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ABSTRACT

Transformer architectures are based on a self-attention mechanism that processes
images as a sequence of patches. As their design is quite different compared to
CNNs, it is interesting to study if transformers are vulnerable to backdoor attacks
and how different transformer architectures affect attack success rates. Backdoor
attacks happen when an attacker poisons a small part of the training images with a
specific trigger or backdoor which will be activated later. The model performance
is good on clean test images, but the attacker can manipulate the decision of the
model by showing the trigger on an image at test time. In this paper, we perform
a comparative study of state-of-the-art architectures through the lens of backdoor
robustness, specifically how attention mechanisms affect robustness. We show that
the popular vision transformer architecture (ViT) is the least robust architecture
and ResMLP, which belongs to a class called Feed Forward Networks (FFN), is
the most robust one to backdoor attacks among state-of-the-art architectures. We
also find an intriguing difference between transformers and CNNs – interpretation
algorithms effectively highlight the trigger on test images for transformers but
not for CNNs. Based on this observation, we find that a test-time image blocking
defense reduces the attack success rate by a large margin for transformers. We
also show that such blocking mechanisms can be incorporated during the training
process to improve robustness even further. We believe our experimental findings
will encourage the community to understand the building block components in
developing novel architectures robust to backdoor attacks.

1 INTRODUCTION

Convolutional neural networks (CNNs) have been a workhorse in deep learning for visual recognition
by learning visual rich features and have accelerated the progress towards human-level intelligence.
A recent development in the form of novel architectures called Vision Transformers (ViT) has opened
a new avenue of research aimed towards efficient architectures.

Vision transformers: Recent works (Dosovitskiy et al., 2020; Touvron et al., 2021d;e) have demon-
strated that transformer architectures can be adapted to different vision tasks like image recognition,
object detection leading to scalable models. Convolutional Networks are designed based on inductive
biases like translation invariance and a locally restricted receptive field. Unlike them, transformers
are based on a self-attention mechanism that learns the relationships between elements of a sequence.
Vision transformers have devised an elegant way with fewer inductive biases to represent an image as
a sequence of patches and redefined the task as a sequence to sequence operation.

Backdoor attacks: Recent research has shown that CNNs are vulnerable to backdoor attacks (Gu
et al., 2017; Chen et al., 2017; Saha et al., 2020). Backdoor attacks can happen when training data is
manipulated by an attacker, or the model training is outsourced to a malicious third party because of
compute constraints. The manipulation is done in a way that the victim’s model will malfunction only
when a trigger is pasted on a test image. Vulnerability to backdoor attacks can become dangerous
when deep learning models are deployed in safety-critical applications such as self-driving, where an
attack may result in a car failing to detect a pedestrian when a trigger is shown to the camera.

In this paper, we study the effect of backdoor attacks on different transformer based architectures.
Specifically, we try to understand how attention mechanism can both be harmful and helpful in
mitigating backdoor attacks and how we can develop novel architectures to improve robustness. We
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use three backdoor attacks, BadNets (Gu et al., 2017), Hidden Trigger Backdoor Attacks (HTBA)
(Saha et al., 2020) and WaNet (Nguyen & Tran, 2021) to successfully inject backdoors. While there
are many state-of-the-art attacks in literature, we believe that these three methods encapsulate the
different family of attacks regularly employed. These are elaborated with more details in Section 3.
Although different training and augmentation strategies may be used for each architecture during
pretraining, we consider a poisoning setting where the poisoned samples are included as part of the
training data, thereby producing an entirely new model. This makes our analysis fundamentally
different from other works (Bai et al., 2021; Naseer et al., 2021; Shao et al., 2021) which mainly
consider test-time corruptions and how training affects other forms of robustness such as occlusion,
image corruptions, perturbation-based adversarial attacks, out-of-distribution shifts etc.. Also, since
we consider the publicly available ImageNet-pretrained models, we believe this makes our findings
fair and practical. It also needs to be noted that considering only Transformer architecture family,
which employ the same augmentation strategies and training framework allows us to understand how
different architectural components affect robustness.

