard HD
benchmarks, remarkably outperforming even traditional offline methods while maintaining constant
computational cost across arbitrarily long video streams. Trained on our HIHD data, derived from
user engagement signals and task-conditioned prompts, AHA aligns with human-like intuition for
relevance. We validated its robustness on standard benchmarks and challenging real-world settings,
including streaming MR and the long-horizon SCOUT robotics dataset, demonstrating AHA’s
capability for consistent, task-relevant understanding in noisy, real-world conditions where offline
processing is often infeasible.

Looking ahead, AHA offers a scalable solution for intelligent agents requiring real-time, context-
aware video understanding, such as for surveillance drones, satellite analysis, embedded systems,
and disaster response. Our ongoing work is developing further analysis of the SCOUT videos, and
extending AHA to publicly available drone footage from disaster response efforts (e.g., wildfire
monitoring), where its online, task-conditioned highlight detection can be tailored to aid responders
and investigators in identifying mission-critical information from continuous video streams.

Limitations and Future Work. Although AHA achieves strong results, we identify opportunities
for future improvement.

Uncertainty Modeling: Our uncertainty head is trained without ground-truth uncertainty labels due
to the subjective nature of highlights and the difficulty of capturing annotator confidence at scale,
limiting interpretability in high-stakes settings. Future work could explore supervised, contrastive, or
calibrated approaches. For instance, datasets with human confidence scores, such as MultiVENT-
G [44], offer a promising path towards direct supervision (see Appendix [f). Despite this, our model
demonstrates improved performance when incorporating uncertainty into its scoring.

Training Efficiency and Backbone Generalization: High compute costs restricted our architectural
ablations, including the validation of the AHA framework on a wider range of vision-language
backbones (see Appendix [C.5]for our selection rationale). Future work could explore distilled variants
of AHA to improve runtime efficiency, which would facilitate this broader testing and confirm the
framework’s adaptability across different underlying models.

Static Inference Weighting: Our framework relies on a static weighting scheme for inference, a design
choice empirically validated in our ablations (Appendix [C.4), where it proved more effective than
the dynamic alternatives we tested. While this modular approach yields SOTA performance, the
exploration of more sophisticated adaptive weighting mechanisms remains a compelling direction
for future research. Expert annotated datasets like MultiVENT-G [44] could provide an important
testbed for validating any weighting strategy against human defined importance (see Appendix I).

Memory Constraints in Training: Training uses fixed-length windows without persistent memory
across segments for efficient batching. While the Dynamic SinkCache at inference provides stable,
bounded memory, future work could explore augmenting training with recurrent or retrieval-based
memory mechanisms to potentially enhance global reasoning capabilities learned by the model.

Ethical Considerations and Broader Impact. Despite its benefits for applications like disaster
response, AHA could be misused in surveillance contexts or amplify societal biases if trained on
biased data. We recommend its deployment with privacy-preserving measures (e.g., blur filters for
faces), robust access controls, and domain-specific ethical audits. To guide responsible research and
application, a code of conduct will accompany our public repository. As this technology develops,
we encourage continued open discussion regarding its ethical deployment, particularly in sensitive
domains such as public safety, surveillance, or defense.
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A Training Hyperparameters

Table 5] gives the full set of hyperparameters used to fine-tune AHA on the Qwen-7B backbone.

Table 5: Key hyperparameters for training AHA.

Category

Hyperparameter (Value)

Optimization
Optimizer

Betas (optimizer)
Epsilon (optimizer)
Weight decay

Learning rate

LR scheduler

Warmup ratio

Gradient norm clipping
Gradient checkpointing

Batching

Per-device train batch size
Gradient accumulation steps
Num epochs

Precision & Acceleration
BF16 training
DeepSpeed

Attn implementation

Data loading
Dataloader workers
Pin memory

Drop last batch

Video preprocessing
Frame rate

Frame resolution
Pooling stride
Frame tokens (#)
Token pooling dims

Model backbones
LLM backbone
Vision backbone
Multimodal projector

Losses & regularization
Stream loss weight
TV loss window

Saving & logging
Save strategy
Save total limit
Logging strategy

AdamW [45]

(0.9, 0.999)

1x10°°

0.0

2x107°

Cosine decay with linear warmup
0.05 (0 warmup steps)

1.0

Enabled

1
2 (effective batch size = 2)
1

Enabled
zero2 [46] + CPU offload
Flash Attention2 [47]]

4
True
False

1 fps

384 x 384
4

49

(7,71

lmms-lab/llava-onevision-qwen2-7b-ov
google/siglip-large-patch16-384
3x3 conv + linear layers

1.0
49

steps (every 25 steps)
5 checkpoints
steps (every 1 step)

A.1 Implementation Details

We fine-tune AHA using Low-Rank Adaptation (LoRA) [48]] on a frozen Qwen-2.7B backbone for
one epoch. Training was performed on 3 compute nodes, each with 2xNVIDIA A6000 GPUs (48GB
VRAM), totaling 6 GPUs. The full training run took approximately 28 hours. Videos were sampled
at 1 fps for both training and inference. AHA was trained using PyTorch 2.5.1, Transformers 4.49.0,
and CUDA 12.4 on Ubuntu 22.04. Training runs were executed on Paperspace, with all checkpoints
and video data stored in an Amazon S3 bucket.

* LLM backbone: Frozen Qwen-2.7B [29] (lmms-1ab/1llava-onevision-qwen2-7b-ov).
* Vision encoder: Frozen SigLIP Large [27]] (google/siglip-large-patch16-384).
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* MM projector: Single linear layer nn.Linear (mm_hidden_size, hidden_size) map-
ping each 1152-d patch to Qwen’s 3584-d hidden space.

A.2 Inference Performance

We conducted a detailed performance analysis of our framework on a 1062 second video (~17
minutes) using two NVIDIA A6000 GPUs. The system achieved a sustained throughput of 1 frame
per second (FPS), demonstrating high efficiency with 100% peak GPU utilization and 90% peak
memory controller utilization. During this process, the framework consumed a peak of 30.49 GB
of VRAM across both GPUs and operated well within safe thermal limits at a peak temperature of
65°C, all while maintaining a minimal system RAM footprint of 3.66 GB. While this establishes a
strong performance baseline, the 1 FPS rate means that in a live scenario, the system would “drift”
and fall behind the incoming video feed. Therefore, for real-time deployment, implementing logic to
strategically skip frames would be necessary to keep the analysis on track. Given that our framework
already leverages the available compute effectively, it is a strong candidate for such optimizations to
achieve the higher throughput needed for live applications.

B Additional Results

B.1 Streaming Moment Retrieval

We follow the streaming moment retrieval (MR) protocol introduced in MMDuet [13], applying AHA
to Charades-STA [43] and treating frame-level relevance scores as soft temporal indicators. Using a
smoothing window w as in prior work, we compute R@1 at IoU thresholds of 0.5 and 0.7.

As shown in Table[6] AHA with w = 8 achieves the highest temporal grounding performance on
Charades-STA, attaining 50.7% R@0.5 and 27.9% R@0.7. This constitutes an absolute improvement
of 8.3 and 9.9 points, respectively, over the strongest baseline (MMDuet with w = 8), highlighting
the benefits of our direct frame-level scoring and streaming-oriented design, even in the absence of
span-level supervision.

