
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRAMEL: AN EXEMPLAR REPLAY-BASED CONTIN-
UAL LEARNING FRAMEWORK FOR MALWARE TRAFFIC
ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Most prior work on continual malware detection has focused on static code anal-
ysis. In contrast, this paper explores continual learning (CL) for malware traf-
fic analysis (MTA), which leverages encrypted flow features to capture behav-
ioral signals that remain observable despite obfuscation and encryption. Unlike
conventional intrusion detection systems that perform coarse anomaly detection,
MTA requires fine-grained family-level classification under evolving, imbalanced,
and non-stationary distributions, making it a distinct and challenging setting for
CL.
We introduce TraMEL (Traffic-based Malware Exemplar Learning), a replay-
based CL framework designed for MTA. TraMEL integrates (i) adaptive exem-
plar selection to address long-tailed family distributions and (ii) an exemplar re-
finement phase to mitigate task recency bias under strict memory budgets. We
evaluate TraMEL under both standard class-incremental and temporally shifted
scenarios. Across CICAndMal2017 and IoT23, TraMEL outperforms strong CL
baselines including iCaRL, ER, and TAMiL by 10–30 percentage points, and ap-
proaches the performance of joint training, a theoretical upper bound with full
access to past data. These results demonstrate that CL on malware traffic is both
feasible and practical, providing a memory-efficient approach toward real-world
malware detection. Code is available at https://anonymous.4open.sc
ience/r/ICLR2026-code-D575/.

1 INTRODUCTION

Modern malware increasingly evades traditional defenses by encrypting network traffic (e.g., TLS
1.3) and applying code obfuscation, rendering both deep packet inspection and static analysis un-
reliable (Moser et al., 2007; Deng & Mirkovic, 2022; Anderson & McGrew, 2016). This shift
motivates malware traffic analysis (MTA), which detects malicious activity directly from encrypted
network traffic rather than executable code. Unlike conventional intrusion detection systems (IDS)
that operate on coarse logs or binary anomaly flags under closed-world assumptions (Sommer &
Paxson, 2010; Paya et al., 2024), MTA requires fine-grained family-level classification in an open
world where malware families continually evolve and reappear (Mariconti et al., 2017). These re-
quire models that can adapt without retraining from scratch (Rahman et al., 2022). The challenge
is particularly acute in mobile and embedded ecosystems, where encrypted traffic dominates and
malware behavior changes rapidly. To capture this, we study two representative domains: Android
malware, using the CICAndMal2017 (CIC17) dataset with 42 families (Lashkari et al., 2018), and
IoT malware, using the IoT-23 dataset featuring botnets such as Mirai (Garcia et al., 2020).

Although machine learning (ML) models have achieved strong performance on static MTA bench-
marks (Mirsky et al., 2018; Anderson & McGrew, 2016), we argue that this success reflects an
unrealistic closed-world assumption (Sommer & Paxson, 2010). In real deployments, drift is driven
not only by benign software evolution but also by adversary-driven evolution of malware behav-
ior, where attackers continually release variants of known families or new malware to evade detec-
tion (Küchler et al., 2021) (see Section 2 for details). Such dynamics steadily erode classifier per-
formance. The standard resolution, fine-tuning on new data, leads to catastrophic forgetting (CF),

1

https://anonymous.4open.science/r/ICLR2026-code-D575/
https://anonymous.4open.science/r/ICLR2026-code-D575/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) IoT23. (b) CICAndMal2017.

Figure 1: Class imbalance in IoT23 (1a) and
skewed feature distribution in CIC2017 (1b).

Figure 2: Overview of the proposed TraMEL
pipeline.

where the model loses the ability to detect previously learned malware families while adjusting to
new threats.

A fundamental challenge is that existing malware traffic dataset do not capture long-term family
recurrence, making it difficult to directly evaluate forgetting under realistic re-emergent patterns. To
tackle this problem, we design two benchmarks. The first is a standard class-incremental (Class-
IL) split with disjoint families, representing a strict lower bound. The second is a temporal Class-IL
split grouping families by time of first appearance time to reflect natural traffic shifts. Although both
lack recurrence, the temporal split is deliberately conservative, harder than real deployments where
recurrence would allow transfer, and thus provides a principled benchmark for continual learning
(CL) in MTA.

We therefore formalize MTA as a Class-IL continual learning problem with three objectives: (i)
preserve performance on previously seen families, (ii) adapt to new families, and (iii) operate under
tight memory and compute budgets. Replay-based CL is particularly well-suited here because it re-
tains prior knowledge through compact exemplar buffers (Rahman et al., 2025). However, existing
CL methods such as ER (Rolnick et al., 2019), iCaRL (Rebuffi et al., 2017a), and TAMiL (Bhat et al.,
2023b) have been validated primarily in the vision domain, while CL studies in IDS settings (Chan-
nappayya et al., 2023; Amalapuram et al., 2024) focus on coarse binary anomaly detection under
closed-world assumptions. Prior malware-specific CL work (Sun et al., 2025; Park et al., 2025;
Rahman et al., 2025) addresses code-level drift rather than encrypted traffic. Building on these ob-
servations, we target encrypted MTA, where drift arises from both new families and re-emerging
ones of older families, and mitigate catastrophic forgetting across class-incremental and temporal-
drift scenarios through exemplar replay and refinement.

Our approach. We introduce TraMEL (Traffic-based Malware Exemplar Learning), an exemplar-
replay CL framework tailored for MTA. TraMEL addresses three core challenges. 1 Long-tailed
and sparse traffic features. Real-world malware traffic exhibits long-tailed family distributions and
sparse feature vectors (Figure 1). TraMEL selects exemplars that balance class coverage while
preserving intra-class diversity. 2 Task recency bias. Incremental training causes earlier families
to be forgotten as new families are introduced. TraMEL incorporates an exemplar refinement phase
that fine-tunes exclusively on buffered exemplars to reinforce prior knowledge. 3 Tight memory
budget. Practical malware detectors must operate with small buffers. TraMEL therefore emphasizes
compact but representative exemplar selection to maintain long-term accuracy.

To this end, TraMEL combines a heuristic exemplar selection strategy—balancing class coverage
with diversity-aware clustering—with an exemplar refinement phase that replays buffered samples
to mitigate forgetting while maintaining adaptability.

Results. On CICAndMal2017 and IoT23, TraMEL consistently outperforms strong CL baselines
such as iCaRL, ER, and TAMiL. Even with a buffer of only 3,000 samples (0.2% of data), it achieves
about 15 percentage points higher accuracy and approaches the performance of a joint baseline when
trained on the full dataset with access to all families at once. Clustering-based selection is especially
effective under tight memory, while simpler strategies suffice when more memory is available.

2 THREAT MODEL

Retrograde Malware Attack (RMA) targets ML-based malware detectors that are incrementally up-
dated with only new traffic or file samples Park et al. (2025); Rahman et al. (2025). In practice, se-
curity pipelines often retrain classifiers on fresh threat intelligence feeds (e.g., new flows, domains,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

binaries) without retaining historical corpora due to storage and scalability limits. This induces
catastrophic forgetting of earlier malware signatures and behavioral traces, enabling adversaries to
weaponize legacy or lightly modified variants that evade detection. From the perspective of network
traffic analysis, RMA (Rahman et al., 2025) (Park et al., 2025) unfolds in three phases (Figure 3):

• Initial Training (1⃝): The detector is trained
on malicious and benign traffic (e.g., packet se-
quences, flow metadata, TLS fingerprints).