Trigger detection using interpretability methods: Interpretation methods for CNNs (Selvaraju
et al., 2017b; Wang et al., 2020; Ramaswamy et al., 2020; Srinivas & Fleuret, 2019) are used to
provide explanations for model predictions. They highlight the regions of an image which contribute
most to the model’s decision. As we know that in a backdoor attack, the model misclassifies a test
image to a target category only when the trigger is added to the image, it’s natural to think that the
model has internally made an association of the trigger with the target category. Such methods have
been shown to work for CNNs and BadNets attack where the trigger is explicitly shown in the training
data (Doan et al., 2020). In our work, we mainly study a more difficult scenario where Hidden Trigger
Backdoor Attacks (HTBA) are employed to insert backdoor. Here the trigger is revealed only during
the time of inference when the victim deploys the model in the real world.

Our contributions are:

(1) We show that Vision Transformers are vulnerable to backdoor attacks and that attention has a
significant impact on the backdoor robustness of a model. We use well-known attacks like BadNets
(Gu et al., 2017), Hidden Trigger Backdoor Attacks (Saha et al., 2020), and WaNet (Nguyen & Tran,
2021) to show this empirically. We also find that ResMLP (Touvron et al., 2021a) which belongs
to a new class of architectures called Feed Forward Networks are more robust compared to other
architectures. This can enable researchers to develop novel architectures robust to backdoor attacks.

(2) We show that the interpretation map for transformers effectively highlights the trigger for a
backdoored test image even when the attacked model has never seen the trigger during training. This
is unlike CNNs, where the interpretation map is not as effective.

(3) Based on the success of the interpretation map, we find that a test-time blocking defense for
Vision Transformers is effective in reducing the attack success rate. We also develop a procedure
which uses the blocking mechanism during the model training which leads to further robustness. This
enables us to use masking tokens as a specific property of transformers, enabling efficient training.

2 RELATED WORK

Backdoor attacks: Backdoor attacks for supervised image classifiers, where a trigger (image patch
chosen by the attacker) is used in poisoning the training data for a supervised learning setting, were
shown in (Gu et al., 2017; Liu et al., 2017a;b). Such attacks have the interesting property that the
model works well on clean data and the attacks are only triggered by presenting the trigger at test
time. Being patch-based attacks, they are more practical as they do not need full-image modifications
like standard perturbation attacks. In BadNets (Gu et al., 2017) threat model, patched images from
a category are labeled as the attack target category and are injected into the training dataset. More
advanced backdoor attacks have since been developed(Doan et al., 2021; Nguyen & Tran, 2021;
Li et al., 2021; Cheng et al., 2021; Salem et al., 2022). (Turner et al., 2018) make the triggers less
visible in the poisons by leveraging adversarial perturbations and generative models. Hidden Trigger
Backdoor Attacks (Saha et al., 2020) propose a method based on feature-collision (Shafahi et al.,
2018) to hide the triggers in the poisoned images.

Defense for backdoor attacks: Adversarial training is a standard defense for perturbation-based
adversarial examples in supervised learning (Goodfellow et al., 2014). However, for backdoor attacks,
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there is no standard defense technique. Some approaches attempt to filter the dataset to remove
poisoned images (Gao et al., 2019) while some methods detect whether the model is poisoned (Kolouri
et al., 2020) and then sanitize the model to remove the backdoor (Wang et al., 2019). (Yoshida &
Fujino, 2020) shows that knowledge distillation using clean data acts as a defense by removing the
effect of backdoor in the distilled model. Februus (Doan et al., 2020) is an input purification defense
for backdoor attacks which is closely related to our work. Februus sanitizes incoming test inputs by
surgically removing the potential trigger artifacts and restoring input for the classification task. They
consider attacks from the BadNets threat model. On the contrary, we use Hidden Trigger Backdoor
Attacks for the trigger localization experiments, which makes the defense more challenging.

