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Abstract001

In real-world pathology, diagnosis sometimes002
involves a two-stage reasoning process, an ini-003
tial differential diagnosis with preliminary evi-004
dence, followed by a definitive diagnosis af-005
ter further examinations. Existing research006
rarely reflects this workflow, treating diag-007
nosis as a one-turn task. This work explic-008
itly models the diagnostic process in pathol-009
ogy as a continuous two-turn dialogue with010
large language models (LLMs). To bridge the011
evidence gap between stages, we propose a012
Retrieval-Augmented Generation-based Exam-013
ination Simulation (RAGES) method to simu-014
late follow-up examination results requested in015
the first dialogue based on existing records and016
external knowledge. We curate a high-quality017
training dataset of initial and follow-up consul-018
tations and evaluate LLMs in the two-turn con-019
sultation across another multilingual dataset.020
Our experiments show that (1) LLMs signifi-021
cantly improve diagnostic accuracy with addi-022
tional evidence, (2) our model outperforms or023
matches larger and reasoning-enhanced base-024
lines, and (3) RAGES generates more plausible025
results than pure LLM generation.026

1 Introduction027

Multi-turn consultation is central to real-world028

medical diagnosis. Medical experts often begin029

with preliminary clinical evidence and iteratively030

refine their hypotheses through additional examina-031

tions and expert reasoning. This process, known as032

the hypothetico-deductive method, typically starts033

with a list of potential diseases, called the differen-034

tial diagnosis, and converges to a definitive conclu-035

sion once sufficient further evidence is obtained, as036

illustrated in Fig. 1.037

In pathology, this reasoning pattern is especially038

structured and sometimes manifests as a two-turn039

process. Initially, pathologists examine hema-040

toxylin and eosin (H&E)-stained slides to assess041

Hypothetico
Process

Preliminary
Information

Differential
Diagnosis

Final
Diagnosis

Disease A

Disease C

Disease B
Exam 2

Exam 1

Further
Examination

Deductive
Process

Figure 1: The hypothetico-deductive method in medi-
cal diagnosis. Medical experts first root a differential
diagnosis in preliminary information. Later, they prune
the branches, arriving at a final diagnosis with evidence
from further examinations.

tissue architecture and cellular features, combin- 042

ing these findings with clinical history to propose 043

differential diagnoses and recommend further tests 044

(e.g., immunohistochemistry, molecular tests, and 045

whole-genome sequencing). After receiving the 046

test results, they conduct a more detailed follow-up 047

analysis and conclude with a final diagnosis. 048

Despite its clinical importance, prior LLM-based 049

diagnostic research has focused mainly on single- 050

turn, multiple-choice tasks that assume access to 051

complete information. This bypasses the core chal- 052

lenge of early-stage differential reasoning and un- 053

dermines the authenticity of simulated diagnostic 054

workflows. Moreover, evaluating open-ended dif- 055

ferential diagnoses is inherently difficult due to 056

their subjectivity. Even pathologists may derive 057

different disease suspects and further testing items 058

based on the same case. This variability further 059

discourages exploration of this space. 060

To address these challenges, we explicitly model 061

the diagnostic process in pathology as a two-turn 062

reasoning workflow, i.e., generating a differential 063

diagnosis in the initial consultation and refining it 064

into a definitive diagnosis based on appended test 065

results in the follow-up. To support this, we intro- 066
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duce the Retrieval-Augmented Generation-based067

