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Abstract

Modern large language models (LLMs) are op-
timized for human-aligned responses using Re-
inforcement Learning from Human Feedback
(RLHF). However, existing RLHF approaches as-
sume a universal preference model and fail to
account for individual user preferences, limiting
their effectiveness in personalized applications.
We introduce a framework that extends RLHF
to enable user personalization by leveraging the
assumption that user preferences lie in a low-
dimensional space. Instead of training a sepa-
rate model per user, we represent user-specific
rewards as a linear combination of base reward
functions. Using only 10 user responses, our
method can infer user-specific rewards and align
LLM outputs accordingly. We validate our ap-
proach through experiments with both synthetic
and real users, demonstrating significant person-
alization achieved by our method. In human eval-
uations, our method achieves a 67% win rate over
default GPT-40 responses.

1. Introduction

A major driver of modern large language models (LLMs)
is their ability to align responses with human preferences,
typically achieved via Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022). However, Current
approaches to RLHF assume a universal preference model
across all users and cannot cater to individual user pref-
erences, a key limitation to personalization (Casper et al.,
2023; Sorensen et al., 2024).

User preferences vary widely across individuals and tasks.
For example, one user might use an LLM as a professional
assistant for work-related tasks, while another might use
it as a virtual friend. Naively extending RLHF to cater to
different user preferences, such as training a separate model
for each user, is often infeasible. This is mainly due to the
large amount of user-specific data required (typically thou-
sands of data points (Gao et al., 2023)) and the significant
computational cost of training and maintaining user-specific
LLMs.

We propose Personalization via Reward Factorization
(PReF), a framework that extends RLHF to support per-
sonalization by assuming user preferences lie on a low-
dimensional manifold (Rentfrow et al., 2011). Under this
assumption, the reward function for user i., r;(x, y), is mod-
eled as a linear combination of J base reward functions:
ri = Z}]:1 X ¢7. Here, the user-specific coefficients A’
determine the contribution of each base reward function
¢;(x,y). This reduces personalization to estimating A,
which is simpler and more data-efficient than learning a
separate reward model per user.

Previous work on LLM alignment developed methods to
combine a set of pre-defined reward functions linearly but
did not focus on personalization (Han et al., 2024; Guo et al.,
2024; Yang et al., 2024b). In particular, these approaches do
not address the core problems necessary for personalization:
(1) inferring user-specific combinations efficiently. Our
work addresses these questions.

PReF begins by collecting user preference data over re-
sponse pairs annotated with user identity. We learn base
reward functions from this dataset, then estimate the coeffi-
cients \; for new users via a short interactive session. We
generate a sequence of questions and a pair of responses and
ask the user to indicate which response they prefer. Based
on the responses, we estimate the user coefficients and, thus,
their specific reward function. To minimize the number of
questions needed, we use active learning: selecting response
pairs that most reduce uncertainty over \;. We extend re-
sults from the logistic bandits literature to compute these
uncertainty scores efficiently. Our method identifies user
preferences with just 10-20 queries. Finally, we align the
LLM to each user’s reward function using inference-time
alignment methods (Han et al., 2024; Yang et al., 2024b;
Rame et al., 2024), enabling fast, scalable personalization
without updating model weights.

We validate PReF through extensive experiments. On syn-
thetic data, our approach outperforms standard RLHF by a
wide margin, requiring as few as five samples from a new
user to improve over a generic reward model. On real hu-
man users, aligning GPT-4o0 with PReF achieves a 67% win
rate over the default model responses.
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Figure 1: We factorize each user’s personal reward as a linear combination of base functions. The linear structure enables
us to perform personalization in an efficient manner, needing up to x30 fewer answers from the user to achieve the same

performance as the standard RLHF approach.

2. Related Work

Personalization of LLMs has become an important research
direction, enabling models to better serve individual users’
needs (Sorensen et al., 2024; Kirk et al., 2024b; Zhang
et al., 2024). Broadly, personalization can take several
forms: incorporating user-specific knowledge, fine-tuning
models to develop domain expertise, or adjusting response
styles to align with user preferences (Ning et al., 2024; Wu
et al., 2024; Richardson et al., 2023; Kirk et al., 2024a;
King & Cook, 2020). Our work focuses on the last cat-
egory—personalization through user-specific preference
alignment.

A leading approach for aligning LLMs with human pref-
erences is Reinforcement Learning from Human Feedback
(RLHF), first introduced by (Christiano et al., 2017) and
further refined in later works (Ouyang et al., 2022; Ziegler
et al., 2019; Stiennon et al., 2020; Bai et al., 2022b). RLHF
trains a reward model using datasets of response pairs an-
notated with human preferences (Wang et al., 2024a), often
requiring thousands to hundreds of thousands of labeled
examples (Gao et al., 2023).

To improve the alignment process, researchers have pro-
posed decomposing human preferences into distinct aspects,
such as helpfulness, harmlessness, and factuality (Bai et al.,
2022a; Wang et al., 2024b; Dorka, 2024). In these ap-
proaches, a separate reward function is trained for each
of these properties and reinforcement learning is performed
on their weighted sum. This decomposition facilitates learn-
ing each how to maximize each property independently and
allows for control over their balance in downstream applica-
tions. Extending this idea, multi-reward formulations have
been proposed for personalization, where each user has a
different combination of these reward functions (Guo et al.,
2024; Zhou et al., 2023; Yang et al., 2024b; Wang et al.,
2024c). Although this supports personalization, a key limi-
tation is that it typically requires training separate models
for each reward combination.

Several approaches have tackled this challenge by reweight-
ing reward functions at inference time, allowing for dynamic
model adaptation without retraining (Han et al., 2024; Chen
et al., 2024b; Khanov et al., 2024; Mudgal et al., 2023).
Others have trained separate models for different reward
functions and later combined them in weight space (Jang
et al., 2023; Rame et al., 2024). However, these methods
rely on the assumption that reward functions are pre-defined
and that user preferences are explicitly specified. In con-
trast, our work develops personalization algorithms that
relax these constraints, enabling more flexible and adaptive
model behavior.

The closest related works extend reward learning to incor-
porate user-specific preferences. (Poddar et al., 2024) intro-
duces a variational framework that models user preferences
as latent variables, enabling the reward model to adapt with
a small set of user-specific annotations. (Chen et al., 2024a)
represents each user’s preferences as an "ideal point" in a
shared latent space, ranking responses based on their prox-
imity to this point. In contrast, our approach models user
preferences as a linear combination of base reward functions,
providing a different structural perspective. A detailed com-
parison of these methods is presented in Section 5.3. Once
the base reward functions are learned, our method leverages
active learning to efficiently gather user inputs and infer a
user-specific linear combination of these functions.

3. Preliminaries

Our objective is to generate responses ¥ to a given prompt
x that align with the preferences of an individual user. To
capture these preferences, we assume that each user ¢ has
a reward function r;(x,y). To infer the rewards, we fol-
low common practice (Ouyang et al., 2022) and rely on the
Bradley-Terry (BT) model (Bradley & Terry, 1952; Chris-
tiano et al., 2017) for pairwise comparisons, where users
indicate their preference over a pair of responses:

p(yt = yPle,i) = o(ri(z,y') — ri(z,y?) (D
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where p(y; > ya|z, 1) is the probability that user ¢ prefers

Y1 over o, and o (w) = H_@%w is the sigmoid function.

