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ABSTRACT

We introduce FlexCap, a module that generates localized descriptions for any re-
gion in a given image. We use the idea of length conditioning to ensure the output
captions have the desired length. This allows for controllable generation of the
full spectrum of localized captions, ranging from short object names to full sen-
tence descriptions. To train this model, we create a dataset of image-box-caption
triplets from web-scale text-image pairs using open-vocabulary object detection
models. We show that FlexCap can connect images with LLMs by representing
images as a sequence of region descriptions and their spatial extents. Using this
interpretable textual representation, we exceed the state-of-the-art zero-shot per-
formance on many visual question answering tasks. We also show that FlexCap
can be fine-tuned to achieve strong performance on the dense captioning task on
the Visual Genome dataset. Finally, we demonstrate qualitatively how FlexCap
can be used for image labeling, object attribute recognition, and visual dialog.

1 INTRODUCTION

The groundbreaking success of large language models (LLMs) has led to the widespread adoption
of this technology in a variety of applications. The introduction of vision-language models (VLMs)
has further enhanced these capabilities by enabling reasoning over visual content in the form of
question answering and visual dialog. Nevertheless, the ideal representation for utilizing LLMs to
enable visual applications is still an open question.

A popular and effective strategy is to directly provide visual features as input tokens to LLMs. Two
successful systems, Flamingo (Alayrac et al., 2022a) and BLIP (Li et al., 2022; 2023), have focused
on utilizing latent representations produced by frozen visual backbones and integrating these with
frozen LLMs. While Flamingo uses cross-attention to adapt visual tokens to be used by the language
model, BLIP adapts visual tokens to be ingested just like text tokens by the language model. In this
work we investigate if instead of representing the image by latent visual features, we can directly
provide textual representations of an image by focusing on its elements: objects and regions.

We explore this alternative strategy with the idea of flexible captioning – generating controllably
rich and localized captions as shown in Fig. 1. Our model, FlexCap, enables spatially controllable
inquiry of any bounding box in the image, with the desired text detail controlled by the generated
word count. FlexCap effectively combines three tasks that have been studied in isolation until now:
image captioning, object detection, and dense captioning. While image captioning models can cap-
ture coarse semantic information they lack spatial understanding of the visual content. On the other
hand, object detection brings spatial information in the form of bounding boxes. But object de-
tection systems lack semantic details (attributes and relationships between objects) and are usually
limited to a few classes. Recently open-vocabulary object detection increases the semantic diversity
but it is still limited by text queries or prompts provided manually. Dense captioning (Johnson et al.,
2016) is the task of localizing salient regions of the image and describing them with natural lan-
guage sentences. However the capacity and richness of these models are limited with existing image
captioning datasets (e.g. COCO(Lin et al., 2014) and Visual Genome (Krishna et al., 2017)). More-
over, these methods focus on full sentence generation rather than a mix of short and long captions
at several levels of richness as people typically do. FlexCap combines all three tasks into one sys-
tem by formulating each of them as different captioning problems – image captioning implies using
FlexCap to caption the whole image as one big bounding box, dense captioning can be performed
by conditioning on individual boxes, and object detection can be performed by prompting the model
to produce short class names as captions.
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Figure 1: FlexCap generates controllably rich localized descriptions for any region in an image as
shown on the left. It has the flexibility to produce captions in a controllable manner which allows the
full spectrum of valid descriptions to be explored from short object category names to fully-detailed
captions. On the right, we demonstrate that rich localized captions generated by FlexCap, when
coupled with large language models (LLMs), enable zero-shot visual question answering.

To be able to train such a model, we require a dataset of images where many boxes are labeled with
short and long descriptions. We propose a method to generate 32 billion triplets of (i) image, (ii) a
proposed region within the image, and (iii) its corresponding caption from a web-based image-text
pair dataset, through the use of open-vocabulary object detectors. Training FlexCap on this dataset
enables the model to generate spatially and semantically rich representations (bounding boxes and
their descriptions) that focuses on objects, their attributes, and their contextually changing descrip-
tions. We show that this human interpretable representation, when combined with the power of
LLMs, enables visual question answering and dialog. We also demonstrate that this combination
can result in performance that is competitive with state-of-the-art VLM models on zero-shot image
and video question answering benchmarks.

Our key technical contributions are: (i) controllable localized visual descriptions, using word count
as a proxy for complexity to modulate the output of a generative language model, and using bounding
box conditioning to indicate local regions in the image; (ii) a large-scale dataset generated from web-
scale image-text pairs that enables training of our model; (iii) demonstrating that, with the support of
LLMs, the human interpretable representation generated by FlexCap, is comparable performance of
SOTA methods on open-ended image and exceeds SOTA performance on video question answering
benchmarks in the zero-shot setup; (iv) demonstrating that our localized captioning performance
exceeds the existing localized captioning methods under comparable scenarios.

