

000 TRAMEL: AN EXEMPLAR REPLAY-BASED CONTIN- 001 002 UAL LEARNING FRAMEWORK FOR MALWARE TRAFFIC 003 ANALYSIS 004

005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Most prior work on continual malware detection has focused on static code anal-
014 ysis. In contrast, this paper explores continual learning (CL) for malware traf-
015 fic analysis (MTA), which leverages encrypted flow features to capture behav-
016 ioral signals that remain observable despite obfuscation and encryption. Unlike
017 conventional intrusion detection systems that perform coarse anomaly detection,
018 MTA requires fine-grained family-level classification under evolving, imbalanced,
019 and non-stationary distributions, making it a distinct and challenging setting for
020 CL.

021 We introduce TraMEL (Traffic-based Malware Exemplar Learning), a replay-
022 based CL framework designed for MTA. TraMEL integrates (i) adaptive exem-
023 plar selection to address long-tailed family distributions and (ii) an exemplar re-
024 finement phase to mitigate task recency bias under strict memory budgets. We
025 evaluate TraMEL under both standard class-incremental and temporally shifted
026 scenarios. Across CICAndMal2017 and IoT23, TraMEL outperforms strong CL
027 baselines including iCaRL, ER, and TAMiL by 10–30 percentage points, and ap-
028 proaches the performance of joint training, a theoretical upper bound with full
029 access to past data. These results demonstrate that CL on malware traffic is both
030 feasible and practical, providing a memory-efficient approach toward real-world
031 malware detection. Code is available at <https://anonymous.4open.science/r/ICLR2026-code-D575/>.

1 INTRODUCTION

032
033
034 Modern malware increasingly evades traditional defenses by encrypting network traffic (e.g., TLS
035 1.3) and applying code obfuscation, rendering both deep packet inspection and static analysis un-
036 reliable (Moser et al., 2007; Deng & Mirkovic, 2022; Anderson & McGrew, 2016). This shift
037 motivates malware traffic analysis (MTA), which detects malicious activity directly from encrypted
038 network traffic rather than executable code. Unlike conventional intrusion detection systems (IDS)
039 that operate on coarse logs or binary anomaly flags under closed-world assumptions (Sommer &
040 Paxson, 2010; Paya et al., 2024), MTA requires fine-grained family-level classification in an open
041 world where malware families continually evolve and reappear (Mariconti et al., 2017). These re-
042 quire models that can adapt without retraining from scratch (Rahman et al., 2022). The challenge
043 is particularly acute in mobile and embedded ecosystems, where encrypted traffic dominates and
044 malware behavior changes rapidly. To capture this, we study two representative domains: Android
045 malware, using the CICAndMal2017 (CIC17) dataset with 42 families (Lashkari et al., 2018), and
046 IoT malware, using the IoT-23 dataset featuring botnets such as Mirai (Garcia et al., 2020).
047

048 Although machine learning (ML) models have achieved strong performance on static MTA bench-
049 marks (Mirsky et al., 2018; Anderson & McGrew, 2016), we argue that this success reflects an
050 unrealistic *closed-world assumption* (Sommer & Paxson, 2010). In real deployments, drift is driven
051 not only by benign software evolution but also by adversary-driven evolution of malware behav-
052 ior, where attackers continually release variants of known families or new malware to evade detec-
053 tion (Küchler et al., 2021) (see Section 2 for details). Such dynamics steadily erode classifier per-
formance. The standard resolution, fine-tuning on new data, leads to *catastrophic forgetting (CF)*,

Figure 1: Class imbalance in IoT23 (1a) and skewed feature distribution in CIC2017 (1b).

where the model loses the ability to detect previously learned malware families while adjusting to new threats.

A fundamental challenge is that existing malware traffic dataset do not capture long-term family recurrence, making it difficult to directly evaluate forgetting under realistic re-emergent patterns. To tackle this problem, we design two benchmarks. The first is a standard class-incremental (Class-IL) split with disjoint families, representing a strict lower bound. The second is a temporal Class-IL split grouping families by time of first appearance time to reflect natural traffic shifts. Although both lack recurrence, the temporal split is deliberately conservative, harder than real deployments where recurrence would allow transfer, and thus provides a principled benchmark for continual learning (CL) in MTA.

We therefore formalize MTA as a Class-IL continual learning problem with three objectives: (i) preserve performance on previously seen families, (ii) adapt to new families, and (iii) operate under tight memory and compute budgets. Replay-based CL is particularly well-suited here because it retains prior knowledge through compact exemplar buffers (Rahman et al., 2025). However, existing CL methods such as ER (Rolnick et al., 2019), iCaRL (Rebuffi et al., 2017a), and TAMiL (Bhat et al., 2023b) have been validated primarily in the vision domain, while CL studies in IDS settings (Channappayya et al., 2023; Amalapuram et al., 2024) focus on coarse binary anomaly detection under closed-world assumptions. Prior malware-specific CL work (Sun et al., 2025; Park et al., 2025; Rahman et al., 2025) addresses code-level drift rather than encrypted traffic. Building on these observations, we target encrypted MTA, where drift arises from both new families and re-emerging ones of older families, and mitigate catastrophic forgetting across class-incremental and temporal-drift scenarios through exemplar replay and refinement.

Our approach. We introduce **TraMEL** (Traffic-based Malware Exemplar Learning), an exemplar-replay CL framework tailored for MTA. TraMEL addresses three core challenges. ① *Long-tailed and sparse traffic features.* Real-world malware traffic exhibits long-tailed family distributions and sparse feature vectors (Figure 1). TraMEL selects exemplars that balance class coverage while preserving intra-class diversity. ② *Task recency bias.* Incremental training causes earlier families to be forgotten as new families are introduced. TraMEL incorporates an exemplar refinement phase that fine-tunes exclusively on buffered exemplars to reinforce prior knowledge. ③ *Tight memory budget.* Practical malware detectors must operate with small buffers. TraMEL therefore emphasizes compact but representative exemplar selection to maintain long-term accuracy.

To this end, TraMEL combines a heuristic exemplar selection strategy—balancing class coverage with diversity-aware clustering—with an exemplar refinement phase that replays buffered samples to mitigate forgetting while maintaining adaptability.

Results. On CICAndMal2017 and IoT23, TraMEL consistently outperforms strong CL baselines such as iCaRL, ER, and TAMiL. Even with a buffer of only 3,000 samples (0.2% of data), it achieves about 15 percentage points higher accuracy and approaches the performance of a *joint baseline* when trained on the full dataset with access to all families at once. Clustering-based selection is especially effective under tight memory, while simpler strategies suffice when more memory is available.

2 THREAT MODEL

Retrograde Malware Attack (RMA) targets ML-based malware detectors that are incrementally updated with only *new* traffic or file samples Park et al. (2025); Rahman et al. (2025). In practice, security pipelines often retrain classifiers on fresh threat intelligence feeds (e.g., new flows, domains,

108 binaries) without retaining historical corpora due to storage and scalability limits. This induces
 109 *catastrophic forgetting* of earlier malware signatures and behavioral traces, enabling adversaries to
 110 weaponize legacy or lightly modified variants that evade detection. From the perspective of network
 111 traffic analysis, RMA (Rahman et al., 2025) (Park et al., 2025) unfolds in three phases (Figure 3):

- 112 • **Initial Training (1):** The detector is trained
 113 on malicious and benign traffic (e.g., packet se-
 114 quences, flow metadata, TLS fingerprints).
- 115 • **Updates and Forgetting (2):** The model is
 116 periodically retrained on recent captures (e.g.,
 117 from honeypots or sandboxes). Because older
 118 families and domains are excluded, recall on
 119 previously seen traffic patterns declines while
 120 benign software may be misclassified, raising
 121 false positives.
- 122 • **RMA in Deployment (3):** Adversaries exploit this forgetting by reintroducing legacy families
 123 or slightly altered variants.

126 3 RELATED WORK

127 **Replay in CL.** Addressing CF is the core challenge in CL, and one widely used solution is replay.
 128 Replay methods improve learning by mixing current data with representative information from ear-
 129 lier tasks. They are typically grouped into two categories – exact replay (storing real samples) and
 130 generative replay (generating synthetic data). Exact replay stores a fixed number of past samples,
 131 controlled by a memory budget \mathcal{M} . Methods like ER (Rolnick et al., 2019), A-GEM, and iCaRL
 132 aim to maintain performance while using as few replay samples as possible (Rolnick et al., 2019;
 133 Chaudhry et al., 2019; Rebuffi et al., 2017a). TAMiL (Bhat et al., 2023a) builds on ER by using
 134 attention to retain prior data distributions at the representation level, improving knowledge retention
 135 beyond simple replay. Generative or pseudo-replay strategies are designed to replicate the original
 136 data (Li & Hoiem, 2017; Shin et al., 2017; van de Ven et al., 2020). These techniques either generate
 137 a representative of the original data using a separate generative model or generate pseudo-data by
 138 using an earlier model’s predictions as soft labels for training subsequent models.