To further contextualize these results, we train two additional streaming MR baselines following
MMDuet’s framework [13], using the same initialization (LLaVA-OneVision [49])), training data
(MMDuetl [13]]), and learning schedules. We reformat the data into the interaction and segment
representation formats used by TimeChat [50]] and VTimeLLM [51], yielding LLaVA-OV-TC and
LLaVA-OV-VT. Comparisons to these variants further validate the advantages of our frame-level
design.

We note, however, that this formulation is still an approximation of full moment retrieval. Accurate
span localization under strict streaming constraints remains an open challenge. Extending AHA
with autoregressive span prediction or memory aware temporal boundary modeling is a promising
direction for future work.

Table 6: Performance on Charades-STA for temporal grounding.

. LLaVA LLaVA MMDuet AHA AHA
Metric| VIGLLM 521 Gy'1e) (Gvoyry MMDuet 31 " "% 010 (w — )
R@0.5 33.8 33.1 36.5 27.3 024 428 507
R@0.7 15.7 124 123 2.1 180 181 279

B.2 TVSum’s Categorical Evaluation

In addition to our overall Top-5 mAP results, we analyze performance across TVSum’s ten activity
categories [14]: Changing Vehicle Tire (VT), Getting Vehicle Unstuck (VU), Grooming an Animal
(GA), Making Sandwich (MS), Parkour (PK), Parade (PR), Flash Mob Gathering (FM), Bee Keeping
(BK), Attempting Bike Tricks (BT), and Dog Show (DS). As shown in Table our full multimodal
model (V+T) achieves a new state-of-the-art in nearly every category, with particularly large gains in
visually complex tasks like Changing Vehicle Tire.
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Table 7: Top-5 mAP (%) on TVSum categories. Bold indicates state-of-the-art per category.

Method Modality VI' VU GA MS PK PR FM BK BT DS Avg
QD-DETR [37] (V) V 88.2 87.4 85.6 85.0 85.8 869 764 91.3 89.2 73.7 85.0
UniVTG [17] v 83.9 85.1 89.0 80.1 84.6 87.0 70.9 91.7 73.5 69.3 81.0
TR-DETR [19] (V) V 89.3 93.0 94.3 85.1 88.0 88.6 80.4 91.3 89.5 81.6 88.1

QD-DETR (V+A) V+A 87.6 91.7 90.2 88.3 84.1 88.3 78.7 91.2 87.8 77.7 86.6
TR-DETR (V+A) V+A 90.6 92.4 91.7 81.3 869 855 79.8 93.4 883 81.0 87.1

AHA (Ours) V+T 98.3 99.2 994 84.8 81.2 94.8 974 94.2 93.1 87.6 93.0

B.3 Multi-Answer Grounded Video Question Answering

The Multi-Answer Grounded Video Question Answering (MAGQA) benchmark [13]] extends con-
ventional Video QA by requiring models to generate multiple answers at semantically relevant time
points within a single video, rather than a single response per question. In MAGQA, each question
corresponds to 7ms ground-truth answer turns, each defined by a start time start,, an end time 7y,
and an answer text goldq. Models must decide, at each frame, whether to respond based on the sum
of informative and relevance scores exceeding a threshold ¢, and then produce the answer in real-time.
Performance is measured using the in-span score, which combines textual relevance (scored 1-5 via
an LLM) with temporal accuracy by averaging the scores of all predicted answers falling within each
ground-truth interval and then averaging across intervals. This setup simulates realistic streaming
video comprehension, emphasizing both promptness and answer correctness without access to future
frames.

Our model attains an in-span score of 2.42 (GPT-scored) at t = 0.5 and 2.37 at ¢t = 0.3, compared to
MMDuet’s peak of 2.93 (Table[8), indicating that AHA can still produce timely, relevant multi-answer
responses even without task-specific training. After deduplication, we average only about 2.02-2.09
unique turns per video, despite generating over 30 raw turns, showing that our streaming design
reliably spots answerable moments but tends to repeat predictions when it isn’t explicitly optimized
for MAGQA. This highlights both the versatility of our framework in auxiliary QA tasks and the
opportunity to further improve answer diversity and precision through dedicated fine-tuning.

Table 8: MAGQA evaluation results: In-span score and response turns

Model In-Span Score (LLaMA / GPT) # Turns (w/o. / w/. dedup)
LLaVA-OV-TC 2.92/2.79 3.4/1.9
LLaVA-OV-VT 2.94/2.78 5.4/2.2
MMDuet [13]]

w/t=0.6 2.46/2.33 13.7/4.0
w/t=0.5 2.7712.61 18.4/5.3
w/t=0.4 3.00/2.81 23.0/6.6
w/t=0.3 3.13/2.93 27.0/7.6
AHA (Ours)

w/t=0.5 2.68/2.42 30.55/2.02
w/t=20.3 2.63/2.37 34.19/2.09

B.4 Dense Video Captioning

We evaluate on the YouCook?2 dense video captioning benchmark [53]], where models must detect
and describe ~ 8 procedural steps in minute-long cooking videos by outputting, for each step, a start
time, end time, and caption. Following MMDuet [13]], we accumulate a per-frame “need response”
score (the sum of informative and relevance heads) and emit a caption whenever this sum exceeds
a threshold s (we set s = 2). Since frames themselves do not explicitly mark step boundaries, we
heuristically assign the previous and current response times as the start and end of each segment, and
merge adjacent steps with identical captions.
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Table 0] compares performance. Even without any DVC-specific fine-tuning, AHA produces competi-
tive captions in real-time, achieving an F1 of 15.1%, demonstrating its versatility across auxiliary
tasks. However, unlike MMDuet’s “rm. prev. resp.” trick, which significantly reduces redundancy,
our streaming design still tends to repeat captions, reflecting the need for dedicated training or more
sophisticated boundary modeling to fully match specialized DVC pipelines.

Table 9: Performance on YouCook?2 dense video captioning.

Method SODA. CIDEr F1
TimeChat [50] 1.2 34 12.6
VTG-LLM [52] 1.5 5.0 17.5
LLaVA-OV-TC 1.9 33 21.8
LLaVA-OV-VT 2.5 6.7 14.0
MMDuet [[13]] 24 5.7 19.2

+ rm. prev. resp. 2.9 8.8 21.7
AHA (Ours) 14 3.2 15.1

B.5 Robustness to Imperfect Task Conditioning

To assess the framework’s robustness to variations in task conditioning, we conducted a quantitative
analysis on the TVSum dataset using ambiguous and irrelevant prompts. An ambiguous prompt was
defined as a high-level categorical description of the specific task (e.g., using "Vehicle Maintenance"
for a video on changing tires). An irrelevant prompt was defined as a task description sampled from
a video in a completely different category.

Performance was measured by the change in top-5 mAP relative to the baseline score achieved with
the original, specific prompt (93.0 mAP). The results, summarized in Table[I0] demonstrate graceful
degradation. With an ambiguous prompt, performance decreased by only 1.1 mAP points, indicating
the model can generalize to broader task descriptions. When given an entirely irrelevant prompt,
performance dropped by a more significant, yet not catastrophic, 9.7 mAP points. This confirms that
while the model is strongly guided by the task objective, its learned visual representations retain a
strong sense of inherent saliency.