Examination Simulation (RAGES), which gener-068

ates realistic follow-up evidence by combining the069

reuse of original records, retrieval from a curated070

knowledge base, and LLM-based generation.071

Using RAGES, we curate high-quality super-072

vised fine-tuning (SFT) data and train models capa-073

ble of interactive diagnostic reasoning. We also pro-074

pose automatic evaluation metrics for both diagnos-075

tic stages using powerful LLMs as judges. Our find-076

ings confirm that LLMs benefit significantly from077

additional clinical evidence, and our model out-078

performs or rivals larger and reasoning-enhanced079

baselines. Experiments show that RAGES can pro-080

duce more plausible results than solely depending081

on LLMs’ generation. This work brings a struc-082

tured, two-turn reasoning workflow, which is closer083

to realistic pathological diagnosis, offering an early084

exploration of interactive AI diagnosis in pathol-085

ogy.086

2 Related Work087

2.1 Reasoning Capabilities of LLMs in088

Medical Diagnosis089

Early studies showed that pretrained LLMs encode090

rich clinical knowledge and can answer medical091

questions effectively, e.g., Flan-PaLM (Singhal092

et al., 2023) and MedFound (Liu et al., 2025b).093

Prompting techniques such as chain-of-thought094

(CoT) have proven effective for inducing reason-095

ing (Wei et al., 2023; Besta et al., 2024; Yao et al.,096

2023). In medicine, structured prompting enhances097

diagnostic accuracy (Nori et al., 2023; Savage et al.,098

2023; Kwon et al., 2024; Savage et al., 2024).099

With the advent of OpenAI’s o1 model (Jaech100

et al., 2024), the focus shifted to the native reason-101

ing capability of LLMs on medical tasks. Nori et al.102

(2024) evaluated o1-preview on medical challenge103

problems and found it dramatically outperforms104

previous models with prompting. Sandmann et al.105

(2025) and Tordjman et al. (2025) both evaluated106

DeepSeek-R1, an open-source reasoning model, on107

medical tasks and clinical reasoning, demonstrat-108

ing the potential of reasoning models. Building109

on this new paradigm, recent work has introduced110

medical LLMs and frameworks designed for step-111

wise reasoning. HuatuoGPT-o1 (Chen et al., 2024)112

is a medical LLM trained via verifiable reasoning113

steps, including exploiting complex reasoning tra-114

jectories and reinforcement learning with verifier-115

based rewards. Huang et al. (2025) focused on116

inference-time scaling of reasoning in the medi- 117

cal domain. With a learned process reward model, 118

MedS3 (Jiang et al., 2025a) learned to reason about 119

medical problems. 120

2.2 Multi-Turn Diagnosis 121

Clinical diagnosis is inherently iterative, involv- 122

ing hypothesis formation, information gathering, 123

and refinement. Several studies simulated multi- 124

turn doctor–patient interactions (Bao et al., 2023; 125

Chen et al., 2023; Li et al., 2023; Toma et al., 2023; 126

Liu et al., 2025c), including systems like AMIE 127

(Tu et al., 2024), AI Hospital (Fan et al., 2025), 128

and MedAgentSim (Almansoori et al., 2025). APP 129

(Zhu and Wu, 2025) explored a patient-centered 130

multi-turn consultation approach to enable on- 131

line consultations. MedAgentBench (Jiang et al., 132

2025b) and MMD-Eval (Liu et al., 2025a) pro- 133

vided realistic simulation environments grounded 134

in structured patient data. 135

Other efforts focus on simulating the sequen- 136

tial diagnosis stages conducted by medical experts. 137

Sun et al. (2024) observed that most LLM-based 138

studies treat diagnosis as a one-shot question and 139

answer with all information provided. They there- 140

fore proposed a two-planner system for differential 141

diagnosis and final prediction. Likewise, MAC 142

(Chen et al., 2025) explicitly models two consul- 143

tation stages, the primary with limited data and 144

the follow-up with complete data, and engages a 145

multi-disciplinary treatment simulation. However, 146

few studies address continuous multi-turn reason- 147

ing with additive evidence in a single-session LLM 148

setting. 149

3 Method 150

3.1 Two-Turn Reasoning Workflow in 151

Pathological Diagnosis 152

When pathologists make a diagnosis, they begin by 153

examining H&E-stained slides under a microscope, 154

which highlight cell structures. Combining these 155

microscopic observations with the patient’s clini- 156

cal history, they establish a preliminary differen- 157

tial diagnosis consisting of several likely diseases. 158

Based on this differential, pathologists then order 159

targeted tests, such as immunohistochemistry for 160

protein markers, or molecular and genetic analy- 161

ses, to distinguish between diseases with similar 162

morphological features. Once the test results are 163

available, they follow a deductive reasoning pro- 164

cess to arrive at a final diagnosis, provided there is 165
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Clinical History:
    A xx year old man ...

Microscopic Findings:
    Histologically, the tumor ...

Final Diagnosis:
    The final diagnosis is ...

Further Examinations:
    Immunohistochemically, ...

Original Case Reports

Initial Consultation
Clinical History: ...
Microscopic Findings: ...
Give your differential diagnosis and 
required examinations.
---------------------------------------------
<think>...</think>
... 
Differential List: ...
Examination List: ...

Follow-up Consultation
(First Turn History: ...)
Examination Results: ...
Based on previous diagnosis and new 
examination results, give the final 
diagnosis.
---------------------------------------------
<think>...</think>
... 
Final Diagnosis: ...

RAG-based Exam. Simulation
Copy from Original Cases
    “Immunohistochemically, ...”

Retrieve from Knowledge Base
     (Burkitt’s Lymphoma, CD20)
        Almost Positive (≥95% cases) 

Generate using LLM
    “Based on my knowledge, ...”
    Examination Results: ...

1st Input:

Clinical History
......
Microscopic Findings
......

LLM Reasoning:

Differential List:
......
Examination List:
......

2nd Input:

Examination Results:
......

LLM Reasoning:

Final Diagnosis:
......

a. Data Collection

b. SFT Data Curation

c. Two-Turn Diagnosis Workflow

*Differential Diagnosis:
    The differential includes ...

Figure 2: An overview of this work. (a) We collect raw case reports from open-source websites and journals and
arrange them into a two-turn consultation form. (b) We create two-turn supervised fine-tuning data with examination
results generated by the proposed RAG-based examination simulation strategy. (c) The proposed two-turn reasoning
workflow of diagnosis.