139 **CL in Malware and Related Domains.** Study of CL in malware domains is relatively limited.
 140 Rahman et al.(Rahman et al., 2022) showed that replay-based methods are more effective due to the
 141 structured and diverse nature of tabular malware features. MalCL(Park et al., 2025) extends this with
 142 a GAN-based generative replay and feature-guided sampling, while MADAR (Rahman et al., 2025)
 143 introduces distribution-aware replay to select representative and discriminative samples. Beyond
 144 malware classification, other efforts address adjacent problems. Chen et al.(Chen et al., 2023) study
 145 concept drift in Android malware using contrastive and active learning, but do not tackle CF.

146 **SPIDER** (Amalapuram et al., 2024) extends CL to intrusion detection using a semi-supervised ap-
 147 proach that matches supervised baselines while storing only unlabeled traffic. Still, it operates under
 148 a closed-world binary setting and requires up to 20% labeled data—limiting its practicality for mal-
 149 ware. Its companion, Augmented-Memory Replay (Channappayya et al., 2023), uses only intrusion
 150 benchmarks, with limited relevance to real malware traffic and no support for privacy-preserving
 151 replay. Other work frames CL in the context of network traffic but still falls short. SPCIL (Xu et al.,
 152 2024) introduces a lightweight dual-branch model for malware detection but handles only small
 153 class increments, with growing memory and stability concerns. Zhang et al. (Zhang et al., 2025)
 154 propose an expandable CL system with per-task frozen extractors and neural architecture search.
 155 While effective on IoT and VPN datasets, these settings lack family-level malware structure and do
 156 not scale to long-horizon, evolving malware detection.

157 Current CL systems for network security either frame intrusion detection as a binary anomaly task
 158 or evaluate on IoT/VPN traffic, which lacks the family-level diversity characteristic of real malware.
 159 Notably, existing work does not address CL for discovering and adapting to new malware fami-
 160 lies. These limitations motivate our focus on TraMEL, which directly targets CF in the context of
 161 evolving malware families and realistic traffic streams.

162 Figure 3: Retrograde Malware Attack (RMA).

162 **Algorithm 1:** TraMEL: 3 Phase Training

163 Initialize model f , buffer $E = \emptyset$
164 **for** $t = 0$ **to** $T - 1$ **do**
165 **Phase 1: Initial Training**
166 Train f on $D_t \cup E$; save f' .
167 **Phase 2: Exemplar Selection**
168 Calculate per-class budget $m = K/C_{\text{seen}}$; truncate old exemplars to m per class;
169 select m exemplars for each new class and update E .
170 **Phase 3: Refinement**
171 **if** $t > 0$ **then**
172 Using only E , refine f with:
173 CE + distill(f , old f on old exemplars) + distill(f , f' on new exemplars).
174 **return** f, E

176

4 OVERVIEW OF TRAMEL

177

179 We present TraMEL, a continual learning framework for malware traffic classification in a class-
180 incremental (Class-IL) setting. We assume that new malware families (i.e., classes) arrive incre-
181 mentally over tasks t_0, \dots, t_{n-1} , each associated with a training set D_0, \dots, D_{n-1} . At task t_i ,
182 the objective is to train a classifier C_i on the current dataset D_i while retaining knowledge from
183 previous datasets D_0, \dots, D_{i-1} . In our experiments, we consider both *synthetic Class-IL splits* and
184 more *realistic temporal shifts* assuming closed-world (i.e., no unseen families appear in inference). In
185 the Class-IL setup, tasks are defined by evenly partitioning malware families across n tasks, which
186 stresses the ability to recognize new families while preserving old ones. In the temporal setup,
187 tasks are organized by the year in which malware families first appear, mimicking how new variants
188 emerge in practice. This allows us to evaluate TraMEL under conditions where distributions evolve
189 naturally over time, reflecting adversary-driven drift.

190 TraMEL addresses these scenarios through a three-phase process. First, the model is trained jointly
191 on the current task data D_i and the replay buffer $E_{<i}$ containing exemplars from earlier tasks,
192 reducing early forgetting. Second, a set of informative exemplars is selected from D_i under a fixed
193 memory budget. The selection strategy explicitly promotes class balance and intra-class diversity,
194 ensuring that even minority families are preserved in the buffer. Finally, to mitigate task recency bias,
195 the model is refined exclusively on the buffer E_i , consolidating older knowledge without requiring
full historical data.

196 By combining joint training, imbalance-aware exemplar selection, and targeted refinement, TraMEL
197 achieves a balance between plasticity and stability across both synthetic and temporally defined
198 tasks. This enables robust long-term malware detection in evolving threats. The following subsec-
199 tions detail the exemplar selection strategy, buffer management, and refinement procedure.

201

4.1 EXEMPLAR SELECTION STRATEGIES

202

203 Let $\mathcal{D}^c = \{(x_j, y_j)\}_{j=1}^{N_c}$ denote the training samples of class c , and let $f(x)$ be the feature represen-
204 tation of input x extracted by the backbone network. The goal is to select m exemplars $\mathcal{E}^c \subset \mathcal{D}^c$ for
205 each class to be stored in the replay buffer. We investigate three strategies.

206 The first is random sampling, which simply draws m samples uniformly from \mathcal{D}^c . This baseline
207 provides unbiased coverage of the class distribution but does not exploit structure in the feature
208 space.

209 The second is *class-mean selection*, following iCaRL (Rebuffi et al., 2017b). We compute the class
210 prototype

212
$$\mu_c = \frac{1}{N_c} \sum_{(x_j, y_j) \in \mathcal{D}^c} f(x_j),$$
213

214 and select the m samples with the highest similarity to μ_c . This aligns exemplars with the class
215 centroid, ensuring representativeness, though it may suffer from limited diversity.

216 The third is a *clustering-based strategy* to enhance diversity. Feature vectors $\{f(x_j)\}$ are partitioned
 217 into k clusters using K-means with Euclidean distance, yielding centroids $\{\mu_{c,1}, \dots, \mu_{c,k}\}$. Each
 218 cluster i receives a quota m_i proportional to its size:

$$220 \quad m_i = \left\lfloor m \cdot \frac{|\mathcal{D}_i^c|}{N_c} \right\rfloor.$$

222 From each cluster, we select the m_i samples closest to its centroid:

$$224 \quad \mathcal{E}_i^c = \arg \min_{\substack{\mathcal{S} \subset \mathcal{D}_i^c \\ |\mathcal{S}|=m_i}} \sum_{x \in \mathcal{S}} \|f(x) - \mu_{c,i}\|_2^2.$$

227 The final exemplar set is $\mathcal{E}^c = \bigcup_{i=1}^k \mathcal{E}_i^c$. By enforcing coverage of multiple clusters, this method
 228 captures diverse semantic regions, mitigating over-representation of dense areas and improving generalization
 229 under continual learning. We empirically find that using larger numbers of clusters (e.g.,
 230 $k \geq 100$) further improves performance on CICAndMal2017 and IoT23, as the buffer more faithfully
 231 reflects the underlying data manifold. Detailed results are provided in the Appendix A.2.

232 4.2 REPLAY BUFFER

235 Storing all past data for retraining is infeasible; instead, TraMEL maintains a fixed-size replay buffer
 236 of capacity K to hold exemplars from earlier tasks. In the Class-IL setting, the number of classes
 237 grows over time while K remains constant, so the quota per class decreases as tasks accumulate. If
 238 M_i denotes the number of classes introduced at task i , then after task i each class receives $\frac{K}{\sum_{j=1}^i M_j}$
 239 exemplars. This progressive reduction makes exemplar quality increasingly critical.

240 Compared to vision benchmarks, where $K \leq 1,000$ (roughly 3% of training data) (Rebuffi et al.,
 241 2017b), malware traffic datasets require much larger buffers due to their scale. For example, main-
 242 taining the same ratio on CICAndMal2017 implies $K \approx 33,000$. Such scale exacerbates memory
 243 constraints and highlights the need for selection strategies that emphasize both representativeness
 244 and diversity.

245 To capture these practical considerations, we evaluate TraMEL under multiple buffer capacities
 246 proportionally scaled to dataset size (from 200 to 60,000), enabling a systematic analysis of how
 247 memory budgets influence exemplar effectiveness.

249 4.3 EXEMPLAR REFINEMENT

251 In the i -th task, training on the current dataset D_i together with the exemplar buffer $E_{<i}$ creates a
 252 severe imbalance, since $|D_i| \gg |E_{<i}|$. This imbalance amplifies CF and leads to task recency bias,
 253 where the model favors recently observed classes (Lyu et al., 2023).