Transformers: Transformer models (GPT (Radford et al.), BERT (Devlin et al., 2018)) have recently
demonstrated admirable performance on a broad range of language tasks, e.g., text classification,
machine translation [2] and question answering. Transformer architectures are based on a self-
attention mechanism that learns the relationships between elements of a sequence. Vision Transformer
(ViT) (Dosovitskiy et al., 2020) is the first work to showcase how transformers can ‘altogether’ replace
standard convolutions in deep neural networks on largescale image datasets. DeiT (Touvron et al.,
2021b) is the first work to demonstrate that transformers can be learned on mid-sized datasets (i.e.,
1.2 million ImageNet examples compared to 300 million images of JFT (Sun et al., 2017) used in
ViT) in relatively shorter training episodes. CaiT (Touvron et al., 2021f) improves DeiT model to
prevent early saturation of the models and train deeper architectures. One of the major changes is that
they add Class specific Attention Layers at the end of the network which learn the class distribution.
PatchConv (Touvron et al., 2021c) replaces average pooling layer of a convolution networks with an
attention block to aggregate information across final convolution feature map. ResMLP (Touvron
et al., 2021a) introduced another family of architectures by replacing attention block with cross
patch MLP layers. This family of architectures called the Feed Forward Networks (FFN) are free of
attention blocks and contain only MLP layers. Backdoor attack for transformers: (Lv et al., 2021)
propose a backdoor attack on transformer architectures for computer vision. Their threat model is
different from our attacks. They start with a fully trained vision transformer but do not assume access
to the training data. Instead they use a substitute dataset to inject poisons and then fine-tune the clean
model on this poisoned dataset. The trigger used to generate the poisoned dataset is optimized so that
the victim model pays maximum attention to it. (Doan et al., 2022) is another work which studies
effectiveness of existing backdoor attacks on vision transformers. Compared to their work, our study
uses the larger ImageNet dataset and compares more number of architectures.

3 ROBUSTNESS TO ATTACKS

In this section, we consider different architectures and study the effect of backdoor attacks. We use
the following threat model which we believe replicates a realistic setting.

Threat Model: We consider a scenario where the adversary has access to some part of the training
data or at least has knowledge about the classes in the dataset. The adversary inserts a backdoor by
creating poison images which are used as part of training data. The victim is either interested in
adapting standard architectures for a specific task or outsources the model training to an adversary
who inserts the backdoor. The victim has no knowledge of the backdoor since the model predicts
correctly for benign images, but the backdoor is exploited by the adversary during inference time. We
believe this constitutes a strong and realistic threat model considering the standard methods employed
by practitioners. To this avail, we consider the attacks described below.

BadNets: In BadNets, the attacker modifies the training set by including a trigger patch on certain
images and changing the label of that particular image to the attack target category. The model is
then trained on the poisoned dataset. If the poisoned model is evaluated by the victim on a held out
evaluation set, it will perform as expected. But, only when the attacker chosen trigger patch is pasted
on an image at test time, the model will classify the image as the attack target. In this scenario, the
poisons in the training set have visible trigger patches and the labels of the poisons are manipulated
or dirty. So, if such a dataset is inspected visually by a human, the data tampering can be identified.

Hidden Trigger Backdoor Attacks: In BadNets, the poisoned data is labeled incorrectly, so the
victim can remove the poisoned data by manually annotating the data after downloading. Ideally the
attacker should prefer to keep the trigger secret however, in BadNets the trigger is revealed in the
poisoned data. HTBA (Saha et al., 2020) proposes a stronger and more practical attack model where
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the poisoned data is labeled correctly (they look like target category and are labeled as the target
category), and also it does not reveal the secret trigger. It does so by optimizing for an image that, in
the pixel space, looks like an image from the target category and in the feature space, is close to a
source image patched by the trigger.

More formally, given a target image t and a source image s, they paste the trigger on s to get patched
source image s̃. Then they optimize for a poisoned image z by solving the following optimization:

argmin
z

||f(z)− f(s̃)||22

st. ||z − t||∞ < ϵ
(1)

At test time, the model misclassifies a test image whenever the trigger is pasted on it. Even though
the trigger is hidden in the training data, the trigger successfully works at the test time.

WaNet: WaNet (Nguyen & Tran, 2021) proposes the use of warping-based triggers. The objective
is to improve stealthiness during test time. Elastic image warping is utilized to generate invisible
backdoor triggers. This requires modification to all image pixels at test time, which although stealthy
might be difficult to realize in certain practical applications. However, we consider this attack as it is
a more recently developed attack and belongs to a class of non-trigger based backdoor attacks. We
show poisoned examples belonging to each attack in the appendix.

Implementation details: We mainly consider ImageNet (Russakovsky et al., 2015) dataset for our
experiments. We first generate 600 poisons for every source-target pair, corresponding to 0.05% of
the entire dataset. For HTBA poison generation, we consider a trigger size of 30x30 and use the same
hyperparameters suggested by the authors. We consider a multi-class setting where training data
from all 1000 categories is used to train the model and a single source-target pair is considered for
poisoning. For BadNets and WaNet, we follow the same procedures as the authors. Once the poisons
are generated, we add them to the training set and learn the parameters of the final linear layer for 10
epochs while keeping the backbone frozen. We use SGD optimizer with learning rate of 1e-3 and
0.9 momentum. We use a single NVIDIA 2080Ti GPU for each experiment. For PatchConv, we
consider the B-60 variant and for CaIT, we consider S-24 version which takes in 224x224 size input
images. To ensure that our results are not biased towards any source-target pair, for every experiment
we average our results for 10 different randomly chosen pairs. We use the same source-target pairs
as (Saha et al., 2020). We refer the readers to appendix for more detailed results.