sufficient supporting evidence.166

As illustrated in Fig. 2 (c), we model this diag-167

nostic workflow as a two-turn interactive process168

with LLMs. In the initial turn, we provide the pa-169

tient’s clinical history and findings from the H&E170

slides to LLMs, prompting them to generate a rea-171

soning process that includes candidate diseases and172

recommended further examinations. In the follow-173

up turn, we supply the LLMs with the newly ac-174

quired test results and prompt it to deliver a final175

diagnosis.176

3.2 Data Collection177

Detailed case reports form the foundation of the178

proposed two-turn diagnostic process. However,179

datasets containing pathology-specific cases re-180

main scarce. To address this gap, we curated cases181

from publicly available sources, including websites182

and academic journals. Due to data usage restric-183

tions, some of these cases can only be used for184

evaluation purposes. We will discuss them later185

in Section 4.2. This section focuses on the data186

sources used during the SFT stage.187

• DakaPath1 is a Chinese platform for patho- 188

logical teaching and communication. Besides 189

the plentiful knowledge, DakaPath has a spe- 190

cial section called Micro Lecture, which pro- 191

vides expert explanations over hundreds of 192

real cases. We collected 373 raw explanations. 193

• Chinese Journal of Pathology reports on ad- 194

vanced scientific research achievements and 195

pathological diagnosis experience as case dis- 196

cussions. Originally, we filtered out 653 cases. 197

While original case reports describe the com- 198

plete diagnostic workflow, they typically lack ex- 199

plicit stage boundaries. Additionally, many in- 200

clude follow-up discussions that pertain to the post- 201

diagnosis stage. To construct data suitable for in- 202

teraction with LLMs, we employ powerful LLMs 203

to extract key information from the original cases 204

while simultaneously filtering out unsuitable exam- 205

ples. 206

As shown in Fig. 2 (a), we prompt LLMs to ex- 207

plicitly extract five components: clinical history, 208

1https://www.dakapath.com
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microscopic findings, differential diagnosis, further209

examinations and their results, and the final diag-210

nosis. The first two components are used as input211

for the first consultation. Although the differential212

diagnosis is informative, we exclude it at this stage213

to avoid constraining the LLMs’ reasoning in the214

first turn. The examination results serve as the most215

dependable source for constructing the second-turn216

input, which will be described in the next section.217

The final diagnosis is treated as ground truth and218

used to validate the generated SFT data. We use219

GPT-4 for automatic information extraction and220

manually verify the quality of each output.221

Algorithm 1: RAGES
Input: Case report C, requested exams E,

structured knowledge base K
Output: Simulated examination outputs E
# Split original case
(Egt,Dgt)← PreSplit(C);
# Reuse overlapping real results
Edirect ← MatchOverlap(Egt, E);
# Retrieve disease-exam mappings
Candidates← EmbedAndSearch(K,Dgt);
BestMatch←
SelectHighestSimilarity(Candidates);
Eretrieved ← GetMappings(K,BestMatch);
# Generate final results via LLM
Egen ←

LLMGenerate(E, Edirect, Eretrieved,Dgt);
E ← Egen;
return E

RAGES Prompt
Based on the given information, after careful consideration, infer the possible result of each 
examination item. The given information includes the final diagnosis, examination items, 
existing results (if any), and relevant knowledge (if any). Specifically, you need to:

0. Only focus on the content that can produce definitive results.
1. First, check the "Existing Results" and record results that overlap with the examination. 
2. Then, check the "Relevant Knowledge". First, determine whether the relevant knowledge 
pertains to the same disease as described in the "Final Diagnosis". If it is the same disease, 
then, based on this knowledge, infer the results of the remaining examination items. 
3. Retrieve your own knowledge and speculate on the results of the remaining items. 
4. Output the above results in the specified format. The format is as follows:
   ExamRes: {"Item 1": ("Result 1", Confidence Level 1), "Item 2": ("Result 2", Confidence 
Level 2)}

Figure 3: An illustration of RAGES prompt.

3.3 RAG-based Examination Simulation222

Before initiating the simulation of two-turn diag-223

nosis, we need to design a strategy to obtain the224

required examination results proposed by the re-225

sponse in the initial consultation. In real scenarios,226

these results can be acquired from pathologists’227

practice to facilitate a multi-turn interaction. It is, 228

however, less practical to consult the laboratory 229

during SFT. Therefore, we propose the retrieval- 230

augmented generation-based examination simula- 231

tion (RAGES), a method designed to produce plau- 232

sible yet grounded examination outcomes without 233

real-time laboratory access. RAGES operates in 234

three key stages, as in Algorithm 1. 235

Reuse of Existing Results. For each case, we 236

first separate the original case report and match 237

the examinations ordered by the model with those 238

already performed in the record. If overlap exists, 239

the corresponding results are directly reused with 240

complete confidence, as they originate from ver- 241

ified laboratory data. However, considering the 242

probable difference between the real and generated 243

differential list, this stage typically contributes to 244

only a proportion of the results requested by the 245

LLMs. 246

Retrieval from Structured Knowledge. We re- 247

trieve results from a curated database comprising 248

over 24,000 mappings between 1,629 diseases and 249

465 immunohistochemistry (IHC) markers to cover 250

examinations not present in the case report. Each 251

mapping captures statistical associations indicating 252

the likelihood of a test result given a disease, e.g., 253

“almost positive, with ≥95% positive cases”. We 254

embed the final diagnosis from the case using a sen- 255

tence transformer and search for similar disease en- 256

tries in the database. The closest match is selected, 257

and its mappings are retrieved to augment the fol- 258

lowing result generation process. These results are 259

statistically grounded but may be ambiguous in rare 260

or conflicting cases. 261

LLM-based Generation. We query a powerful 262

LLM with the case context and retrieved knowl- 263

edge to generate plausible outputs for any examina- 264

tions not covered in prior steps. An example of the 265

prompt is shown in Fig. 3. These outputs may draw 266

upon the LLM’s internal knowledge or reasoning 267

capabilities. However, since they lack direct em- 268

pirical backing, their reliability is lower than that 269

of reused or retrieved results. Notably, in practice, 270

we randomly drop some results with extremely low 271

confidence and tell the models in the second turn 272

that these examinations are unavailable. 273

This design prioritizes high-quality, explainable 274

and complete results, reducing noise from halluci- 275

nations or overconfident LLM generations. 276
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3.4 Activating Two-Turn Reasoning277

Capability278

Following Huang et al. (2025), we create an SFT279

dataset generated by powerful reasoning models to280

activate existing LLMs’ reasoning on two-turn diag-281

nosis. The whole process is illustrated in Fig. 2 (b).282

Initial Consultation
I need you to act as a professional pathologist. After carefully considering the given 
information, infer the possible differential diagnoses. Then, based on these differential 
diagnoses, suggest additional information that needs to be provided to rule out certain 
possibilities. When summarizing the differential diagnoses, you need to rank the more likely 
diagnoses higher. 