• Updates and Forgetting (2⃝): The model is
periodically retrained on recent captures (e.g.,
from honeypots or sandboxes). Because older
families and domains are excluded, recall on
previously seen traffic patterns declines while
benign software may be misclassified, raising
false positives.

Figure 3: Retrograde Malware Attack (RMA).

• RMA in Deployment (3⃝): Adversaries exploit this forgetting by reintroducing legacy families
or slightly altered variants.

3 RELATED WORK

Replay in CL. Addressing CF is the core challenge in CL, and one widely used solution is replay.
Replay methods improve learning by mixing current data with representative information from ear-
lier tasks. They are typically grouped into two categories – exact replay (storing real samples) and
generative replay (generating synthetic data). Exact replay stores a fixed number of past samples,
controlled by a memory budget M. Methods like ER (Rolnick et al., 2019), A-GEM, and iCaRL
aim to maintain performance while using as few replay samples as possible (Rolnick et al., 2019;
Chaudhry et al., 2019; Rebuffi et al., 2017a). TAMiL (Bhat et al., 2023a) builds on ER by using
attention to retain prior data distributions at the representation level, improving knowledge retention
beyond simple replay. Generative or pseudo-replay strategies are designed to replicate the original
data (Li & Hoiem, 2017; Shin et al., 2017; van de Ven et al., 2020). These techniques either generate
a representative of the original data using a separate generative model or generate pseudo-data by
using an earlier model’s predictions as soft labels for training subsequent models.

CL in Malware and Related Domains. Study of CL in malware domains is relatively limited.
Rahman et al.(Rahman et al., 2022) showed that replay-based methods are more effective due to the
structured and diverse nature of tabular malware features. MalCL(Park et al., 2025) extends this with
a GAN-based generative replay and feature-guided sampling, while MADAR (Rahman et al., 2025)
introduces distribution-aware replay to select representative and discriminative samples. Beyond
malware classification, other efforts address adjacent problems. Chen et al.(Chen et al., 2023) study
concept drift in Android malware using contrastive and active learning, but do not tackle CF.

SPIDER (Amalapuram et al., 2024) extends CL to intrusion detection using a semi-supervised ap-
proach that matches supervised baselines while storing only unlabeled traffic. Still, it operates under
a closed-world binary setting and requires up to 20% labeled data—limiting its practicality for mal-
ware. Its companion, Augmented-Memory Replay (Channappayya et al., 2023), uses only intrusion
benchmarks, with limited relevance to real malware traffic and no support for privacy-preserving
replay. Other work frames CL in the context of network traffic but still falls short. SPCIL (Xu et al.,
2024) introduces a lightweight dual-branch model for malware detection but handles only small
class increments, with growing memory and stability concerns. Zhang et al. (Zhang et al., 2025)
propose an expandable CL system with per-task frozen extractors and neural architecture search.
While effective on IoT and VPN datasets, these settings lack family-level malware structure and do
not scale to long-horizon, evolving malware detection.

Current CL systems for network security either frame intrusion detection as a binary anomaly task
or evaluate on IoT/VPN traffic, which lacks the family-level diversity characteristic of real malware.
Notably, existing work does not address CL for discovering and adapting to new malware fami-
lies. These limitations motivate our focus on TraMEL, which directly targets CF in the context of
evolving malware families and realistic traffic streams.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1: TraMEL: 3 Phase Training
Initialize model f , buffer E = ∅
for t = 0 to T − 1 do

Phase 1: Initial Training
Train f on Dt ∪ E; save f ′.

Phase 2: Exemplar Selection
Calculate per-class budget m = K/Cseen; truncate old exemplars to m per class;
select m exemplars for each new class and update E.

Phase 3: Refinement
if t > 0 then

Using only E, refine f with:
CE + distill(f, old f on old exemplars) + distill(f, f ′ on new exemplars).

return f,E

4 OVERVIEW OF TRAMEL

We present TraMEL, a continual learning framework for malware traffic classification in a class-
incremental (Class-IL) setting. We assume that new malware families (i.e., classes) arrive incre-
mentally over tasks t0, . . . , tn−1, each associated with a training set D0, . . . , Dn−1. At task ti,
the objective is to train a classifier Ci on the current dataset Di while retaining knowledge from
previous datasets D0, . . . , Di−1. In our experiments, we consider both synthetic Class-IL splits and
more realistic temporal shifts assuming closed-world (i.e.,no unseen families appear in inference. In
the Class-IL setup, tasks are defined by evenly partitioning malware families across n tasks, which
stresses the ability to recognize new families while preserving old ones. In the temporal setup,
tasks are organized by the year in which malware families first appear, mimicking how new variants
emerge in practice. This allows us to evaluate TraMEL under conditions where distributions evolve
naturally over time, reflecting adversary-driven drift.

TraMEL addresses these scenarios through a three-phase process. First, the model is trained jointly
on the current task data Di and the replay buffer E<i containing exemplars from earlier tasks,
reducing early forgetting. Second, a set of informative exemplars is selected from Di under a fixed
memory budget. The selection strategy explicitly promotes class balance and intra-class diversity,
ensuring that even minority families are preserved in the buffer. Finally, to mitigate task recency bias,
the model is refined exclusively on the buffer Ei, consolidating older knowledge without requiring
full historical data.

By combining joint training, imbalance-aware exemplar selection, and targeted refinement, TraMEL
achieves a balance between plasticity and stability across both synthetic and temporally defined
tasks. This enables robust long-term malware detection in evolving threats. The following subsec-
tions detail the exemplar selection strategy, buffer management, and refinement procedure.

4.1 EXEMPLAR SELECTION STRATEGIES

Let Dc = {(xj , yj)}Nc
j=1 denote the training samples of class c, and let f(x) be the feature represen-

tation of input x extracted by the backbone network. The goal is to select m exemplars Ec ⊂ Dc for
each class to be stored in the replay buffer. We investigate three strategies.

The first is random sampling, which simply draws m samples uniformly from Dc. This baseline
provides unbiased coverage of the class distribution but does not exploit structure in the feature
space.

The second is class-mean selection, following iCaRL (Rebuffi et al., 2017b). We compute the class
prototype

µc =
1

Nc

∑
(xj ,yj)∈Dc

f(xj),

and select the m samples with the highest similarity to µc. This aligns exemplars with the class
centroid, ensuring representativeness, though it may suffer from limited diversity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The third is a clustering-based strategy to enhance diversity. Feature vectors {f(xj)} are partitioned
into k clusters using K-means with Euclidean distance, yielding centroids {µc,1, . . . , µc,k}. Each
cluster i receives a quota mi proportional to its size:

mi =

⌊
m · |D

c
i |

Nc

⌋
.

From each cluster, we select the mi samples closest to its centroid:

Ec
i = arg min

S⊂Dc
i

|S|=mi

∑
x∈S

∥f(x)− µc,i∥22.

The final exemplar set is Ec =
⋃k

i=1 Ec
i . By enforcing coverage of multiple clusters, this method

captures diverse semantic regions, mitigating over-representation of dense areas and improving gen-
eralization under continual learning. We empirically find that using larger numbers of clusters (e.g.,
k ≥ 100) further improves performance on CICAndMal2017 and IoT23, as the buffer more faith-
fully reflects the underlying data manifold. Detailed results are provided in the Appendix A.2.

4.2 REPLAY BUFFER

Storing all past data for retraining is infeasible; instead, TraMEL maintains a fixed-size replay buffer
of capacity K to hold exemplars from earlier tasks. In the Class-IL setting, the number of classes
grows over time while K remains constant, so the quota per class decreases as tasks accumulate. If
Mi denotes the number of classes introduced at task i, then after task i each class receives K∑i

j=1 Mj

exemplars. This progressive reduction makes exemplar quality increasingly critical.