In standard RLHEF, a single, global reward function r(x, y)
is learned by maximizing the likelihood of all pairwise com-
parisons across the dataset. This objective assumes homo-
geneous preferences across users, treating all pairwise com-
parisons as arising from the same reward function r(z, y).
While effective for general alignment tasks, this approach
fails to account for user-specific variations in preferences.

4. The PReF framework

In this work, we model the reward function of an individual
user 7 as a linear combination of J base reward functions
b(a,y) = [0 (2,9), 8*(x,y). .., 0" (x,y)]" € R7. Sim-
ilarly, each user i is characterized by a preference vector
A= ALAZ 0 0N]T € RY, where M represents the
weight that user ¢ assigns to the j-th base reward function.
The overall reward for user ¢ is then defined as:

J
ri(w,y) =Y N ¢ (x,y) = A é(,y) ()
j=1

This formulation provides a compact representation of user-
specific preferences, with the weights \; capturing the
unique importance each user assigns to the J base reward
functions. Plugging it into Equation 1 gives us the PReF
pairwise preference model ':

p(y' =y la, i) = o (N d(z,y") — N oz, 9%)  3)

In practice, we train a neural network to estimate ¢ by out-
putting a J-dimensional vector. To train this neural network,
we assume access to a pairwise preference dataset where
each prompt is annotated by multiple users, each with in-
dividual preferences. Formally, the dataset is represented
as {zn, Yk, y2,in, An}N_,, where i, is the index of the
user providing the annotation, and A4,, € {0, 1} denotes the
user’s binary preference, with A,, = 1 indicating that the
user prefers y. over y2. Given U different users and M
pairs of responses, we can represent the dataset in a matrix
form:

A ~ Bernoulli(P), P =o(AT®),

where A € RV*M contains the observable binary prefer-
ences in matrix form, P € RV*M contains the preference
probabilities as per Equation 3, A € R/*V is the matrix of
user preference vectors, and ® € R7* is the matrix of
base reward function embeddings for all response pairs.

Such a representation of reward function enables us to lever-
age existing algorithms that can adapt the response of the

"For simplicity of notation, when dealing with pairwise com-
parisons of responses y* and 32 for the same prompt z, we will
denote them as ¢(x, ') — ¢(x, 4?) = d(z,y",v?).

large language models to a linear combination of multiple
reward terms at deployment time (Han et al., 2024; Chen
et al., 2024b; Khanov et al., 2024; Mudgal et al., 2023).

4.1. Learning the Base Functions

We train the base reward function model ¢ and user embed-
dings A using the Maximum Likelihood Estimator (MLE)
objective of Equation 3:

N
L) =D Ap-logo(N] d(wn,yh,u0))
n=1

+ (1 - An) ' log(l - U(Azlqﬁ(xn,y}l,yfl))),
4

Unlike standard MLE in RLHF, our formulation introduces
significant challenges. First, the number of users parame-
ters \ scales with the number of users in the training set,
increasing complexity. More critically, the reward model
exhibits bilinear dependency between \; and ¢(x, y',4?),
which makes the optimization landscape non-convex with
many local minima. This coupling makes the optimization
sensitive to initialization and prone to degenerate solutions
(e.g., trivial or uninformative user vectors). Results in Sec-
tion 5 show that such instability leads to high variance in
the performance of the trained model.

To mitigate these instabilities, we leverage the linear struc-
ture of our framework. Specifically, we recognize that Since
o~ 1(P) = AT ®, when the preference probability matrix
P is known, we can recover A ' ® by applying the inverse
sigmoid function and reducing the problem of learning (A)
and (®) to a matrix factorization problem. However, since
P is unknown and and only sparse binary observations in A
available, the learning task becomes an instance of Logistic
Matrix Factorization (Johnson et al., 2014) problem.

Using these insights, we propose a two-step approach to
overcome the instability challenges when training ¢ (see
formal description in Algorithm 1):

1. Initialization via SVD: We initialize training using Sin-
gular Value Decomposition (SVD) of the observed annota-
tion matrix A, treating it as a noisy proxy for the underlying
preference probability matrix P. The low rank outputs of
the SVD are used as initialization for A and @, offering a
structured initialization that reduces sensitivity to random
starting conditions. While the binary nature of A introduces
noise, SVD still captures the dominant components of P,
providing a meaningful starting point.

2. Refinement via MLE: Although SVD provides a strong
initialization, it does not directly optimize the likelihood of
observed preferences. Therefore, we refine the factorization
using the MLE objective. In our experiments we have found
that the magnitude of either ¢ or A tends to be big, which
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hurts downstream performance. We tracked the core of the
problem to the fact that the reward factorization AT ® is
not unique. For any invertible matrix R, we have AT® =
ATR™'R®. Therefore, to stabilize the training we add L2
regularization of the user vectors A to the MLE objective.
This prevents extreme parameter values, reduces instability,
and addresses scale ambiguity in matrix factorization. As a
result, training converges more consistently.

This combination of SVD initialization and regularized op-
timization addresses the instability issues associated with
bilinear optimization and ensures a consistent and stable
learning process.

4.2. Adaptation to a New User

After learning the base reward functions, the next step is to
estimate the weight vector A for a new user based on their
preferences. The challenge is to do this efficiently, requir-
ing as little user feedback as possible to reduce the effort
required from the user. This process involves iteratively
collecting pairwise feedback and refining the estimate of .

In each round ¢ € {1,...,T}, we sample a prompt x; and
use an uncertainty-based selection strategy to determine a
pair y}, y? of responses to provide the user. We aggregate
the prompt, responses, and the user preference A; into a
dataset and use it to estimate the user preference using the
regularized MLE objective:

t
L) =D A -logo(N é(xs,y5,57))
s=1

(1= A) - log(1 — o\ ol 20)) + 5 N3
(%)

Where [3 is a hyperparameter that controls the weight of the
L2 regularization. Given that during adaptation the features
¢ are known, the problem of inferring X is a plain logistic
regression problem which is concave (Kleinbaum et al.,
2002) that does not suffer the instabilities that we had while
learning the features.

Our strategy to improve data efficiency is to choose the next
response pair that maximizes uncertainty, a standard ap-
proach in active learning (Ren et al., 2021). In this work the
uncertainty for a candidate prompt-response pair (z, y1, y2)
is defined as the largest potential prediction error:

Uz, y',y°) = max Aoz, y,y?) — AL bz, ', 97
(6)

where )\; is the MLE estimate of A\ at round ¢, and C is a
confidence set for A* (the true user preferences). Intuitively,

this metric quantifies how much the predicted preference
for the response pair could vary given uncertainty in .

For logistic regression, the tightest known confidence set
(Faury et al., 2020) can be expressed using the Hessian
matrix of the log-likelihood function, H;()\):

t—1

H(N) =o' (N 6@, y8,2) b, s, D) b(ws, vl y2) T + BT

s=1

)

where ¢’ is the derivative of the sigmoid function. Using
this Hessian, we define the confidence set:

Lemma 4.1. ((Faury et al., 2020), Lemma 11)

Let £(8) = {X € R | [|IA = Ml 0 < 1(0)} where
7:(6) = O (dlog (%)), and assume | ¢|| < 1. The follow-
ing holds with probability at least 1 — § for all t € N.