Here is the case:
Background Information: A 72-year-old male ...
Microscopic Findings: Intact respiratory epithelium  ...

Extracted from Original Case

<think> Okay, now I need to deal with this case. I'm going to conduct a differential diagnosis 
analysis based on the provided information, and recommend further examination items ... 
</think>
<answer> Case Analysis: ...
Differential Diagnosis: \DiffList{MALT lymphoma, ...}
Further Examinations: \ExamList{CD20, ...} </answer>

Verified with Ground Truth
Used in RAGES

Figure 4: The SFT data in the initial consultation turn.

In the initial consultation, LLMs take clinical283

history and histological findings as input and think284

about possible differential diagnoses and appended285

examinations. Instead of directly giving the differ-286

ential list in the original cases as a guide, we adopt287

a post-verification strategy. We only provide the288

input and generate it several times for each case.289

After gathering these trials, we use another LLM to290

judge whether the ground truth diagnosis appears291

in these trials, and retain the positive ones as SFT292

data. We choose this more complex strategy for293

two reasons. First, we do not expect LLMs to be294

bound by the original text, since different patholo-295

gists might derive different disease suspects from296

the same case. Second, when a differential list is297

provided, LLMs might have hallucinations like di-298

rect references to the original results. A shortened299

sample of training data in the first consultation is300

illustrated in Fig. 4.301

Based on the verified trials, we use the RAGES302

method to simulate the appended results. After col-303

lecting sufficient appended results, we can start the304

follow-up consultation. We provide LLMs with305

the response in the first turn and the acquired fur-306

ther examination results, and ask them to produce307

a final diagnosis after careful thinking. Also, we308

employ the post-verification strategy and retain as309

SFT data those trajectories that propose the true di-310

agnosis. A shortened sample of training data in the311

second consultation is illustrated in Fig. 5. Notably,312

we explicitly provide the history only in the data-313

generating stage. In the SFT and evaluation stage,314

we do not repeatedly give the existing information.315

Follow-up Consultation
Now the results of the further examinations have come out. I need you to:
1. First, check the "Case Information" and the "First-round Diagnosis" to sort out the 
previous diagnostic chain of thought and related conclusions.
2. Then, check the "Results of Further Examinations". You need to conduct further 
differential analysis based on the existing examination results, and give the final diagnosis. 
3. The final diagnosis needs to be output in the specified format. 

Here is the information:
Case Information: ...
First-round Diagnosis: ...
Results of Further Examinations: ...

<think> Okay, now I need to rethink this case ... </think>
<answer> ...
Final Diagnosis: \boxed{Pericytoma} </answer>

Extracted from Original Case
Copied from Initial Consultation

Generated with RAGES

Verified with Ground Truth

Figure 5: The SFT data in the follow-up turn. Notably,
the case information and history of the initial consulta-
tion are only provided during the data-generating pro-
cess and are not exposed to LLMs in dialogue.

4 Experiment 316

4.1 Implementation 317

We use DeepSeek-R1 (DeepSeek-AI, 2025) to per- 318

form RAGES and generate SFT data, because R1 319

offers a transparent reasoning process and consis- 320

tently strong performance. A total of 925 training 321

samples related to initial consultations and 623 322

follow-up samples are constructed. For SFT, we 323

adopt Qwen2.5-32B-Instruct (Yang et al., 2024) 324

as the base model. We apply parameter-efficient 325

Low-Rank Adaptation (LoRA) (Hu et al., 2022) 326

and enable bf16 precision to optimize training with 327

our curated dataset. The training workflow is imple- 328

mented using Llama-Factory (Zheng et al., 2024), 329

and evaluation is conducted with vLLM (Kwon 330

et al., 2023). We use LoRA with default hyper- 331

parameters, as α = 16 and r = 8. The initial 332

learning rate is set to 5× 10−5 with cosine decay, 333

and training is run for 15 epochs. The fine-tuning is 334

carried out on 8 A100 GPUs, and the entire process 335

completes in approximately 12 hours. 336

4.2 Evaluation Configurations 337

4.2.1 Evaluation Datasets 338

To ensure fair comparisons, we collect evaluation 339

data from other sources, including publicly avail- 340

able English-language cases from Pathology Out- 341

lines and the Hans Popper Hepatopathology Soci- 342

ety (HPHS), as well as in-house Chinese-language 343

cases used for resident training at Hospital X. 344

Pathology Outlines2 is a comprehensive platform 345

for pathology communication. It offers extensive 346

knowledge across subspecialties and weekly case 347

studies. We collected 483 cases published before 348

2https://www.pathologyoutlines.com
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December 2024. Hans Popper Hepatopathology349