Upon completion of training, we consider the following metrics, (1) Poison Model Accuracy:
Accuracy of the poison model on the entire validation set. (2) ASR: Attack Success Rate where we
calculate the percentage of source images from the validation set that are classified as target once the
trigger is pasted. (3) Source Accuracy: Accuracy on only the source category validation images.
As a baseline, we also consider the (4) Clean Model Accuracy which is the accuracy on the entire
validation set for a model trained only on clean data. From an attacker’s perspective, Poison model
Accuracy should be close to Clean Model Accuracy, but ASR should be high, thus the victim does
not realize that the model is backdoored.

3.1 ANALYSIS

In Table 1, we observe the robustness gap between different architectures. As expected, we observe
that the Poison Model Accuracy on the validation set is very close to the Clean Model Accuracy,
making it difficult for the victim to realize the presence of a backdoor by just checking the validation
accuracy. We find that Vision Transformer (ViT) is less robust compared to CNNs, indicating that
vision transformers inherently use information from the input differently compared to CNNs. We
hypothesize the self-attention mechanism and the transformer blocks ensures that low-level features
from the image are preserved deep into the network, making it sensitive to such perturbations.

Another important finding is that although the ResMLP architecture (Touvron et al., 2021a) has
slightly lower performance ( ≈ 5% drop ) compared to ViTs, it is much more robust compared to
ViTs. ResMLP architecture (Touvron et al., 2021a) belongs to a family called the Feed Forward
Networks (FFN) that does not employ a self-attention mechanism but introduces a cross patch
sublayer consisting of a linear layer along the patch dimension that is learned during training and
frozen during inference. We also find that the CaiT architecture, which is similar to ViT but introduces
class specific attention layers is slightly less robust. These observations hint that the attention layers
impact robustness negatively, while feed forward or linear layer mechanisms improves robustness.
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Model Clean Model ↑ Attack Poison Model ↑ Attack Success ↓
Accuracy (%) Accuracy (%) Rate (%)

VGG16 71.58 BadNets 71.55 63.00
ResNet18 66.73 BadNets 66.70 56.20
ResNet50 73.88 BadNets 73.96 52.40
ViT-Base 79.05 BadNets 78.79 69.60

CaiT 82.31 BadNets 82.32 68.67
PatchConv 82.13 BadNets 82.55 46.20
ResMLP 74.78 BadNets 74.83 27.00
VGG16 71.58 HTBA 71.59 55.00

ResNet18 66.73 HTBA 66.67 41.80
ResNet50 73.88 HTBA 73.94 34.80
ViT-Base 79.05 HTBA 79.04 61.40

CaiT 82.31 HTBA 81.72 81.60
PatchConv 82.13 HTBA 80.26 38.40
ResMLP 74.78 HTBA 75.80 23.20
VGG16 71.58 WaNet 70.93 12.80

ResNet18 66.73 WaNet 65.82 26.00
ResNet50 73.88 WaNet 73.03 32.22
ViT-Base 79.05 WaNet 80.78 41.80

CaiT 82.31 WaNet 82.30 29.30
PatchConv 82.13 WaNet 82.64 35.40
ResMLP 74.78 WaNet 77.81 27.80

VGG16 (Average) 71.58 - 71.35 43.60
ResNet18(Average) 66.73 - 66.39 41.33
ResNet50 (Average) 73.88 - 73.64 39.80
ViT-Base (Average) 79.05 - 79.53 57.60

CaiT (Average) 82.31 - 82.11 59.85
PatchConv (Average) 82.13 - 81.81 40.00

ResMLP (Average) 74.78 - 76.14 26.00

Table 1: Backdoor attack robustness of vision architectures: We study the effect of different
architectures to standard backdoor attacks such as BadNets , HTBA and WaNet. We observe that VIT
is more vulnerable (higher attack success rate) than CNNs . Also ResMLP, which belongs to a family
of Feed Forward Networks, is more robust than other architectures.

