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ABSTRACT

Class-Incremental Learning (Class-IL) aims to continuously learn new knowledge
without forgetting old knowledge from a given data stream using deep neural net-
works. Recent Class-IL methods strive to balance old and new knowledge and
have achieved excellent results in mitigating the forgetting by mainly employing
the rehearsal-based strategy. However, the representation learning on new tasks
is often impaired since the trade-off is hard to taken between old and new knowl-
edge. To overcome this challenge, based on the Complementary Learning System
(CLS) theory, we propose a novel CLS-based method by focusing on the repre-
sentation of old and new knowledge in Class-IL, which can acquire more new
knowledge from new tasks while consolidating the old knowledge so as to make
a better balance between them. Specifically, our proposed method has two novel
components: (1) To effectively mitigate the forgetting, we first propose a bidirec-
tional transport (BDT) strategy between old and new models, which can better
integrate the old knowledge into the new knowledge and meanwhile enforce the
old knowledge to be better consolidated by bidirectionally transferring parameters
across old and new models. (2) To ensure that the representation of new knowl-
edge is not impaired by the old knowledge, we further devise a selective momen-
tum (SMT) mechanism to give parameters greater flexibility to learn new knowl-
edge while transferring important old knowledge, which is achieved by selectively
(momentum) updating network parameters through parameter importance evalua-
tion. Extensive experiments on four benchmarks show that our proposed method
significantly outperforms the state-of-the-arts under the Class-IL setting.

1 INTRODUCTION

Catastrophic forgetting (McCloskey & Cohen, 1989), i.e., learning new knowledge while forgetting
previously learned old knowledge, is a long-standing problem for continual learning. The Class-
Incremental Learning (Class-IL) setting, as the setting closest to real-world application scenarios
in continual learning, has been widely studied through various strategies, e.g., regularization-based
strategy (Kirkpatrick et al., 2017; Zenke et al., 2017; Li & Hoiem, 2017; Aljundi et al., 2018),
architecture-based strategy (Rusu et al., 2016; Mallya & Lazebnik, 2018; Serra et al., 2018) and
rehearsal-based strategy (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018; Belouadah & Popescu,
2019; Zhou et al., 2021; Caccia et al., 2022; Kang et al., 2022; Wang et al., 2022; Zhou et al., 2022).

Recent studies strive to balance old and new knowledge while mitigating the catastrophic forgetting
mainly with the rehearsal-based strategy under the Class-IL setting. A line of works (Rebuffi et al.,
2017; Buzzega et al., 2020; Boschini et al., 2022) resort to simple knowledge distillation (Hinton
et al., 2015; Sarfraz et al., 2021), i.e., they preserve old knowledge by aligning the output logits of
current new model (student model) with the output logits of previous models (teacher model) and
adjust loss weights to balance old and new knowledge. Inspired by the Complementary Learning
System (CLS) theory (Kumaran et al., 2016; Singh et al., 2022), another line of works (Pham et al.,
2021; 2022; Arani et al., 2022; Sarfraz et al., 2023b;a) combine the distillation with CLS theory:
a short-term model is built for fast learning the episodic knowledge and a long-term model is built
for slow learning the general structured knowledge by simulating the two learning systems ‘hip-
pocampus’ and ‘neocortex’ in the brain, so that the old and new knowledge can be better obtained.
These methods have made great progress in balancing old and new knowledge by adjusting the loss
weights or proposing effective strategies. However, the trade-off is hard to taken between old and
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new knowledge, resulting in that these methods are not stable enough to represent both the old and
new knowledge well. Particularly, the representation of new knowledge is often impaired due to the
excessive integration of the retained old knowledge under the Class-IL setting.