Society (HPHS)3 is a hepatopathology-focused350

community that presents a noteworthy case every351

3 to 4 months. We included 37 cases published up352

to September 2024. The in-house dataset origi-353

nates from internal examination materials used for354

resident education at Hospital X. It includes 339355

cases covering 11 major domains, including the356

endocrine system, reproductive system, respiratory357

system, central nervous system, skin, bone and soft358

tissue, etc.359

We manually extract relevant diagnostic infor-360

mation from case reports to ensure dataset quality361

and compile two evaluation subsets.362

1. The Public English Dataset (EN) consists of363

110 English-language cases, 100 from Pathol-364

ogy Outlines and 10 from HPHS. Due to dis-365

tribution constraints, we open-source only the366

URLs of the cases in this dataset.367

2. The In-house Chinese Dataset (CN) com-368

prises 276 Chinese-language cases sourced369

from Hospital X.370

Since our model is trained exclusively on Chi-371

nese data, the English dataset is a relatively unbi-372

ased and open-source benchmark. However, it pri-373

marily features complex and atypical cases, which374

are less representative of routine diagnostic scenar-375

ios. Therefore, we also evaluate on the Chinese376

dataset to simulate a more realistic yet sufficiently377

challenging clinical setting.378

4.2.2 Evaluation Metrics379

For the initial consultation stage (Initial), where the380

model proposes potential disease candidates, we381

evaluate whether the ground truth final diagnosis382

appears in the differential list. If so, it is consid-383

ered a hit, and the hit rate is used to quantify the384

differential accuracy (DiffAcc). For the follow-up385

consultation stage (Follow-up), where the model386

refines its decision and outputs a precise diagno-387

sis, we check whether the ground truth diagnosis388

appears as the top-ranked candidate. In this case,389

we use the hit-at-one rate to measure the diagnos-390

tic accuracy (DxAcc). Unless otherwise specified,391

DiffAcc is reported for the initial consultation turn,392

and DxAcc for the follow-up turn.393

To ensure a comprehensive and objective eval-394

uation, we rely on three strong LLMs, GPT-4o395

(4o) (OpenAI et al., 2024), DeepSeek-R1 (R1), and396

3https://hanspopperhepatopathologysociety.org

Qwen2.5-Max (QM), to assist in verification. We 397

also report the average score across these three 398

models for overall performance. 399

5 Results Analysis 400

5.1 More Information, More Accurate 401

Diagnosis 402

Before conducting a comprehensive comparison of 403

two-turn diagnostic performance, we aim to demon- 404

strate that LLMs produce more accurate diagnoses 405

when provided with additional evidence. To this 406

end, we compare diagnostic accuracy after the ini- 407

tial consultation and again after the follow-up stage, 408

evaluating whether access to more information im- 409

proves the precision of the model’s predictions. 410

In addition to our SFT model (Ours-32B), we 411

evaluate three baselines: the original Qwen2.5- 412

32B-Instruct (Qwen-32B), a reasoning variant, 413

QwQ-32B (QwenTeam, 2025), and a larger 414

Qwen2.5-72B-Instruct (Qwen-72B). 415

Figure 6: The comparison of diagnosis accuracy in the
initial and follow-up consultation.

As shown in Fig. 6, all models achieve higher di- 416

agnostic accuracy across both datasets when given 417

follow-up information. While the outcome may 418

seem intuitive, this experiment provides a critical 419

foundation for our study, validating the necessity 420

of incremental evidence in LLM-assisted diagnosis 421

and motivating the subsequent analyses. 422

5.2 Performances in Two-Turn Diagnosis 423

We compare our model with the three baseline 424

models introduced earlier. Tables 1 and 2 present 425

the overall performance across both the initial and 426

follow-up consultation stages. 427

During the initial consultation, our model outper- 428

forms the original Qwen-32B, with average accu- 429

6
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Table 1: The differential accuracy (DiffAcc) of different models in the initial consultation (Yellow: chat models;
Red: reasoning models). Bold figures suggest the best performance, and the underlined are the second best.

Public English Dataset In-House Chinese Dataset
Model

4o R1 QM Avg. 4o R1 QM Avg.
Overall

Qwen-32B 42.7 32.7 43.6 39.7 51.8 42.4 57.7 49.6 46.8
Qwen-72B 59.1 47.3 53.6 53.3 66.7 58.3 67.8 64.3 61.2
QwQ-32B 60.0 48.2 61.8 56.7 69.9 58.3 68.5 65.6 63.1
Ours-32B 62.7 46.4 57.3 55.5 71.7 58.7 69.6 66.7 63.5

Table 2: The diagnosis accuracy (DxAcc) of different models in the follow-up consultation (Yellow: chat models;
Red: reasoning models). Bold figures suggest the best performance, and the underlined are the second best.