254 To counter this effect, TraMEL introduces a refinement phase after each task. In this phase, the
 255 model is fine-tuned exclusively on the exemplar buffer $E = E_{<i} \cup E_i$, which acts as a compact
 256 proxy for past distributions. Since exemplars are carefully selected for both representativeness and
 257 diversity, replaying them provides an efficient rehearsal step.

258 The refinement objective integrates supervised and distillation losses to balance plasticity and sta-
 259 bility. Let $f^{(i)}(x)$ be the logits of the current model after refinement on task i , $f^{(i-1)}(x)$ the logits
 260 from the previous refined model, and $f^{(i)'}(x)$ the logits from the model immediately after task i
 261 training. For an exemplar x with label y , we define:

$$263 \quad \mathcal{L}_{\text{refine}} = \mathcal{L}_{\text{CE}} + \alpha \cdot \mathcal{L}_{\text{past}} + \beta \cdot \mathcal{L}_{\text{current}},$$

264 where

$$266 \quad \mathcal{L}_{\text{CE}} = \frac{1}{|E|} \sum_{(x,y) \in E} \text{CE}(f^{(i)}(x), y), \quad \mathcal{L}_{\text{past}} = \frac{1}{|E_{<i}|} \sum_{x \in E_{<i}} \|f^{(i)}(x) - f^{(i-1)}(x)\|_2^2,$$

$$269 \quad \mathcal{L}_{\text{current}} = \frac{1}{|E_i|} \sum_{x \in E_i} \|f^{(i)}(x) - f^{(i)'}(x)\|_2^2.$$

270 Here, \mathcal{L}_{CE} enforces correct classification across all exemplars, $\mathcal{L}_{\text{past}}$ preserves behavior on earlier
 271 tasks by aligning with the previous refined model, and $\mathcal{L}_{\text{current}}$ stabilizes adaptation to the new task
 272 by constraining deviation from the post-training model. Together, these terms mitigate recency bias
 273 while preventing overcorrection, yielding a refined balance between adaptation to emerging malware
 274 families and retention of prior knowledge. Hyperparameters α , β , and the number of refinement
 275 epochs are scaled with buffer size and task composition; detailed sensitivity analyses are reported in
 276 Section 5.4.

277

278 4.4 CLASSIFIER ARCHITECTURE

279

280 Malware traffic data is inherently tabular, with each flow represented by dozens of statistical and
 281 protocol-level features rather than raw sequences or images. To identify a suitable backbone for
 282 continual learning, we evaluate three neural architectures: Multi-Layer Perceptrons (MLPs), one-
 283 dimensional Convolutional Neural Networks (CNNs), and Vision Transformers (ViTs).

284 The MLP baseline consists of nine fully connected layers with ELU/ReLU activations, batch
 285 normalization, and dropout. While computationally efficient, it provides limited representational power
 286 and yields the weakest performance. The CNN baseline uses a six-layer 1D convolutional stack with
 287 max pooling and fully connected layers (28M parameters). Although MLP and CNN achieve better
 288 accuracy in some settings, they suffer from instability across runs and rapid representation collapse.
 289 This reflects the limited capacity of MLP and the difficulty of applying local convolutional filters to
 290 tabular features without strong positional structure as discussed in the Appendix A.6.

291 In contrast, the Transformer-based model delivers both higher accuracy and greater stability. On
 292 CICAndMal2017, a ViT with six encoder blocks (hidden dimension 384, MLP size 1152, eight
 293 heads) achieves 75–80% accuracy with only 8.9M parameters. On IoT23, a lighter configuration
 294 (hidden size 16, MLP size 48, one encoder layer, two heads) achieves competitive accuracy despite
 295 the smaller input dimension. In both cases, the ViT consistently outperforms CNNs and MLPs in
 296 average accuracy and variance, while maintaining robustness across the entire Class-IL sequence.

297 These results provide an important insight: attention-based models are particularly well-suited for
 298 malware traffic analysis. Unlike CNNs, which rely on local receptive fields, Transformers capture
 299 global inter-feature dependencies without assuming positional priors, making them effective
 300 on tabular data where relationships among features (e.g., packet size, timing, DNS queries) are
 301 long-range and non-sequential. Moreover, the ViT achieves stronger accuracy–complexity trade-
 302 offs, with fewer parameters yet higher stability than CNNs. This aligns with recent evidence that
 303 Transformers generalize well to structured tabular data (Huang et al., 2020).

304

305 5 EXPERIMENTAL DETAILS

306

307 5.1 DATASET

308

309 We evaluate TraMEL and other replay-based CL models on two publicly available malware traffic
 310 datasets: CICAndMal2017 (Lashkari et al., 2018) and IoT23 (Garcia et al., 2020). Both datasets are
 311 split into training, validation, and test sets using an 8:1:1 ratio.

312

313 **CICAndMal2017 (1,105,290 flows).** This dataset consists of Android malware traffic spanning 42
 314 families. During preprocessing, IP and port fields are anonymized, and traffic direction is inferred
 315 using a manually defined list of local IP addresses. Timestamps are normalized to compute inter-
 316 packet delays (IPD), which are further adjusted by traffic direction. The dataset is highly imbalanced,
 317 with the largest family containing over 75,000 flows and the smallest fewer than 4,000.

318

319 **IoT23 (712,231 flows).** This dataset contains IoT network traffic of 11 malware families. To im-
 320 prove class balance, we exclude two minority families (Torri and Trojan), resulting in 9 classes. Pre-
 321 processing removes timestamps, unique identifiers, host addresses, and tunneling or service-related
 322 fields. Numeric packet and byte features are log-transformed to reduce skewness. Similar to CICAn-
 323 dMal2017, the class distribution is highly imbalanced Hideandseek (~267k flows), Linux.Hajime
 (131k), and Muhsitik (114k) dominate, while families like Hakai contain as few as 4,000 flows.

324
325

5.2 TASK CONFIGURATION AND TRAINING PROTOCOL

326
327
328
329

We evaluate two class distribution scenarios in a Class-IL setting. The first follows prior work showing that assigning more classes to the initial task can mitigate forgetting in subsequent tasks (Park et al., 2025; Rahman et al., 2022). For CICAndMal2017, we configure tasks as $M_1 = 22$ and $M_2 = M_3 = M_4 = M_5 = 5$. For IoT23, we set $M_1 = 5$ and $M_2 = M_3 = M_4 = M_5 = 1$.

330
331
332
333
334
335
336
337

The second scenario is motivated by the fact that malware families often reappear over time as new variants (Sun et al., 2025). To the best of our knowledge, no publicly available malware traffic dataset captures the same families re-emerging over time, which prevents a direct evaluation of how temporal evolution affects malware traffic analysis. Since our datasets were collected over relatively short periods, we approximate temporal dynamics by grouping malware families according to their time (year) of first appearance. For CICAndMal2017, this yields $M_1 = 4$, $M_2 = 6$, $M_3 = 6$, $M_4 = 4$, $M_5 = 10$, $M_6 = 6$, and $M_7 = 6$. The list of family names are provided in the Appendix A.10. Additional analysis using a synthetic recurrence setting is presented in Appendix A.4.

338
339
340
341
342
343
344

It is worth noting that in our setting, all families across tasks are disjoint. This makes the split stricter than real deployments, where families may persist and reappear, enabling transfer. Nevertheless, the overall malware-traffic distribution still shifts across tasks, so the setup remains meaningful for assessing distributional non-stationarity. Our results should be viewed as a conservative lower bound; in practice, temporal reoccurrence would likely ease the problem. Each experiment is repeated five times and we report mean accuracy; training uses 50 epochs on CICAndMal2017 and 40 on IoT23 with early stopping after the first task.

345
346
347

In the refinement phase, we fix a constant k to balance buffer size and refinement epochs, ensuring consistent replay across settings. For CICAndMal2017, $k = 240,000$, and for IoT23, $k = 20,000$. This value is determined empirically and scales with buffer size and dataset scale.

348

5.3 EVALUATION METRICS.

350
351
352
353
354
355

We report task-wise and mean accuracy as primary metrics. For each task i , accuracy is computed over all test samples from classes seen up to i , capturing both new learning and retention. Mean accuracy is the average of task-wise results, reflecting overall stability and forward transfer. To quantify CF, we use the forgetting score, defined as the per-class gap between maximum and current accuracy, which also serves to assess task recency bias.

356
357

5.4 HYPERPARAMETER TUNING

358
359
360

We tune three key hyperparameters on CICAndMal2017 (buffer size, refinement epochs, and distillation weights (α, β)) and evaluate their impact using mean accuracy and forgetting score.

361
362
363
364

Buffer size and refinement epochs. We vary buffer sizes between 3,000 and 33,000 and adjust refinement epochs (80 vs. 8) to keep the total number of exemplar updates per task fixed at 240K. As shown in Table 5, increasing refinement epochs effectively compensates for smaller buffers, improving retention of past knowledge.