Table 10: Impact of prompt quality on TVSum performance (Top-5 mAP).

Prompt Type Top-5 mAP  Change (A)
Standard (Specific) 93.0 Baseline
Ambiguous 91.9 -1.1
Irrelevant 83.3 9.7

C Supplementary Methodological Details

This section provides additional details and justifications for certain design choices described in the
main paper’s Methodology section (Section [3)), which were condensed for brevity due to page limits.

C.1 Training Objectives: Head Details and Justifications

Relevance Head - TV Loss Motivation. The motivation for incorporating the total variation (TV)
loss (Eq.[Th]in the main paper) stems from observing the structure of human engagement signals often
used for highlight supervision, such as aggregated user replay statistics (see Figure [3). These signals
frequently exhibit smooth, bell-shaped distributions centered on replayed segments. The TV loss
encourages our relevance predictions 7; to match these smooth trends characteristic of engagement,
complementing the point-wise Smooth L1 loss [30] (Eq. while aiming to avoid over-smoothing
across genuine sharp transitions in content relevance. The term v, acts as a binary mask ensuring the
penalty applies only to adjacent valid predictions.
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} Pl 4) 002/76:23 - Aglimpse into the mystery of the Riemann Hypothesis >
Figure 3: YouTube replay distribution, adapted from the Mr.Hisum [15]]. Peaks in replay volume
(vertical axis), forming "bell curves," indicate frequently rewatched segments. These high-engagement

areas serve as the primary supervision signal for training our relevance prediction head.

Informativeness Head - Rationale and Repurposing. While prior work in dialog-based Vide-
oLLMs [13][12] often utilizes informativeness scores to trigger language generation or manage
conversational turns, we adapt this underlying intuition as a direct learning signal specifically for
the highlight detection (HD) task. By supervising the model (Eq.[3) to explicitly recognize tempo-
rally novel versus redundant frames, we encourage the development of stronger temporal reasoning
capabilities, which is beneficial for accurate highlight estimation over extended periods.

Uncertainty Head - Rationale and Potential Applications. The introduction of the uncertainty
head is crucial for addressing the challenges of the online, streaming setting. Since the model must
predict relevance 7; at time ¢ based only on past and current information (partial observability), its
ability to judge the long-term significance of a frame is inherently limited. Training the model to
predict its own uncertainty via log variance of the relevance score, using the negative log-likelihood
objective in Eq.[4] explicitly models this limitation. Specifically, the model outputs a raw log-variance
l; = Wyhy, which is clamped for numerical stability and then exponentiated to obtain the predicted
variance 62. During inference, we use the clamped log-variance lAt’c as the uncertainty score i, as
it is more stable and interpretable for downstream use. As noted in the main text, this is, to our
knowledge, the first application of such probabilistic uncertainty modeling in OHD.

Beyond the immediate model training, the resulting uncertainty scores 4, can potentially support
downstream applications such as adaptive decision thresholds, mechanisms for deferring judgment
on low-confidence frames, or reliability-aware resource allocation when processing multiple video
streams.

For a detailed justification of this architecture, including comparisons to alternative uncertainty
estimation techniques such as Monte Carlo Dropout and Bayesian inference, see Appendix [C.3]

LM Head - Design Choice Justification. The auxiliary LM head (Eq.[6) aims to foster semantically
rich hidden representations. In contrast to conversational models that might inject generated text
back into the context [12}[13]], we deliberately avoid this feedback loop. Our focus is on efficient,
unidirectional frame-wise scoring for HD, not multi-turn interaction. This decoupling enhances
efficiency and avoids reliance on implicit conversational structures that may not align well with
continuous, non-interactive video streams. The LM task serves solely to improve multimodal
alignment in the representations used by the primary scoring heads.

C.2 Loss Function Weights

The total loss function used for training AHA is a weighted sum of the objectives from the different
prediction heads, as defined in Eq.[7}

Etotal = )‘r-totalﬁrelevance-total + Aiﬁinfo + )\u Euncertainty + ALMELM

where L ejevance-total itself combines the base relevance loss and the total variation 10ss: Liejevance-total =
ﬁrelevanee + ATVETV (Eq ED

The weights (\) were determined based on the relative importance of each task, considerations of
class imbalance, the role of auxiliary objectives, and preliminary experiments. The final fixed weights
used throughout training are detailed below, following a general strategy of up-weighting critical or
difficult tasks and down-weighting auxiliary or regularizing terms:

* Relevance Loss Weight (\4ota1 = 8.0): The total relevance 10ss (Liejevance-total)» Which

includes the primary SmoothL1 regression objective (Eq.[Ta), is assigned the highest weight
(8.0). This emphasizes the main goal of the model: accurately predicting task-conditioned
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highlight relevance. This aligns with multi-task learning principles where primary task
losses are often weighted higher [54].

¢ Internal TV Loss Weight (Ayy = 0.05): Within the Lcjevance-total term (Eq. @]) the total
variation loss component (Eq. is weighted relatively low (Ary = 0.05). This ensures
it functions as a regularizer, encouraging temporal smoothness in predictions without
dominating the main regression signal from L ejevance-

* Informativeness Loss Weight (\; = 0.5): The informativeness head’s BCE loss (Eq.[3) is
assigned a significant weight (0.5). This decision addresses the substantial class imbalance
inherent in many HD tasks, where non-informative frames often form the vast majority. By
up-weighting this loss, we ensure the model remains sensitive to detecting rarer informative
frames, drawing inspiration from methods like Focal Loss [S5] that effectively give more
weight to harder examples or minority classes.

* Uncertainty Loss Weight (\, = 0.1): The uncertainty head’s NLL loss (Eq.}4) is considered
an auxiliary objective. Its main purpose during training is to learn to predict the variance
(0?) associated with the relevance prediction, rather than directly driving the relevance value
itself. Consequently, it receives a small fixed weight (0.1), reflecting its supporting role
relative to the primary relevance task (approximately 80 times smaller weight).

» Language Modeling Loss Weight (A\ppy = 0.2): The LM head’s cross-entropy loss
(Eq.[6) also serves an auxiliary function, primarily aimed at enriching the model’s internal
multimodal representations, analogous to how models like BLIP [56] benefit from combined
vision-language objectives during pre-training. Unlike models where text generation might
be a primary output (e.g., [12]), here it supports the main scoring task and is weighted
accordingly (0.2).

* Variance Diversity Weight (\giy = —e>): Small constant regularizing the uncertainty

loss (Eq. [5a).

This multi-objective setup, common in complex vision-language tasks, allows the model to learn
diverse but complementary skills necessary for effective highlight detection. The chosen weights
reflect a balance aimed at prioritizing the core relevance prediction while leveraging the benefits of
auxiliary signals for robustness, temporal understanding, and uncertainty awareness.