Compared to vision benchmarks, where K ≤ 1,000 (roughly 3% of training data) (Rebuffi et al.,
2017b), malware traffic datasets require much larger buffers due to their scale. For example, main-
taining the same ratio on CICAndMal2017 implies K ≈ 33,000. Such scale exacerbates memory
constraints and highlights the need for selection strategies that emphasize both representativeness
and diversity.

To capture these practical considerations, we evaluate TraMEL under multiple buffer capacities
proportionally scaled to dataset size (from 200 to 60,000), enabling a systematic analysis of how
memory budgets influence exemplar effectiveness.

4.3 EXEMPLAR REFINEMENT

In the i-th task, training on the current dataset Di together with the exemplar buffer E<i creates a
severe imbalance, since |Di| ≫ |E<i|. This imbalance amplifies CF and leads to task recency bias,
where the model favors recently observed classes (Lyu et al., 2023).

To counter this effect, TraMEL introduces a refinement phase after each task. In this phase, the
model is fine-tuned exclusively on the exemplar buffer E = E<i ∪ Ei, which acts as a compact
proxy for past distributions. Since exemplars are carefully selected for both representativeness and
diversity, replaying them provides an efficient rehearsal step.

The refinement objective integrates supervised and distillation losses to balance plasticity and sta-
bility. Let f (i)(x) be the logits of the current model after refinement on task i, f (i−1)(x) the logits
from the previous refined model, and f (i)′(x) the logits from the model immediately after task i
training. For an exemplar x with label y, we define:

Lrefine = LCE + α · Lpast + β · Lcurrent,

where

LCE = 1
|E|

∑
(x,y)∈E

CE(f (i)(x), y), Lpast =
1

|E<i|

∑
x∈E<i

∥f (i)(x)− f (i−1)(x)∥22,

Lcurrent =
1

|Ei|

∑
x∈Ei

∥f (i)(x)− f (i)′(x)∥22.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Here, LCE enforces correct classification across all exemplars, Lpast preserves behavior on earlier
tasks by aligning with the previous refined model, and Lcurrent stabilizes adaptation to the new task
by constraining deviation from the post-training model. Together, these terms mitigate recency bias
while preventing overcorrection, yielding a refined balance between adaptation to emerging malware
families and retention of prior knowledge. Hyperparameters α, β, and the number of refinement
epochs are scaled with buffer size and task composition; detailed sensitivity analyses are reported in
Section 5.4.

4.4 CLASSIFIER ARCHITECTURE

Malware traffic data is inherently tabular, with each flow represented by dozens of statistical and
protocol-level features rather than raw sequences or images. To identify a suitable backbone for
continual learning, we evaluate three neural architectures: Multi-Layer Perceptrons (MLPs), one-
dimensional Convolutional Neural Networks (CNNs), and Vision Transformers (ViTs).

The MLP baseline consists of nine fully connected layers with ELU/ReLU activations, batch nor-
malization, and dropout. While computationally efficient, it provides limited representational power
and yields the weakest performance. The CNN baseline uses a six-layer 1D convolutional stack with
max pooling and fully connected layers (28M parameters). Although MLP and CNN achieve better
accuracy in some settings,they suffer from instability across runs and rapid representation collapse.
This reflects the limited capacity of MLP and the difficulty of applying local convolutional filters to
tabular features without strong positional structure as discussed in the Appendix A.6.

In contrast, the Transformer-based model delivers both higher accuracy and greater stability. On
CICAndMal2017, a ViT with six encoder blocks (hidden dimension 384, MLP size 1152, eight
heads) achieves 75–80% accuracy with only 8.9M parameters. On IoT23, a lighter configuration
(hidden size 16, MLP size 48, one encoder layer, two heads) achieves competitive accuracy despite
the smaller input dimension. In both cases, the ViT consistently outperforms CNNs and MLPs in
average accuracy and variance, while maintaining robustness across the entire Class-IL sequence.

These results provide an important insight: attention-based models are particularly well-suited for
malware traffic analysis. Unlike CNNs, which rely on local receptive fields, Transformers cap-
ture global inter-feature dependencies without assuming positional priors, making them effective
on tabular data where relationships among features (e.g., packet size, timing, DNS queries) are
long-range and non-sequential. Moreover, the ViT achieves stronger accuracy–complexity trade-
offs, with fewer parameters yet higher stability than CNNs. This aligns with recent evidence that
Transformers generalize well to structured tabular data (Huang et al., 2020).

5 EXPERIMENTAL DETAILS

5.1 DATASET

We evaluate TraMEL and other replay-based CL models on two publicly available malware traffic
datasets: CICAndMal2017 (Lashkari et al., 2018) and IoT23 (Garcia et al., 2020). Both datasets are
split into training, validation, and test sets using an 8:1:1 ratio.

CICAndMal2017 (1,105,290 flows). This dataset consists of Android malware traffic spanning 42
families. During preprocessing, IP and port fields are anonymized, and traffic direction is inferred
using a manually defined list of local IP addresses. Timestamps are normalized to compute inter-
packet delays (IPD), which are further adjusted by traffic direction. The dataset is highly imbalanced,
with the largest family containing over 75,000 flows and the smallest fewer than 4,000.

IoT23 (712,231 flows). This dataset contains IoT network traffic of 11 malware families. To im-
prove class balance, we exclude two minority families (Torri and Trojan), resulting in 9 classes. Pre-
processing removes timestamps, unique identifiers, host addresses, and tunneling or service-related
fields. Numeric packet and byte features are log-transformed to reduce skewness. Similar to CICAn-
dMal2017, the class distribution is highly imbalanced Hideandseek (∼267k flows), Linux.Hajime
(131k), and Muhstik (114k) dominate, while families like Hakai contain as few as 4,000 flows.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.2 TASK CONFIGURATION AND TRAINING PROTOCOL

We evaluate two class distribution scenarios in a Class-IL setting. The first follows prior work show-
ing that assigning more classes to the initial task can mitigate forgetting in subsequent tasks (Park
et al., 2025; Rahman et al., 2022). For CICAndMal2017, we configure tasks as M1 = 22 and
M2 = M3 = M4 = M5 = 5. For IoT23, we set M1 = 5 and M2 = M3 = M4 = M5 = 1.

The second scenario is motivated by the fact that malware families often reappear over time as new
variants (Sun et al., 2025). To the best of our knowledge, no publicly available malware traffic
dataset captures the same families re-emerging over time, which prevents a direct evaluation of how
temporal evolution affects malware traffic analysis. Since our datasets were collected over relatively
short periods, we approximate temporal dynamics by grouping malware families according to their
time (year) of first appearance. For CICAndMal2017, this yields M1 = 4, M2 = 6, M3 = 6, M4 =
4, M5 = 10, M6 = 6, and M7 = 6. The list of family names are provided in the Appendix A.10.
Additional analysis using a synthetic recurrence setting is presented in Appendix A.4.

It is worth noting that in our setting, all families across tasks are disjoint. This makes the split stricter
than real deployments, where families may persist and reappear, enabling transfer. Nevertheless, the
overall malware-traffic distribution still shifts across tasks, so the setup remains meaningful for as-
sessing distributional non-stationarity. Our results should be viewed as a conservative lower bound;
in practice, temporal reoccurrence would likely ease the problem. Each experiment is repeated five
times and we report mean accuracy; training uses 50 epochs on CICAndMal2017 and 40 on IoT23
with early stopping after the first task.