365
366
367
368
369
370
371

Distillation weights (α, β) . We tune α to preserve past-task knowledge and β to emphasize current-task accuracy. While $\alpha = \beta = 1$ already stabilizes learning, unbalanced settings reveal a trade-off: larger α improves retention but reduces new-task accuracy, whereas larger β favors recent tasks at the cost of earlier ones. As shown in Table 5, mean accuracy remains similar across settings, but forgetting scores vary significantly, highlighting the importance of tuning (α, β) for stability–plasticity balance.

372
373
374

6 RESULTS

375
376
377

Comparison to Baselines. We evaluate TraMEL against replay-based CL methods including iCaRL (Rebuffi et al., 2017b), ER (Rolnick et al., 2019), and TAMiL (Bhat et al., 2023b) on CI- CAndMal2017 and IoT23, using the same buffer size of $K = 33,000$ exemplars. For reference, we also report two standard baselines: *None*, which trains only on the current task without replay, and

378 Table 1: Performance of TraMEL on CICAndMal2017 (CIC17) and IoT23 datasets.
379

380 Dataset	381 Model	382 Task 1	383 Task 2	384 Task 3	385 Task 4	386 Task 5	387 Mean
382	Joint	77.12 \pm 2.5	75.71 \pm 1.8	76.00 \pm 1.4	76.25 \pm 0.9	75.61 \pm 0.3	76.14 \pm 1.1
	None	77.12 \pm 2.5	14.92 \pm 2.6	14.84 \pm 3.1	13.37 \pm 3.6	10.55 \pm 2.7	26.16 \pm 1.4
384 CIC17	TraMEL-R	76.09 \pm 1.9	66.54 \pm 2.0	60.36 \pm 1.4	56.63 \pm 1.3	53.75 \pm 0.6	62.67 \pm 1.2
	ER	55.23 \pm 24.3	55.75 \pm 19.4	59.28 \pm 4.7	54.18 \pm 2.9	39.60 \pm 18.7	52.81 \pm 9.5
	iCaRL	55.16 \pm 6.0	29.59 \pm 17.5	30.78 \pm 11.8	28.31 \pm 4.8	22.39 \pm 2.6	33.25 \pm 6.5
	TAMiL	57.69 \pm 15.9	56.18 \pm 10.8	48.79 \pm 18.5	31.44 \pm 25.4	47.15 \pm 7.4	48.25 \pm 6.3
388	Joint	89.55 \pm 8.6	88.11 \pm 8.5	85.67 \pm 5.5	82.15 \pm 4.1	81.99 \pm 1.0	85.50 \pm 4.3
	None	89.55 \pm 8.6	23.92 \pm 24.6	15.14 \pm 8.6	6.69 \pm 7.1	12.53 \pm 14.4	29.57 \pm 7.1
390 IoT23	TraMEL-K	89.54 \pm 9.0	82.65 \pm 9.0	76.34 \pm 10.0	63.07 \pm 11.0	59.17 \pm 18.0	74.15 \pm 10.0
	iCaRL	67.37 \pm 22.7	67.93 \pm 18.2	65.49 \pm 9.2	54.51 \pm 15.2	43.19 \pm 15.1	59.70 \pm 7.1
	ER	78.52 \pm 13.3	88.21 \pm 10.9	70.11 \pm 12.0	70.17 \pm 8.8	54.29 \pm 22.1	72.26 \pm 2.8
	TAMiL	81.23 \pm 18.1	64.20 \pm 11.0	51.06 \pm 14.8	47.51 \pm 18.6	52.51 \pm 15.8	59.30 \pm 13.8

394 Table 2: Performance of TraMEL on CICAndMal2017 in the temporal drift setting.
395

396 Model	397 Task 1	398 Task 2	399 Task 3	400 Task 4	401 Task 5	402 Task 6	403 Task 7	404 Mean
400 Joint	78.48 \pm 1.7	69.98 \pm 1.4	66.64 \pm 0.4	68.35 \pm 0.5	69.44 \pm 0.4	72.68 \pm 0.2	73.24 \pm 0.1	71.26 \pm 0.4
	None	79.73 \pm 1.9	42.57 \pm 0.5	39.80 \pm 0.2	15.59 \pm 0.2	33.62 \pm 0.1	20.71 \pm 0.1	35.08 \pm 0.3
404 TraMEL-R	79.53 \pm 1.9	61.35 \pm 3.7	53.49 \pm 2.7	53.28 \pm 1.6	53.07 \pm 0.6	52.73 \pm 0.4	50.13 \pm 0.4	57.65 \pm 1.2
	ER	78.42 \pm 15.0	68.22 \pm 1.4	50.04 \pm 12.0	48.98 \pm 17.6	41.36 \pm 11.7	41.87 \pm 7.7	42.44 \pm 4.2
	iCaRL	67.31 \pm 12.8	53.90 \pm 9.6	37.95 \pm 12.1	28.23 \pm 9.7	15.32 \pm 5.8	22.09 \pm 4.6	35.09 \pm 6.7
	TAMiL	81.33 \pm 8.5	55.94 \pm 15.9	49.26 \pm 11.8	46.51 \pm 4.6	40.13 \pm 20.3	38.14 \pm 8.2	50.29 \pm 6.2

404 Table 3: Performance of TraMEL on the IoT23 dataset with different exemplar selection strategies.
405

406 Method	407 Task1	408 Task2	409 Task3	410 Task4	411 Task5	412 Mean
Random	98.38	90.54	79.94	69.91	73.39	82.43
C-Mean	98.38	88.46	79.74	65.19	72.18	80.79
KM($N_k=600$)	98.38	90.78	80.40	69.28	75.08	82.78

411 *Joint*, which serves as an accuracy upper bound with full access to past and current data. Table 1
412 shows that TraMEL consistently outperforms iCaRL, ER, and TAMiL in both mean accuracy and
413 stability, achieving 10–30 percentage points higher accuracy on the final task. Results in Table 2
414 highlight the effect of refinement: although TraMEL trails TAMiL and ER in the earliest tasks, it
415 surpasses all baselines in later tasks under temporal drift, demonstrating stronger retention and re-
416duced recency bias. Furthermore, to measure how quickly the method recovers and how much it
417 retains about previously seen families, we also evaluate family recurrence in Appendix A.4.

418 Compared to the Joint baseline, TraMEL closes the gap by about 15 percentage points on CICAnd-
419 Mal2017 (including the temporal shift setting) and is only about 10 points behind on IoT23. In terms
420 of efficiency, training with $K = 33,000$ exemplars remains practical. On an NVIDIA RTX6000
421 Ada, the *Joint* requires about 6 hours, whereas *TraMEL-K* requires an hour, achieving competitive
422 accuracy with significantly lower computational cost. Details are in Appendix A.3.

424 **Exemplar Selection.** We adopt random sampling (TraMEL-R), centroid-based selection (C-
425 mean), K-means clustering with 600 clusters (TraMEL-K) on IoT23. TraMEL-R proves effective
426 when memory is sufficient, while TraMEL-K provides greater robustness under tighter memory bud-
427 getts by enhancing exemplar diversity. We further analyze the effect of varying the number of clusters
428 in the Appendix A.2, which shows that larger k values generally improve coverage of long-tailed
429 distributions, peaking at around $N_k = 600$, and slightly degrades beyond that point.

430 **Replay Buffer Size.** To examine how buffer size influences CL performance, Table 4 reports
431 results on CICAndMal2017 across seven capacities: $K = 200, 500, 1,000, 3,000, 6,000, 33,000$,

Table 4: Mean accuracy under varying buffer sizes on CICAndMal2017.

Method	200	500	1K	3K	6K	33K	60K
TraMEL-R	30.83	34.16	38.37	47.12	52.69	64.20	66.42
TraMEL-K	31.13	35.32	39.20	49.15	54.59	61.88	63.44
iCaRL	22.19	27.30	27.88	32.19	32.66	30.76	32.54
TAMiL	27.43	32.90	30.21	36.17	44.86	44.24	50.03
ER	35.61	37.15	39.28	36.53	44.55	51.42	57.11

Figure 4: Task-level normalized confusion matrix on CIC17 (Task 5). *Before* refinement, predictions are biased toward the current task; *after*, they are more evenly distributed, indicating reduced recency bias and forgetting.

Figure 5: Per-task accuracy on CIC17 after refinement. Larger α preserves past knowledge, while larger β better maintains latest-task accuracy relative to the joint baseline.

and 60,000. All methods improve with larger buffers, but ER performs best at very small sizes ($K < 1,000$). Once the buffer reaches 1,000 exemplars, TraMEL consistently achieves higher accuracy, exceeding baselines by more than 10 percentage points when the buffer is sufficiently large to represent each class.