C.3 Uncertainty Modeling Design

Motivation. In Online Highlight Detection (OHD), the model observes a video frame-by-frame
and must immediately judge whether a frame is task-relevant, without seeing the future. This partial
observability inherently limits predictive certainty. For example, the current frame may only gain
meaning retroactively (e.g., as a prelude to an event). To address this, we introduce a lightweight
uncertainty head that models aleatoric uncertainty (input-dependent uncertainty), i.e., the ambiguity
in predictions stemming from incomplete observations. The head outputs a log-variance value

I, = W,hy at each timestep, predicting the uncertainty of the corresponding relevance score 7.

Architecture and Loss. We adopt a standard heteroscedastic regression formulation [57]], treating

the ground-truth relevance r; as sampled from a Gaussian distribution with mean 7, (the relevance

head output) and predicted variance 67 = exp(lAt,c). Here, lAt’c is the clamped log-variance for

numerical stability. The primary training objective for the uncertainty head is the Gaussian negative
log-likelihood (NLL) [25]:

(re —7)* | 1 ~2
LanLl = —5—— + = log(2 1

NLL = o5 *3 og(2m6; + 0)
We follow best practices from prior work 58] by predicting log-variance rather than variance directly,
ensuring positivity and improving numerical stability.

Preventing Mode Collapse. A well-known issue with heteroscedastic models is the risk of degen-
erate solutions where the network minimizes the NLL loss by predicting arbitrarily high variances,
thereby flattening the likelihood [32]]. To mitigate this, we introduce a regularization term encouraging
diversity in predicted uncertainties:
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Ldiv = —Adiv * Std({ii,c}iebatch)

The final uncertainty loss is defined as:

£uncertainty = max((), E[ﬁNLL] + £div)

This discourages the model from assigning identical uncertainty across all frames and promotes
calibration across predictable and ambiguous scenes.

Comparisons to Alternative Approaches.

* Monte Carlo Dropout (MC Dropout) [59]: Applies dropout during inference to simulate
an ensemble. Multiple stochastic forward passes yield a distribution over predictions. While
simple and widely used, MC Dropout primarily captures epistemic (model) uncertainty and
requires multiple passes per frame, a poor fit for real-time streaming.

* Bayesian Neural Networks (BNNs) [60]: Learn distributions over weights via variational
inference. While theoretically appealing, BNNs incur high computational cost and complex
training [61]]. Their benefit is mostly in epistemic uncertainty, which is less central than
aleatoric uncertainty in the OHD setting.

* Deep Ensembles [61]]: Combine predictions from independently trained models. This
method produces state-of-the-art uncertainty estimates but is expensive at inference, requir-
ing M forward passes (where M is the number of NNs in the ensemble). Ensembles are
known to produce well-calibrated results but are impractical for streaming environments.

Why Log-Variance Prediction? Compared to these alternatives, our design:

* Requires only a single forward pass, making it suitable for high-frequency, low-latency
inference.

* Provides per-frame aleatoric uncertainty, allowing the model to express ambiguity due to
missing future context.

* Outputs interpretable uncertainty scores (clamped log-variance) that are usable down-
stream for decision deferral or confidence-weighted policies.

* Avoids trivial high-variance collapse via a diversity promoting regularizer.

This decision is further supported by recent work on heteroscedastic modeling in noisy classification
settings [62]], which shows improved robustness and calibration when modeling log-variance directly.

Summary. We favor log-variance prediction with NLL loss due to its interpretability, ability
to model aleatoric uncertainty under partial observability, and compatibility with efficient online
inference. Alternative approaches incur significant overhead or focus on epistemic uncertainty,
which is secondary in our setting. Our approach allows AHA to not only predict whether a frame is
relevant, but also how confident it is in that decision, a vital feature for intelligent agents in real-world
deployments.

C.4 Highlight Score Fusion

This subsection details the formulation of our highlight scoring function, the theoretical principles
motivating its design, and the empirical validation for our choice of weighting scheme.

C.4.1 Scoring Function Formulation

To compute the final scalar highlight score g; per frame f;, we fuse the outputs of the relevance (),

informativeness (i;), and uncertainty (4;) heads. We adopt a piecewise linear, uncertainty-aware
scoring rule that penalizes predictions made with high uncertainty:

. {a%t + By, if iy <7, (low uncertainty) ©)

Y= aiy + Bty — e(ty — 1y), if Gy > 7, (high uncertainty)
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Here, o and 8 weight the informativeness and relevance signals, 7, is an uncertainty threshold, and e
controls the penalty for predictions exceeding this threshold.

C.4.2 Theoretical Motivation

This scoring function is designed for the specific challenges of Online Highlight Detection (OHD),
where the model operates under partial observability. The core motivation mirrors principles from
selective prediction and risk-aware decision-making [61} [63]]: a system should only act (e.g., flag
a highlight) when it is confident. The uncertainty signal #; serves as a confidence gate. Below the
threshold 7, scores are computed normally; above it, a linear penalty is applied to down-weight
uncertain decisions, implementing a simple risk-averse policy.

The piecewise linear design is deliberately chosen because it is:

1. Modular: Each head is trained independently, enabling post-hoc fusion without complex
joint optimization.

2. Interpretable: Highlight scores are directly influenced by human-readable weights and a
confidence gate.

3. Stable: The threshold provides consistent behavior in streaming conditions, avoiding erratic
outputs from minor uncertainty fluctuations.

4. Efficient: It requires minimal computation per frame, making it ideal for real-time inference.

C4.3 Justification of Static Weighting

To justify our choice of a static weighting scheme, we compared it against more complex, dynamic
alternatives on the TVSum benchmark. We evaluated three primary strategies, representing a spectrum
from robustness to domain-specific optimality: (1) two unstable dynamic methods, (2) a robust
static zero-shot heuristic, and (3) our top-performing, domain-adapted static grid search.

Table 11: Comparison of scoring mechanisms on TVSum (Top-5 mAP).

Method Top-5 mAP  Notes

Dynamic (MLP Gating) 87.9 Unstable, high variance

Dynamic (EMA Adaptor) 87.5 Unstable, high variance

Static (Zero-Shot Heuristic) 91.6 Most robust, SOTA baseline

Static (Grid Search) 93.0 Data-sensitive, optimal performance

The results in Table [TT|empirically validate the two configurations presented in our main results. The
dynamic methods proved unstable and underperformed. In contrast, the Static (Zero-Shot Heuristic),
which uses the fixed parameters « = 0.7, 5 = 1.0, = —2.9, and 7,, = 0.3, provides a highly robust
baseline that already surpasses prior state-of-the-art. The Static (Grid Search) method further boosts
performance to achieve the optimal score, confirming the value of lightweight domain adaptation,
though its outcome is sensitive to the validation data.

The specific domain-adapted parameters found via this grid search, which were used to achieve our
highest reported results, are detailed in Table [I2]

Table 12: Optimal hyperparameters per dataset. Note: to reproduce these results you will likely need
to run your own grid search.

Dataset « B8 € T

TVSum [14] 0.667 1357 3.571 0.077
Mr.HiSum [15] 0.000 1.778  0.714 0.040
Charades [43] 0.888 20 -2.143 0.040
SCOUT [16] 0.200 1.556  1.000 0.053

C.4.4 Comparison to Alternative Fusion Approaches

Our simple, modular scoring function was chosen over other common fusion techniques for its
suitability in a streaming context.
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* Learned Fusion: Using a neural network to learn the fusion function sacrifices the inter-
pretability and modularity that are critical for domain adaptation and risks overfitting.