Model Clean Model ↑ Attack Poison Model ↑ Attack Success ↓
Accuracy (%) Accuracy (%) Rate (%)

ViT-Small 78.19 BadNets 78.18 69.00
ViT-Small with MLP, instead of self-attention 72.65 BadNets 72.72 54.40

ViT-Small 78.19 HTBA 78.19 56.20
ViT-Small with MLP, instead of self-attention 72.65 HTBA 72.72 37.40

ViT-Small 78.19 WaNet 78.17 27.40
ViT-Small with MLP, instead of self-attention 72.65 WaNet 72.69 20.40

ViT-Small (Average) 78.19 - 78.18 50.86
ViT-Small with MLP, instead of self-attention(Average) 72.65 (↓ 5.54) - 72.71(↓ 5.47) 37.40(↓ 13.46)

Table 2: Comparison of Attention mechanisms: We consider two variants of ViT-Small - the
standard version trained with self-attention and another trained with MLP similar to ResMLP. Both
networks are trained from scratch on ImageNet. We find that although we observe a drop in Model
Accuracy by replacing the self-attention with MLP, we observe a significant drop in ASR as well,
indicating that MLP mechanisms are more robust compared to self-attention.

Self Attention vs MLP: Based on the previous observations, we hypothesize that the attention
mechanism contributes to the backdoor robustness. To understand this in a controlled setting, we
considered a ViT-Small architecture and replaced the self-attention layers with the MLP layers used
in ResMLP. This is the only change we made on ViT and we ignored the other differences between
ResMLP and ViT including removing the normalization by using an affine operator and not using a
class token or positional embeddings. We trained this network from scratch on ImageNet and Table 2
shows the comparison against the standard ViT-Small architecture.

It can be seen that while the MLP layer introduces a drop in accuracy due to the limited capacity,
it provides a major boost in terms of robustness. This experiment suggests that future architectures
may benefit by using the MLP mechanism to be robust to backdoor attacks. One reason this could be
happening is that in MLP-based networks, since the parameters are frozen, it is difficult for a single
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Figure 1: Difference in explanations between ViTs and CNNs: We create poison images for a source-target
pair (e.g,. Mountain Bike - iPod ) and tune the weights to get a poisoned model. During test time when a
trigger is pasted onto a source image, we observe that vision transformers are able to highlight the trigger using
interpretation maps while CNNs are unable to do so. This can be used to mask and nullify the trigger.

token or few tokens (corresponding to the trigger) to dominate the features and affect the prediction.
This is unlike attention based networks, where due to the attention operation certain tokens might
have more impact, thereby increasing sensitivity.

4 TRIGGER LOCALIZATION WITH INTERPRETATION MAPS

Interpretation algorithms are the methods proposed to explain how deep networks make decisions.
One way is to highlight the important parts of input features which the model relies on to arrive at
the decision. There are numerous algorithms proposed in literature, but we mainly consider Grad-
CAM (Selvaraju et al., 2017a) for CNNs and GradRollOut for transformers. Grad-CAM uses the
convolutional structure of the CNN and builds a low resolution spatial map using the activation and
loss gradient, when extrapolated to the input size, highlights the regions responsible for a particular
class prediction. GradRollOut is a gradient-based variant of RollOut (Abnar & Zuidema, 2020) which
aggregates the attention in transformers across multiple layers to create an explanation. We use the
publicly available implementation for GradRollOut 1.

A backdoored model produces correct results on clean data, but malfunctions only when the trigger
(chosen by the attacker) is added to the test input. Intuitively, this misclassification happens because
the model has learned to make a strong association between the trigger and the target class. So,
whenever the trigger appears at test time, it has a dominating influence on the model’s decision and
the test input gets classified as the target category. Note that due to the nature of the attack, the trigger
alone is responsible for target prediction, and hence, an ideal explanation method should highlight it.
To verify this, we consider the HTBA attack due to the stealthy nature of the threat model. Since
the trigger is never seen directly during training, it makes it more difficult for the model to associate
the trigger with target category, making the trigger localization task more challenging. As shown in
Figure 2 for ResNet-50 and ViT-Base, we observe that the trigger localization is not successful for
CNNs. The top highlighted region in the interpretation heatmap does not include the trigger patch,
even though the attack is successful. On the contrary, the explanation for Vision Transformers is
able to highlight the trigger. Note that since FFN style architectures such as ResMLP have been
developed recently, research into explanation algorithms for such networks is remaining. To the best
of our knowledge, we are not aware of explanation methods for FFN architectures. Since they lack
the inductive biases of CNNs, GradCAM is not the correct algorithm to be used, and there are no
attention layers, so RollOut family of algorithms are not applicable. Hence we consider only attention
based architectures and CNNs in our experiments for the trigger localization.