Public English Dataset In-House Chinese Dataset
Model

4o R1 QM Avg. 4o R1 QM Avg.
Overall

Qwen-32B 23.6 16.4 30.9 23.6 38.0 23.9 37.7 33.2 30.5
Qwen-72B 50.0 33.6 50.9 44.8 49.3 35.9 50.0 45.1 45.0
QwQ-32B 40.9 34.5 42.7 39.4 53.6 43.8 52.2 49.9 46.9
Ours-32B 46.4 38.2 45.5 43.4 52.2 42.0 53.6 49.3 47.6

racy improvements of 17.1% on the Chinese dataset430

and 14.2% on the English dataset. In the follow-431

up stage, the gains remain substantial at 16.1%432

and 19.8%, respectively. When compared with433

the reasoning-augmented QwQ-32B and the larger434

Qwen-72B, our model demonstrates comparable435

or even superior performance. Considering the436

overall performance of both datasets, our approach437

achieves the best overall results among all the mod-438

els evaluated. These findings highlight the effec-439

tiveness of reasoning in enhancing differential and440

diagnostic accuracy across multilingual settings.441

Figure 7: The plausibility of examinations requested by
different models.

5.3 The Plausibility of Examinations442

To assess the plausibility of the follow-up exam-443

inations suggested by each model during the ini-444

tial consultation stage, we employ GPT-4o as an 445

external evaluator. Specifically, GPT-4o is asked 446

to judge whether the proposed examination items 447

are appropriate, given the differential diagnosis list 448

generated by the model. To ensure stability and re- 449

duce variance, we repeat the evaluation three times 450

for each response and compute the model’s pass 451

rate as the final metric, i.e., the proportion of times 452

the suggestions are deemed plausible by GPT-4o. 453

The results are shown in Fig. 7. As illustrated, 454

our model exhibits a clear advantage in plausibility, 455

which can be attributed to the carefully designed 456

SFT. However, overall pass rates remain modest, 457

primarily due to the inclusion of redundant exami- 458

nations aimed at verifying elements of the differen- 459

tial diagnosis. 460

Figure 8: The average response lengths of 4 models in
different stages.
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5.4 Response Length461

Following prior work (Huang et al., 2025), we462

examine the response lengths of different mod-463

els across the two consultation stages (Fig. 8). In464

the first consultation, reasoning-enhanced models465

(QwQ-32B and ours) output around 2,000 tokens,466

while the larger Qwen-72B generates about 600467

tokens and baseline Qwen-32B about 400 tokens.468

In the second consultation, base models (Qwen-469

32B and Qwen-72B) become more verbose, while470

QwQ-32B shortens, and our model maintains a sim-471

ilar length. This reflects two opposing but reason-472

able factors. Integrating new findings may increase473

length, while ruling out differentials is simpler than474

proposing them. Notably, the original models con-475

sistently generate responses of about 1,000 tokens,476

while ours maintains around 2,000. This may sug-477

gest a tendency toward over-reasoning induced by478

SFT.479

5.5 Ablation Study480

The ablation study focuses on two key aspects: (1)481

validating the effectiveness of incorporating two-482

turn diagnostic data during supervised fine-tuning483

(SFT data ablation), and (2) evaluating the neces-484

sity of the RAGES components (RAGES ablation).485

Figure 9: Ablation study on the usage of SFT data. w/
Initial SFT suggests only incorporating the data about
initial consultation, and w/ Follow-up SFT further in-
cludes data about follow-up consultation.

SFT data ablation. We compare Qwen-32B with486

two SFT variants: one trained on initial consulta-487

tion data only, and another on both consultation488

stages. The results are shown in Fig. 9. Even lim-489

ited to the first-turn data, SFT significantly boosts490

performance in both stages. This improvement may491

stem from the model generating a more accurate492

differential diagnosis in the initial turn, which in-493

herently facilitates more precise final diagnoses. 494

Adding follow-up data slightly reduces differential 495

accuracy but notably improves final diagnosis ac- 496

curacy, highlighting the value of learning to reason 497

with appended evidence. 498

Table 3: Ablation study on different phases of RAGES.
w/ GT suggests reusing the original results, and w/ KB
retrieves from the knowledge base.

RAGES Correctness (%)
w/ GT w/ KB EN CN Overall

82.7 79.2 80.2
✓ 86.4 80.3 82.0

✓ 84.5 80.7 81.8
✓ ✓ 86.4 84.1 84.8

RAGES ablation. As in Section 5.3, we also em- 499

ploy GPT-4o to assess the correctness of simulated 500

examination results under four RAGES settings: 501

vanilla generation, with reused text, with retrieved 502

knowledge, and the full combination. The results 503

are presented in Table 3. Including either reused 504

or retrieved information improves output quality, 505

while combining both yields the highest correct- 506

ness, confirming their complementary value for 507

factual and plausible result synthesis. 508

6 Conclusion 509

We present a two-turn reasoning workflow to sim- 510

ulate and evaluate the full hypothetico-deductive 511

diagnostic process in pathology using large lan- 512

guage models. We enable fine-grained supervi- 513

sion and evaluation by formalizing diagnosis as a 514

two-turn task and introducing the RAGES method 515

for follow-up examination simulation. Our exper- 516

iments confirm the importance of evidence acqui- 517

sition in LLM-assisted diagnosis and highlight the 518

benefits of reasoning. Our model achieves superior 519

or comparable performance to larger or reasoning- 520

enhanced models, while also generating more plau- 521

sible diagnostic reasoning and examination sug- 522

gestions. This work lays a foundation for future 523

works, including (1) incorporating more turns of 524

evidence gathering and differential refinement, (2) 525

combining comprehension of pathological images 526

into the workflow, thus formulating a multimodal 527

framework, and (3) including human-in-the-loop 528

assessments for a more reliable model development 529

and evaluation. 530
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Limitations531