A € £,(6).

While &;(9) is theoretically tight, it is computationally in-
feasible to directly solve Equation 6 under this constraint
since we do not have a way to avoid iterating over every
A € &:(6). To address this, we introduce a relaxed confi-
dence set £ "7 () that provide a simple solution to Equation
6. The new confidence set is constructed by replacing the

Hessian H; () with the Hessian evaluated at \;:

Lemma 4.2. Let £ () = {X € RY | [|]A — M|l () <
Ci(6)} where (;(6) = O(edlog(L)) The following holds
with probability at least 1 — § for all t € N.

A* € EP(5).

Using the expanded confidence set? , the uncertainty metric
simplifies to:

Lemma 4.3. The following holds with probability at least
1—4dforallt € N:

Ut(xay17y2) = H¢<y17y27$)’|H;1()\t) : Ct((s)

Therefore, to ensure that we choose y1, y» that we are most
uncertain about, we solve the following:

®

max |6z, 5" 9| g0,

>While the expanded confidence set introduces an exponential
dependence on the dimension, our response selection strategy
(Equation 8) is not explicitly affected by this. Empirically, we
observe that the approach performs well in practice, suggesting
that more refined analytical techniques could potentially yield a
tighter bound.
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The solution for ¢ is the eigenvector of H; '();) corre-
sponding to its largest eigenvalue (Hamming, 2012), which
we will denote v. To obtain a response pair ', 4% such that
é(x,y',y?) = v we will use an inference time alignment al-
gorithm to generate a response y* such that ¢(z, y') = tv
and ¢(z,y*) = —1v. See full description of the procedure

in Algorithm 2.

5. Experiments

Datasets. We test our method using the following datasets
(more details in Appendix B):

e Attributes. To test personalization, we introduce a
dataset that simulates diverse user preferences using
LLMs as aroleplay judge (Dong et al., 2024; Zheng et al.,
2023). We defined seven preference attributes, each with
a positive and negative trait. For example, the attribute
length corresponds to users who either prefer verbose or
concise responses. Each user is assigned two randomly
sampled traits, resulting in 84 unique users. Preference
data for each user is collected over responses generated
using prompts from the AlpacaEval dataset (Li et al.,
2023), resulting in 100 preferences per user.

e PRISM. We leverage PRISM (Kirk et al., 2024b), a
dataset containing preferences for LLM-generated con-
tent from many global respondents, often with significant
disagreement. To provide an evaluation protocol for mod-
els trained on PRISM, PERSONA (Castricato et al.) ex-
panded PRISM by using LLMs as judges, demonstrating
a high correlation with human preferences. For our exper-
iments, we use the original PRISM dataset, comprising
1.5K users and 3K prompts and answers. However, the
original PRISM dataset cannot be used directly because
it was collected in a way that prevents overlap between
users and prompts, which is necessary for our method.
Therefore, we augmented it with synthetic annotations
via the protocol described in PERSONA, resulting in 50
user preferences per prompt.

Training and Evaluation Protocol. We conduct all ex-
periments using Qwen 2.5, an open-source state-of-the-art
family of models (Yang et al., 2024a). Unless otherwise
stated, we use the 0.5B model as the backbone for the reward
model, with a single-layer linear head. Each experiment
is repeated 10 times with different random seeds, and we
report the aggregated results. To show that our framework
can work with a variety of alignment methods, we used
ChatGPT-4 with multi-objective Best-of-N in the Attributes
dataset and Qwen2.5 7B with VAS (Han et al., 2024) in the
PRISM dataset. Hyperparameters and additional training
details are provided in Appendix C.

We split each dataset into four parts - train set, validation
set, which includes the same users as the train but different

prompts; calibration set, which includes different users from
the train but the same prompts; and test set, which differs
in both users and prompts. We first train the base reward
functions using the train set. To assess PReF ability in per-
sonalizing responses for new users, we learn the preference
coefficients of test set users using the reward function basis
and the data from the calibration set. We then evaluate its
performance on the test set. We employ two evaluation
metrics: (1) The effectiveness of the learned reward func-
tion when used with an inference-time alignment algorithm
to generate responses that maximize user preference. We
compare these responses to non-personalized responses, us-
ing LLM-as-a-Judge to determine preference and measure
the average Winrate. We will note that this is a standard
metric in RLHF literature (Li et al., 2023). (2) We want a
way to isolate the reward function performance from the
downstream LLM alignment. Therefore, we look at how
well the learned reward classifies which response the user
prefers from a pair of responses. We measure this on the
test set (that includes ground truth annotations) and measure
the User Preference AUC-ROC.

5.1. The Benefits of personalization

To evaluate the effectiveness of PReF in capturing personal-
ized user preferences, we compare it against two baselines:
Standard RLHF — which assumes homogenous preference
and trains a single reward function trained across users;
Model per User — A reward function trained for each user
individually. Figure 2 presents the results for both datasets,
Attributes and PRISM. The top row reports AUC-ROC for
predicting user preferences on unseen response pairs, while
the bottom row shows the win rate of optimized responses
relative to a response from the initial model. In all plots, the
x-axis is the number of responses from the new user being
evaluated.

Across both datasets, PReF (blue) significantly outperforms
Classic RLHF (green). For small numbers of user answers
(e.g., under 10), PReF achieves an AUC-ROC gain of 10-
15% over Classic RLHF, indicating that even with limited
data, personalizing user preferences provides substantial
benefits. A similar trend is observed in the win rate, where
PReF improves over Classic RLHF by around 10% for
the PRISM dataset and over 25% in the Attributes dataset,
demonstrating its effectiveness in producing user-tailored
responses. In contrast, the Model per User baseline (orange)
performs poorly due to the inability to leverage shared struc-
ture across users, confirming that training separate models
per user is impractical in real-world settings. Figure 11 in
the Appendix shows the performance of the Model per User
baseline for a much larger number of user answers. It shows
that our approach requires x25 less data to achieve the same
performance.
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Figure 2: ROC AUC and winrates for varying number of user answers on the Attributes (left) and PRISM (right) datasets.
Our method quickly achieves high ROC AUC and winrates, outperforming baselines by a large margin.

5.2. Can PReF capture the preferences of real humans?

We validated our framework on real users by conducting a
human evaluation study focused on adapting to new users
with a pre-trained set of features.

We use the base functions learned from the synthetically
generated Attributes dataset. We recruited 28 volunteers to
participate in our study. Every user was shown 30 prompts
from the test set, each with two generated answers, and
asked to choose their preferred response. The first 15 com-
parisons were used to learn the user’s preferences. The last
15 comparisons were used for evaluation. The user was not
aware of this distinction. In the evaluation examples, one
response was always generated as a baseline response using
GPT-40, while the other was generated as a personalized
version of the baseline using the learned user preference.
For evaluation, we computed the winrate of the personalized
answers over the baseline answers. Additional details are
given in the Appendix D.