In the refinement phase, we fix a constant k to balance buffer size and refinement epochs, ensuring
consistent replay across settings. For CICAndMal2017, k = 240,000, and for IoT23, k = 20,000.
This value is determined empirically and scales with buffer size and dataset scale.

5.3 EVALUATION METRICS.

We report task-wise and mean accuracy as primary metrics. For each task i, accuracy is computed
over all test samples from classes seen up to i, capturing both new learning and retention. Mean
accuracy is the average of task-wise results, reflecting overall stability and forward transfer. To
quantify CF, we use the forgetting score, defined as the per-class gap between maximum and current
accuracy, which also serves to assess task recency bias.

5.4 HYPERPARAMETER TUNING

We tune three key hyperparameters on CICAndMal2017 (buffer size, refinement epochs, and distil-
lation weights (α, β) and evaluate their impact using mean accuracy and forgetting score.

Buffer size and refinement epochs. We vary buffer sizes between 3,000 and 33,000 and adjust
refinement epochs (80 vs. 8) to keep the total number of exemplar updates per task fixed at 240K.
As shown in Table 5, increasing refinement epochs effectively compensates for smaller buffers,
improving retention of past knowledge.

Distillation weights (α, β). We tune α to preserve past-task knowledge and β to emphasize
current-task accuracy. While α = β = 1 already stabilizes learning, unbalanced settings reveal
a trade-off: larger α improves retention but reduces new-task accuracy, whereas larger β favors re-
cent tasks at the cost of earlier ones. As shown in Table 5, mean accuracy remains similar across
settings, but forgetting scores vary significantly, highlighting the importance of tuning (α, β) for
stability–plasticity balance.

6 RESULTS

Comparison to Baselines. We evaluate TraMEL against replay-based CL methods including
iCaRL (Rebuffi et al., 2017b), ER (Rolnick et al., 2019), and TAMiL (Bhat et al., 2023b) on CI-
CAndMal2017 and IoT23, using the same buffer size of K = 33,000 exemplars. For reference, we
also report two standard baselines: None, which trains only on the current task without replay, and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance of TraMEL on CICAndMal2017 (CIC17) and IoT23 datasets.

Dataset Model Task 1 Task 2 Task 3 Task 4 Task 5 Mean

CIC17

Joint 77.12 ± 2.5 75.71 ± 1.8 76.00 ± 1.4 76.25 ± 0.9 75.61 ± 0.3 76.14 ± 1.1
None 77.12 ± 2.5 14.92 ± 2.6 14.84 ± 3.1 13.37 ± 3.6 10.55 ± 2.7 26.16 ± 1.4

TraMEL-R 76.09 ± 1.9 66.54 ± 2.0 60.36 ± 1.4 56.63 ± 1.3 53.75 ± 0.6 62.67 ± 1.2
ER 55.23 ± 24.3 55.75 ± 19.4 59.28 ± 4.7 54.18 ± 2.9 39.60 ± 18.7 52.81 ± 9.5
iCaRL 55.16 ± 6.0 29.59 ± 17.5 30.78 ± 11.8 28.31 ± 4.8 22.39 ± 2.6 33.25 ± 6.5
TAMiL 57.69 ± 15.9 56.18 ± 10.8 48.79 ± 18.5 31.44 ± 25.4 47.15 ± 7.4 48.25 ± 6.3

IoT23

Joint 89.55 ± 8.6 88.11 ± 8.5 85.67 ± 5.5 82.15 ± 4.1 81.99 ± 1.0 85.50 ± 4.3
None 89.55 ± 8.6 23.92 ± 24.6 15.14 ± 8.6 6.69 ± 7.1 12.53 ± 14.4 29.57 ± 7.1

TraMEL-K 89.54 ± 9.0 82.65 ± 9.0 76.34 ± 10.0 63.07 ± 11.0 59.17 ± 18.0 74.15 ± 10.0
iCaRL 67.37 ± 22.7 67.93 ± 18.2 65.49 ± 9.2 54.51 ± 15.2 43.19 ± 15.1 59.70 ± 7.1
ER 78.52 ± 13.3 88.21 ± 10.9 70.11 ± 12.0 70.17 ± 8.8 54.29 ± 22.1 72.26 ± 2.8
TAMiL 81.23 ± 18.1 64.20 ± 11.0 51.06 ± 14.8 47.51 ± 18.6 52.51 ± 15.8 59.30 ± 13.8

Table 2: Performance of TraMEL on CICAndMal2017 in the temporal drift setting.

Model Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Mean

Joint 78.48 ± 1.7 69.98 ± 1.4 66.64 ± 0.4 68.35 ± 0.5 69.44 ± 0.4 72.68 ± 0.2 73.24 ± 0.1 71.26 ± 0.4
None 79.73 ± 1.9 42.57 ± 0.5 39.80 ± 0.2 15.59 ± 0.2 33.62 ± 0.1 20.71 ± 0.1 13.53 ± 0.0 35.08 ± 0.3

TraMEL-R 79.53 ± 1.9 61.35 ± 3.7 53.49 ± 2.7 53.28 ± 1.6 53.07 ± 0.6 52.73 ± 0.4 50.13 ± 0.4 57.65 ± 1.2
ER 78.42 ± 15.0 68.22 ± 1.4 50.04 ± 12.0 48.98 ± 17.6 41.36 ± 11.7 41.87 ± 7.7 42.44 ± 4.2 53.05 ± 2.0
iCaRL 67.31 ± 12.8 53.90 ± 9.6 37.95 ± 12.1 28.23 ± 9.7 15.32 ± 5.8 22.09 ± 4.6 20.81 ± 6.3 35.09 ± 6.7
TAMiL 81.33 ± 8.5 55.94 ± 15.9 49.26 ± 11.8 46.51 ± 4.6 40.13 ± 20.3 38.14 ± 8.2 40.72 ± 16.1 50.29 ± 6.2

Table 3: Performance of TraMEL on the IoT23 dataset with different exemplar selection strategies.

Method Task1 Task2 Task3 Task4 Task5 Mean

Random 98.38 90.54 79.94 69.91 73.39 82.43
C-Mean 98.38 88.46 79.74 65.19 72.18 80.79
KM(Nk=600) 98.38 90.78 80.40 69.28 75.08 82.78

Joint, which serves as an accuracy upper bound with full access to past and current data. Table 1
shows that TraMEL consistently outperforms iCaRL, ER, and TAMiL in both mean accuracy and
stability, achieving 10–30 percentage points higher accuracy on the final task. Results in Table 2
highlight the effect of refinement: although TraMEL trails TAMiL and ER in the earliest tasks, it
surpasses all baselines in later tasks under temporal drift, demonstrating stronger retention and re-
duced recency bias. Furthermore, to measure how quickly the method recovers and how much it
retains about previously seen families, we also evaluate family recurrence in Appendix A.4.

Compared to the Joint baseline, TraMEL closes the gap by about 15 percentage points on CICAnd-
Mal2017 (including the temporal shift setting) and is only about 10 points behind on IoT23. In terms
of efficiency, training with K = 33,000 exemplars remains practical. On an NVIDIA RTX6000
Ada, the Joint requires about 6 hours, whereas TraMEL-K requires an hour, achieving competitive
accuracy with significantly lower computational cost. Details are in Appendix A.3.

Exemplar Selection. We adopt random sampling (TraMEL-R), centroid-based selection (C-
mean), K-means clustering with 600 clusters (TraMEL-K) on IoT23. TraMEL-R proves effective
when memory is sufficient, while TraMEL-K provides greater robustness under tighter memory bud-
gets by enhancing exemplar diversity. We further analyze the effect of varying the number of clusters
in the Appendix A.2, which shows that larger k values generally improve coverage of long-tailed
distributions, peaking at around Nk = 600, and slightly degrades beyond that point.