2 FLEXCAP

Architecture. Our objective is to train a model that takes an image and a region of interest and out-
puts a description of the region spanned by the box. We present FlexCap’s architecture in Figure 2.
The model takes an image, the coordinates of a bounding box and the conditioning tokens as input,
and outputs a textual description of visual contents within the specified bounding box. Our model
mainly consists of an image encoder (i.e. ViT-B/16) and a transformer-based text-decoder. We pass
the image through the vision model to produce outputs of dimensions n× d (where n is the number
of patches and d is the embedding size ). We pass the bounding box coordinates (of dimensions
1 × 4) through a linear layer to produce the coordinate features (of dimension 1 × d). The vision
features are concatenated with features from normalized bounding box coordinates. These concate-
nated inputs (of dimension (n+1)×d) are fed into a text decoder which is a stack of L Transformer
layers. We use a decoder-only architecture in which all the vision, bounding box tokens remain un-
masked but the text tokens are masked in a causal manner to enable next-word prediction training.
The reason for adding all the vision tokens and bounding box coordinate tokens is so that the text
decoder has access to all the context present in the image and the exact location of the bounding box.
In this work, we train a decoder of 12 layers with a dimensionality of 768 and 12 attention heads.
We use the standard vision transformer encoder layer architecture for the text decoder as well. In
total, FlexCap has 248M parameters with 86M comprised of the image encoder (ViT-B) and the
remaining parameters in the text decoder.

Length conditioning. For the same region there may be multiple valid captions. In the input image
shown in Fig. 3, all the following descriptions are correct: dog, Border collie, dog playing with a
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   Input Image  Bounding Box

Image Encoder Linear Projection

Text Decoder

     grey  and  white  cat   lying    on   shoes

 grey  and  white  cat   lying   on  shoes  <eos>

 Conditioned Captions

Prefix 
Token Caption

[xmin, ymin, xmax, ymax]
LENGTH-1 cat

LENGTH-4 grey and white cat

LENGTH-7 grey and white cat 
lying on shoes 

cat

grey and white cat

grey and white cat 
lying on shoes 

Append 
prefix  
token 

LENGTH-7 

Figure 2: Architecture and Training Setup. We train a model that takes an image and a bounding
box as input and outputs a length-controlled caption of the object contained in the bounding box.
We specify the length by prefixing it before the caption. The training loss is the standard next-word
prediction loss that is used to train image captioning models.

frisbee, brown dog playing on a grass field. This task does not have one right answer as for the same
input there can be multiple correct outputs. We equip the model with the capability of producing
outputs of a desired length by utilizing the idea of length conditioning. This is implemented simply
by adding an additional token that indicates the desired length of the output caption. There are
several advantages for doing this. First, the number of words used to describe is often proportional
to the information content. We train the model to predict the next words in the sequence while
accounting for the desired length, thereby the model learns to modulate the amount of information
in the generated text. Also, length conditioning allows users to control the output of the model
further enabling the use of a single model for many diverse tasks.

Additionally, the length prefix provides a better conditioned initial state for the captioner. Fig. 2
shows how the same box might have more than one ground truth captions <s> a cat <e> or
<s> grey and white cat lying on shoes <e>. If we use the first caption as ground
truth and the words <s> a cat as the seen text, the next-word prediction loss encourages the
model to increase its score for the <e> token and decrease the score for the word playing due to
the softmax loss. This is in direct conflict with the second caption. These kind of training issues are
alleviated by the use of the length prefix.

Loss. We train the model to predict the next token of the text. The text tokens are prefixed with
the desired length of the caption and appended with an end of sentence token <e> to indicate the
end of the caption. The target text tokens are obtained by shifting the padded text by 1. This is
common training methodology for training generative language models like GPT (Brown et al.,
2020) or SimVLM (Wang et al., 2021). The loss is a classification loss over all the words present
in the vocabulary. The loss is ignored over the padded tokens that are used to keep the size of the
outputs same for all the captions in the batch.

Implementation. We implement this model using the JAX framework (Bradbury et al., 2018). We
train the entire model from scratch for about 250K steps using the AdamW optimizer with a cosine
learning rate schedule. The maximum learning rate is 6.4× 10−4 with 10K warm-up steps. We use
a weight decay of 0.1. We train with a batch size of 16384 and image resolution of 224× 224. We
use a maximum text sequence length of 16. For each image in the batch, we sample a maximum of
8 bounding boxes for each training step.

Inference. At inference time, we provide an image, the target bounding box, and the desired length
as input. We then decode in an auto-regressive manner till the end of caption token <e> is en-
countered or the maximum number of decoding steps is reached. It is also possible to provide a
partial caption as a prefix (such as ”this is made of”) to the model which enables us to query for any
particular property displayed in a given bounding box. We use standard sampling techniques used
in text-generation like beam search, temperature sampling, or nucleus sampling (Holtzman et al.,
2019) to generate multiple captions.