To address this problem, we propose a novel CLS-based method by focusing on the representation
of old and new knowledge in Class-IL, termed BDT-SMT, which can acquire more new knowledge
from new tasks while consolidating the old knowledge so as to make a better balance between them.
Specifically, similar to (Arani et al., 2022), our proposed method (see Fig. 1) has three main mod-
ules: a working model and two semantic memory models (i.e., the long-term and short-term models
that simulate the two learning systems of the brain). Built on this, we first devise a bidirectional
transport (BDT) strategy to transfer parameters directly and bidirectionally between the working
model and the two semantic memory models. We denote the transport process (working model→
semantic memory models) as backward transport and that (semantic memory models → working
model) as forward transport, respectively. This is quite different from (Arani et al., 2022; Sarfraz
et al., 2023b;a) with only one unidirectional process (i.e., backward transport). With the BDT strat-
egy, our proposed method forms a circular transport channel among these three models to transfer
information to each other more smoothly, thus effectively mitigate the forgetting. Note that the ex-
tension to bidirectional transport is not that easy: (1) Only one unidirectional process is concerned
even in the latest works (Sarfraz et al., 2023b;a). (2) Within the CLS framework, the bidirectional
process becomes challenging across three models. (3) The forward transport of bidirectional pro-
cess may impair the representation of new knowledge, which is also the reason why the selective
momentum (SMT) mechanism is carefully designed along with BDT in this paper.

Furthermore, to ensure that the representation of new knowledge is not impaired by the (integrated)
old knowledge, we devise a selective momentum (SMT) mechanism to selectively (momentum)
update parameters with the evaluation of parameter importance during the forward transport. Con-
cretely, a parameter importance evaluation algorithm like SI (Zenke et al., 2017) is introduced into
SMT, and an importance threshold is set to control the momentum updates of the parameters, so as to
receive more important knowledge from old tasks for important parameters while giving greater flex-
ibility to other unimportant parameters for better learning new tasks. Thus, the designed SMT mech-
anism in our method is able to enforce the model to continuously transfer important old knowledge as
well as learn new knowledge significantly better through selective momentum updating of network
parameters. Note that the biggest parameter-updating difference between SI (or EWC (Kirkpatrick
et al., 2017)) and our BDT-SMT lies in that the parameters of our method are selectively momentum
updated by the parameters of old model according to parameters importance, while all parameters
of SI/EWC are gradient updated by backpropagation according to parameters importance. Addi-
tionally, we choose to devise the importance evaluation algorithm according to SI, instead of other
strategies (Kirkpatrick et al., 2017; Aljundi et al., 2018), because it is more complementary to our
proposed method, which has been shown in Appendix A.3.

Our main contributions are four-fold: (1) We propose a novel CLS-based method termed BDT-SMT
to acquire more new knowledge from new tasks while consolidating the old knowledge so as to make
a better balance between them under the Class-IL setting. (2) To effectively mitigate the forgetting,
we devise a bidirectional transport (BDT) strategy between old and new models, which is quite dif-
ferent from the latest works (Arani et al., 2022; Sarfraz et al., 2023b;a) with only one unidirectional
process (i.e., backward transport). Moreover, to ensure that the representation of new knowledge
is not impaired by the old knowledge during forward transport, we design a selective momentum
(SMT) mechanism to selectively (momentum) update network parameters through parameter im-
portance evaluation. (3) Extensive experiments on four benchmarks show that our proposed method
significantly outperforms the state-of-the-art methods under the Class-IL setting. (4) The proposed
BDT and SMT have a high flexibility/generalizability, which can be widely applied to not only
continual learning but also (momentum-based) contrastive learning.

2 METHODOLOGY

2.1 PROBLEM DEFINITION

The Class-IL setting is concerned for continual learning, where the model is trained for image clas-
sification on a sequential tasks T , i.e., T = {T1, T2, ..., TH}, where H denotes the number of tasks.
For each task Tt (1 ≤ t ≤ H) from T , it owns a task-specific training set Dt = {(xt

i, y
t
i)}

Nt
i=1 with

Nt sample pairs, where xt
i ∈ RD is a sample image from the class yti ∈ Y t. Y t is the label space
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of the task Tt. For label spaces of different tasks Tt and Tt′ , there is non-overlapping classes, i.e.,
Y t∩Y t′ = ∅ for t ̸= t′. Further, for each task Tt, its validation and test sets can be defined similarly.
The goal of Class-IL is to enforce the trained model to accurately classify all previously seen classes
with less forgetting after learning all tasks without providing the task identifiers.

2.2 BASE FRAMEWORK

Similar to the recent work (Arani et al., 2022), the base framework of our BDT-SMT has three main
modules: a working model and two semantic memory models (i.e., plastic model and stable model,
see Fig. 1). These three models are deployed with the same network structure (e.g., ResNet18 (He
et al., 2016) as the backbone) and initialized with the same parameters. The main functions of these
modules are described separately below.