‘We found that our method achieved a 67 % winrate, with a
95% confidence interval of [57.4%, 76.6%] winrate. That
shows that by tailoring the responses to each user’s pref-
erences PReF improves over GPT-40. This improvement
is notable given that GPT-40 has already been aligned to
general human preferences, and given that we used very
simple features derived from our synthetic data. Moreover,
the user preferences were learned from just 15 interactions

with the user.

5.3. How PReF performs against other personalization
frameworks?

In addition to comparing against standard RLHF, we evalu-
ate PReF against prior approaches proposed for LLM per-
sonalization, specifically Variational Preference Learning
(VPL) (Poddar et al., 2024) and Pluralistic Alignment (PAL)
(Chen et al., 2024a). VPL models user-specific preferences
as a latent vector obtained by encoding the user’s responses,
learning to change the reward based on in-context learning.
The reward model is then conditioned on this latent repre-
sentation to produce personalized rewards. In contrast, PAL
represents each user as a vector in a latent space and defines
the reward of a response as its distance from this point.

To assess performance, we evaluate these methods on the At-
tributes dataset, measuring AUC-ROC for unseen responses
after collecting 5, 10, or 20 answers from a new user. For a
fair comparison, we ensure that each method undergoes the
same number of hyperparameter tuning experiments, with
results averaged over five random seeds. The results, pre-
sented in Table 1, show that while VPL performs well, PReF
outperforms it at 10 and 20 user responses. This shows that
in-context learning has a hard time utilizing a large number
of examples. PAL achieves significantly lower performance.

Beyond reward-learning approaches, we also compare
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crucial to reduce instabilities in training. (B) Increasing the feature dimension J leads to better performance. (C) PReF’s
uncertainty-based selection of response pairs to obtain user preferences outperforms the naive strategy of random selection.

against two widely used technique for personalizing LLM
outputs through prompts. The first is the user-provided sys-
tem prompt, where we use the prompts in the PRISM dataset
(Kirk et al., 2024b) that were written by each participant.
The second is in-context learning baseline, concatenating the
user-specific dataset (prompt, responses, and preferences)
into one prompt and asking the LLM to infer the user’s pref-
erences from it. For both baselines, we measure the win rate
of responses generated using these prompts versus those
generated by PReF on the test split of PRISM users. PReF
achieves a win rate of 71.9% against the system prompts
baseline, demonstrating a clear advantage in capturing indi-
vidual user preferences. For the in-context learning baseline,
PReF achieves 56.1% win rate at 5 responses, 62.7% at 10
responses, and 68.4% at 20 responses.

5.4. Scaling data and compute leads to better base
reward functions

Here, we investigate how the quality of the base reward func-
tions improves as we scale the amount of data used in their
training and the size of the neural network we use to model
them. Our hypothesis is that using more users and response
pairs in the training will lead to better, more nuanced reward
factorization. Figure 4 shows that, indeed, performance
(measured by ROC AUC) improves consistently with both
larger models and more training data. While larger models
generally perform better, we observe that as the training
dataset becomes larger, the performance of all model sizes
begins to converge. These results indicate that PReF follows
expected scaling trends, reinforcing its potential to benefit
from larger models and larger preference datasets.

Another critical factor affecting the performance of our
method is the number of base reward functions J. A higher
number of base reward functions allows for a more nu-
anced representation of user preferences, but increases the
amount of data required to determine user-specific weights
accurately. Figure 3 presents the ROC AUC scores for the

PRISM dataset as a function of the number of base reward
functions, under a fixed budget of 40 user-specific samples.
We observe that increasing J beyond six base functions
yields diminishing returns, suggesting a sweet spot in the
trade-off between expressivity and data efficiency. Interest-
ingly, this trend aligns with the elbow point observed in the
magnitude spectrum of the eigenvalues from a SVD of the
training dataset (Figure 9 in Appendix). This suggests that
analyzing the eigenvalues of the reward preference matrix
may serve as an effective heuristic for selecting the optimal
number of base reward functions, potentially reducing the
need for hyperparameter tuning.
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Figure 4: Effect of scaling dataset size (x-axis) and the
neural network of the base reward function size (different
colors) on the reward model performance in the PRISM
dataset.

5.5. Ablations

Our optimization framework introduces bilinear dependen-
cies between learning the base reward functions and the user
coefficients, that can lead to instability and sensitivity to
initialization. To address this, we incorporate SVD-based
initialization to provide a structured starting point and L2
regularization to stabilize the MLE optimization (Section
4.1).

Figure 3 (A) validates the importance of these components
by comparing our full method (Full) to two ablations: (1)
No Reg., which removes L2 regularization, and (2) No SVD,
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Number of User’s Responses

10 20
PReF (Ours) 7TT+1.8% 83+1.6% 85+1.6%
VPL(Poddar et al., 2024) 78 £1.8% 80+1.7% 80+1.7%
PAL (Chen et al., 2024a) 56 £2.2% 59+2.1% 61+2.1%

Table 1: Mean and 95% CI of winrates over responses from the initial model. Our method outperforms other proposed
frameworks for efficient personalization of LLMs. VPL personalizes LLMs, but its performance saturates and doesn’t
improve with further user interaction (same performance for 10 and 20 user interactions).

which replaces SVD-based initialization with random em-
beddings. The figure reports the mean and standard de-
viation of the mean over 10 models trained on the same
data with different seeds. Removing SVD leads to signifi-
cantly higher variance, particularly in the new user setting,
highlighting its role in reducing sensitivity to random initial-
ization. Similarly, without L2 regularization of the user’s
coefficients, the standard deviation of the mean also in-
creases, suggesting that regularization prevents overfitting
and stabilizes optimization.

Additionally, we evaluate the benefits of our active learning
approach in determining user weights. In Figure 3 (C), we
compare our method to a baseline where questions presented
to the user are chosen at random. The results clearly demon-
strate the advantage of our approach: our method achieves
x2.7 increase in efficiency - getting the same performance
with just 15 samples that random selection requires over 40
samples to reach.

5.6. Feature Interpretation

To better understand the base reward functions learned by
our framework, we perform an automatic interpretation anal-
ysis. This helps validate that the learned reward structure
captures meaningful dimensions of user preferences. We
first score all responses in our Atfributes dataset using the
learned base reward function. For each base reward func-
tion, we extracted the top and bottom k& responses, and ask
GPT4 to produce an interpretable label based on them. For
more details, see Appendix E.

Figure 5 shows the generated labels for each dimension
along with the explained variance. We see that we recover
categories that closely resemble the attributes we used for
generating the data, such as “Informal vs. Formal" or “Con-
ciseness vs. Elaborateness".

References

Bach, F. Self-concordant analysis for logistic regression.
2010.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-

Professional vs. Casual [N
Conciseness vs. Elaborateness [N
Engagement vs. Analysis [N
Informal vs. Formal [N
Practical vs. Creative Il

Engagement vs. Factual [l

Practical vs. Theoretical [l

Formality vs. Informality [l

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Explained Variance (%)

Figure 5: Sorted principal components of the Attributes
dataset along with LLM generated descriptions. We were
able to recover some of the axes that were used in the dataset
generation.

Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T.,
et al. Training a helpful and harmless assistant with rein-
forcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022a.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,
Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKin-
non, C., et al. Constitutional ai: Harmlessness from ai
feedback. arXiv preprint arXiv:2212.08073, 2022b.

Bradley, R. A. and Terry, M. E. Rank analysis of incom-
plete block designs: I. the method of paired comparisons.
Biometrika, 39(3/4):324-345, 1952.

Casper, S., Davies, X., Shi, C., Gilbert, T. K., Scheurer, J.,
Rando, J., Freedman, R., Korbak, T., Lindner, D., Freire,
P, et al. Open problems and fundamental limitations
of reinforcement learning from human feedback. arXiv
preprint arXiv:2307.15217, 2023.

Castricato, L., Lile, N., Rafailov, R., Frianken, J.-P., and Finn,
C. Persona: A reproducible testbed for pluralistic align-
ment, 2024b. URL https://arxiv. org/abs/2407.17387.

Chen, D., Chen, Y., Rege, A., and Vinayak, R. K. Pal:
Pluralistic alignment framework for learning from hetero-
geneous preferences. arXiv preprint arXiv:2406.08469,
2024a.



ICML 2025 Workshop on Models of Human Feedback for AI Alignment

Chen, R., Zhang, X., Luo, M., Chai, W., and Liu, Z. Pad:
Personalized alignment of llms at decoding-time. arXiv
preprint arXiv:2410.04070, 2024b.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Dong, Y. R., Hu, T., and Collier, N. Can llm be a personal-
ized judge? arXiv preprint arXiv:2406.11657, 2024.

Dorka, N. Quantile regression for distributional reward
models in rlhf. arXiv preprint arXiv:2409.10164, 2024.

Faury, L., Abeille, M., Calauzenes, C., and Fercoq, O. Im-
proved optimistic algorithms for logistic bandits. In In-
ternational Conference on Machine Learning, pp. 3052—
3060. PMLR, 2020.

Gao, L., Schulman, J., and Hilton, J. Scaling laws for reward
model overoptimization. In International Conference on
Machine Learning, pp. 10835-10866. PMLR, 2023.

Ge, T., Chan, X., Wang, X., Yu, D., Mi, H., and Yu, D. Scal-
ing synthetic data creation with 1,000,000,000 personas.
arXiv preprint arXiv:2406.20094, 2024.

Guo, Y., Cui, G., Yuan, L., Ding, N., Sun, Z., Sun, B., Chen,
H., Xie, R., Zhou, J., Lin, Y., et al. Controllable prefer-
ence optimization: Toward controllable multi-objective
alignment. arXiv preprint arXiv:2402.19085, 2024.

Hamming, R. Numerical methods for scientists and engi-
neers. Courier Corporation, 2012.

Han, S., Shenfeld, I, Srivastava, A., Kim, Y., and Agrawal, P.
Value augmented sampling for language model alignment
and personalization. arXiv preprint arXiv:2405.06639,
2024.

Jang, J., Kim, S., Lin, B. Y., Wang, Y., Hessel, J., Zettle-
moyer, L., Hajishirzi, H., Choi, Y., and Ammanabrolu, P.
Personalized soups: Personalized large language model
alignment via post-hoc parameter merging. arXiv preprint
arXiv:2310.11564,2023.

Johnson, C. C. et al. Logistic matrix factorization for im-
plicit feedback data. Advances in Neural Information
Processing Systems, 27(78):1-9, 2014.

Khanov, M., Burapacheep, J., and Li, Y. Args: Alignment as
reward-guided search. arXiv preprint arXiv:2402.01694,
2024.

King, M. and Cook, P. Evaluating approaches to personaliz-
ing language models. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pp. 2461—
2469, 2020.

Kirk, H. R., Vidgen, B., Rottger, P., and Hale, S. A. The
benefits, risks and bounds of personalizing the alignment
of large language models to individuals. Nature Machine
Intelligence, pp. 1-10, 2024a.

Kirk, H. R., Whitefield, A., Rottger, P., Bean, A., Margatina,
K., Ciro, J., Mosquera, R., Bartolo, M., Williams, A., He,
H., et al. The prism alignment project: What participa-
tory, representative and individualised human feedback re-
veals about the subjective and multicultural alignment of
large language models. arXiv preprint arXiv:2404.16019,
2024b.

Kleinbaum, D. G., Dietz, K., Gail, M., Klein, M., and Klein,
M. Logistic regression. Springer, 2002.

Li, X., Zhang, T., Dubois, Y., Taori, R., Gulrajani, I.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Alpacae-
val: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/
alpaca_eval, 52023.

Mudgal, S., Lee, J., Ganapathy, H., Li, Y., Wang, T., Huang,
Y., Chen, Z., Cheng, H.-T., Collins, M., Strohman, T.,
et al. Controlled decoding from language models. arXiv
preprint arXiv:2310.17022, 2023.

Ning, L., Liu, L., Wu, J., Wu, N., Berlowitz, D., Prakash,
S., Green, B., O’Banion, S., and Xie, J. User-llm: Effi-
cient llm contextualization with user embeddings. arXiv
preprint arXiv:2402.13598, 2024.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730-27744, 2022.

Poddar, S., Wan, Y., Ivison, H., Gupta, A., and Jaques, N.
Personalizing reinforcement learning from human feed-

back with variational preference learning. arXiv preprint
arXiv:2408.10075, 2024.

Rame, A., Couairon, G., Dancette, C., Gaya, J.-B., Shukor,
M., Soulier, L., and Cord, M. Rewarded soups: towards
pareto-optimal alignment by interpolating weights fine-
tuned on diverse rewards. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

Ren, P, Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta,
B. B., Chen, X., and Wang, X. A survey of deep active
learning. ACM computing surveys (CSUR), 54(9):1-40,
2021.

Rentfrow, P. J., Goldberg, L. R., and Levitin, D. J. The struc-
ture of musical preferences: a five-factor model. Journal
of personality and social psychology, 100(6):1139, 2011.


https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval

ICML 2025 Workshop on Models of Human Feedback for AI Alignment

Richardson, C., Zhang, Y., Gillespie, K., Kar, S., Singh, A.,
Raeesy, Z., Khan, O. Z., and Sethy, A. Integrating sum-
marization and retrieval for enhanced personalization via
large language models. arXiv preprint arXiv:2310.20081,
2023.

Sorensen, T., Moore, J., Fisher, J., Gordon, M., Mireshghal-
lah, N., Rytting, C. M, Ye, A., Jiang, L., Lu, X., Dziri, N.,
et al. A roadmap to pluralistic alignment. arXiv preprint
arXiv:2402.05070, 2024.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano,
P. F. Learning to summarize with human feedback. Ad-
vances in Neural Information Processing Systems, 33:
3008-3021, 2020.

Wang, B., Zheng, R., Chen, L., Liu, Y., Dou, S., Huang, C.,
Shen, W., Jin, S., Zhou, E., Shi, C., et al. Secrets of rlhf
in large language models part ii: Reward modeling. arXiv
preprint arXiv:2401.06080, 2024a.