1https://github.com/jacobgil/vit-explain.git
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Figure 2: Image Blocking Defense- We show examples where blocking defense is performed for ResNet50 and
ViT-Base. Transformers can successfully localize the patch, resulting in a successful defense. We also observe
that original source prediction was recovered once the trigger is blocked accurately. Results are randomly chosen
and are not cherry picked, and the attack was successful for all examples.

4.1 IMAGE BLOCKING DEFENSE

Based on the above observation, a straightforward test-time image blocking defense can be used
to defend against backdoor attacks for Vision Transformer with attention layers. This makes it
particularly appealing because it is a free lunch scenario where the victim gets the added bonus of
using the attention to block the trigger without any changes to the training procedure. We use the
explanation to find the area of the image which strongly influences the model’s decision. Instead of
using the raw explanation, we consider a smoothed version which aggregates values in a window and
allows us to identify a small region (rather than a singular location) with maximum response. We
block out the corresponding region of the image and run the inference again. Fig. 2 illustrates our test
time defense qualitatively and Table 3 provides quantitative results.

Improving the localization: In the above experiments, we were able to highlight and block the
trigger without changing the training process. We also observe that there is a small drop in accuracy,
since this also blocks important regions in clean images. One natural improvement is to make
the model robust to such changes for clean inputs, so that accuracy improves. We achieve this
by incorporating the blocking mechanism during training: a small region (30x30) of the training
image which is responsible for the class label is replaced with a black patch. This also acts as a
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Attack Defense
Model Clean Model Poison Model Source ASR Poison Model Source ASR

Accuracy (%) Accuracy (%) Accuracy (%) (%) Accuracy (%) Accuracy (%) (%)
VGG16 71.58 71.59 71.40 55.00 58.95 58.80 49.00

ResNet18 66.68 66.67 67.20 41.80 55.37 56.20 42.60
ResNet50 73.94 73.94 74.00 34.80 63.53 60.60 37.20
ViT-Base 79.09 79.04 77.40 61.40 76.94 73.20 16.40

PatchConv 80.00 80.26 80.80 38.40 76.00 76.40 14.40
CaiT 82.31 81.72 84.00 81.60 74.20 72.00 31.00

Table 3: Test Time Blocking Defense: We observe that a simple explanation based blocking defense
is effective in reducing ASR for attention based transformers. As the trigger localization is not
effective in the case of CNNs for HTBA attack, there is not much of a drop. This suggests that
defending against trigger based backdoor attacks may be easier for self-attention mechanisms.

regularizer forcing the model to consider larger regions of the image while making a prediction and
not rely on small regions (such as the trigger) to influence the decision-making process. We refer
to this procedure as Attn Blocking. An added bonus of the sequence-to-sequence approach of the
transformer is that we can train the model with reduced number of tokens. This enables us to simply
drop the tokens corresponding to the input region rather than masking it. (He et al., 2021) showed
that this not only reduces computation, but also improves the accuracy since the model learns to
understand the real distribution of images, rather than the unnatural masked image. We call this
Token drop. We show our results in Table 4. We observe that both variants perform favourably better
compared to the vanilla network and the token drop method improves accuracy significantly. We
also see a reduction in ASR before defense, indicating the regularization effect. By performing the
defense at test time, we see a further improvement in robustness.

Before Defense After Defense
Model Source Accuracy (%) ↑ ASR (%) ↓ Source Accuracy (%) ↑ ASR (%) ↓

ViT-Base 77.40 61.40 73.20 16.40
ViT-Base (Attn Blocking) 79.80 59.00 76.40 12.60

ViT-Base (Token drop) 88.33 42.00 82.67 8.00

Table 4: Blocking during training: We perform blocking during training and see that this improves
both clean performance of the model and the ASR. Interestingly, dropping tokens with the largest
explanation heatmap values at the training time, improves all results with a large margin.

4.2 DISCUSSION

In this section, we present some additional experiments which helps us understand the results better.