Working Model The function of working model is two-fold: on one hand, it is trained to con-
tinuously learn the incoming tasks on a given data stream (D) to acquire new knowledge; on the
other hand, it needs to continuously transfer the learned knowledge to the semantic memory mod-
els to accumulate the old knowledge. Concretely, given the current batch data (XD, YD) from the
dataset Dt and the replayed batch data (XM , YM ) randomly sampled from the memory buffer Mt

for the task Tt as the inputs, the working model F (; θW ) is trained to accurately classify the current
task data and replayed old data by backpropagation (see Eq. (6) for the total loss). Meanwhile, the
working model continuously transfers the learned knowledge (information) stored in θW to the two
semantic memory models, i.e., it uses the parameters θW to update the parameters of semantic mem-
ory models, so that the semantic memory models can obtain the long-term and short-term memory
retention of knowledge (see below for the detailed transfer process). Thus, the working model plays
an important role (updating & transferring parameters) in the framework.

Semantic Memory Models The semantic memory models, i.e., stable model (S) and plastic model
(P), are maintained to retain the knowledge previously learned on the working model. The stable
model F (; θS) continuously accumulates the knowledge as long-term memory to acquire the slow
adaptation of information, while the plastic model F (; θP ) continuously accumulates the knowledge
as short-term memory to acquire the fast adaptation of information. The realization of long-term
period and short-term period mainly depends on the update frequency of parameters. Thus, instead
of updating parameters at each training step, the frequency parameters are employed on semantic
memory models to stochastically control their updates. Concretely, the long-term stable model is
used to retain more information of earlier tasks with a small frequency parameter fS , while the short-
term plastic model is used to retain more information of recent tasks with a big frequency parameter
fP (fP ≥ fS). Compared with the short-term memory model, the long-term memory model can
accumulate more general structured knowledge over time, leading to better generalization across
tasks. Therefore, the stable model is used for inference to achieve optimal performance.

Given the parameters of working model θW , the parameters of plastic model θP and the parame-
ters of stable model θS , the parameters of two semantic memory models θP , θS are (momentum)
updated by the parameters of working model θW through the Exponential Moving Average (EMA)
strategy (Tarvainen & Valpola, 2017; Grill et al., 2020), which are formulated as:

θP = mP · θP + (1−mP ) · θW , if rand(1) < fP

θS = mS · θS + (1−mS) · θW , if rand(1) < fS
, (1)

where mP and mS ∈ [0, 1) denote the backward transport momentum parameters, and rand(1)
denotes a random value sampled from a standard Gaussian distribution. By setting mP ≤ mS ,
the plastic model can adjust new information faster (more), while the stable model can adjust new
information slower (less) so as to construct the general structured knowledge over time. Note that
the parameters of working model θW are updated by backpropagation, and the parameters of two
semantic memory models are only updated by θW since they have no gradients.

2.3 OUR BDT-SMT METHOD

In this paper, built on the above base framework, our BDT-SMT devises two novel components,
i.e., bidirectional transport (BDT) strategy and selective momentum (SMT) mechanism. The com-
bination of BDT and SMT facilitates the model to acquire more new knowledge from new tasks
while consolidating the old knowledge, thereby achieving a better balance between old and new
knowledge and significantly improving model performance.
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Figure 1: The overview of our proposed method built over the working model (W) and two semantic
memory models (plastic model (P) and stable model (S)).

Bidirectional Transport (BDT) Strategy To effectively mitigate the forgetting, we propose a BDT
strategy (including forward & backward transport) to transfer information more smoothly between
the three models in the form of a circular transport channel (P ⇔ W ⇔ S), as shown in Fig. 1.
Compared to the unidirectional transport (only backward transport) used in (Arani et al., 2022),
the BDT strategy indeed strengthens the information communication among the three models: it
enables the knowledge of earlier tasks (from stable model), the knowledge of recent tasks (from
plastic model) and the knowledge of new tasks (from working model) to be continuously transferred
and flowed between models, thereby better consolidating the old knowledge and mitigating the for-
getting. Concretely, at each training step, the parameters of working model (θW ) are first updated
by backpropagation. Then, with the updated working model, it is required to determine whether to
momentum update the plastic model and stable model according to Eq. (1) (i.e., backward trans-
port). Let UPS denote the set of semantic memory models that are updated by the working model
(UPS may be ∅, {P}, {S}, and {P, S}). In turn, the updated semantic memory models are used to
momentum update the working model at the beginning of the next training step (i.e., forward trans-
port). Formally, given the parameters of the three models θW , θP and θS , the momentum update of
the parameters of the working model in forward transport adopts the same EMA as in Eq. (1) with
the forward transport momentum parameter m̂ ∈ [0, 1):