Wang, H., Xiong, W., Xie, T., Zhao, H., and Zhang, T. Inter-
pretable preferences via multi-objective reward modeling
and mixture-of-experts. arXiv preprint arXiv:2406.12845,
2024b.

Wang, K., Kidambi, R., Sullivan, R., Agarwal, A., Dann,
C., Michi, A., Gelmi, M., Li, Y., Gupta, R., Dubey, A.,
et al. Conditional language policy: A general framework
for steerable multi-objective finetuning. arXiv preprint
arXiv:2407.15762, 2024c.

Wu, B., Shi, Z., Rahmani, H. A., Ramineni, V., and Yil-
maz, E. Understanding the role of user profile in the
personalization of large language models. arXiv preprint
arXiv:2406.17803, 2024.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B.,
Li, C., Liu, D., Huang, F., Wei, H., Lin, H., Yang, J., Tu,
J., Zhang, J., Yang, J., Yang, J., Zhou, J., Lin, J., Dang,
K., Lu, K., Bao, K., Yang, K., Yu, L., Li, M., Xue, M.,
Zhang, P., Zhu, Q., Men, R., Lin, R., Li, T., Xia, T., Ren,
X., Ren, X., Fan, Y., Su, Y., Zhang, Y., Wan, Y., Liu, Y.,
Cui, Z., Zhang, Z., and Qiu, Z. Qwen2.5 technical report.
arXiv preprint arXiv:2412.15115, 2024a.

Yang, R., Pan, X., Luo, F., Qiu, S., Zhong, H., Yu, D., and
Chen, J. Rewards-in-context: Multi-objective alignment
of foundation models with dynamic preference adjust-
ment. arXiv preprint arXiv:2402.10207, 2024b.

Zhang, Z., Rossi, R. A., Kveton, B., Shao, Y., Yang, D.,
Zamani, H., Dernoncourt, F., Barrow, J., Yu, T., Kim, S.,
et al. Personalization of large language models: A survey.
arXiv preprint arXiv:2411.00027, 2024.

10

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
Ilm-as-a-judge with mt-bench and chatbot arena. Ad-

vances in Neural Information Processing Systems, 36:
46595-46623, 2023.

Zhou, Z., Liu, J., Yang, C., Shao, J., Liu, Y., Yue, X,
Ouyang, W., and Qiao, Y. Beyond one-preference-for-
all: Multi-objective direct preference optimization. arXiv
preprint arXiv:2310.03708, 2023.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P., and Irving, G. Fine-tuning
language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.



ICML 2025 Workshop on Models of Human Feedback for AI Alignment

A. Uncertainty

Lemmad4.2: Let &7(8) = {A € R | ||A = Al g, () < G(6)} where (,(6) = O(e?log(%)) The following holds with
probability at least 1 — ¢ for all ¢ € N.
AF € E7(5).

Proof: Using Proposition 1 from (Bach, 2010), we have that there exists ¢ > 1 (the self-concordant constant of the
function) such that:

e 20 =0l b, (0,) < H,(6;) = e219-=0 1>, (p,)

From Lemma 11 in (Faury et al., 2020) we have that, with probability at least 1 — §:

16+ = Ol 0.y < (2 + 48)7:(5)
Because H;(6.,) is positive semidefinite with minimum eigenvalue 3, we get

1 R 2+ 4S5) v (6
Tyl = ey < EEEO),

With R(6) = 242£207:9) This directly gives us:

16, = Bell2 <

e FOH,(0,)7 < Hy(6,) 7! < OH,(h,)7!

Combining this all together and taking a union bound, we have that, with probability at least 1 — 26, the following holds:

10 = Oiller, 5,y < €Ol = el 0.y

Invoking Lemma 11 again:
16 = Oellgs, s,y < €™ (2 +48)%(0)

Lemma 4.3 (general version): Let C' = {0 : [|§ — 0|/, < 8} be an ellipsoidal confidence set in R? around 6, where
lz||a = V2T Az is the norm induced by a positive semi-definite matrix A. For any vector z € R, the solution to the
optimization problem

I&&é{(@, x)

is given by: .
0,x) = (0 -
a0, 2) = (6,2) + Bl
Proof: The optimization problem can be written as:

max(f,r) = max (0,z)
beC 0:(16—0]|<p

Substituting v = € — 6, we decompose:

max({f,x) = é,x 4+ max {(v,x
9€C< )= 0. vrl\vlleﬁ< )

Let v’ = 3. Then [jv|s < 8 implies [[v'[x < 1, and

/
a. = a.
v:\fih?sé”’” Bv’:nril'n}z(g@ )

11



ICML 2025 Workshop on Models of Human Feedback for AI Alignment

Using the definition of the X-norm, [|v/[|s; < 1 implies v'7$v’ < 1. Letting z = X/2¢/, this constraint transforms to
Izl < 1,and v' = »1/2,, Substituting into the inner product:

W, z) =2Tn"12g

The problem becomes:

max (v,z)= max 2TN"Y%g
v:|v’ <1 z:]|z]|2<1
. . . . . . —1/2 .
By the Cauchy-Schwarz inequality, this achieves its maximum at z = ”;ﬁ, with the value:

max 2TR7V2p = |27V 22,
z:]|z]|2<1

Substituting back,

max (v,x) = »12g
gl =Pl 2

Thus, the original problem becomes:

Igneaé(<9,$> = (0,z) + B||z||g—

B. Datasets
B.1. Attributes
B.1.1. DATA GENERATION

We simulate users with roleplay (Ge et al., 2024), where each user is defined by two traits that determine their preferences.
For example, user A might prefer long and formal responses, while user B prefers engaging and confident responses. We
define 7 categories, each with a positive and negative trait. For example, one category is 1ength, and a user could either
prefer verbose or concise responses. This results in 84 users, corresponding to all combinations of traits.

Table 2: Attributes used for data generation.

attribute direction 1  direction 2

length verbose concise
formality formal informal
humour humorous serious
elicitation ~ engaging unengaging
politeness  polite rude
enthusiasm enthusiastic =~ demure
confidence confident uncertain

We collect preference data for each possible user, using prompts from AlpacaEval (Li et al., 2023). For each prompt, we
generate two responses, reusing the user traits to elicit contrasting responses. For example, one response could be long and
formal, and the other engaging and confident. For each user, we collect preferences for the same 100 randomly sampled
prompts, resulting in a preference matrix A € RV*M where M = 100 and U = 84 in our experiments. This dataset is then
split into training and test sets (80-20) by splitting users and pairs separately to avoid contamination

When collecting preferences using roleplay, we present the two responses A and B in the prompt in both possible orders to
account for any possible order bias. This gives two preference matrices, A! and A2, where Afj = 1 if the simulated user

prefers response A and Afj = 0 if they prefer response B. The final preference is the average, A = (Al + A?)/2.

B.1.2. PROMPTS

Below we give all the prompts used for data generation. In all cases we used OpenAI’s GPT-40 model via API.
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Preferences To collect preferences based on user attributes, we used the following system prompt.

You are a helpful Al judge. You prefer attrl and attr2 responses.

Preferences were then collected using the following prompt from AlpacaEval (Li et al., 2023).