Replay Buffer Size. To examine how buffer size influences CL performance, Table 4 reports
results on CICAndMal2017 across seven capacities: K = 200, 500, 1,000, 3,000, 6,000, 33,000,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Mean accuracy under varying buffer sizes on CICAndMal2017.

Method 200 500 1K 3K 6K 33K 60K

TraMEL-R 30.83 34.16 38.37 47.12 52.69 64.20 66.42
TraMEL-K 31.13 35.32 39.20 49.15 54.59 61.88 63.44
iCaRL 22.19 27.30 27.88 32.19 32.66 30.76 32.54
TAMiL 27.43 32.90 30.21 36.17 44.86 44.24 50.03
ER 35.61 37.15 39.28 36.53 44.55 51.42 57.11

(a) Before Refinement (b) After Refinement

Figure 4: Task-level normalized confusion ma-
trix on CIC17 (Task 5). Before refinement, pre-
dictions are biased toward the current task; af-
ter, they are more evenly distributed, indicating
reduced recency bias and forgetting.

(a) α=4.0, β=1.0 (b) α=1.0, β=4.0

Figure 5: Per-task accuracy on CIC17 after re-
finement. Larger α preserves past knowledge,
while larger β better maintains latest-task accu-
racy relative to the joint baseline.

and 60,000. All methods improve with larger buffers, but ER performs best at very small sizes
(K < 1,000). Once the buffer reaches 1,000 exemplars, TraMEL consistently achieves higher
accuracy, exceeding baselines by more than 10 percentage points when the buffer is sufficiently
large to represent each class.

We also observe differences between TraMEL-R (random sampling) and TraMEL-K (K-means se-
lection). Under tight memory budgets (K = 200–6,000), TraMEL-K performs better by enforcing
greater exemplar diversity. As buffer size increases, random sampling becomes adequate to capture
representative samples, and the performance gap between the two strategies narrows.

Exemplar Refinement. A key challenge in refinement is balancing adaptation to new tasks with
retention of prior knowledge. This is especially critical in malware classification, where detecting
newly emerging families must not come at the expense of forgetting earlier ones. Figure 4 illustrates
this effect at the task level: before refinement, predictions are skewed toward Task 5, reflecting
severe recency bias; after refinement, they are more evenly distributed, indicating improved stability.
For detailed class-level confusion matrices, see Appendix A.1.

Figure 5 further shows how the refinement loss weights α and β shape this trade-off. With α =
4, β = 1 (Figure 5a), earlier tasks improve by over 10 percentage points, though Task 5 drops by
15% – still within 5% of the Joint baseline. Conversely, with α = 1, β = 4 (Figure 5b), Task 5 is
better preserved but forgetting of earlier tasks is more severe.

Table 5 shows that mean accuracy changes little (about 3%) across (α, β) settings under a 33,000
buffer and 8 epochs, but forgetting scores vary by up to 12% (highlighted in blue). For example, with
α = 4, β = 1, the forgetting scores for Tasks 2–5 are (11.74, 15.64, 18.60, 22.38), whereas with
α = 1, β = 4 they rise to (19.11, 28.63, 32.98, 37.41). This indicates that larger β favors recent-task
accuracy, while larger α better retains earlier knowledge. Hence, tuning (α, β) is essential not only
for accuracy but also for managing the stability–plasticity trade-off in continual malware detection.
Additionally, the refinement loss weights are explored on IoT23 (Appendix A.9), and a detailed
ablation study of the refinement phase is provided in Appendix A.8.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Mean accuracy and forgetting score across different (α, β) settings and refinement epochs,
evaluated with buffer sizes of 3K (tight budget) and 33K (standard in vision benchmarks).

Buffer epoch Mean Accuracy Forgetting Score
α=1,β=1 α=4,β=1 α=1,β=4 α=1,β=1 α=4,β=1 α=1,β=4

3,000
8 46.67 47.77 45.39 49.05 47.06 52.87

80 50.05 50.75 48.03 37.09 32.51 42.51

33,000
8 59.14 61 58.44 27.53 18.02 30.23

80 60.26 61.35 59.22 21.13 16.72 25.4

7 DISCUSSION

Practicality of Memory Budget Constraints. In practice, traffic detection systems encounter
around 100K flows per sec (around billions/day) and prior NetFlow deployments report around 1.2B
flows/day from a single network. As such storing all historical flows without bound is infeasible,
necessitating fixed retention or sampling DN.org Staff (2025). At the same time, the malicious
base-rate is tiny, deployed IDS face severe class imbalance where benign flows vastly outnumber
rare attack flows (the classic base-rate problem), meaning unconstrained replay would mostly store
redundant benign history Axelsson (2000).

Finally, malware-family labels arrive sparsely and expensively, creating representative labeled traf-
fic requires specialized analyst work and multi-source correlation Guerra et al. (2022), and even
“ground-truth” family datasets like MOTIF Joyce et al. (2023) needed years of threat-report cura-
tion by experts, underscoring why we cannot assume large labeled replay corpora. As such, a strict
bounded memory buffer is not an artificial ML convenience but a practical abstraction of telemetry
scale and labeling scarcity in continual network intrusion detection systems (NIDS) deployments.

Limitations and Future Work. TraMEL is designed for supervised class-incremental learning
and does not leverage unlabeled samples. While semi-supervised learning is beyond the scope of
this work, a simple preliminary experiment with four unlabeled classes shows that the model is less
confident on unseen families than on seen ones (0.54 vs. 0.62). However, this margin is not large
enough to reliably distinguish the two, suggesting that additional exploration is needed.

In this work, we adopt class-wise K-means exemplar selection to preserve intra-class heterogeneity,
which is particularly important under long-tailed distributions where minority classes can degrade
rapidly across tasks. While this strategy maintains per-class representativeness, coreset-based selec-
tion, aimed at approximating the global data distribution, has been shown to improve performance
in class-imbalanced settings Mirzasoleiman et al. (2020); Hao et al. (2023). A hybrid of these ap-
proaches may therefore complement TraMEL’s class-wise heterogeneity.

Another limitation is that the refinement phase introduces a trade-off that can reduce accuracy on
the current task. In addition, the fixed-size replay buffer constrains scalability; as the number of
classes increases, relying solely on this buffer may become less effective. Because exemplars are
retained after initial selection without reselection, the buffer can drift from the evolving model,
leading to a growing mismatch between stored examples and current representations. This issue
could be mitigated by periodically refreshing or replacing exemplars to better align with the updated
model. Extending TraMEL with an adaptive buffer mechanism is a promising future direction for
improving longitudinal scalability.

8 CONCLUSION

We propose TraMEL, a replay-based CL framework for malware traffic analysis. TraMEL mitigates
catastrophic forgetting under class imbalance and temporal shifts, yielding close to joint-training
performance while operating under strict memory constraints. Nonetheless, trade-offs remain—
refinement may reduce current-task accuracy, and fixed buffers limit scalability. Future work should
explore scalable backbones and exemplar-free methods to better handle imbalanced distributions
and consider more practical dynamic evolving samples.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide an anonymous GitHub repository containing the main source code used in our exper-
iments. All datasets employed in this work (CICAndMal2017 and IoT-23) are publicly available,
and we additionally release the preprocessing scripts to ensure consistent data preparation. The
code includes a default seed, and we provide a hyperparameter as a default in the code to facili-
tate the reproduction of results with similar performance. In particular, seed 83, 93, 103, 113, and
123 are primarily used during the training. While we do not provide strict hardware specifications,
the implementation runs without specialized dependencies and has been tested under standard GPU
environments. Overall, we aim to facilitate reproducibility by releasing both the code and prepro-
cessing pipelines, enabling independent researchers to obtain comparable results.