* Attention-Based Weighting: A dynamic attention mechanism over the heads introduces ad-
ditional parameters and potential instability in a streaming setting, complicating calibration.

* Confidence-Weighted Blending: Using a continuous function (e.g., sigmoid scaling) is
more complex to tune and less interpretable than a clear, thresholded gate.

Our design avoids the common pitfalls of these more complex techniques while enabling fast, stable,
and theoretically-grounded inference.

C.5 Justification for Methodological Design Choices

This section provides additional justification for two main design choices: (1) the use of a fixed-weight
loss combination for multi-task training, and (2) the selection of specific model backbones for our
AHA framework.

C.5.1 On the Use of Fixed-Weight Multi-Task Training

Using a fixed, weighted sum of multiple losses is not only a de-facto standard in large-scale pre-
training (e.g., BERT [64] adds Masked LM and NSP losses) but also a classic scalarization strategy
in multi-objective optimization. When each task loss L, () is well-behaved, optimizing

T T
Lo(e) = Zwl Ll(g), w; > 0, Zwl =1
i=1 =1

converges to a point on the convex Pareto front [65]], guaranteeing that no objective can be improved
without degrading another.

Recent empirical studies have rigorously compared simple fixed-weight scalarization against more
complex, specialized multi-task optimizers (SMTOs). These studies show that with appropriate
normalization and tuning, scalarization can match or even surpass these dynamic methods on diverse
benchmarks [66} 67]]. The primary advantages of this approach are its stability and scalability, as it
avoids the significant per step computational overhead inherent in dynamic re-weighting schemes.
Standard regularization techniques like weight decay and dropout also help mitigate conflicting
gradients, reducing the need for more complex optimizers. Thus, our choice is grounded in a strong
foundation of theoretical guarantees and practical evidence.

C.5.2 On the Selection of Model Backbones

The selection of the Qwen2 [29] and SigLIP [27] backbones was based on a thorough review of high
performing, open-source multimodal models at the time of this work.

Visual Encoder (SigLIP): We selected SigLIP as it has been shown to offer competitive or superior
generalization compared to CLIP, particularly at the smaller batch sizes that are characteristic of our
online, per-frame processing setup.

Language Backbone (Qwen2): For the language backbone, we adopted the LLaVA-OneVision
architecture based on Qwen?2. The distilled 7B variant of this model demonstrates SOTA performance
while remaining lightweight enough for our framework.

Both Qwen2 and SigLIP are widely used and validated in concurrent streaming vision-language
literature [[13]], showcasing their competitiveness and broad community adoption. While testing
on additional backbones is an important direction for future work, these selections represent a
well-grounded starting point for establishing the AHA framework.

D Dataset Curation for Informativeness and Language Modeling Heads

This appendix provides further details on the creation of ground truth labels used to supervise the
informativeness and auxiliary LM heads of the AHA framework. For both heads, we leverage existing
video-language datasets with segment-level captions, specifically the human-annotated subset of
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Shot2Story [35] and longer procedural videos from COIN [36]. The methodology for generating
supervision signals follows the same strategies employed in the streaming framework MMDuet [[13].

D.1 Supervision for the Informativeness Head

The informativeness head in AHA is trained to predict whether the current video frame f; introduces
new information relative to the preceding context. Our approach for generating ground-truth labels
for this task is a heuristic adopted directly from established work in streaming Video-LLMs [13]]. The
original motivation in that context was to train a model that knows when to speak during a continuous
video stream, generating a response only after acquiring sufficient context but before the moment
becomes stale.

We adapt this principle to derive binary labels (i; € {0, 1}) as follows:

1. Segment Identification: We utilize video segments with corresponding human-generated
captions from the Shot2Story and COIN datasets.

2. Point of Sufficient Understanding: For each segment, we simulate a point where enough
information has been seen to describe it. This point is randomly sampled to occur between
50% and 75% of the segment’s duration.

3. Label Assignment: Frames from the 50% mark up to the "point of sufficient understanding"
are labeled as informative (¢; = 1). All other frames in the segment (before 50% or after the
point) are labeled non-informative (i; = 0).

The underlying intuition is that initial frames may lack context, while frames after understanding
is achieved are redundant. We hypothesize that this signal, which marks the accumulation of new
information, correlates with highlight-worthy moments in an OHD setting. This is a hypothesis
supported by our strong ablation results (Table [3).

Decoupling Informativeness from Relevance. A key design choice in AHA is the explicit de-
coupling of the informativeness head from the relevance head. While related, informational novelty
(informativeness) and task-importance (relevance) are distinct concepts. To validate that our model
learns these different signals and that the concept of informativeness generalizes beyond the proce-
dural videos used for training, we conducted a qualitative analysis on the unconstrained, real-world
SCOUT robotics video. Given the task objective (Q) “what objects are in this room?”, we observed
the following distinct behaviors:

* High Informativeness, Low Relevance: When the robot enters a dark room, the drastic
scene change correctly triggers a high informativeness score due to visual novelty. However,
with no task-relevant objects visible, the relevance score remains low.

* Low Informativeness, High Relevance: Conversely, if a task-relevant "calendar" is visible
from afar, both scores are initially high. As the robot moves closer, the informativeness
score drops because the visual context is no longer novel. The relevance score, however,
spikes as the calendar becomes clearly identifiable, confirming its task importance.

e Correlated Signals: The scores often peak in unison when the robot enters a new area
and immediately encounters a task-relevant object (e.g., “a shovel”). Even in these cases,
the relevance head typically produces a higher peak, correctly prioritizing the task-specific
discovery over the general novelty of the scene.

This analysis confirms that our decoupled design is effective. The informativeness head successfully
captures visual novelty in unconstrained environments, while the relevance head remains focused on
the specific task objective, allowing a more robust understanding of the video stream.

D.2 Supervision for the Auxiliary Language Modeling (LM) Head

To enrich the semantic quality of the hidden representations (h;) learned by AHA, an auxiliary LM
head is incorporated. This head is trained using the same dense captioning annotations from the
Shot2Story and COIN datasets as the informativeness head.

The training process is as follows:
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1. Atrandomly selected timesteps ¢ during training, the LM head is tasked with generating a
short, descriptive caption for the current visual context encapsulated by frame f;.

2. This generation is conditioned on the prior context available to the model (i.e., preceding
visual tokens and the fixed task prompt Q and system prompt S).

3. The supervision is provided via a standard cross-entropy loss for next-token prediction
against the ground truth human-annotated captions corresponding to that segment (Eq. [6).

It is crucial to reiterate a key design choice for AHA that distinguishes its use of the LM head from
some interactive VideoLLMs like MMDuet:

* The captions generated by AHA’s LM head during training are not re-injected into the
model’s input context.

* Similarly, the LM head is typically not used during inference for the primary task of highlight
detection (unless its hidden states are implicitly part of h;).