Variation in blocking area: In our test-time defense, the defender needs to make an assumption on
the maximum size of the trigger encountered at test time. We believe this is a reasonable assumption
since trigger sizes are usually small. We conduct an experiment to study the dependency of the
blocking area used on Attack Success Rate for patched images and Source Accuracy on clean images.
As seen in Figure 3, we vary the size of blocking area from 10x10 to 70x70 and find that variation in
Source Accuracy is small. As expected, we get the lowest ASR when the block size equals trigger
size (30x30), but more importantly, we find that for all region sizes, ASR is lower for the defended
case compared to the baseline (not defended). This suggests that the such a localization defense
can be used even when the defender has no knowledge about the size of the trigger, sacrificing the
performance on clean data to a small extent.

Defending against non-trigger based attacks: We also consider WaNet (Nguyen & Tran, 2021) as
a non-trigger based attack and evaluate the attention blocking defense as shown in Table 5. We see
that although there is no trigger present, the blocking mechanism can still reduce ASR. The intuition
is that the attention highlights the region of the image most responsible for target prediction. By
blocking out this region, we are reducing the effectiveness of the attack. We consider a baseline
where we block a random region and find that to be less effective than the attention-based blocking.

Patch Classification: We hypothesize that if the attack is successful, the embeddings corresponding
to images with and without patches should be separable. Hence, we design a simple experiment
where we randomly patch half of ImageNet and keep the rest non-patched. Then, we train a linear
binary classifier to predict if the image is patched. Our results are presented in Figure 4. We can see
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Figure 3: Dependency on blocking area: We find that for different block sizes used in the defense,
the source accuracy does not vary much. As expected, we obtain the lowest ASR when the block size
equals the size of trigger (30x30). We can also see that defended ASR is consistently lower compared
to the baseline of no defense, suggesting that a simple localization based defense can be useful even
when the defender has limited knowledge of the size of trigger.

Model Attack Source Accuracy (%) ASR (%)
ViT-Base WaNet 63.20 41.80

ViT-Base (Random blocking) WaNet 64.00 39.60
ViT-Base (Attn Blocking) WaNet 63.40 36.00

Table 5: WaNet Defense: We consider the blocking defense for WaNet which does not involve a
specific trigger. We find that attention based blocking reduces the effect of the attack and improves
robustness. We consider a random location blocking as a baseline.

that there exists some correlation between the this task and ASR. For example, ViT has the highest
patch classification accuracy and ASR while ResMLP has the lowest patch classification accuracy
and a relatively low ASR. However, this trend is not completely consistent across all architectures:
VGG the lowest ASR, but a relatively high patch classification accuracy. We do not believe the results
of this simple experiment are really conclusive, but it is the first step in understanding the differences
between architectures in terms of their robustness. This needs further investigation as the future work.

Figure 4: Patch Classification Accuracy: We observe that ViT has the highest patch classification
accuracy and ASR, indicating that it is most sensitive to patch perturbations. ResMLP has lower
accuracy and ASR compared to ViT. However, the trend is not perfectly aligned as VGG16 has lowest
patch classification accuracy, but among the highest ASR.

5 CONCLUSION

We show that existing threat models like BadNets, Hidden Trigger Backdoor Attacks and WaNet
are effective against Vision Transformers, thus showcasing the vulnerability of transformers to data
poisoning. On the other hand, ResMLP is more robust to these backdoor attacks compared to CNNs
and ViTs. We find that in transformers, GradRollout interpretation method effectively highlights
the trigger patch for a backdoor test-input for HTBA attacked models even though the model never
sees the trigger during training. But, the trigger localization is not effective for CNNs. Based on
this observation, we empirically show that a test-time image blocking defense effectively reduces
the attack success rate for transformers and makes them more robust. Thus our work indicates that
attention mechanisms can be both helpful and harmful in the context of backdoor robustness and
we hope our results encourage the community to study and understand architectural components of
vision architectures that affect backdoor robustness.
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6 ETHICS STATEMENT

An adversary can use the studied attacks to backdoor Vision Transformer models. Our results can
be exploited by an adversary for unethical applications and backdooring transformer architectures.
However, we also propose a defense algorithm which greatly improves robustness to such adversaries.
By highlighting such results, the research community can learn to build more robust architectures.
On the other hand, it can also enable adversaries to construct better fooling algorithms.

7 REPRODUCIBILITY STATEMENT

To make our work reproducible, we report details of the implementation for each section including
all hyperparameters and used hardware resources (GPUs). Moreover, we have included our code in
the supplementary material to enable easier reproduction of our experiments.
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