ETHICS STATEMENT

This study aims to classify malware families in order to strengthen defenses against malicious at-
tacks, with no intent of misuse. No human subjects are involved, and all datasets used (CICAnd-
Mal2017, IoT-23) are publicly available.

REFERENCES

Suresh Kumar Amalapuram, Bheemarjuna Reddy Tamma, and Sumohana S Channappayya. SPI-
DER: A semi-supervised continual learning-based network intrusion detection system. In IEEE
INFOCOM 2024-IEEE Conference on Computer Communications, pp. 571–580. IEEE, 2024.

Blake Anderson and David McGrew. Identifying encrypted malware traffic with contextual flow
data. In Proceedings of the 2016 ACM workshop on artificial intelligence and security, pp. 35–
46, 2016.

Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detection. ACM Transactions
on Information and System Security (TISSEC), 2000.

Prashant Bhat, Bahram Zonooz, and Elahe Arani. Task-aware information routing from common
representation space in lifelong learning. arXiv preprint arXiv:2302.11346, 2023a.

Prashant Bhat, Bahram Zonooz, and Elahe Arani. Task-aware information routing from com-
mon representation space in lifelong learning. In International Conference on Learning
Representations (ICLR), 2023b.

Sumohana Channappayya, Bheemarjuna Reddy Tamma, et al. Augmented memory replay-based
continual learning approaches for network intrusion detection. Advances in Neural Information
Processing Systems, 36:17156–17169, 2023.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with A-GEM. In ICML, 2019.

Yizheng Chen, Zhoujie Ding, and David Wagner. Continuous learning for android malware detec-
tion. In 32nd USENIX Security Symposium (USENIX Security 23), pp. 1127–1144, 2023.

Xiyue Deng and Jelena Mirkovic. Polymorphic malware behavior through network trace analysis. In
2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS),
pp. 138–146. IEEE, 2022.

DN.org Staff. Correlating dns and netflow in a unified big data platform for comprehensive network
visibility. https://dn.org/correlating-dns-and-netflow-in-a-unified
-big-data-platform-for-comprehensive-network-visibility, April 2025.
Accessed: 2025-12-01.

Sebastian Garcia, Agustin Parmisano, and Maria Jose Erquiaga. Iot-23: A labeled dataset with
malicious and benign iot network traffic. (No Title), 2020.

Jorge Luis Guerra, Carlos Catania, and Eduardo Veas. Datasets are not enough: Challenges in
labeling network traffic. Computers & Security, 2022.

11

https://dn.org/correlating-dns-and-netflow-in-a-unified-big-data-platform-for-comprehensive-network-visibility
https://dn.org/correlating-dns-and-netflow-in-a-unified-big-data-platform-for-comprehensive-network-visibility

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jie Hao, Kaiyi Ji, and Mingrui Liu. Bilevel coreset selection in continual learning: A new formula-
tion and algorithm. Advances in Neural Information Processing Systems (NeurIPS, 2023.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Robert J Joyce, Dev Amlani, Charles Nicholas, and Edward Raff. MOTIF: A malware reference
dataset with ground truth family labels. Computers & Security, 2023.

Alexander Küchler, Alessandro Mantovani, Yufei Han, Leyla Bilge, and Davide Balzarotti. Does
every second count? time-based evolution of malware behavior in sandboxes. In NDSS 2021,
Network and Distributed Systems Security Symposium. Internet Society, 2021.

Arash Habibi Lashkari, Andi Fitriah A Kadir, Laya Taheri, and Ali A Ghorbani. Toward developing
a systematic approach to generate benchmark android malware datasets and classification. In
2018 International Carnahan conference on security technology (ICCST), pp. 1–7. ieee, 2018.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 40(12):2935–2947, 2017.

Yilin Lyu, Liyuan Wang, Xingxing Zhang, Zicheng Sun, Hang Su, Jun Zhu, and Liping Jing. et al.
2023). Advances in Neural Information Processing Systems, 36:25475–25494, 2023.

Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristofaro, Gordon Ross,
and Gianluca Stringhini. MAMADROID: Detecting android malware by building markov chains
of behavioral models. In Network and Distributed System Security Symposium (NDSS), 2017.

Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: An ensemble of
autoencoders for online network intrusion detection. 2018.

Baharan Mirzasoleiman, Kaidi Cao, and Jure Leskovec. Coresets for robust training of deep neural
networks against noisy labels. Advances in Neural Information Processing Systems (NeurIPS),
2020.

Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis for malware de-
tection. In Twenty-third annual computer security applications conference (ACSAC 2007), pp.
421–430. IEEE, 2007.

Jimin Park, AHyun Ji, Minji Park, Mohammad Saidur Rahman, and Se Eun Oh. Malcl: Leveraging
gan-based generative replay to combat catastrophic forgetting in malware classification. arXiv
preprint arXiv:2501.01110, 2025.

Antonio Paya, Sergio Arroni, Vicente Garcı́a-Dı́az, and Alberto Gómez. Apollon: a robust defense
system against adversarial machine learning attacks in intrusion detection systems. Computers &
Security, 136:103546, 2024.

Mohammad Saidur Rahman, Scott E. Coull, and Matthew Wright. On the limitations of continual
learning for malware classification. In First Conference on Lifelong Learning Agents (CoLLAs),
2022.

Mohammad Saidur Rahman, Scott Coull, Qi Yu, and Matthew Wright. Madar: Efficient continual
learning for malware analysis with distribution-aware replay. 2025. URL https://arxiv.
org/abs/2502.05760.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL:
Incremental classifier and representation learning. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2017a.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017b.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in neural information processing systems, 32, 2019.

12

https://arxiv.org/abs/2502.05760
https://arxiv.org/abs/2502.05760

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in Neural Information Processing Systems (NeurIPS), 2017.

Robin Sommer and Vern Paxson. Outside the closed world: On using machine learning for network
intrusion detection. In 2010 IEEE symposium on security and privacy, pp. 305–316. IEEE, 2010.

Tiezhu Sun, Nadia Daoudi, Weiguo Pian, Kisub Kim, Kevin Allix, Tegawende F Bissyande, and
Jacques Klein. Temporal-incremental learning for android malware detection. ACM Transactions
on Software Engineering and Methodology, 34(4):1–30, 2025.

Gido M van de Ven, Hava T Siegelmann, and Andreas S Tolias. Brain-inspired replay for continual
learning with artificial neural networks. Nature Communications, 2020.

Xiaohu Xu, Xixi Zhang, Qianyun Zhang, Yu Wang, Bamidele Adebisi, Tomoaki Ohtsuki, Hikmet
Sari, and Guan Gui. Advancing malware detection in network traffic with self-paced class incre-
mental learning. IEEE Internet of Things Journal, 11(12):21816–21826, 2024.

Xixi Zhang, Yu Wang, Tomoaki Ohtsuki, Guan Gui, Chau Yuen, Marco Di Renzo, and Hikmet Sari.
Malware traffic classification via expandable class incremental learning with architecture search.
IEEE Transactions on Information Forensics and Security, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 CONFUSION MATRIX

Using the CICAndMal2017 dataset, we trained over five tasks and analyzed class-wise normalized
confusion matrices before and after refinement in the last task. As shown in Figure 6a, before
refinement, many samples were misclassified into the latest task. After refinement 6b, the accuracy
of all classes except the latest task improved, and overly predicting to the latest task is reduced.