This approach strictly preserves AHA’s unidirectional, non-dialogue streaming behavior, ensuring
it functions purely as a continuous scorer of video frames against a static task objective. The LM
task serves solely as a mechanism to improve the overall quality, alignment, and semantic richness of
the hidden state representations (h;) from which the primary highlight detection scores (relevance,
informativeness, uncertainty) are derived.

E Supplementary Quality Dropout Details

This appendix section offers supplementary details and justifications for certain design choices
introduced in the main paper’s HIHD methodology (Section [3.3)) and the robustness experiments
(Section[4.2). These elaborations are provided here to expand upon descriptions that were necessarily
concise in the main text.

E.1 Video Quality Dropout for Robustness Enhancement

To improve the robustness of AHA against visual artifacts and degradations commonly encountered
in real-world video streams, we incorporate a video quality dropout mechanism during the training
data preparation phase. As described in Section [3.3] for each video in our HIHD data, 5-20% of its
duration is randomly selected for augmentation. Frames within these selected segments undergo one
of several random perturbation types, detailed below. This process helps the model learn to maintain
performance despite noisy or imperfect visual input [41]]. Let f(x,y) denote the pixel values at
coordinates (z,y) of an input frame f.

* Quality Degradation: This simulates general compression artifacts and loss of detail. The
frame f is first downscaled to a fixed low resolution (e.g., H' x W' = 64 x 64) using bilinear
interpolation, denoted as D(f; H', W’). This downscaled frame fqnqy = D(f; H',W’) is
then upscaled back to the original dimensions H x W using nearest-neighbor interpolation,
U(fsmaur; H, W), to preserve blockiness. Finally, a Gaussian blur G,, j, with kernel size k
(e.g., (5,5)) and standard deviation o (e.g., 0) is applied.

f/ = Ga,k(U(D(f7 HI7 W/)a Ha W))

* Block Noise: This simulates digital transmission errors. The frame f is notionally divided
into non-overlapping blocks b;; of size By x B, (e.g., 32 x 32). A fixed random noise
pattern N € [0, Rya0] s *B-%C (e.g., Rinax = 49, representing noise intensity up to 49
for an 8-bit channel) is generated. For each block b;;;, it is replaced by N with a probability
Droise (€.8., Pnoise = 0.1). Let m;; ~ Bernoulli(pneise) be a random variable for each
block.

N(x mod Bs,y mod B,) ifmy/p, | |y/B. =1

(o :{ '
ey f(z,y) ifmzB,|,1y/B,) =0

This operation is applied over all pixel coordinates (z, y).
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* Color Banding: This simulates reduced color depth, leading to visible bands in color
gradients. Each pixel channel value P € [0,255] in the frame f is quantized using a
quantization factor Q) (e.g., Q = 64)

f(z,y)e
F(y)e = VQ) Q

for each channel c.

* Blackout: This simulates a complete loss of signal. All pixel values in the frame are set to
Zero

f/(m>y)c =0

for all channels ¢ and coordinates (x, ).

During training, one of these dropout types is randomly chosen and applied to frames within the
selected 5-20% dropout segments of a video. To ensure the model always has some visual context
for making predictions and to prevent scenarios where all frames in its immediate processing window
might be entirely obscured (e.g., by consecutive ‘blackout’ frames), we limit consecutive blackout
augmentations to a maximum of X frames (e.g., X = 5 at 1fps). If a frame is scheduled for blackout
beyond this limit, a milder form of degradation (such as quality reduction or color banding) or no
augmentation is applied instead for that specific frame, after which the possibility of blackout frames
resumes. This prevents the model from being trained on entirely uninformative sequences over
extended periods, which could hinder learning. Corresponding dropout masks are also generated
alongside the HIHD data. This augmentation strategy is critical for preparing AHA to handle the
unpredictable visual quality often present in real-world online video streams. A visual representation
of these methods are shown in Figure [4]

No Dropout Blackout Quality Degradation Block Noise Color Banding

Figure 4: Visualization of dropout modes used during training to simulate real-world sensor degra-
dation and robustness challenges. From left to right: No Dropout (clean input), Blackout (entire
frame lost), Quality Degradation (strong downsampling and blurring), Block Noise (random black
patches), and Color Banding (aggressive color quantization). These corruptions are applied to random
segments of video to improve model robustness to visual noise.

E.2 Quality Dropout Results: Kendall 7 and Spearman p

This appendix presents supplementary results for the robustness analysis on the TVSum dataset,
evaluated using Kendall’s 7 and Spearman’s p rank correlation coefficients. These metrics offer
an alternative perspective on the models’ ability to maintain ranking performance under various
video degradations. As mentioned in the main text, these rank correlation metrics generally showed
minor variations across conditions for our model, AHA (Ours), and reinforced the overall conclusions
regarding robustness. The detailed scores are provided in Table

The data in Table[I3]for AHA (Ours) shows that while there are some fluctuations, particularly with
the blackout degradation, the rank correlation scores remain relatively stable across several milder
degradation types, supporting the conclusions discussed in the main paper.

>Screenshot from the YouTube video “Vlog #509 I'M A PUPPY DOG GROOMER! September 13, 2014”
licensed under Creative Commons Attribution 3.0 (CC BY 3.0) via YouTube. Source:
https://www.youtube.com/watch?v=Bhxk-O1Y7Ho
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Table 13: Robustness to video degradations on TVSum (Kendall 7 / Spearman p). Degradations
applied to 20% of frames.

Model Clean +ColorBanding +BlockNoise = +Quality +Blackout
AHA (Ours) 0.28/0.40 0.28/0.40 0.29/0.40 0.28/0.39  0.24/0.34

F Memory Management for Streaming OHD: From SinkCache to Dynamic
SinkCache

This section details the evolution of our memory management strategy, from adopting the standard
SinkCache mechanism to developing our novel, higher-performing Dynamic SinkCache.

F.1 Standard SinkCache as a Hybrid Memory Baseline

To manage the challenge of unbounded KV cache growth when processing continuous video streams,
our initial framework adopted the SinkCache mechanism [21]]. This hybrid memory strategy ensures
constant memory usage by maintaining two components: a fixed set of initial Sink Tokens (k)
for long-term context (like the task objective) and a sliding window of Recent Tokens (k;_,.;) for
short-term context. Any tokens outside this combined memory are evicted. An illustration of this

standard memory structure is provided in Figure 5]

(a) Default KV Caching (b) SinkCache
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Figure 5: Comparison of memory structures: (a) Default KV Caching, which increases memory
linearly. (b) SinkCache, where the current token attends to a hybrid memory comprising a fixed set of
initial sink tokens and a sliding window of recent tokens. (c) Dynamic SinkCache, where the sink
is dynamically constructed to contain only the task objective (Q) tokens, combined with a sliding
window of recent tokens. This preserves long-term context while maintaining constant memory.

F.2 Justification of Sliding Window Size (n=2048)

While the Dynamic SinkCache creates a targeted sink for the task objective, the size of the sliding
window for recent visual tokens (n) remains a key hyperparameter. A larger window provides more
short-term context at the cost of higher memory and computational overhead, while a smaller window

is more efficient but may lose critical immediate context.

To find an optimal balance, we conducted an ablation study on the standard SinkCache over various
sink (|ks|) and window (n) sizes, with the results summarized in Table
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Table 14: Ablation on TVSum for Standard SinkCache sink (|k|) and window (n) sizes.