We also observe differences between TraMEL-R (random sampling) and TraMEL-K (K-means selection). Under tight memory budgets ($K = 200\text{--}6,000$), TraMEL-K performs better by enforcing greater exemplar diversity. As buffer size increases, random sampling becomes adequate to capture representative samples, and the performance gap between the two strategies narrows.

Exemplar Refinement. A key challenge in refinement is balancing adaptation to new tasks with retention of prior knowledge. This is especially critical in malware classification, where detecting newly emerging families must not come at the expense of forgetting earlier ones. Figure 4 illustrates this effect at the task level: before refinement, predictions are skewed toward Task 5, reflecting severe recency bias; after refinement, they are more evenly distributed, indicating improved stability. For detailed class-level confusion matrices, see Appendix A.1.

Figure 5 further shows how the refinement loss weights α and β shape this trade-off. With $\alpha = 4, \beta = 1$ (Figure 5a), earlier tasks improve by over 10 percentage points, though Task 5 drops by 15% – still within 5% of the Joint baseline. Conversely, with $\alpha = 1, \beta = 4$ (Figure 5b), Task 5 is better preserved but forgetting of earlier tasks is more severe.

Table 5 shows that mean accuracy changes little (about 3%) across (α, β) settings under a 33,000 buffer and 8 epochs, but forgetting scores vary by up to 12% (highlighted in blue). For example, with $\alpha = 4, \beta = 1$, the forgetting scores for Tasks 2–5 are (11.74, 15.64, 18.60, 22.38), whereas with $\alpha = 1, \beta = 4$ they rise to (19.11, 28.63, 32.98, 37.41). This indicates that larger β favors recent-task accuracy, while larger α better retains earlier knowledge. Hence, tuning (α, β) is essential not only for accuracy but also for managing the stability–plasticity trade-off in continual malware detection. Additionally, the refinement loss weights are explored on IoT23 (Appendix A.9), and a detailed ablation study of the refinement phase is provided in Appendix A.8.

486
487
488
489 Table 5: Mean accuracy and forgetting score across different (α, β) settings and refinement epochs,
490 evaluated with buffer sizes of 3K (tight budget) and 33K (standard in vision benchmarks).
491
492
493
494
495
496

Buffer	epoch	Mean Accuracy			Forgetting Score		
		$\alpha=1, \beta=1$	$\alpha=4, \beta=1$	$\alpha=1, \beta=4$	$\alpha=1, \beta=1$	$\alpha=4, \beta=1$	$\alpha=1, \beta=4$
3,000	8	46.67	47.77	45.39	49.05	47.06	52.87
	80	50.05	50.75	48.03	37.09	32.51	42.51
33,000	8	59.14	61	58.44	27.53	18.02	30.23
	80	60.26	61.35	59.22	21.13	16.72	25.4

497 7 DISCUSSION

500 **Practicality of Memory Budget Constraints.** In practice, traffic detection systems encounter
501 around 100K flows per sec (around billions/day) and prior NetFlow deployments report around 1.2B
502 flows/day from a single network. As such storing all historical flows without bound is infeasible,
503 necessitating fixed retention or sampling DN.org Staff (2025). At the same time, the malicious
504 base-rate is tiny, deployed IDS face severe class imbalance where benign flows vastly outnumber
505 rare attack flows (the classic base-rate problem), meaning unconstrained replay would mostly store
506 redundant benign history Axelsson (2000).

507 Finally, malware-family labels arrive sparsely and expensively, creating representative labeled traffic
508 requires specialized analyst work and multi-source correlation Guerra et al. (2022), and even
509 “ground-truth” family datasets like MOTIF Joyce et al. (2023) needed years of threat-report curation
510 by experts, underscoring why we cannot assume large labeled replay corpora. As such, a strict
511 bounded memory buffer is not an artificial ML convenience but a practical abstraction of telemetry
512 scale and labeling scarcity in continual network intrusion detection systems (NIDS) deployments.

513 **Limitations and Future Work.** TraMEL is designed for supervised class-incremental learning
514 and does not leverage unlabeled samples. While semi-supervised learning is beyond the scope of
515 this work, a simple preliminary experiment with four unlabeled classes shows that the model is less
516 confident on unseen families than on seen ones (0.54 vs. 0.62). However, this margin is not large
517 enough to reliably distinguish the two, suggesting that additional exploration is needed.

518 In this work, we adopt class-wise K -means exemplar selection to preserve intra-class heterogeneity,
519 which is particularly important under long-tailed distributions where minority classes can degrade
520 rapidly across tasks. While this strategy maintains per-class representativeness, coresnet-based selec-
521 tion, aimed at approximating the global data distribution, has been shown to improve performance
522 in class-imbalanced settings Mirzaoleiman et al. (2020); Hao et al. (2023). A hybrid of these ap-
523 proaches may therefore complement TraMEL’s class-wise heterogeneity.

524 Another limitation is that the refinement phase introduces a trade-off that can reduce accuracy on
525 the current task. In addition, the fixed-size replay buffer constrains scalability; as the number of
526 classes increases, relying solely on this buffer may become less effective. Because exemplars are
527 retained after initial selection without reselection, the buffer can drift from the evolving model,
528 leading to a growing mismatch between stored examples and current representations. This issue
529 could be mitigated by periodically refreshing or replacing exemplars to better align with the updated
530 model. Extending TraMEL with an adaptive buffer mechanism is a promising future direction for
531 improving longitudinal scalability.

532 8 CONCLUSION

533 We propose TraMEL, a replay-based CL framework for malware traffic analysis. TraMEL mitigates
534 catastrophic forgetting under class imbalance and temporal shifts, yielding close to joint-training
535 performance while operating under strict memory constraints. Nonetheless, trade-offs remain—
536 refinement may reduce current-task accuracy, and fixed buffers limit scalability. Future work should
537 explore scalable backbones and exemplar-free methods to better handle imbalanced distributions
538 and consider more practical dynamic evolving samples.

540
541

REPRODUCIBILITY STATEMENT

542
543

We provide an anonymous GitHub repository containing the main source code used in our experiments. All datasets employed in this work (CICAndMal2017 and IoT-23) are publicly available, and we additionally release the preprocessing scripts to ensure consistent data preparation. The code includes a default seed, and we provide a hyperparameter as a default in the code to facilitate the reproduction of results with similar performance. In particular, seed 83, 93, 103, 113, and 123 are primarily used during the training. While we do not provide strict hardware specifications, the implementation runs without specialized dependencies and has been tested under standard GPU environments. Overall, we aim to facilitate reproducibility by releasing both the code and preprocessing pipelines, enabling independent researchers to obtain comparable results.

544
545546
547
548
549
550

ETHICS STATEMENT

551
552553
554
555

This study aims to classify malware families in order to strengthen defenses against malicious attacks, with no intent of misuse. No human subjects are involved, and all datasets used (CICAndMal2017, IoT-23) are publicly available.

556

557

REFERENCES

558

559
560
561

Suresh Kumar Amalapuram, Bheemarjuna Reddy Tamma, and Sumohana S Channappayya. SPI-
DER: A semi-supervised continual learning-based network intrusion detection system. In IEEE INFOCOM 2024-IEEE Conference on Computer Communications, pp. 571–580. IEEE, 2024.

562

563
564

Blake Anderson and David McGrew. Identifying encrypted malware traffic with contextual flow data. In Proceedings of the 2016 ACM workshop on artificial intelligence and security, pp. 35–46, 2016.

565

566
567

Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detection. ACM Transactions on Information and System Security (TISSEC), 2000.

568

569
570

Prashant Bhat, Bahram Zonooz, and Elahe Arani. Task-aware information routing from common representation space in lifelong learning. arXiv preprint arXiv:2302.11346, 2023a.

571
572
573

Prashant Bhat, Bahram Zonooz, and Elahe Arani. Task-aware information routing from common representation space in lifelong learning. In International Conference on Learning Representations (ICLR), 2023b.

574
575
576

Sumohana Channappayya, Bheemarjuna Reddy Tamma, et al. Augmented memory replay-based continual learning approaches for network intrusion detection. Advances in Neural Information Processing Systems, 36:17156–17169, 2023.

577
578
579

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong learning with A-GEM. In ICML, 2019.

580
581

Yizheng Chen, Zhoujie Ding, and David Wagner. Continuous learning for android malware detection. In 32nd USENIX Security Symposium (USENIX Security 23), pp. 1127–1144, 2023.

582
583
584
585

Xiyue Deng and Jelena Mirkovic. Polymorphic malware behavior through network trace analysis. In 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS), pp. 138–146. IEEE, 2022.

586
587
588
589

DN.org Staff. Correlating dns and netflow in a unified big data platform for comprehensive network visibility. <https://dn.org/correlating-dns-and-netflow-in-a-unified-big-data-platform-for-comprehensive-network-visibility>, April 2025. Accessed: 2025-12-01.