3 WEB-SCALE LOCALIZED CAPTIONING DATASET

In order to train the FlexCap model, we build a large scale dataset of image region descriptions of
varying lengths. In the following section we describe how we produce such a dataset from existing
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Figure 3: Dataset Generation. We use OWL-ViT to generate a dataset of triplets of image, bound-
ing box and captions from a web-scale dataset of noisy image-text pairs. Increasing levels of richness
in captions is captured through different length descriptions for each box.

image-text paired datasets. We leverage the web-based image-caption pairs from WebLI (Chen
et al., 2022). The dataset generation pipeline is shown in Fig. 3. First we create text queries using
n-grams from the caption of the image: e.g. “dog”,“brown dog”, “brown dog playing with a disc”.
We specifically create n-grams where n = {1, 2, · · · , 8} and then filter out incomplete captions like
“with a red”, “dog playing with”. More details about the filtering step are mentioned in the appendix.
Then we use the filtered n-grams as text queries for pre-trained region proposal models (i.e. OWL-
ViT (Minderer et al., 2022)) to extract boxes and select text-box pairs based on the similarity score
(> 0.1). Multiple n-grams may match for a box, and this results in several ways of describing a box
in the image as shown in Col. 4 in Fig. 3.

This data collection technique results in 32 billion image-box-caption triplets from 2 billion images
without requiring extensive manual annotation. Our captions show a rich vocabulary that is close
to common language used to describe objects in the context of an image. If we use MS-COCO’s
vocabulary then all humans in the dataset would get labeled as person. However by building our
vocabulary in a bottom-up manner we end up with captions that contain more informative words
such as baby, nurse, policeman, firefighter, or baseball player to describe the person class. Please
refer to the appendix for details of dataset statistics and examples.

4 FLEXCAP WITH LLMS

Recent work on improving the recognition and reasoning capability of vision models, so that they
can perform tasks such as question answering and visual dialog, has focused on connecting features
from vision models like ViT to Large Language Models (LLMs). Flamingo (Alayrac et al., 2022b),
PALI (Chen et al., 2022), PALM-E (Driess et al., 2023) have focused on using patch features from
images as words or tokens. Here, we propose an alternate approach. Instead of adapting LLMs to
understand vision features, we explore connecting images with LLMs using rich text in the form of
localized descriptions. As FlexCap solves the rich visual perception problem by generating dense
localized information, it enables LLMs to perform high-level spatial and textual reasoning by linking
spatially enriched visual concepts with the world knowledge. When combined with their well-
trained common-sense reasoning, LLMs can reason about attributes by looking at singular object
detections, scene-level understanding by utilizing larger window descriptions, counts by checking
number of bounding boxes with similar content, and relative spatial relationships by comparing
location of the boxes. Now we will discuss how to connect FlexCap with LLMs.

FlexCap-LLM. To adapt the base FlexCap to have improved detection skills, output longer sen-
tences, and identify OCR, we co-train FlexCap for 25k more steps on detection (COCO, VOC,
OpenImages, LVIS), captioning (COCO Captions, Visual Genome) and OCR datasets (WebLI). For
image captioning datasets we use the bounding box that covers the whole image. For decoding OCR,
we use an OCR token. We find this co-training step useful for downstream tasks using the LLM. In
Figure 4, we show how we use FlexCap with an LLM to solve visual questions. First, we convert
an image to a sequence of localized descriptions that describe the image in terms of the objects and
regions present in the image. To do so, we need region proposals. We use OWL-ViTv2 (Minderer
et al., 2023) to localize important objects and regions in an image. We keep the top 64 bounding
boxes by their objectness scores. We then use FlexCap to describe each box in the image in the

4



Under review as a conference paper at ICLR 2024
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Box-caption pairs 
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Figure 4: FlexCap for VQA with bounding box proposals and an LLM. FlexCap generates
captions for different regions in a given image. To answer any open-ended questions, we prompt an
LLM with FlexCap’s detections (box-caption pairs).

context of the entire image. In order to produce holistic descriptions, we use multiple prefixes for
each region. These prefixes are a combination of length conditioning token and some initial text.
We add the boxes and their descriptions to a text preamble (see Fig. 4) that defines the setup where
we are using an LLM to answer questions about an image. In all the experiments, we use PALM2-S
model (Anil et al., 2023) as the LLM of choice. We refer to this end-to-end system that takes an
image and a question to output the answer as FlexCap-LLM.

5 EXPERIMENTS

We evaluate our model across different tasks that require different levels of detail. In Section 5.1,
we test FlexCap-LLM on visual question answering tasks. In Section 5.2, we evaluate how FlexCap
can be used for localized captioning In Section 5.3, we provide ablations, qualitative results and
applications of FlexCap.

5.1 VISUAL QUESTION ANSWERING

Visual question answering (VQA) often requires visually grounded rich semantic understanding
of the content at multiple levels of granularity depending on the question. These properties make
VQA a great test-bed for our method which can generate dense spatially grounded information on
visual content with desired semantic complexity. Hence we evaluate the effectiveness of FlexCap-
LLM on several image VQA benchmarks such as OKVQA (Marino et al., 2019), GQA (Hudson &
Manning, 2019b), and VizWiz (Gurari et al., 2018), and video question answering benchmarks such
as MSRVTT (Xu et al., 2016) and MSVD (Xu et al., 2017). Diverse characterictics of these datasets
helps gaining better insight on FlexCap’s capabilities. We report the commonly used accuracy metric
for each dataset.