SinkCache Config. (|ks|,n) Top-5mAP Spearman’sp Kendall’s 7

(32, 2048) 92.6 0.401 0.280
(16, 2048) 92.0 0.295 0.203
(32, 1024) 90.1 0.412 0.287
(40, 2560) 89.4 0.298 0.205
(16, 1024) 89.1 0.359 0.247
(16, 512) 84.0 0.216 0.145
The results show that a window size of n = 2048 paired with |ks;| = 32 sink tokens achieved

the highest mAP. While performance degrades gracefully with smaller windows (e.g., n = 1024
still achieves a strong 90.1 mAP), n = 2048 proved to be the optimal configuration. We therefore
adopted this window size for our final Dynamic SinkCache implementation, as it provides the best
performance by capturing sufficient recent visual context for the OHD task.

F.3 Dynamic SinkCache: A Task-Focused Improvement

We hypothesized that the standard SinkCache’s method of using the first few tokens as a generic sink
was suboptimal. These initial tokens capture the system prompt, task objective, and sometimes the
first few video frames. We proposed that a more targeted sink, containing only the essential task
information, would provide a cleaner and more effective long-term memory.

This led to our novel approach, the Dynamic SinkCache. Instead of using the first s tokens of
the sequence, this mechanism dynamically constructs the sink to contain exclusively the natural
language task objective tokens (Q). This ensures that the model’s long-term memory is persistently
and exclusively focused on its primary goal, preventing it from being diluted by less relevant initial
context.

F.4 Comparative Analysis of Memory Mechanisms

To validate our final design choice (Dynamic SinkCache) and demonstrate the necessity of a hybrid,
task-focused memory system, we conducted a comprehensive ablation study on TVSum. We
compared five different memory management strategies, which are detailed below. The results
are summarized in Table

Baseline Mechanisms. We first evaluated two simple, non-hybrid baselines. A Sliding Window
Only approach, which retains only the most recent visual tokens, performed poorly (69.5 mAP)
because it eventually discards and forgets the long-term task objective. Conversely, a Static Window
Only approach, which uses only the initial tokens as context, performed even worse (63.2 mAP) as it
completely fails to adapt to new visual events in the video stream.

Unbounded KV Cache. As a practical upper-bound, a standard unbounded KV cache that retains
all previous tokens achieved a strong 91.7 mAP. However, this method is impractical for real-world
deployment, as its linear memory growth consistently leads to out-of-memory (OOM) errors on the
long videos common in OHD tasks.

Standard SinkCache. The standard SinkCache [21]], which combines a generic sink of the initial
sequence tokens with a sliding window, proved to be a highly effective hybrid baseline. It achieved
92.6 mAP, outperforming the impractical unbounded cache while maintaining a constant memory
footprint.

Dynamic SinkCache (Ours). Our proposed method achieves the highest score of 93.0 mAP. By
dynamically constructing the sink to contain exclusively the natural language task objective, it creates
a more targeted and efficient long-term memory. This confirms our hypothesis that a task-focused
sink provides the optimal mechanism for context retention in OHD.

29



Table 15: Ablation study of memory mechanisms on TVSum (Top-5 mAP).

Memory Mechanism Top-5 mAP  Notes

Sliding Window Only 69.5 Fails to retain the long-term task objective.

Static Window Only 63.2 Fails to adapt to new visual events.

Unbounded KV Cache 91.7 Strong performance but impractical (causes OOM).
Standard SinkCache 92.6 Effective hybrid memory, strong baseline.
Dynamic SinkCache (Ours) 93.0 Optimal performance with task-focused sink.

F.5 Limitation and Design Trade-off

A key consideration of the Dynamic SinkCache is the trade-off between the sink size (determined by
the task objective length) and the sliding window size for recent visual tokens. Our implementation
assumes a fixed total memory capacity. The strong performance in our experiments is partly due to the
concise nature of the task objectives in benchmarks like TVSum, which occupy a small, reasonable
portion of the cache (~45 tokens), leaving enough capacity for the sliding window tokens.

However, this showcases a limitation: the model’s performance could degrade catastrophically if
presented with an exceptionally long natural language objective. If a task description were long
enough to consume the entire memory budget, the sliding window for recent visual tokens would be
eliminated. In this scenario, the model would retain the task but lose all short-term visual context,
rendering it unable to perform the OHD task. This trade-off underscores the need for future work
in developing more adaptive memory allocation schemes that can handle tasks with highly variable
objective lengths.

G Supplementary Details for Real-World Robotic Evaluation on SCOUT
Video

This appendix provides additional details that supplement the evaluation of AHA on the SCOUT
video presented in Section[d.3]

G.1 Additional SCOUT Video Characteristics

Beyond the general description of the SCOUT video [[L6] in the main text (long-horizon, continuous
footage, degraded quality, sparse events), the video present further specific challenges relevant to
real-world deployment. These include:

* Severe Visual Degradations: The footage contains periods of near-complete blackout (e.g.,
when the robot navigates very dark areas) and intermittent signal static, in addition to the
warping mentioned in the main text.

* Domain and Visual Noise: The dataset is characterized by a significant domain shift toward
indoor navigation compared to common web datasets, and often contains high visual noise
and unpredictable robot motion.

G.2 Ground Truth Annotation Specifics for SCOUT Qualitative Analysis

For the 8-minute qualitative analysis discussed in Section [4.3] the ground truth events (i.e. the
peaks matching events) were identified by the authors of this paper. This process involved a visual
comparison of AHA’s highlight detection outputs (specifically, the predicted peaks after Savitzky-
Golay smoothing [42]]) against:

1. Moments in the video where the robot was observed to be stationary, often indicating task
completion or observation of a point of interest.

2. Timestamps corresponding to human-issued navigation instructions for the robot, as docu-
mented in the official SCOUT transcripts [[16].

This refined how “meaningful actions” were correlated with AHA’s predictions.
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G.3 Nuanced Analysis of Predicted Peaks in SCOUT Evaluation

Section .3 reports that 16 of 18 predicted peaks from AHA aligned with human-issued commands or
meaningful actions. Further details on the remaining two peaks are as follows:

* One peak corresponded to AHA identifying an object of interest (based on mission context
from SCOUT annotations) while the robot was still in motion executing a prior command.

* The other peak did not strongly correlate with a new command or a clearly defined object of
interest from the mission logs for that segment. This might represent model-perceived visual
saliency not directly tied to the high-level task commands, or a potential false positive.

While this analysis is preliminary and conducted on a single SCOUT video, the results encourage
continued exploration of this domain and analysis on additional videos.

G.4 Expanded Implications and Future Work for Robotics Applications

The application of AHA to the SCOUT video suggests further implications for robotics beyond those
outlined in Section

* Targeted Operator Alerting: AHA could potentially alert a human operator specifically if
the robot perceives an object of interest that the operator might have missed, particularly if
it’s an unexpected finding or occurs while the robot is still executing a previous command.