θW = m̂ · θW + (1− m̂) · θj , j ∈ UPS . (2)
In our experiments, we find that the plastic model (P ) must be used for momentum updating before
the stable model (S) when UPS = {P, S}. And note that the forward transport begins with the
second task to ensure that semantic memory models have accumulated knowledge. The deploy-
ment of BDT enables the model to effectively mitigate the forgetting, which can be observed from
Table 3: the average forgetting is reduced by 8.54% on S-CIFAR-10 and 4.74% on S-CIFAR-100,
respectively (see Base+BDT vs. Base), where (Arani et al., 2022) is denoted as Base. Furthermore,
the combination of BDT and SMT yields significant improvements over (Arani et al., 2022), which
can also be observed from Table 3: the average accuracy increases by 4.0% and 2.66%, and the
average forgetting drops by 9.47% and 2.5% on S-CIFAR-10 and S-CIFAR-100, respectively (see
Base+BDT+SMT vs. Base). The proposed SMT mechanism will be detailed below.

Selective Momentum (SMT) Mechanism Although good retention of old knowledge and promis-
ing improvement of model performance are obtained with the BDT strategy, there still exists a clear
limitation in the representation of new knowledge. Specifically, in the forward transport of BDT, all
parameters of the working model are momentum updated by the parameters of the semantic memory
models. Among these parameters of semantic memory models, some parameters are helpful (pos-
itive) to the representation of new knowledge, such as parameters representing general structured
knowledge; while some parameters are useless or even harmful (negative) to the representation of
new knowledge, resulting in that the new knowledge is not well represented. In this paper, we thus
design a SMT mechanism to ensure that the representation of new knowledge is not impaired by the
integrated old knowledge, which is achieved by selectively updating parameters with the evaluation
of parameters importance during forward transport, as shown in Fig. 1.

The SMT mechanism is designed to give greater flexibility to unimportant parameters of previous
tasks for better learning new tasks. Concretely, we first need to make an evaluation to the importance
of parameters of working model by the importance evaluation algorithm, then rank the parameter
importance and set an importance threshold k (k is defined as a fraction here) to indicate the pa-
rameter range that needs to be updated. As a result, the Top-k part of parameters in the working
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Task_id
Figure 2: Comparative results of the final model on ten learned tasks of S-CIFAR-100 among the
base framework without BDT (“w/o BDT”), the base framework with BDT (“w/ BDT”), and the
base framework with BDT+SMT (“w/ BDT+SMT”).

model that are important to previous tasks are momentum updated by the corresponding Top-k part
of parameters of semantic memory models, and other unimportant parameters of working model
are no longer updated by the semantic memory models (see Fig. 4 for the selection of k). Let Vtop

denote the set of important Top-k part of parameters. The forward transport is reformulated as:

θW [i] = m̂ · θW [i] + (1− m̂) · θj [i], j ∈ UPS , i ∈ Vtop, (3)
where θW [i] (or θj [i]) is the i-th element of θW (or θj). With this mechanism, our BDT-SMT can
receive more important knowledge from old tasks for important parameters while giving greater
flexibility to unimportant parameters for fitting new tasks.