5.1.1 IMAGE QUESTION ANSWERING

First we evaluate FlexCap-LLM on GQA, OKVQA and VizWiz image VQA benchmarks in a zero-
shot setting, meaning that our approach is not trained with the task or the corresponding dataset. The
results on these benchmarks are presented in Table 1.

Compositional VQA. GQA dataset is generated for evaluating the performance on complex compo-
sitional questions. As FlexCap produces information for multiple visual elements in the scene with
their corresponding locations, it is quite well-suited for questions on compositional understanding
of the image. On this benchmark, as shown in Table 1(a), FlexCap-LLM outperforms all the re-
cent baselines except for ViperGPT (Sur’is et al., 2023) which is also known for its compositional
understanding properties. Though, note that ViperGPT uses multiple tools on the fly with certain
associated costs whereas we only utilize FlexCap outputs and feed them to an LLM.

VQA with External Knowledge. OKVQA dataset is particularly designed for evaluating the abil-
ity to answer questions about images that require external knowledge which is not readily available
on the image. Hence it requires multiple levels of understanding of the content and reasoning with
that informationm which is well-suited for applying FlexCap. Its performance on OKVQA is com-
parable to Flamingo and ViperGPT which highlights the effectiveness of the mix of generic and
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Table 1: Zero-shot image question answering results. FlexCap-LLM is compared against recent
baselines. Grayed out methods are trained on question answering datasets.

(a) GQA results on test-dev set

Method Accuracy(%)

LGCN (Hu et al., 2019) 55.8
LXMERT (Tan & Bansal, 2019) 60.0
NSM (Hudson & Manning, 2019a) 63.0
CFR (Nguyen et al., 2022) 72.1

FewVLM (Jin et al., 2021) 29.3
BLIPv2 (Li et al., 2023) 44.7
ViperGPT (Sur’is et al., 2023) 48.1
FlexCap-LLM 47.5

(b) OKVQA results on Val set

Method Accuracy(%) ↑
PalmE-12B (Driess et al., 2023) 55.5
PalmE-562B (Driess et al., 2023) 66.1
PaLI-3B (Chen et al., 2022) 52.4
PaLI-17B (Chen et al., 2022) 64.5

BLIPv2 (Li et al., 2023) 45.9
Flamingo (Alayrac et al., 2022b) 50.6
ViperGPT (Sur’is et al., 2023) 51.9
FlexCap-LLM 50.6

(c) VizWiz results on Val set

Method Accuracy(%) ↑
Flamingo 32-shot (Driess et al., 2023) 49.8
Flamingo FT (Driess et al., 2023) 65.7
PaLI-3B (Chen et al., 2022) 67.5
PaLI-17B (Chen et al., 2022) 74.4

Flamingo (Alayrac et al., 2022b) 31.6
FlexCap-LLM 38.0

Table 2: Zero-shot video question answering results reported on MSRVTT-QA and MSVD-QA
on test set. FlexCap-LLM is better than other zero-shot baselines for video VQA benchmarks.

MSRVTT-QA MSVD-QA

Flamingo 3B (Alayrac et al., 2022b) 11.0 27.5
Flamingo 9B (Alayrac et al., 2022b) 13.7 30.2
Flamingo 80B (Alayrac et al., 2022b) 17.4 35.6
FlexCap-LLM (8 frames) 24.9 40.2

specific descriptions generated by FlexCap. Unlike other baselines which use the question, FlexCap
generates the captions without having access to the question .

VQA with atypical images. We also evaluate on VizWiz, which contains visual questions asked
by people who are visually impaired. Unlike web content, in these images the objects and the
scene are not always well-centered hence this dataset contains many out-of-distribution samples
compared to typical web-crawled datasets. Nevertheless, our approach significantly outperforms
Flamingo (Alayrac et al., 2022a) which also reports zero-shot performance on this dataset.

5.1.2 VIDEO QUESTION ANSWERING

We also evaluate FlexCap-LLM on zero-shot video question answering datasets MSRVTT-QA and
MSVD-QA (Xu et al., 2017). The results on these benchmarks are presented in Table 2. For process-
ing the video, we sample 8 frames uniformly from the video. We pass each of these frames through
FlexCap to produce captions of objects and regions. We then combine all the object captions from
the different frames into one prompt for the LLM. We observe FlexCap-LLM significantly exceeds
the performance of the Flamingo 80B model in the zero-shot setting.These results highlight the
zero-shot effectiveness of our method, which can solve tasks in the video domain even though both
FlexCap and the LLM were not trained for those tasks.

5.2 DENSE CAPTIONING

Dataset and Evaluation Metrics. The dense captioning task is defined as producing both the re-
gions and the corresponding descriptions for each region. For this experiment, we use the Visual
Genome (Krishna et al., 2017)) dataset. In this dataset, each image is annotated with multiple
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Table 3: Captioning boxes in Visual Genome dataset. FlexCap exceeds performance of other
methods. All methods have been fine-tuned on Visual Genome captions.