590
591
592

Sebastian Garcia, Agustin Parmisano, and Maria Jose Erquiaga. Iot-23: A labeled dataset with malicious and benign iot network traffic. (No Title), 2020.

593

Jorge Luis Guerra, Carlos Catania, and Eduardo Veas. Datasets are not enough: Challenges in labeling network traffic. Computers & Security, 2022.

594 Jie Hao, Kaiyi Ji, and Mingrui Liu. Bilevel coreset selection in continual learning: A new formula-
 595 tion and algorithm. *Advances in Neural Information Processing Systems (NeurIPS*, 2023.
 596

597 Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
 598 modeling using contextual embeddings. *arXiv preprint arXiv:2012.06678*, 2020.

599 Robert J Joyce, Dev Amlani, Charles Nicholas, and Edward Raff. MOTIF: A malware reference
 600 dataset with ground truth family labels. *Computers & Security*, 2023.

601

602 Alexander Küchler, Alessandro Mantovani, Yufei Han, Leyla Bilge, and Davide Balzarotti. Does
 603 every second count? time-based evolution of malware behavior in sandboxes. In *NDSS 2021*,
 604 *Network and Distributed Systems Security Symposium*. Internet Society, 2021.

605 Arash Habibi Lashkari, Andi Fitriah A Kadir, Laya Taheri, and Ali A Ghorbani. Toward developing
 606 a systematic approach to generate benchmark android malware datasets and classification. In
 607 *2018 International Carnahan conference on security technology (ICCST)*, pp. 1–7. ieee, 2018.

608

609 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on Pattern Analysis*
 610 and *Machine Intelligence (TPAMI)*, 40(12):2935–2947, 2017.

611 Yilin Lyu, Liyuan Wang, Xingxing Zhang, Zicheng Sun, Hang Su, Jun Zhu, and Liping Jing. et al.
 612 2023). *Advances in Neural Information Processing Systems*, 36:25475–25494, 2023.

613

614 Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristofaro, Gordon Ross,
 615 and Gianluca Stringhini. MAMADROID: Detecting android malware by building markov chains
 616 of behavioral models. In *Network and Distributed System Security Symposium (NDSS)*, 2017.

617 Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: An ensemble of
 618 autoencoders for online network intrusion detection. 2018.

619

620 Baharan Mirzasoleiman, Kaidi Cao, and Jure Leskovec. Coresets for robust training of deep neural
 621 networks against noisy labels. *Advances in Neural Information Processing Systems (NeurIPS)*,
 622 2020.

623 Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis for malware de-
 624 tection. In *Twenty-third annual computer security applications conference (ACSAC 2007)*, pp.
 625 421–430. IEEE, 2007.

626 Jimin Park, AHyun Ji, Minji Park, Mohammad Saidur Rahman, and Se Eun Oh. Malcl: Leveraging
 627 gan-based generative replay to combat catastrophic forgetting in malware classification. *arXiv*
 628 *preprint arXiv:2501.01110*, 2025.

629

630 Antonio Paya, Sergio Arroni, Vicente García-Díaz, and Alberto Gómez. Apollon: a robust defense
 631 system against adversarial machine learning attacks in intrusion detection systems. *Computers &*
 632 *Security*, 136:103546, 2024.

633 Mohammad Saidur Rahman, Scott E. Coull, and Matthew Wright. On the limitations of continual
 634 learning for malware classification. In *First Conference on Lifelong Learning Agents (CoLLAs)*,
 635 2022.

636

637 Mohammad Saidur Rahman, Scott Coull, Qi Yu, and Matthew Wright. Madar: Efficient continual
 638 learning for malware analysis with distribution-aware replay. 2025. URL <https://arxiv.org/abs/2502.05760>.

639

640 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL:
 641 Incremental classifier and representation learning. In *Conference on Computer Vision and Pattern*
 642 *Recognition (CVPR)*, 2017a.

643

644 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
 645 Incremental classifier and representation learning. In *Proceedings of the IEEE conference on*
 646 *Computer Vision and Pattern Recognition*, pp. 2001–2010, 2017b.

647

648 David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
 649 replay for continual learning. *Advances in neural information processing systems*, 32, 2019.

648 Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
649 replay. *Advances in Neural Information Processing Systems (NeurIPS)*, 2017.
650

651 Robin Sommer and Vern Paxson. Outside the closed world: On using machine learning for network
652 intrusion detection. In *2010 IEEE symposium on security and privacy*, pp. 305–316. IEEE, 2010.
653

654 Tiezhu Sun, Nadia Daoudi, Weiguo Pian, Kisub Kim, Kevin Allix, Tegawende F Bissyande, and
655 Jacques Klein. Temporal-incremental learning for android malware detection. *ACM Transactions*
656 *on Software Engineering and Methodology*, 34(4):1–30, 2025.
657

658 Gido M van de Ven, Hava T Siegelmann, and Andreas S Tolias. Brain-inspired replay for continual
659 learning with artificial neural networks. *Nature Communications*, 2020.
660

661 Xiaohu Xu, Xixi Zhang, Qianyun Zhang, Yu Wang, Bamidele Adebisi, Tomoaki Ohtsuki, Hikmet
662 Sari, and Guan Gui. Advancing malware detection in network traffic with self-paced class incre-
663 mental learning. *IEEE Internet of Things Journal*, 11(12):21816–21826, 2024.
664