(a) Before Refinement (b) After Refinement

Figure 6: Class-level normalized confusion matrix of before and after refinement on CIC17. Classes
in recent task accuracy are over 0.8, while classes in earlier tasks have also been predicted as a last
task.

Table 6: Task-wise accuracy and mean accuracy across tasks on the IoT23 dataset with different
exemplar selection strategies.

Method Task1 Task2 Task3 Task4 Task5 Mean

Random 98.38 90.54 79.94 69.91 73.39 82.43
C-Mean 98.38 88.46 79.74 65.19 72.18 80.79
KM(Nk=5) 98.38 83.00 72.60 66.60 71.33 78.38
KM(Nk=100) 98.38 90.01 80.06 66.95 72.04 81.49
KM(Nk=300) 98.38 88.98 79.71 70.20 73.03 82.06
KM(Nk=600) 98.38 90.78 80.40 69.28 75.08 82.78
KM(Nk=800) 98.38 90.68 79.73 67.88 72.35 81.60
KM(Nk=1,000) 98.38 90.58 79.29 69.39 74.58 82.44

A.2 CLUSTER SIZE IN EXEMPLAR SELECTION

We evaluate exemplar selection strategies, random sampling (Random), class-mean selection as
used in iCaRL (Rebuffi et al., 2017b) (C-Mean), and K-means clustering-based selection (KM).
Experiments are conducted on the IoT23 dataset with a fixed buffer size of K = 10, 000, and the
number of clusters Nk is varied from 5 to 1,000.

As shown in Table 6, TraMEL performance improves as Nk increases, peaking at around Nk = 600,
and slightly degrades beyond that point. This trend suggests that increasing the number of clusters
enhances class representation by promoting diversity in the selected exemplars. However, when
Nk becomes too large, the number of samples per cluster becomes too small to capture intra-class
variability, reducing the representativeness of the selected exemplars. However, the optimal Nk

differs across datasets. IoT23 has a very small intra-class variance (about 0.08), while CIC17 is
much more spread out (around 0.4), which makes the choice of Nk easier to interpret. CIC17,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

which has a larger variance, tends to perform better with a larger number of clusters (Nk = 800),
whereas IoT23 reaches its best performance with a smaller value, roughly Nk = 600.

Overall, with K = 10, 000, K-means based selection yields more representative exemplars per class
than random sampling or class-mean selection, leading to better overall performance.

A.3 COMPUTATIONAL RESOURCE

Figure 7: Computational cost of training TraMEL.
Measured by training time temporal setting (Task
7) of CIC17 with seven different buffer sizes.

Figure 7 compares the computational cost
across different buffer sizes, as well as the
None and Joint baselines. We measure cost
by training time on an NVIDIA RTX6000 Ada
Generation GPU, with CPU parallelism lim-
ited to a single thread. The evaluation fol-
lows the same setting as Table 2. As more
tasks are learned, the gap between joint training
and TraMEL widens. Increasing the buffer size
does not substantially raise overall cost. This
is because TraMEL uses early stopping, which
avoids unnecessary initial training, and even a
large buffer remains much smaller than retrain-
ing on the full dataset at every task. For ex-
emplar selection, we use the best-performing
method for each buffer size, as reported in
Table 4: K-means clustering-based selection
(KM) for buffer sizes K ≤ 6, 000, and random
selection for buffer sizes K > 6, 000.

(a) BeanBot. (b) Nandrobox.

Figure 8: Task-level accuracy when trained family recurrence in later tasks on CIC17 (Task 7).
BeanBot is initially trained in Task 1 and reappears in Task 4, while Nandrobox appeares in Tasks 2
and 6.

Table 7: Performance of classifier architecture on CIC17 in the recurrence setting.

Model Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Mean

Joint 78.41 ± 1.2 70.97 ± 0.4 66.16 ± 1.0 67.67 ± 1.0 69.28 ± 0.6 72.35 ± 0.3 72.95 ± 0.4 71.11 ± 0.3
None 79.15 ± 2.1 42.39 ± 0.3 39.61 ± 0.1 16.58 ± 0.2 33.42 ± 0.2 23.71 ± 0.2 13.55 ± 0.1 35.49 ± 0.4

ViT-R 78.42 ± 1.2 60.61 ± 2.1 55.61 ± 0.7 54.53 ± 0.4 53.59 ± 1.0 53.31 ± 0.6 50.15 ± 0.3 58.03 ± 0.4
CNN-K 80.87 ± 6.9 65.15 ± 5.6 52.96 ± 13.1 51.86 ± 1.2 46.92 ± 10.8 49.31 ± 1.0 44.49 ± 0.7 55.94 ± 3.4
CNN-R 80.87 ± 6.9 63.79 ± 10.5 53.58 ± 14.3 47.50 ± 16.4 44.47 ± 21.2 45.64 ± 13.4 41.15 ± 9.9 53.86 ± 10.0
MLP 83.69 ± 0.6 69.34 ± 0.5 59.03 ± 0.9 51.57 ± 0.5 50.76 ± 1.7 45.10 ± 1.4 28.12 ± 3.8 55.37 ± 0.7

A.4 RECURRENCE OF MALWARE FAMILIES

Because CIC17 orders families temporally, it enables a natural simulation of family reappearance as
new variants. To model this, we choose two families: BeanBot and Nandrobox, that first appear in

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Tasks 1 and 2, respectively. Each family is split into 90% and 10%; the smaller split is treated as a
new variant and inserted into Tasks 4 and 6. We use the 7-task setting and evaluate three classifier
architectures: MLP, CNN, and ViT. All three models are trained with the same hyperparameter
settings; the only difference is the distillation loss. MLP and CNN use KL divergence, whereas ViT
uses MSE. For CNN, we additionally compare two exemplar-selection methods: K-means (CNN-K)
and random selection (CNN-R).

For BeanBot (Task 1/4; Fig. 8a), ViT reaches peak accuracy around the second task and then gradu-
ally declines, while remaining consistently higher than MLP and CNN in later tasks. This is partly
because Task 1 contains only four classes, allowing most BeanBot samples to remain in the buffer
before truncation. Even after truncation begins, ViT preserves performance longer than the other
models. A similar pattern holds for Nandrobox (Task 2/6; Fig. 8b). When BeanBot and Nandrobox
reappear, both MLP and CNN recover using only 10% of samples, but this gain disappears in the
following task. This behavior reflects the relative brittleness of MLP and Conv1D on the traffic
dataset, whereas ViT remains more stable.

The two exemplar-selection strategies also highlight CNN’s dependence on exemplar quality. In
Table 7, CNN-K consistently outperforms CNN-R across most tasks. We observe that CNN accu-
racy fluctuates across tasks, and the refinement phase helps recover performance; however, random
selection makes recovery more difficult than K-means. Overall, these results indicate that CNN is
more sensitive to exemplar quality than ViT.

A.5 F1 SCORE OF LONG-TAILED DATASET

Figure 9: Macro F1 score of Head, Medium and Tail. Classes
are split into 3 groups with respect to the number of samples. F1
scores are measured separately for each group.

In Figure 9, Head, Medium, and Tail
groups are defined as the top 20%,
middle 30%, and bottom 50% of
CIC17 classes, respectively. While
the Head and Medium groups decline
relatively gradually across tasks, the
Tail group drops much more sharply,
showing that rare families are the
hardest to retain.