Method mAP

FCLN (Johnson et al., 2016) 27.11
CAG-Net (Yin et al., 2019) 36.29
FlexCap 43.62

(a) Captioning GT Boxes

Method mAP

FCLN (Johnson et al., 2016) 5.39
JIVC (Yang et al., 2017) 9.31
COCG (Li et al., 2019) 9.82
CAG-Net (Yin et al., 2019) 10.51
TDC+ROCSU (Shao et al., 2022) 11.49
GRiT (Wu et al., 2022) 15.52

FlexCap + GRiT Boxes 15.61
(b) Dense Captioning

Table 4: Compliance metrics. FlexCap produces length-compliant captions for different lengths.

Desired Mean of Std. Dev. of Accuracy Desired Mean of Std. Dev. of Accuracy
Length Pred. Length Pred. Length Length Pred. Length Pred. Length

1 1.00 0.00 1.00 5 5.04 0.21 0.98
2 2.00 0.00 1.00 6 6.05 0.21 0.95
3 3.07 0.25 0.93 7 7.02 0.20 0.96
4 4.02 0.13 0.98 8 8.01 0.18 0.98

bounding boxes and each box has a corresponding caption. We use the train-test splits and evalu-
ation metric as proposed in (Johnson et al., 2016). The paper proposes to use a mean of Average
Precisions (mAP) over pairwise thresholds of both IOU thresholds (0.3, 0.4, 0.5, 0.6, 0.7) and Me-
teor score thresholds (0.0, 0.05, 0.1, 0.15, 0.2, 0.25). We use the same preprocessing of text and
boxes as mentioned in (Wu et al., 2022).

Fine-tuning FlexCap. We fine-tune the pretrained FlexCap model on the Visual Genome train split
for 60k steps with a lower learning rate of 1e− 6 at a resolution of 448× 448.

Captioning GT boxes. Following the evaluation procedure from (Johnson et al., 2016), we evaluate
captioning of the ground-truth boxes in Visual Genome. Since this setting removes the localiza-
tion task, we have a cleaner evaluation of only the region captioning problem. The results of this
experiment are provided in Table 3a in which we show that FlexCap achieves better performance
compared to other approaches evaluated in this setting.

Captioning GRIT boxes. In this experiment, we want to compare against other approaches that
perform both localization and captioning. We are measuring how well FlexCap performs when
deployed together with an object detector. Table 3b shows FlexCap obtains better performance
compared to other approaches evaluated in this setting. Since, in our work we do not propose
any localization module we use GRIT’s (Wu et al., 2022) region proposals as the input boxes for
our model. This also allows us to directly compare our captioning capabilities against GRIT. We
find that our approach outperforms GRIT at this task even though we test at a lower resolution of
448× 448.

5.3 ABLATIONS AND QUALITATIVE RESULTS

Compliance Metrics. In this experiment, we measure how well our model complies to the desired
caption length. To do so, we take 1000 images from MS-COCO dataset and use a random object in
the image to produce a description with different lengths. We report the average length of the pre-
dicted caption, standard deviation, and fraction of times the predicted caption has a length equal to
the desired length in Table 4. We observe that our model produces captions in a controllable manner
with minor deviations. In Figure 5, we show qualitative examples of the FlexCap model producing
different length captions for the same box. Note how the model progressively adds more informa-
tion about the object by incorporating context in the longer sentences (in the jungle), attributes (pink
flamingo kite), and alternative nouns (chevy, feline).
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Output: Length controlled captions
1 Elephant
2 An elephant
3 Elephant in jungle
4 Elephant in the jungle
5 Elephant walking on a path
6 An elephant walking along a path
7 Standing in the woods with an elephant
8 The elephant was in the middle of nowhere
1 Cat
2 Typing cat
3 Computer with cat
4 Working from home feline
5 Cat sleeping on a computer
6 Cat stretching on a computer screen
7 Cat lying on top of a computer
8 Cat sleeping on the keyboard of a computer

1 Fisherman

2 Fisherman fishing

3 Fisherman at sea

4 Man on beach fishing

5 Person working by the boat

6 Fisherman in the sea of cortez

7 Fisherman in the sea of cortez mexico

8 Man fishing in the shallows of the beach

1 Kite
2 Flamingo kite
3 Pink flamingo kite
4 Colorful flamingo beach kite
5 Bird kite in blue sky
6 Flamingo kite at the marina bay
7 Pink flamingo kite flying in the wind
8 A pink flamingo kite flying on the beach
1 Chevy
2 Red truck
3 Back of truck
4 Car on the highway
5 The back of a truck
6 The back of a red truck
7 The back of a red pickup truck
8 A car on the side of the road

Input: Image + Bounding Box Output: Length controlled captionsInput: Image + Bounding Box

Figure 5: Examples of length controlled captions generated by FlexCap. Note that attributes
(“pink flamingo kite”) and context (“in the jungle”) are generated as the length increases.

Figure 6: Zero-shot Dense captioning results. We show detections and generated captions on the
Visual Genome dataset.