Select the output (a) or (b) that best matches the given instruction. Choose your preferred output, which can be
subjective. Your answer should ONLY contain: Output (a) or Output (b). Here’s an example:

# Example:

## Instruction:

Give a description of the following job: "ophthalmologist"

## Output (a):
An ophthalmologist is a medical doctor who specializes in the diagnosis and treatment of eye diseases and conditions.

## Output (b):
An ophthalmologist is a medical doctor who pokes and prods at your eyes while asking you to read letters from a chart.

## Which is best, Output (a) or Output (b)?
Output (a)

# Task:
Now is the real task, do not explain your answer, just say Output (a) or Output (b).

## Instruction:
{instruction}

## Output (a):
{output_1}

## Output (b):
{output_2}

## Which is best, Output (a) or Output (b)?

Responses Responses were generated based on attributes by using the following system prompt.

You are a helpful Al assistant. You generate attrl and attr2 responses.

B.2. PRISM
B.2.1. DATA GENERATION

We construct a dataset of roleplayed user preferences using real human-provided attributes from the PRISM dataset. In total,
we obtain 1,500 unique users, each with self-reported traits that guide their preferences. These traits encompass a wide
range of characteristics, including familiarity with LLMs, frequency of usage, personal values, preferred communication
style, and demographic factors. To simulate user responses, we follow the roleplay protocol outlined in the PERSONA
paper, utilizing the GPT-40 model to generate responses aligned with user traits. The prompts used for preference collection
are also sourced from the PRISM dataset. We apply a filtering process to select prompts that are inherently controversial,
resulting in a final set of 2,262 prompts.

For each prompt, we retrieve a baseline response from the dataset and then sample a random user. Using Qwen 2.5 7B,
we revise the response to better align with the sampled user’s preferences, thereby generating response pairs that exhibit
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contrasting characteristics. For instance, a user who prefers highly factual and fluent responses may receive a revision that
improves clarity and correctness, whereas a user who values creativity and engagement might get a more expressive and
imaginative revision.

To construct the preference dataset, we sample 50 users for each response pair and simulate their preferences, leading to
a dataset of approximately 110,000 preference data points. This dataset is then split into training and test sets (80-20) by
splitting users and pairs separately to avoid contamination. Notably, this constitutes only about 3% of the full preference
matrix, which would include all users over all possible response pairs.

As with the preference collection process described in the Aftributes section, we ensure robustness against order bias by
presenting response pairs in both possible orders when eliciting preferences.

B.2.2. PROMPTS

Below we give all the prompts used for data generation.

User description Both for response generation and collecting preferences, we used description extracted from the original
PRISM dataset. This is an example of such description:

Familiarity with LLMs: Very familiar

Indirect use of LLMs: Yes

Direct use of LLMs: Yes

Frequency of using LLMs: Every day

Briefly describe your values, core beliefs, guiding principles in life, etc.: Be a kind, honest, helpful, and fair person
who is generally polite to everyone. Do not do things that I may regret in the future. Follow all norms in the country
I’'m visiting and living. Be a loyal friend. When I see someone needs help and I’m capable of helping, step up to
help.

Your system prompt for LLMs: You are an attentive listener and a loyal Canadian friend who is very honest when
I’'m asking you for feedback. If something seems wrong, you’ll point it out to me to let me know. Be straightforward,
don’t reframe something negative into something very positive. Also, please be concise in your answer. If you have
no idea on what feedback to give, just say "I don’t know".

Age: 18-24 years old

Gender: Female

Employment Status: Unemployed, seeking work

Education: University Bachelors Degree

Marital Status: Never been married

English Proficiency: Fluent

Religion: No Affiliation

Ethnicity: Asian

Birth Country: Hong Kong

Current Country: Canada

LLM use cases: [’source_suggestions’, "professional_work’, ’casual_conversation’, *techni-
cal_or_programming_help’, *'medical_guidance’, *financial_guidance’, 'relationship_advice’, ’language_learning’,
9’ b
other’]

Preferences of LLM behaviour (scale of 1-100): [’values: 0, ’creativity: 72°, *fluency: 100’, *factuality: 100’,
“diversity: 100°, ’safety: 100, *personalisation: 100’, *helpfulness: 100’]

Preferences To collect preferences based on user attributes, we used the following prompt taken from (Dong et al., 2024).
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Given the user profile provided below, select the response from Al assistant A or B that the user would most likely
prefer. Don’t focus on which response is better in general, just which one is better for this user. Declare your choice
by using the format: "[[A]]" if you believe assistant A’s response is more suitable, or "[[B]]" if assistant B’s response
is better suited.

[User Profile]

user_description

[User Question]

{prompt}

[The Start of Assistant A’s Answer]

{response_1}

[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]

{response_2}

[The End of Assistant B’s Answer]

[Answer]

Responses To generate responses based on user attributes, we used the following two prompts, taken from (Castricato
et al.):

Examine the COMPLETION:

{original_response}

in relation to the DEMOGRAPHIC:

{user_description}

and the INSTRUCTION:

{prompt}.

Put yourself in the shoes of DEMOGRAPHIC. Identify the ways the completion both does and does not resonate
with the demographic. Provide a concise explanation, quoting directly from the demographic and completion to
illustrate your evaluation. In addition, make sure that the response given is still relevant to the INSTRUCTION.
Format: EVALUATION: ... SUGGESTIONS: ...

The output is then used as an input to the second prompt:

Revise the COMPLETION:

{original_response}

with respect to INSTRUCTION:

{prompt}

based on the CRITIQUE:

{critique}

Provide a revision of the completion, do not make ANY references to the exact preferences or attributes of the
demographic. Just provide the new response, use the format:

REVISED RESPONSE: ...

C. Training Details

Table 3 includes the hyperparameters for all models trained in this work. Unless mentioned otherwise, every experiment
was done over 10 random seed. To ensure fair comparison, we only performed 8 hyperparameter tuning experiment per
algorithm before settling on the final ones.

For the Classic RLHF baseline we used the hyperparameters as our method (besides number of base functions, which
is equal to 1 in this case). For the Model per User baseline, we fixed the learning rate of the linear head to le-3 but
experimented with different learning rates for the backbone. In that, we followed common practices in a few-shot adaptation
that showed that training the entire model with a small amount of data points can lead to extreme overfit. We have found
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Algorithm 1 Training the base reward functions

1: Input: Pairwise preference dataset {a;j7y]14,yj247 Aj i };V:P
randomly initialized user matrix A
2: Construct the observed preference matrix A € RYXM \where U is the number of users and M is the number of item

pairs in the dataset.

base reward function(s) Ry with output dimension J,

3: Compute a rank-J SVD (or an approximation for sparse matrices), obtaining A = UXV T,
4: Extract the initial user matrix: A = UX2, and the per-pair reward matrix: ¢ = EATAN

5: Fit the reward function Ry to ® using ¢5-1oss.

6: Refine Ry by jointly optimizing A and Ry using Equation 4.

7: Output: Ry, A

Algorithm 2 Uncertainty-Guided User Weight Estimation

1: Input: Reward function ¢ with output dimension J
2: fort=1,2,... do
3: ift =0 then

4 Select a random prompt x and response pair (y!,3?).

5:  else

6: Choose prompt = and response pair (y',4?) that maximize Equation (5).
7:  endif

8:  Obtain the user preference for the selected response pair.