A.6 BACKBONE ABLATION
STUDY

Backbones are evaluated under identical settings to isolate architectural effects: 5-task CIC17 split,
tight buffer size 6,000, no refinement phase, and random exemplar selection in Table 8. Under these
conditions, ViT shows the highest stability, achieving better accuracy and F1 scores with the lowest
forgetting score. This suggests that global attention fits the malware traffic feature space better than
the locality-based Conv1D or the shallow MLP. CNN performs well in the first task but suffers from
large variance and a sharp drop in later tasks, while MLP consistently underperforms with a large
gap between accuracy and F1. Overall, these results motivate the choice of ViT as the backbone for
our framework.

Table 8: Performance of backbone on CIC17 in 5-Task.

Model Task 1 Task 2 Task 3 Task 4 Task 5 Mean Forgetting F1 score

MLP 71.36 ± 2.4 36.53 ± 2.1 28.66 ± 3.8 24.32 ± 2.2 19.17 ± 2.0 36.01 ± 1.6 64.10 31.31
CNN 78.36 ± 1.9 34.89 ± 7.2 25.57 ± 6.3 13.35 ± 2.6 11.24 ± 3.9 32.68 ± 2.7 68.67 28.94
ViT 74.64 ± 2.9 41.60 ± 2.0 35.72 ± 1.8 31.74 ± 1.6 29.85 ± 1.1 42.71 ± 1.5 56.04 42.71

A.7 EXEMPLAR SELECTION ABLATION STUDY

In Table 9, Random, C-mean, K-means(Nk = 600, Nk = 800) exemplar selection methods are
presented under identical settings using a ViT encoder without the refinement phase. With ViT
embeddings, C-mean fails to capture sufficiently dispersed samples in the feature space, resulting in

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Mean accuracy, F1 score. forgetting score of different exemplar selection on CIC17.

Method Task 1 Task 2 Task 3 Task 4 Task 5 Mean Forgetting F1 score

Random 74.64 ± 2.9 41.60 ± 2.0 35.72 ± 1.8 31.74 ± 1.6 29.85 ± 1.1 42.71 ± 1.9 56.04 42.71
C-Mean 74.64 ± 2.9 40.48 ± 2.7 34.31 ± 0.6 31.06 ± 1.2 28.35 ± 0.4 41.77 ± 1.4 57.03 41.64
K-Means(Nk=600) 74.64 ± 2.9 42.61 ± 2.1 37.85 ± 2.1 33.79 ± 1.2 31.60 ± 1.5 44.10 ± 1.4 53.55 44.49
K-Means(Nk=800) 74.64 ± 2.9 43.43 ± 2.7 37.96 ± 2.0 35.21 ± 1.4 32.44 ± 1.3 44.74 ± 1.5 52.71 45.24

low diversity. In contrast, Random selection, by sampling uniformly at random, captures a diverse
set of samples and performs better than C-mean. K-means with both cluster sizes (Nk = 600, 800)
outperforms these methods by selecting well-spread samples. In detail, K-means with Nk = 800
achieves even better performance than Nk = 600 in this regard.

Table 10: Comparison of three refinement phase loss settings: no refinement, (i) CE-only refinement
(α = 0, β = 0), (ii) CE with distillation refinement (α = 4, β = 1), and (iii) Distillation-only
refinement.

Method Task 1 Task 2 Task 3 Task 4 Task 5 Mean Forgetting F1 score

No-Refinement 74.64 ± 2.9 43.43 ± 2.7 37.96 ± 2.0 35.21 ± 1.4 32.44 ± 1.3 44.74 ± 1.5 52.71 45.24
(i) CE-only 74.64 ± 2.9 55.03 ± 2.6 49.02 ± 2.0 45.45 ± 0.8 41.44 ± 0.6 53.12 ± 1.5 31.95 51.24
(ii) CE with Distillation 74.64 ± 2.9 59.31 ± 1.7 51.45 ± 1.6 46.58 ± 1.0 42.45 ± 0.7 54.89 ± 1.5 25.97 52.70
(iii) Distillation-only 74.64 ± 2.9 59.37 ± 1.9 51.56 ± 1.6 46.68 ± 0.9 42.23 ± 0.8 54.90 ± 1.5 25.78 52.61

A.8 REFINEMENT PHASE ABLATION STUDY

In Table 10, this study evaluates three refinement methods compared to a no-refinement baseline.
Under the same experimental setting (ViT backbone, buffer size of 6, 000, K-means with Nk = 800),
we compare: (i) CE-only Refinement(α = 0, β = 0), (ii) CE with Distillation Refinement(α = 4,
β = 1), (iii) Distillation-only Refinement(CE weight=0, α = 4, β = 1).

All three methods outperform the no-refinement baseline. Method (ii) achieves higher accuracy
than (i), showing the benefit of combining CE and distillation. Method (iii) yields slightly higher
accuracy than (ii) because it weighs more on past knowledge, resulting in a lower forgetting score.
However, since α and β can be tuned empirically, to maintain the balanced performance across
tasks, removing CE is suboptimal. In particular, method (iii) exhibits a lower macro-F1 than (ii),
indicating that CE is important for maintaining balanced performance across tasks.

A.9 REFINEMENT LOSS ON IOT23

Table 11: Mean accuracy, forgetting score and F1 score across different (α, β) on IoT23 under 10K
buffer with k-means selection.

α=0,β=0 α=1,β=1 α=4,β=1 α=1,β=4 α=4,β=4

Accuracy 76.20 76.30 76.76 75.88 76.32
F1 Score 70.62 69.09 69.34 68.82 68.97
Forgetting Score 17.82 13.94 13.76 14.58 13.66

Table 11 reports the effect of the refinement loss weights α and β on IoT23. This experiment uses
20 refinement epochs with a 10K replay buffer. When α (weighing past) is larger than β, the model
achieves the highest overall accuracy along with the lowest forgetting score. We also evaluate the
case without any distillation loss (α = 0, β = 0). Interestingly, on IoT23, removing distillation
still yields competitive accuracy, while forgetting score is the lowest among all. This suggests that
the distillation loss plays an important role in mitigating task-recency bias by stabilizing previously
learned representations.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 12: 7-Task temporal split of CIC17.

Task Families

M1 BeanBot, Plankton, SMSsniffer, Zsone
M2 Penetho, Biige, FakeMart, FakeNotify, Jifake, Nandrobox
M3 AndroidDefender, AVpass, FakeAV, FakeJobOffer, FakeTaoBao, FakeInst
M4 Selfmite, Pletor, Svpeng, VirusShield
M5 Kemoge, Mobidash, Shuanet, Youmi, Koler, LockerPin, Simplocker, AV for

Android, FakeApp, FakeApp.AL
M6 Dowgin, Feiwo, Gooligan, PornDroid, AndroidSpy.277, Mazarbot
M7 Ewind, Koodous, Charger, Jisut, RansomBO, WannaLocker

A.10 CIC17: 7-TASK TEMPORAL SPLIT

Table 12 presents the temporal split of families in CIC17, which follows the year-based grouping
used in Lashkari et al. (2018). Each task contains the malware families that emerged in a specific
year between 2011 and 2017.

18

	Introduction
	Threat Model
	Related Work
	Overview of TraMEL
	Exemplar Selection Strategies
	Replay Buffer
	Exemplar Refinement
	Classifier Architecture

	Experimental Details
	Dataset
	Task Configuration and Training Protocol
	Evaluation Metrics.
	Hyperparameter Tuning

	Results
	Discussion
	Conclusion
	Appendix
	Confusion Matrix
	Cluster size in Exemplar Selection
	Computational Resource
	Recurrence of Malware Families
	F1 Score of Long-tailed Dataset
	Backbone Ablation Study
	Exemplar Selection Ablation Study
	Refinement phase Ablation Study
	Refinement loss on Iot23
	CIC17: 7-task Temporal Split