Conditioning Prefix: LENGTH-4 The color is ______ Conditioning Prefix: LENGTH-5 This is made of  ______

blue

red black

metal

concrete

wicker

copper

leather

ceramic

orange

purple blue

Figure 7: Extracting properties by conditioning FlexCap with prefixes. Examples of FlexCap
extracting properties of objects of different categories by using relevant prefixes. Note how we are
able to retrieve a one-word answer from the model by controlling the length of the caption.

Zero-shot Dense Captioning. We use OWL-ViTv2 to propose bounding boxes in the image. Flex-
Cap then labels each bounding box with a caption. We show some qualitative results in Fig 6. We
only show detections with a score > 0.3 to avoid clutter. These examples show how FlexCap can be
used to detect and describe objects without the need for further training on this joint task.

Extracting object properties. Not only does FlexCap allow conditioning on the box and the length
of the answer, it also allows textual prompting of a caption. We can use this property to our advantage
to extract object properties such as color and material. We show examples of this in Fig. 7.

6 RELATED WORK

Visual question answering (VQA), a task designed to assess if a computer can answer questions
about an image, often requires grounding visual concepts and reasoning. Although initially intro-
duced for supervised evaluation of the task (Antol et al., 2015), most recently VQA also become
one of the most powerful benchmarks for evaluating task and dataset independent visual dialog.
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Several existing models such as ViperGPT (Sur’is et al., 2023), Flamingo (Alayrac et al., 2022a),
BLIP (Li et al., 2022; 2023), PaLI (Chen et al., 2023) show convincing zero-shot performance on
the VQA benchmarks that rivals the supervised approaches. Unlike most previous zero-shot ap-
proaches, which tightly couple vision and language components in a single model, FlexCap gen-
erates a high-level human interpretable representation of an image and demonstrates that, through
straight-forward application of LLMs, we can achieve comparable performance with state-of-the-art
results across VQA benchmarks. Unlike others, ViperGPT (Sur’is et al., 2023), also decouples vi-
sion and language components and reinterprets visual questions with LLM generated programs, and
executes them using existing visual perception tools. Whereas, in our case we use only one power-
ful vision tool, i.e. FlexCap, to generate all the necessary information and leave the reasoning to an
LLM. In that sense, FlexCap is quite complementary to ViperGPT as it can be one of the powerful
tools that can improve the controllable visual understanding of the image for ViperGPT.

Open vocabulary object detection models like OWL-ViT (Minderer et al., 2022) and ViLD (Gu
et al., 2021) enable the user to query any given text on the image and obtain matched bounding boxes
for those queries. In these models the text is often encoded by a text encoder like CLIP (Radford
et al., 2021) and T5 (Raffel et al., 2020). The text embeddings are compared with the category-
agnostic box proposals coming from the visual backbone. In this work, we use OWL-ViT’s text
and vision encoders to associate bounding boxes with text-queries to produce our training data. By
training a localized captioning model, we remove the manual step of providing per-dataset or per-
image text queries to use OWL-ViT. RegionCLIP (Zhong et al., 2022) obtained good performance
on open-vocabulary object detection by utilizing region-level vision-language contrastive learning
on large scale data. We differ from this work as we generate the description for each bounding box
instead of associating text queries (defined manually) with bounding boxes.

Dense captioning involves localizing salient regions of the image and describing them with natu-
ral language sentences, introduced in (Johnson et al., 2016). In practice, the existing work often
produces longer and more informative descriptions of objects or their compositions using visual at-
tributes of objects (Yin et al., 2019; Kim et al., 2019) or contextual and global image cues (Yang
et al., 2017; Li et al., 2019). However, the richness of descriptions in this line of work are often
limited to existing image captioning datasets (Lin et al., 2014; Krishna et al., 2017). By utilizing a
large scale dataset of billions of noisy image-text pairs collected from the web (similar to (Jia et al.,
2021; Chen et al., 2022)), we aim to generate more diverse sentences with a focus on describing the
visual content in controllable detail using a richer visual descriptive space learned from the web.

Length-controlled image captioning has been explored in ZeroCap (Tewel et al., 2022) and
LIC (Deng et al., 2020). ZeroCap (Tewel et al., 2022) implements length control as a post-processing
step by changing the probability of sampling the end-of-sentence token. Hence the model is not
naturally trained with word length conditioning in mind and cannot guarantee fine-grained length
control at the level of number of words. On the other hand, LIC (Deng et al., 2020) generates length-
controllable captions by conditioning the model with learned tokens that represent different length
intervals. However there are considerable differences compared to FlexCap. First, our approach
allows for controllability at the level of image regions, while LIC only provides full image captions.
This is a significant difference, as it allows us to generate concise or detailed captions for all the
objects in the image. Second, our approach has a more precise level of caption-length control. LIC
uses a coarse subjective level of control with four or five levels of length (e.g. short, medium, long,
and longer), while our approach allows for an exact number of words to be specified.