665 Xixi Zhang, Yu Wang, Tomoaki Ohtsuki, Guan Gui, Chau Yuen, Marco Di Renzo, and Hikmet Sari.
666 Malware traffic classification via expandable class incremental learning with architecture search.
667 *IEEE Transactions on Information Forensics and Security*, 2025.
668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703
A APPENDIX704
705
A.1 CONFUSION MATRIX706
707
708
709
Using the CICAndMal2017 dataset, we trained over five tasks and analyzed class-wise normalized
confusion matrices before and after refinement in the last task. As shown in Figure 6a, before
refinement, many samples were misclassified into the latest task. After refinement 6b, the accuracy
of all classes except the latest task improved, and overly predicting to the latest task is reduced.726
727
728
Figure 6: Class-level normalized confusion matrix of before and after refinement on CIC17. Classes
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
123100
123101
123102
123103
123104
123105
123106
123107
123108
123109
123110
123111
123112
123113
123114
123115
123116
123117
123118
123119
123120
123121
123122
123123
123124
123125
123126
123127
123128
123129
123130
123131
123132
123133
123134
123135
123136
123137
123138
123139
123140
123141
123142
123143
123144
123145
123146
123147
123148
123149
123150
123151
123152
123153
123154
123155
123156
123157
123158
123159
123160
123161
123162
123163
123164
123165
123166
123167
123168
123169
123170
123171
123172
123173
123174
123175
123176
123177
123178
123179
123180
123181
123182
123183
123184
123185
123186
123187
123188
123189
123190
123191
123192
123193
123194
123195
123196
123197
123198
123199
123200
123201
123202
123203
123204
123205
123206
123207
123208
123209
123210
123211
123212
123213
123214
123215
123216
123217
123218
123219
123220
123221
123222
123223
123224
123225
123226
123227
123228
123229
123230
123231
123232
123233
123234
123235
123236
123237
123238
123239
123240
123241
123242
123243
123244
123245
123246
123247
123248
123249
123250
123251
123252
123253
123254
123255
123256
123257
123258
123259
123260
123261
123262
123263
123264
123265
123266
123267
123268
123269
123270
123271
123272
123273
123274
123275
123276
123277
123278
123279
123280
123281
123282
123283
123284
123285
123286
123287
123288
123289
123290
123291
123292
123293
123294
123295
123296
123297
123298
123299
123300
123301
123302
123303
123304
123305
123306
123307
123308
123309
123310
123311
123312
123313
123314
123315
123316
123317
123318
123319
123320
123321
123322
123323
123324
123325
123326
123327
123328
123329
123330
123331
123332
123333
123334
123335
123336
123337
123338
123339
123340
123341
123342
123343
123344
123345
123346
123347
123348
123349
123350
123351
123352
123353
123354
123355
123356
123357
123358
123359
123360
123361
123362
123363
123364
123365
123366
123367
123368
123369
123370
123371
123372
123373
123374
123375
123376
123377
123378
123379
123380
123381
123382
123383
123384
123385
123386
123387
123388
123389
123390
123391
123392
123393
123394
123395
123396
123397
123398
123399
123400
123401
123402
123403
123404
123405
123406
123407
123408
123409
123410
123411
123412
123413
123414
123415
123416
123417
123418
123419
123420
123421
123422
123423
123424
123425
123426
123427
123428
123429
123430
123431
123432
123433
123434
123435
123436
123437
123438
123439
123440
123441
123442
123443
123444
123445
123446
123447
123448
123449
123450
123451
123452
123453
123454
123455
123456
123457
123458
123459
123460
123461
123462
123463
123464
123465
123466
123467
123468
123469
123470
123471
123472
123473
123474
123475
123476
123477
123478
123479
123480
123481
123482
123483
123484
123485
123486
123487
123488
123489
123490
123491
123492
123493
123494
123495
123496
123497
123498
123499
123500
123501
123502
123503
123504
123505
123506
123507
123508
123509
123510
123511
123512
123513
123514
123515
123516
123517
123518
123519
123520
123521
123522
123523
123524
123525
123526
123527
123528
123529
123530
123531
123532
123533
123534
123535
123536
123537
123538
123539
123540
123541
123542
123543
123544
123545
123546
123547
123548
123549
123550
123551
123552
123553
123554
123555
123556
123557
123558
123559
123560
123561
123562
123563
123564
123565
123566
123567
123568
123569
123570
123571
123572
123573
123574
123575
123576
123577
123578
123579
123580
123581
123582
123583
123584
123585
123586
123587
123588
123589
123590
123591
123592
123593
123594
123595
123596
123597
123598
123599
123600
123601
123602
123603
123604
123605
123606
123607
123608
123609
123610
123611
123612
123613
123614
123615
123616
123617
123618
123619
123620
123621
123622
123623
123624
123625
123626
123627
123628
123629
123630
123631
123632
123633
123634
123635
123636
123637
123638
123639
123640
123641
123642
123643
123644
123645
123646
123647
123648
123649
123650
123651
123652
123653
123654
123655
123656
123657
123658
123659
123660
123661
123662
123663
123664
123665
123666
123667
123668
123669
123670
123671
123672
123673
123674
123675
123676
123677
123678
123679
123680
123681
123682
123683
123684
123685
123686
123687
123688
123689
123690
123691
123692
123693
123694
123695
123696
123697
123698
123699
123700
123701
123702
123703
123704
123705
123706
123707
123708
123709
123710
123711
123712
123713
123714
123715
123716
123717
123718
123719
123720
123721
123722
123723
123724
123725
123726
123727
123728
123729
123730
123731
123732
123733
123734
123735
123736
123737
123738
123739
123740
123741
123742
123743
123744
123745
123746
123747
123748
123749
123750
123751
123752
123753
123754
123755
123756
123757
123758
123759
123760
123761
123762
123763
123764
123765
123766
123767
123768
123769
123770
123771
123772
123773
123774
123775
123776
123777
123778
123779
123780
123781
123782
123783
123784
123785
123786
123787
123788
123789
123790
123791
123792
123793
123794
123795
123796
123797
123798
123799
123800
123801
123802
123803
123804
123805
123806
123807
123808
123809
123810
123811
123812
123813
123814
123815
123816
123817
123818
123819
123820
123821
123822
123823
123824
123825
123826
123827
123828
123829
123830
123831
123832
123833
123834
123835
123836
123837
123838
123839
123840
123841
123842
123843
123844
123845
123846
123847
123848
123849
123850
123851
123852
123853
123854
123855
123856
123857
123858
123859
123860
123861
123862
123863
123864
123865
123866
123867
123868
123869
123870
123871
123872
123873
123874
123875
123876
123877
123878
123879
123880
123881
123882
123883
123884
123885
123886
123887
123888
123889
123890
123891
123892
123893
123894
123895
123896
123897
123898
123899
123900
123901
123902
123903
123904
123905
123906
123907
123908
123909
123910
123911
123912
123913
123914
123915
123916
123917
123918
123919
123920
123921
123922
123923
123924
123925
123926
123927
123928
123929
123930
123931
123932
123933
123934
123935
123936
123937
123938
123939
123940
123941
123942
123943
123944
123945
123946
123947
123948
123949
123950
123951
123952
123953
123954
123955
123956
123957
123958
123959
123960
123961
123962
123963
123964
123965
123966
123967
123968
123969
123970
123971
123972
123973
123974
123975
123976
123977
123978
123979
123980
123981
123982
123983
123984
123985
123986
123987
123988
123989
123990
123991
123992
123993
123994
123995
123996
123997
123998
123999
1239999
1240000
1240001
1240002
1240003
1240004
1240005
1240006
1240007
1240008
1240009
12400010
12400011
12400012
12400013
12400014
12400015
12400016
12400017
12400018
12400019
124

756 which has a larger variance, tends to perform better with a larger number of clusters ($N_k = 800$),
 757 whereas IoT23 reaches its best performance with a smaller value, roughly $N_k = 600$.
 758

759 Overall, with $K = 10,000$, K -means based selection yields more representative exemplars per class
 760 than random sampling or class-mean selection, leading to better overall performance.

761 A.3 COMPUTATIONAL RESOURCE

763 Figure 7 compares the computational cost
 764 across different buffer sizes, as well as the
 765 None and Joint baselines. We measure cost
 766 by training time on an NVIDIA RTX6000 Ada
 767 Generation GPU, with CPU parallelism lim-
 768 ited to a single thread. The evaluation fol-
 769 lows the same setting as Table 2. As more
 770 tasks are learned, the gap between joint training
 771 and TraMEL widens. Increasing the buffer size
 772 does not substantially raise overall cost. This
 773 is because TraMEL uses early stopping, which
 774 avoids unnecessary initial training, and even a
 775 large buffer remains much smaller than retrain-
 776 ing on the full dataset at every task. For ex-
 777 ample selection, we use the best-performing
 778 method for each buffer size, as reported in
 779 Table 4: K-means clustering-based selection
 780 (KM) for buffer sizes $K \leq 6,000$, and random
 781 selection for buffer sizes $K > 6,000$.

782 Figure 7: Computational cost of training TraMEL.
 783 Measured by training time temporal setting (Task
 784 7) of CIC17 with seven different buffer sizes.

785 Figure 8: Task-level accuracy when trained family recurrence in later tasks on CIC17 (Task 7).
 786 BeanBot is initially trained in Task 1 and reappears in Task 4, while Nandrobox appears in Tasks 2
 787 and 6.

788 Table 7: Performance of classifier architecture on CIC17 in the recurrence setting.

Model	Task 1	Task 2	Task 3	Task 4	Task 5	Task 6	Task 7	Mean
Joint	78.41 ± 1.2	70.97 ± 0.4	66.16 ± 1.0	67.67 ± 1.0	69.28 ± 0.6	72.35 ± 0.3	72.95 ± 0.4	71.11 ± 0.3
None	79.15 ± 2.1	42.39 ± 0.3	39.61 ± 0.1	16.58 ± 0.2	33.42 ± 0.2	23.71 ± 0.2	13.55 ± 0.1	35.49 ± 0.4
ViT-R	78.42 ± 1.2	60.61 ± 2.1	55.61 ± 0.7	54.53 ± 0.4	53.59 ± 1.0	53.31 ± 0.6	50.15 ± 0.3	58.03 ± 0.4
CNN-K	80.87 ± 6.9	65.15 ± 5.6	52.96 ± 13.1	51.86 ± 1.2	46.92 ± 10.8	49.31 ± 1.0	44.49 ± 0.7	55.94 ± 3.4
CNN-R	80.87 ± 6.9	63.79 ± 10.5	53.58 ± 14.3	47.50 ± 16.4	44.47 ± 21.2	45.64 ± 13.4	41.15 ± 9.9	53.86 ± 10.0
MLP	83.69 ± 0.6	69.34 ± 0.5	59.03 ± 0.9	51.57 ± 0.5	50.76 ± 1.7	45.10 ± 1.4	28.12 ± 3.8	55.37 ± 0.7

806 A.4 RECURRENCE OF MALWARE FAMILIES

807 Because CIC17 orders families temporally, it enables a natural simulation of family reappearance as
 808 new variants. To model this, we choose two families: BeanBot and Nandrobox, that first appear in

810 Tasks 1 and 2, respectively. Each family is split into 90% and 10%; the smaller split is treated as a
 811 new variant and inserted into Tasks 4 and 6. We use the 7-task setting and evaluate three classifier
 812 architectures: MLP, CNN, and ViT. All three models are trained with the same hyperparameter
 813 settings; the only difference is the distillation loss. MLP and CNN use KL divergence, whereas ViT
 814 uses MSE. For CNN, we additionally compare two exemplar-selection methods: K-means (CNN-K)
 815 and random selection (CNN-R).

816 For BeanBot (Task 1/4; Fig. 8a), ViT reaches peak accuracy around the second task and then gradu-
 817 ally declines, while remaining consistently higher than MLP and CNN in later tasks. This is partly
 818 because Task 1 contains only four classes, allowing most BeanBot samples to remain in the buffer
 819 before truncation. Even after truncation begins, ViT preserves performance longer than the other
 820 models. A similar pattern holds for Nandrobox (Task 2/6; Fig. 8b). When BeanBot and Nandrobox
 821 reappear, both MLP and CNN recover using only 10% of samples, but this gain disappears in the
 822 following task. This behavior reflects the relative brittleness of MLP and Conv1D on the traffic
 823 dataset, whereas ViT remains more stable.