This work represents an initial exploration of in-532

tegrating two-turn reasoning into pathological di-533

agnosis using LLMs. As a foundational step, our534

approach focuses exclusively on text-based reason-535

ing, without incorporating the multi-modal interac-536

tion between pathology images and textual findings.537

Additionally, for clarity and evaluation feasibility,538

we model diagnosis as a two-turn process, which539

simplifies the inherently multi-turn and iterative na-540

ture of real-world clinical reasoning. For example,541

in real-world diagnosis, pathologists typically first542

order IHC tests, followed by molecular tests, and543

finally whole-genome sequencing, while in this544

work, the three kinds of tests are combined as a545

one-turn request in the follow-up consultation.546

Regarding methodology, the limitations of this547

study fall into two main aspects. First, our ap-548

proach relies solely on supervised fine-tuning549

(SFT) to activate the model’s reasoning capabili-550

ties. While SFT is efficient and practical, reinforce-551

ment learning (RL) offers an alternative avenue552

for encouraging native reasoning. However, RL553

introduces significant challenges. Designing mean-554

ingful reward functions for diagnostic tasks and im-555

plementing robust training frameworks for flexible556

multi-turn dialogue remains non-trivial, especially557

within existing infrastructures such as OpenRLHF558

or VeRL. Second, our evaluation framework de-559

pends on LLM-based judgments rather than human560

experts. Although we mitigate this limitation by561

incorporating multiple strong LLMs (e.g., GPT-4o,562

DeepSeek-R1, Qwen-Max) and averaging results563

across them, automated evaluation still lacks the564

clinical authority and nuanced judgment that ex-565

pert pathologists provide. Future work will include566

human-in-the-loop evaluation to ensure real-world567

applicability and safety.568

Ethics Statement569

This work leverages pathological case studies from570

multiple sources, raising two primary ethical con-571

siderations, i.e., patient privacy and data distribu-572

tion.573

Regarding patient privacy, all case reports col-574

lected from public websites and journals were al-575

ready anonymized at the source. We carefully576

removed any personally identifiable information577

from the in-house dataset, preserving only essen-578

tial information such as age and gender for clinical579

reasoning.580

In terms of data distribution, we will not release 581

the in-house dataset publicly due to institutional 582

data protection policies. For externally sourced 583

cases, we strictly adhered to the usage guidelines 584

specified by each website or journal. To avoid 585

unauthorized redistribution, we will release only 586

the URLs linking to the original case sources, al- 587

lowing other researchers to access the materials 588

while respecting the original data ownership and 589

licensing terms. 590

The risk of this work may lie in the improper 591

responses (including repetitive patterns, false in- 592

formation, malignant output, etc.) since we do not 593

specifically strengthen the safety of the model. 594
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A Appendix 801

A.1 Full Prompts 802

We append the full prompts used in SFT data, two- 803

turn consultation, and automated evaluation for 804

reproducibility. 805

Prompts used in SFT data. The whole prompt 806

includes a system prompt to explicitly separate 807

thinking and answering, a detailed instruction in 808

the initial consultation, and a follow-up instruction, 809

as illustrated in Fig. 10. 810

Prompts used in two-turn workflow. We use a 811

simplified prompt for the original models during 812

the two-turn workflow, as illustrated in Fig. 11. The 813

difference is two-part. We drop the system prompt 814

to avoid disturbing its original one, and we use 815

a prompt without step-by-step instructions in the 816

initial consultation since we find some interesting 817

outcomes introduced later in Appendix A.2. 818

Prompts used in automated evaluation. We use 819

LLMs to evaluate the differential and diagnostic 820

accuracy, as well as the examinations and results. 821

The prompts used in evaluating are shown in Fig. 822

12. 823

A.2 Ablation on Prompting 824

As stated before, we compare the performance of 825

the original Qwen models with detailed instruc- 826

tions, as used in our model, to investigate the influ- 827

ence of prompting (Prompt ablation). 828

Prompt ablation. Figure 13 presents the differ- 829

ences. For a relatively weak model (Qwen-32B), a 830

detailed step-by-step instruction can bring dramatic 831

improvement, though not comparable with stronger 832

models like Qwen-72B (larger), QwQ-32B (rea- 833

soning improved), and ours. For strong models, 834

detailed instruction seems to limit their ability to 835

think and might cause a decline in performance. 836
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SFT Data Prompts

I need you to act as a professional pathologist. After carefully considering the given information, infer the possible 
differential diagnoses. Then, based on these differential diagnoses, suggest additional information that needs to be 
provided to rule out certain possibilities. Specifically:  
1. First, you need to carefully analyze the given information, which mainly includes case background information, 
previous examination items, morphological descriptions of pathological sections, etc. Summarize the evidence points 
related to the diagnosis from this information. 
2. Based on the given information, analyze what the possible differential diagnoses are and determine whether they are 
consistent with the given information. Note: These differential diagnoses should be as broad and accurate as possible 
(broad means considering less common diagnostic possibilities, and accurate means the listed differential diagnoses 
should not conflict with most of the background information).  
3. According to the listed differential diagnoses, propose the further examination items. You need to specify the exact 
antigen - antibody, staining type, or molecular type. If the existing information is sufficient to confirm a specific disease, 
only output that disease and leave the additional examination items blank.  
4. Finally, summarize the possible differential diagnoses and the required additional examination items in a given format. 
When summarizing the differential diagnoses, you need to rank the more likely diagnoses higher.   
5. Output four sections in the specified format: "Case Analysis - Differential Diagnosis Analysis - Additional 
Examination Items - Summary".  