7 CONCLUSION

In this work we introduce FlexCap, a flexible captioning model that can describe localized regions
in an image with controllably rich captions. To train FlexCap we generate a large-scale image-box-
caption dataset that is rich in diversity of visual descriptions and their length. We achieve it by
utilizing existing web-scale noisy image-text pairs and open-vocabulary object detection models.
We show how localized rich descriptions provided by FlexCap can help us connect images and
videos to LLMs and achieve strong performance on visual question answering and dense captioning
tasks.
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Figure 8: Interactive demonstration of FlexCap. Please visit https://flex-cap.github.io.

APPENDIX

A INTERACTIVE DEMONSTRATION OF FLEXCAP

Through the attached webpage (please see interactive_flexcap.html), we demonstrate in-
teractively how well flexible captioning works qualitatively on 40 images randomly selected from
the Visual Genome dataset. The interface is shown in Fig. 8. Once the user clicks an image on
the webpage, it shows the top-5 bounding boxes by default, but the user can draw any box to get
a description for it using FlexCap. Since we cannot pre-compute all potential bounding boxes, we
utilised OWL-ViT’s box proposal network to identify 200 boxes and captioned them with FlexCap.
The interface allows a user to draw a bounding box and then the closest pre-computed box is dis-
played if the IOU between the two boxes is above a certain threshold. We hope this interactive
demonstration shows the capabilities of the FlexCap model in detecting and describing different
objects and regions in an image.

B IMAGE-BOX-CAPTION DATASET DETAILS

Our dataset is composed of ∼32 billion Image-Box-Caption triplets. In Figure 11, we show the
distribution of caption lengths in the generated dataset. We observe that the distribution is not
uniform. This is due to the fact that there are more n-grams of length 1 to sample than length
8. The average number of unique boxes in an image is 4.19, and the average number of captions
per box is 4.04. We show some samples from the dataset in Figure 9. The alt-text from which
the box captions are generated is provided as the title of the image. Note the alt-text gets clipped
due to display-length limits which is why the detected boxes might have captions not visible in
the displayed alt-text directly. We next discuss how captions of varying lengths are matched with
different objects in an image.

n-gram Filtering. Before matching n-grams with boxes, we filter out n-grams that do not form
informative or grammatically correct captions for boxes. This is done with three steps: 1) Remov-
ing any captions composed only of uninformative words (image, jpg, background, wallpaper, hd
wallpaper etc.) 2) Removing n-grams that begin with words with which sentences usually do not
start (of, on, in etc.) 3) Removing n-grams that finish with words with which sentences usually do
not end (a, the, to, on etc.). This step is essential to reduce noise present in the large-scale image-
text pair dataset obtained from the web. It is also important for the captioning model to produce
grammatically correct informative sentences.
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Figure 9: Samples from the WebLI dataset Chen et al. (2022) that are used for generating our
Image-Box-Caption dataset. We only visualize a maximum of 5 boxes for each image to avoid
clutter.

C OBJECT CLASSIFICATION

Dataset and Evaluation Metrics. In this experiment, we solely evaluate the recognition capabilities
of our model in a zero-shot manner. We evaluate how good our model is at recognizing objects at
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Figure 10: Evaluating open-vocabulary outputs from FlexCap with the help of the CLIP (Radford
et al., 2021) text encoder.

Figure 11: Distribution of caption lengths in the Image-Box-Caption Dataset.

different scales and under occlusion in object detection datasets. To do so, we consider the problem
where an input image and the ground truth bounding box is provided as input to our model such that
it produces a short description (1-4 words) of what is contained in the bounding box. We use 2 object
detection datasets: PASCAL-VOC (Everingham et al., 2012) and MS-COCO (Lin et al., 2014) for
this experiment. For each of these datasets, we present 2 metrics: the classification accuracy and the
mean Average Precision (mAP) over all ground truth classes.

Mapping Predicted Captions to Classnames. Since our model produces captions for each box,
we need to map the predicted descriptive sentences to classnames. To do so, we use an off-the-shelf
text encoder (CLIP’s (Radford et al., 2021)) to match the generated captions with known object
class names. We show the full pipeline in Figure 10. We use nucleus sampling (Holtzman et al.,
2019) to produce multiple outputs. We then take the multiple predicted captions and the ground
truth class-names and pass both of these lists through the same text encoder. We then match the text
embeddings of the predictions and the class names using cosine similarity of the query embedding
and the class name embeddings. We report the results of this experiment in Table 5. Interestingly,
the more descriptions our model generates the more accurate the predictions become. We show
mAP improvements of 11% and 15.3% by just generating more caption samples per bounding box.
CLIP (Radford et al., 2021) introduced the idea of using multiple prompts to get a more robust score
for the class names, we show that generating multiple captions of the same image and averaging
them provides a more accurate representation of the object as opposed to just one caption.