824 The two exemplar-selection strategies also highlight CNN’s dependence on exemplar quality. In
 825 Table 7, CNN-K consistently outperforms CNN-R across most tasks. We observe that CNN accu-
 826 racy fluctuates across tasks, and the refinement phase helps recover performance; however, random
 827 selection makes recovery more difficult than K-means. Overall, these results indicate that CNN is
 828 more sensitive to exemplar quality than ViT.

829 A.5 F1 SCORE OF LONG-TAILED DATASET

830 In Figure 9, Head, Medium, and Tail
 831 groups are defined as the top 20%,
 832 middle 30%, and bottom 50% of
 833 CIC17 classes, respectively. While
 834 the Head and Medium groups decline
 835 relatively gradually across tasks, the
 836 Tail group drops much more sharply,
 837 showing that rare families are the
 838 hardest to retain.

839 A.6 BACKBONE ABLATION 840 STUDY

841 Backbones are evaluated under identical settings to isolate architectural effects: 5-task CIC17 split,
 842 tight buffer size 6,000, no refinement phase, and random exemplar selection in Table 8. Under these
 843 conditions, ViT shows the highest stability, achieving better accuracy and F1 scores with the lowest
 844 forgetting score. This suggests that global attention fits the malware traffic feature space better than
 845 the locality-based Conv1D or the shallow MLP. CNN performs well in the first task but suffers from
 846 large variance and a sharp drop in later tasks, while MLP consistently underperforms with a large
 847 gap between accuracy and F1. Overall, these results motivate the choice of ViT as the backbone for
 848 our framework.

849 Figure 9: Macro F1 score of Head, Medium and Tail. Classes
 850 are split into 3 groups with respect to the number of samples. F1
 851 scores are measured separately for each group.

852 Table 8: Performance of backbone on CIC17 in 5-Task.

Model	Task 1	Task 2	Task 3	Task 4	Task 5	Mean	Forgetting	F1 score
MLP	71.36 ± 2.4	36.53 ± 2.1	28.66 ± 3.8	24.32 ± 2.2	19.17 ± 2.0	36.01 ± 1.6	64.10	31.31
CNN	78.36 ± 1.9	34.89 ± 7.2	25.57 ± 6.3	13.35 ± 2.6	11.24 ± 3.9	32.68 ± 2.7	68.67	28.94
ViT	74.64 ± 2.9	41.60 ± 2.0	35.72 ± 1.8	31.74 ± 1.6	29.85 ± 1.1	42.71 ± 1.5	56.04	42.71

853 A.7 EXEMPLAR SELECTION ABLATION STUDY

854 In Table 9, Random, C-mean, K-means($N_k = 600$, $N_k = 800$) exemplar selection methods are
 855 presented under identical settings using a ViT encoder without the refinement phase. With ViT
 856 embeddings, C-mean fails to capture sufficiently dispersed samples in the feature space, resulting in

864 Table 9: Mean accuracy, F1 score, forgetting score of different exemplar selection on CIC17.
865

Method	Task 1	Task 2	Task 3	Task 4	Task 5	Mean	Forgetting	F1 score
Random	74.64 \pm 2.9	41.60 \pm 2.0	35.72 \pm 1.8	31.74 \pm 1.6	29.85 \pm 1.1	42.71 \pm 1.9	56.04	42.71
C-Mean	74.64 \pm 2.9	40.48 \pm 2.7	34.31 \pm 0.6	31.06 \pm 1.2	28.35 \pm 0.4	41.77 \pm 1.4	57.03	41.64
K-Means($N_k=600$)	74.64 \pm 2.9	42.61 \pm 2.1	37.85 \pm 2.1	33.79 \pm 1.2	31.60 \pm 1.5	44.10 \pm 1.4	53.55	44.49
K-Means($N_k=800$)	74.64 \pm 2.9	43.43 \pm 2.7	37.96 \pm 2.0	35.21 \pm 1.4	32.44 \pm 1.3	44.74 \pm 1.5	52.71	45.24

871
872 low diversity. In contrast, Random selection, by sampling uniformly at random, captures a diverse
873 set of samples and performs better than C-mean. K-means with both cluster sizes ($N_k = 600, 800$)
874 outperforms these methods by selecting well-spread samples. In detail, K-means with $N_k = 800$
875 achieves even better performance than $N_k = 600$ in this regard.

876 Table 10: Comparison of three refinement phase loss settings: no refinement, (i) CE-only refinement
877 ($\alpha = 0, \beta = 0$), (ii) CE with distillation refinement ($\alpha = 4, \beta = 1$), and (iii) Distillation-only
878 refinement.

Method	Task 1	Task 2	Task 3	Task 4	Task 5	Mean	Forgetting	F1 score
No-Refinement	74.64 \pm 2.9	43.43 \pm 2.7	37.96 \pm 2.0	35.21 \pm 1.4	32.44 \pm 1.3	44.74 \pm 1.5	52.71	45.24
(i) CE-only	74.64 \pm 2.9	55.03 \pm 2.6	49.02 \pm 2.0	45.45 \pm 0.8	41.44 \pm 0.6	53.12 \pm 1.5	31.95	51.24
(ii) CE with Distillation	74.64 \pm 2.9	59.31 \pm 1.7	51.45 \pm 1.6	46.58 \pm 1.0	42.45 \pm 0.7	54.89 \pm 1.5	25.97	52.70
(iii) Distillation-only	74.64 \pm 2.9	59.37 \pm 1.9	51.56 \pm 1.6	46.68 \pm 0.9	42.23 \pm 0.8	54.90 \pm 1.5	25.78	52.61

887 A.8 REFINEMENT PHASE ABLATION STUDY

888 In Table 10, this study evaluates three refinement methods compared to a no-refinement baseline.
889 Under the same experimental setting (ViT backbone, buffer size of 6,000, K-means with $N_k = 800$),
890 we compare: (i) CE-only Refinement($\alpha = 0, \beta = 0$), (ii) CE with Distillation Refinement($\alpha = 4$,
891 $\beta = 1$), (iii) Distillation-only Refinement(CE weight=0, $\alpha = 4, \beta = 1$).
892

893 All three methods outperform the no-refinement baseline. Method (ii) achieves higher accuracy
894 than (i), showing the benefit of combining CE and distillation. Method (iii) yields slightly higher
895 accuracy than (ii) because it weighs more on past knowledge, resulting in a lower forgetting score.
896 However, since α and β can be tuned empirically, to maintain the balanced performance across
897 tasks, removing CE is suboptimal. In particular, method (iii) exhibits a lower macro-F1 than (ii),
898 indicating that CE is important for maintaining balanced performance across tasks.

899 A.9 REFINEMENT LOSS ON IOT23

900 Table 11: Mean accuracy, forgetting score and F1 score across different (α, β) on IoT23 under 10K
901 buffer with k-means selection.

	$\alpha=0, \beta=0$	$\alpha=1, \beta=1$	$\alpha=4, \beta=1$	$\alpha=1, \beta=4$	$\alpha=4, \beta=4$
Accuracy	76.20	76.30	76.76	75.88	76.32
F1 Score	70.62	69.09	69.34	68.82	68.97
Forgetting Score	17.82	13.94	13.76	14.58	13.66

912 Table 11 reports the effect of the refinement loss weights α and β on IoT23. This experiment uses
913 20 refinement epochs with a 10K replay buffer. When α (weighing past) is larger than β , the model
914 achieves the highest overall accuracy along with the lowest forgetting score. We also evaluate the
915 case without any distillation loss ($\alpha = 0, \beta = 0$). Interestingly, on IoT23, removing distillation
916 still yields competitive accuracy, while forgetting score is the lowest among all. This suggests that
917 the distillation loss plays an important role in mitigating task-recency bias by stabilizing previously
918 learned representations.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 12: 7-Task temporal split of CIC17.

Task	Families
M1	BeanBot, Plankton, SMSsniffer, Zsone
M2	Penetho, Biige, FakeMart, FakeNotify, Jifake, Nandrobox
M3	AndroidDefender, AVpass, FakeAV, FakeJobOffer, FakeTaoBao, FakeInst
M4	Selfmite, Pletor, Svpeng, VirusShield
M5	Kemoge, Mobidash, Shuanet, Youmi, Koler, LockerPin, Simlocker, AV for Android, FakeApp, FakeApp.AL
M6	Dowgin, Feiwo, Gooligan, PornDroid, AndroidSpy.277, Mazarbot
M7	Ewind, Koodous, Charger, Jisut, RansomBO, WannaLocker

931
932
933
934
935
A.10 CIC17: 7-TASK TEMPORAL SPLIT

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 12 presents the temporal split of families in CIC17, which follows the year-based grouping
used in Lashkari et al. (2018). Each task contains the malware families that emerged in a specific
year between 2011 and 2017.