9:  Estimate new user weights \; based on all collected data using Equation (4).
10: end for
11: Output: User weights A

that freezing that backbone entirely works the best in the range of 5-40 user answers, and training with a learning rate of
le-6 works the best in the regime of 100+ user answers.

Table 3: Hyperparameter table

Algorithm Ours Ours (PRISM) VPL PAL
Dataset Attributes PRISM Attributes Attributes
Reward model Qwen 2.50.5B Qwen2.50.5B Qwen2.50.5B Qwen 2.50.5B
Learning rate le-3 le-3 le-3 le-5
Regularization weight 0.02 0.02 N/A N/A

# of Gradient steps 500 1000 500 500
Batch size 32 64 32 32

# of base functions 8 6 N/A 8

D. Human Evaluations

In this section we give additional details about our human evaluations.

Volunteer Evaluators The volunteer human evaluators recruited for our study were Harvard and MIT graduate students
or post-doctoral researchers with a STEM focus.

Study Protocol Human evaluators took part in our study via a web app. Upon starting the task, users were first shown a
set of instructions. After that, evaluators were shown 30 prompts from our test set, each with two accompanying responses.
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The first 15 responses and prompts were chosen using our online learning algorithm, while the next 15 were chosen at
random. No prompt was ever repeated. For each example, evaluators could choose the response they preferred, or they
could choose neither. The latter case was counted as a tie when computing win rates for our evaluation.

Figure 8 shows screen captures of the pages in our webapp: the instructions and a single prompt and responses example.

Breakdown of Winrates Figure 10 shows the winrates for the 25 participants in the study. We see that there is a fraction
of participants that prefer the personalized response almost all the time, while another group is close to indifferent. One
reason for this may be that the features we used in our experiment were focused on a small set of attributes. Thus, for some
users we may not find an axis of personalization where we can beat the baseline response.

Personalized Response Generation In our human evaluations we compare against GPT-40, which we are unable to
finetune. This prevents us from aligning the responses based on learned user weights. Instead, we generate a large pool of
responses using random attributes and select the response that best aligns with the user’s preferences. In order to control for
confounders, we always generate the personalized response by revising the baseline response.

Prompts We generated personalized responses by revising a baseline response with the following prompt. (Castricato
et al.):

Here is a user instruction:
{instruction}

And here is a possible response:
{base_response}

Revise it according to your own tastes. Remember,
{sys_prompt}

Only include the revised response in your answer and nothing else. Your response must look like a response to the
original user instruction. If you include any other text in your response other than the revised response, you are a
bad assistant.

Make sure to keep your answer to a single paragraph and do not make it too long.

The response was personalized using the following system prompts (which was also included in the prompt above).

~

You are a helpful Al assistant. You generate {attrl} and {attr2} responses.

.

J

In order to get shorter responses from GPT-40, we generated the baseline responses using the following prompt, which
mirrors the revision prompt above.

Here is a user instruction:
{instruction }

Give a response to the user instruction. Your response must look like a response to the original user instruction. If
you include any other text in your answer other than your response, you are a bad assistant.

Make sure to keep your answer to a single paragraph and do not make it too long.

E. Feature Interpretation

Consider the feature matrix ® = [¢1,..., ¢ar]7 € RM*4, for a set of M responses. Let v; denote the principal components
of @, i.e. the eigenvectors of the covariance matrix (® — ¢)(® — ¢)”". For each component j, we select the top and bottom
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k responses,
Top = top, ({07 - v }iy),

Tooe = boty ({; - v; }1L)).

We then feed these responses to GPT4 and ask it to produce a label for the component using the following prompt.

# Instructions

I have a set of responses to questions, sorted by some unknown criterion. I will give you the top {k} and bottom {k}
responses from the set. Given these two subsets, which represent the extremes of the unkown axis along which the
responses are ordered, I need you to come up with an appropriate description for this criterion. What is the key
property that best separates the top and bottom responses?

## Top {k}
Here are the top {k} responses, {top_responses}

## Bottom {k}
Here the bottom {k} responses, {bot_responses}

What description would you give? Try to come up with a short phrase or keyword that encapsulates your answer.
Also try to capture the particular nuances of the responses.

The responses were then shortened to concise descriptions with the prompt below.

Extract the key property from the following response and rephrase it as a short X vs. Y phrase.
Response: {resp}

Make sure you just used keywords in place of X and Y. Like "Concise" vs. "Elaborate".
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0.6

Welcome to Our Study

The study involves two parts.
1. You will be asked to fill out a short survey detailing your preferences.

2. After the survey, you will begin the main task. You will be asked to rate responses from an LLM. You should rate the response based on your personal preference. For example,
maybe you prefer more engaging or humorous responses. Or maybe you want serious and polite responses. Just try to be consistent in your choeices. If you don't like either
response, or you really can't decide, you can also choose "No preference”. You will be shown 30 examples in total.

At the end of the task, make sure to click "Finish" to submit your response.

To keep track of responses, we need you to provide a name. Put any name that we could identify your response by.

Enter your name here:

Use via API & - Built with Gradio
Figure 6: Instructi

0.6

Instructions Survey

Question 1 out of 30

Please select your preferred response

Prompt:
Hi open assistant, can you tell me what presidents day is?

Response A Response B:

Oh great, another vague holiday question! Presidents Day, or something officially Presidents Day, officially known as Washington's Birthday, is a federal holiday in the
called Washington's Birthday, is this federal holiday thing in the U.S., which is United States celebrated on the third Monday of February. It was originally established
randomly celebrated on the third Monday of February, because why not disrupt the in 1885 to honor George Washington, the first U.S. president, whose birthday is February
regular day order? It originally was set up in 1885 to honor George Washington, yeah, 22. Over time, the holiday has come to celebrate not only Washington but also all U.S.
the first president with his little wooden teeth and all, whose birthday is actually presidents, with a particular emphasis on Abraham Lincoln, whose birthday is also in
February 22. But somehouw, over the years, it's now supposed to honor all these U.S. February. It is recognized as a time to reflect on the contributions of past presidents to
presidents, just lumping everyone together like they deserve equal spotlight or the country's history.

something. Some people also acknowledge Abraham Lincoln because his birthday

awkwardly falls in February too. So go ahead, think about all those presidents'

contributions or whatever.

Choose your preference

Response A Response B No preference

Use via API & - Built with Gradio &

Figure 7: Response Comparison Page

Figure 8: Screen captures of the main pages from flae web app used to conduct our human evaluations.
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Figure 9: The magnitude of the 50 first eigenvalues of the preference matrix. The elbow point in the spectrum suggests the
optimal number of base reward functions, aligning with the performance saturation observed in Figure 3. This indicates that
eigenvalue analysis may serve as an efficient heuristic for selecting the dimensionality of user preference representations.
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Figure 10: Histogram of the results from our human evaluation experiment.
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Figure 11: Reward model performance when trained using a single user’s answers only. To achieve full performance, it
requires over 500 pairwise preference comparisons from the user, making this method not feasible in scale.
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