D REFCOCO EXAMPLES

RefCOCO dataset Kazemzadeh et al. (2014) introduces a task which given an input text referring
to an instance of an object in an image, the output is to localize the instance the text is referring
to. It involves differentiating between instances of the same object category. On the other hand
our model is trained for the inverse task of describing a given bounding box. However, we find
images in this dataset to be good candidates to check how FlexCap describes same object classes
using different words, particularly focusing more on attributes and context rather than 2D image
positions (e.g. left, right) as is often done in RefCOCO annotations. Especially for differentiating
people FlexCap usually relies on clothing and colors. We show qualitative results in Figure 12. We
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Table 5: Classification accuracy and mAP increase considerably with number of captions generated
by the model.

VOC COCO

No. of Captions Acc. mAP Acc. mAP

1 77.1 72.5 49.3 36.1
2 77.2 73.2 49.7 37.0
5 78.5 77.7 51.6 41.8
10 79.1 81.0 54.3 48.1
15 79.7 82.1 54.8 49.8
20 80.0 83.4 55.2 51.4

show ground-truths (green boxes) from RefCOCO to highlight what instances were chosen. In the
first three rows, we show examples where FlexCap successfully describes different instances of the
same category. In the last row we show two examples where FlexCap does not differentiate between
different classes.

E VISUAL DIALOG

FlexCap-LLM can be used for the task of visual dialog Das et al. (2017). We first caption all the
objects in the image using FlexCap. Once the image has been represented as the list of objects, we
can interact with an LLM by providing the conversation turns as additional context for each query
to the LLM. We show some examples of conversations with the FlexCap-LLM system in Figure 13.
Note how the model is able to read text in the image in the leftmost figure, recognize material in
the middle figure, and localize objects of interest in the rightmost figure. As we compute the object
captions only once in the beginning of the conversations, there is no additional overhead of querying
a large VLM for each additional turn in the conversation.

F LLM PROMPTS

We use the following prompts for the LLM in the question-answering experiments.

OK-VQA and GQA.

Preamble:You are a helpful assistant answering questions about
images to people. You can look at the list of object detections
in the image and answer questions. The image content may not be
sufficient to answer the questions, and you may need to rely on
external knowledge resources or commonsense. In an image, many
objects were detected. They are listed in the following format:
[object descriptions] [cx, cy, w, h], where cx is x coordinate
of the center, cy is the y coordinate of the center, w is the
width and h is the height of the bounding box of that object in
the image. The list of objects is as follows:

Object representation: [captions] [cx, cy, w, h]

Question Prompt: Q: <question> Answer in one word. A:

VizWiz

Preamble:You are a helpful assistant answering questions about
images to people. You can look at the list of object detections
in the image and answer questions. The image content may not
be sufficient to answer the questions, and you may need to rely
on external knowledge resources or commonsense. In an image,
many objects were detected. They are listed in the following
format: [object descriptions] [cx, cy, w, h] [score], where cx is
x coordinate of the center, cy is the y coordinate of the center,
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Figure 12: FlexCap on RefCOCO Dataset. For each image pair, RefCOCO ground-truth captions
are displayed on the left, and FlexCap captions are displayed on the right. Our method focuses
more on attributes and context rather than 2D image positions (e.g. left, right) as is often done in
RefCOCO annotations.

w is the width, h is the height and s is the confidence score for
the object detection. Low score means the detection is likely
inaccurate, and this often makes the question unanswerable. You
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What is in this picture?

The image contains a blue bowl, a 
blue knitted blanket, a monster, a 
spoon, teeth, eyes, horns, a 
button, a handle, cereal, food, and 
a blanket.

What is the color of the monster?

It is a red monster with white 
horns, teeth and eyes.

What is in this picture?

The image contains the following 
objects: apples, bananas, grapes, 
kiwi fruit, lemons, mangoes, 
oranges, potatoes, tomatoes

What is the fruit at the top left 
corner of the image?

Brown kiwi fruit

What is happening in the photo?

A plane is on the runway.

Which side is the airplane 
pointed? Why?

The airplane is pointed to the right 
side of the image. This is because 
the nose of the plane is located on 
the right side of the image, and the 
tail of the plane is located on the 
left side of the image.

What flight is it?

The flight is operated by Singapore 
Airlines.

What is the price of grapes?

The price of grapes is not listed.Where is the bowl placed on?

Blue blanket

Figure 13: FlexCap-LLM for Visual Dialog

can answer questions as ’unanswerable’. The list of objects is as
follows:

Object representation: [captions] [cx, cy, w, h] [score]

Question Prompt: Q: <question> Answer in one word. A:

MSRVTT and MSVD.

Preamble:You are a helpful assistant answering questions about
videos to people. You can look at the list of object detections
in each frame and answer questions. In a video, many objects were
detected in each frame. In frame <frame number>, the following
objects were detected:

Object representation: [captions]

Question Prompt: Q: <question> Answer in one word. A:

18


	Introduction
	FlexCap
	Web-scale Localized Captioning Dataset
	FlexCap with LLMs
	Experiments
	Visual Question Answering
	Image Question Answering
	Video Question Answering

	Dense Captioning
	Ablations and Qualitative Results

	Related Work
	Conclusion
	Interactive Demonstration of FlexCap
	Image-Box-Caption Dataset Details
	Object Classification
	RefCOCO Examples
	Visual Dialog
	LLM Prompts