Format requirements:   
## Case Analysis  
...  
## Summary  
**Differential Diagnoses**: \DiffList{Differential Diagnosis 1, ...}  
**Further Examinations**: \ExamList{Examination Item 1, ...}  

Here is the case:
<Case Information>

Now the results of the further examinations have come out. I need you to:
1. First, check the "Case Information" and the "First-round Diagnosis" to sort out the previous diagnostic chain of 
thought and related conclusions.
2. Then, check the "Results of Further Examinations". The additional test results may not fully match the items requested 
in the initial diagnosis. Based on the available test results, you need to conduct further differential analysis, and give the 
final diagnosis. Note: You are completely entitled to overturn the initial diagnostic approach and provide a diagnosis 
based on the current information after obtaining more data.
3. The final diagnosis must be output in the specified format, i.e., \boxed{Diagnosis Name}
Here is the information:
Results of Further Examinations: <Exam Results>

<think> Okay, now I need to deal with this case. I'm going to conduct a differential diagnosis analysis based on the 
provided information, and recommend further examination items ... </think>
<answer>  ...
**Differential Diagnosis**: \DiffList{...}
**Further Examinations**: \ExamList{...} </answer>

You are Qwen, created by Alibaba Cloud. You are a helpful assistant. A conversation between User and Assistant. The 
user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and 
then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and 
<answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>.Sy

st
em

As
si

.
Us

er
Us

er

<think> Okay, now I need to rethink this case ... </think>
<answer> ...
Final Diagnosis: \boxed{...} </answer>As

si
.

Figure 10: A full illustration of SFT data.
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Workflow Prompts
I need you to act as a professional pathologist. After carefully considering the given information, infer the possible 
differential diagnoses. Then, based on these differential diagnoses, suggest additional information that needs to be 
provided to rule out certain possibilities. Note: These differential diagnoses should be as broad and accurate as possible 
(broad means considering less common diagnostic possibilities, and accurate means the listed differential diagnoses 
should not conflict with most of the background information).  You should summarize the possible differential diagnoses 
and the required additional examination items in a given format. When summarizing the differential diagnoses, you need 
to rank the more likely diagnoses higher.   
Format requirements:   
## Case Analysis  
...  
## Summary  
**Differential Diagnoses**: \DiffList{Differential Diagnosis 1, ...}  
**Further Examinations**: \ExamList{Examination Item 1, ...}  

Here is the case:
<Case Information>

Now the results of the further examinations have come out. I need you to:
1. First, check the "Case Information" and the "First-round Diagnosis" to sort out the previous diagnostic chain of 
thought and related conclusions.
2. Then, check the "Results of Further Examinations". The additional test results may not fully match the items requested 
in the initial diagnosis. Based on the available test results, you need to conduct further differential analysis, and give the 
final diagnosis. Note: You are completely entitled to overturn the initial diagnostic approach and provide a diagnosis 
based on the current information after obtaining more data.
3. The final diagnosis must be output in the specified format, i.e., \boxed{Diagnosis Name}
Here is the information:
Results of Further Examinations: <Exam Results>

 ...

**Differential Diagnosis**: \DiffList{...}
**Further Examinations**: \ExamList{...} As

si
.

Us
er

Us
er

<think> Okay, now I need to rethink this case ... </think>
<answer> ...
Final Diagnosis: \boxed{...} </answer>As

si
.

Figure 11: A full illustration of prompts in the workflow.
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Evaluation Prompts
I need you to act as a professional pathologist. After careful consideration based on the given disease candidates and the 
true diagnosis, determine whether the true diagnosis (or a close approximation) is among the candidates and, if present, 
its position in the list. If it is within the candidates, output \boxed{True} + "Hit candidate content" + "Position of the hit 
content" at the end; otherwise, output \boxed{False} + No hit + 0.

I need you to assist me in determining whether some pathological content is reasonable. I will provide you with a list of 
differential diagnosis diseases, a set of further examination results, and the ground truth diagnosis. You need to 
determine:  
1. Based on the list of differential diagnosis diseases, judge whether the additional examination items are reasonable and 
record the unreasonable items;  
2. Based on the ground truth diagnosis, judge whether the further examination results are reasonable and record the 
incorrect results.  

**Notes**:  
1. When the additional examination items are "no need," both items can be directly considered reasonable.  
2. When judging the plausibility of examination results, do not consider whether some results are omitted; only judge the 
reasonableness of the existing examination results.  

The information you need to use is as follows:  
- Differential diagnosis: ...  
- Further examinations and results: ...  
- Ground truth diagnosis: ...

After careful consideration, you need to summarize at the end of the output in the following format:  
1. Exam: \boxed{True|False}, \List{Wrong Item 1, ...}  
2. Result: \boxed{True|False}, \List{Wrong Item and Result 1, ...}

 ...

\boxed{True | False} + ... + <digital>As
si

.
Us

er
Us

er

 ...

1. Exam: \boxed{True | False}, \List {...}
2. Result: \boxed{True | False}, \List {...}As

si
.

Figure 12: A full illustration of prompts for evaluation.
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Figure 13: Performance gains with a detailed instructing
prompt on original Qwen models.
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