* Synergy with Human-Robot Dialogue Systems: Combining AHA’s perceptual salience
with intent-aware dialogue systems, such as those explored in prior SCOUT work [68]],
could:

— Help flag video segments associated with human commands where perceptual ambi-
guity (e.g., unusual saliency detected by AHA that is not aligned with the stated task)
might indicate potential misunderstandings or execution challenges.

— Assist in grounding conversational references (e.g., a human asking “what was that
interesting thing we just passed?”) to specific video segments highlighted by AHA.

¢ Input for Multimodal Reasoning: AHA’s real-time, frame-level salience scores can serve
as a valuable input signal for more comprehensive multimodal reasoning frameworks,
helping to focus computational resources on the most pertinent segments of continuous
video data.

H Query Templates for Task Objective Generation

For the Human Intuition Highlight Dataset (HIHD), synthetic task objectives (Q) are generated
by programmatically transforming video titles using the following templates. Given a video title
represented as ‘[STRING]’, a query is randomly selected from this list:

query_templates = [
"[STRING]", # Repeating the title itself can serve as a direct query
"What segment of the video addresses the topic ¢[STRING]’?",
"At what timestamp can I find information about ¢[STRING]’ in the video?",
"Can you highlight the section of the video that pertains to ‘[STRING]’?",
"Which moments in the video discuss ‘[STRING]’ in detail?",
"Identify the parts that mention ‘[STRING]’.",
"Where in the video is ‘[STRING]’ demonstrated or explained?",
"What parts are relevant to the concept of ¢[STRING]’?",
"Which clips in the video relate to the query ‘[STRING]’?",
"Can you point out the video segments that cover ¢[STRING]’?",
"What are the key timestamps in the video for the topic ¢[STRING]’?"
]

This process generates a diverse set of queries for each video, enabling task-conditioned supervision.
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I Future Work: Supervised Learning and Validation with MultiVENT-G

While our work establishes a strong empirical baseline for OHD, two key areas for future improvement
are the unsupervised nature of our uncertainty estimation and the inherent biases of our large-scale
HIHD dataset. Our current approach to uncertainty is unsupervised due to the profound difficulty
of obtaining ground-truth confidence labels at scale. Similarly, HIHD relies on YouTube’s "Most
Replayed” data, a high throughput but imperfect proxy for importance that can be influenced by
engagement driven biases like clickbait.

A promising path to address these limitations involves leveraging the recently released MultiVENT-G
dataset [44]]. Focused on high stakes disaster events, MultiVENT-G provides two critical features
missing from typical highlight detection datasets: (1) dense, frame-level event role annotations by
human experts, and (2) human-annotated confidence scores (1-5 scale) for these annotations. This
dataset offers a unique opportunity to advance our work in three key directions:

1. Towards Supervised Uncertainty: The annotator confidence scores can be transformed into
ground-truth uncertainty labels (e.g., 5/5 confidence maps to low uncertainty). This would
allow training our uncertainty head with a direct supervised loss, moving beyond the current
unsupervised NLL objective. This is a critical step towards improving the interpretability
and calibration of our model’s confidence estimates, which is essential for the safety-critical
applications we target.

2. Mitigation of Dataset Bias: MultiVENT-G’s expert defined event labels (e.g.,
"“EMERGENCY-RESPONSE”) can serve as a gold-standard signal of true relevance. This
allows for future work in calibration and debiasing, where our model, pre-trained on the
large-scale HIHD, can be fine-tuned on MultiVENT-G. This process would help correct for
systemic biases learned from the raw replay scores, yielding a model that is more faithful to
expert defined importance.

3. Validation in High Stakes Domains: By providing task-aligned ground truth for disaster
events, MultiVENT-G allows for rigorous validation of our model in the exact high stakes
scenarios for which it is designed. This ensures that the relevance and uncertainty estimates
converge toward what human experts deem critical in real-world applications.

Despite its potential, integrating MultiVENT-G presents three primary challenges: Scale (MultiVENT-
G’s ~1.2k videos vs. HIHD’s ~23k), Generalization (its specific ontology may constrain the learned
representations), and Subjectivity (labels are from a small team of annotators). Our future work will
focus on developing methods to address these challenges, aiming to create a model that is not only
scalable but also robust, well-calibrated, and grounded in expert knowledge.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the abstract and introduction accurately describe AHA, its autoregressive
nature, its use of a multimodal VL model, the SinkCache mechanism, and its performance
on standard benchmarks.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes. Section 5] explicitly discusses the limitations of our approach and Ap-
pendix A.1 details the high computational costs of our method.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: NA. The paper does not present formal theoretical results; its contributions are
primarily empirical and architectural.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes. Section [3] describes the model architecture, dataset characteristics,
training procedures, and evaluation setup, providing sufficient detail to reproduce our results.
Hyperparameters are listed in Appendix A, and we will release the codebase and the HIHM
dataset described in Section [3.3|upon acceptance.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes. All code and data required to reproduce the main experimental results
will be made publicly available upon acceptance, including training scripts, evaluation code,
and documentation. For the additional real-world evaluation in Section[4.3] we use a video
from SCOUT, an existing public dataset, where a subset of image data used to construct
the video is already available. We obtained the specific video used in our study through a
cooperative agreement, and expect this video and others to be released as part of SCOUT
2.0 by the SCOUT authors prior to the camera-ready deadline.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, all experimental settings, including data splits, hyperparameter values and
selection strategies, and optimizer details, are described in Section 4] and Appendix A.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our reported results are averaged over 5 independent runs to reduce the impact
of randomness from initialization and sampling (stated in Section[d). We chose to omit error
bars for consistency with prior work, which did not report them. Will provide them during
the rebuttal phase upon request.
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, Appendix A.1 details the compute resources used, including GPU types
(e.g., 6XNVIDIA A6000 for training), memory, and approximate training times for our
main models.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Yes, the research conforms to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: Yes, Section [5]discusses broader impacts, including positive applications in,
e.g., autonomous systems, and potential negative impacts such as surveillance concerns,
along with potential mitigation ideas.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Yes. Section [5] discusses the potential for misuse, including surveillance-
related privacy concerns and content selection biases. To address these risks, we outline
recommended safeguards such as pairing the model with privacy-preserving preprocessing
(e.g., blur filters), enforcing access controls, and conducting domain-specific audits prior
to deployment. We will also include usage guidelines in the public codebase to discourage
irresponsible use and encourage ethical application.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: Yes, all existing assets (datasets, pre-trained model components) are credited,
and the paper does not use existing assets requiring such licensing declarations beyond
standard library citations.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces the Human Intuition Highlight Dataset (HIHD) (Section
[3.3] Its construction, data processing, components, synthetic task objectives, and quality
dropout masks are detailed. Appendix I and F.1 references query templates and dropout
specifics, indicating documentation. These will be released publicly upon acceptance.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: NA. The research did not involve crowdsourcing or direct experiments with
human subjects for data collection beyond using pre-existing, appropriately licensed datasets.

Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: NA. The research did not involve human subjects in a way that required IRB
approval, as it utilized pre-existing datasets or data collection methods exempt from such
review.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Yes. Appendix A.l describes the use of Qwen as a core component of our
vision-language model for natural language task understanding. Additionally, we evaluate
our model on the MAGQA benchmark, which leverages LLMs for question generation and
evaluation (see Appendix C).

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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