For the importance evaluation algorithm, it is devised according to SI (Zenke et al., 2017). Differ-
ently, in SI, the parameters importance is used as a penalty strength in the loss function to enforce all
parameters to be gradient updated by backpropagation; in our BDT-SMT, the parameters importance
is used as a criterion to determine whether the parameter needs to be updated, so that the parameters
can be selectively momentum updated according to the threshold k. Formally, when the importance
of parameter θW [i] for task t (Tt) is denoted as ωt

i , we can approximately define it as the contribution
of θW [i] to the change of the total loss throughout the training phase of task t:

ωt
i ≡

∑
s

η · g2s,t(θW [i]), (4)

where η is the learning rate, and gs,t(θW [i]) is the gradient of θW [i] at the training step s for task t.
Notably ωt

i only measures the absolute contribution of the parameter, ignoring its own update range.
Thus, a normalized importance (regularization strength) Ωt

i for task t is given by:

Ωt
i =

∑
τ≤t

ωτ
i

(△τ
i )

2 + ε
, △τ

i ≡ θτW [i]− θτ−1
W [i], (5)

where task τ denotes a task before or current task t. △τ
i denotes the update amount of θW [i] in task

τ (θτW denotes θW at the end of task τ ). ε is a small constant used to prevent calculation instability.
Note that ωt

i is initialized to zero at the beginning of each task, while Ωt
i is only initialized to zero

at the beginning of the first task and updated by the accumulated ωt
i at the end of each task. The

pseudocode of importance evaluation algorithm is shown in Appendix A.2.

By deploying SMT to selectively update the parameters of working model, the transfer of harmful
old parameters is effectively avoided, enforcing the working model to learn richer representation
of new knowledge. As a result, under the joint action of our BDT and SMT, the stable model
is able to obtain more and better general structured knowledge over time, which facilitates better
generalization across tasks (i.e., the old and new tasks), resulting in superior performance. To make
this clearer, we compare the accuracy results of the final model (obtained from one independent
run) on ten learned tasks of S-CIFAR-100 among the base framework without BDT, with BDT,
and with BDT+SMT in Fig. 2. We can see that: (1) Compared with “w/o BDT”, the utilization
of BDT enforces the model to better consolidate old knowledge on earlier tasks and meanwhile
achieve better results on recent tasks. This finding highlights that the knowledge transfer among
three models plays a crucial role in facilitating the smoothing of the decision boundaries of new
and old tasks (i.e., greatly reducing the distribution overlap between old and new classes), thereby
effectively mitigating the forgetting. Meanwhile, the knowledge transfer also brings benefits to
new tasks, further demonstrating its importance in continual learning. (2) The utilization of SMT
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empowers the model to achieve higher accuracies on recent and new tasks. This directly shows that
the model’s representation ability in new tasks has been substantially improved by applying SMT,
thereby facilitating the acquisition of better general structured knowledge over time.

Total Loss The total loss (L) is composed of a cross entropy loss (Lce) and a consistency loss
(Lcons). Among them, the cross entropy loss is computed on the current batch data (XD, YD) and
replayed batch data (XM , YM ), due to its simpleness, we mainly introduce the consistency loss here.
Specifically, the consistency loss is computed on the replayed batch data (XM , YM ) by aligning the
output logits of working model (Z ′

W = F (XM ; θW )) with the optimal output logits of semantic
memory models (ZP = F (XM ; θP ) for plastic model or ZS = F (XM ; θS) for stable model).
The optimal output logits are determined by an optimal strategy, which is expressed as a better
representation of semantic information for the replay data between plastic model and stable model,
i.e., the final selected semantic logits own higher softmax scores for the ground-truth labels of the
inputs. Therefore, the total loss function L is formulated as:

L = Lce(sf(ZW , Y )) + γLcons(Z
′
W , Z), (6)

ZW = F ((XD ∪XM ); θW ), (7)

where ZW is the output logits of two batch data XD and XM ; Z ′
W is the output logits of the replayed

batch data XM ; Z denotes the optimal output logits of XM , i.e., ZS or ZP . Y refers to the ground-
truth labels of XD and XM , i.e., Y = YD ∪ YM . sf(·) represents the softmax function, γ represents
the balancing hyperparameter. Note that Lcons is defined as a Mean Squared Error (MSE) loss.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets Four standard benchmark datasets are used to evaluate the model performance under the
Class-IL setting. (1) S-MNIST is obtained by splitting digit-base dataset MNIST (LeCun et al.,
2010) into 5 consecutive tasks with two classes per task. For each class in the task, there are 6,000
images for training and 1,000 images for testing. These images are gray-scale images with the
resolution 28 ∗ 28. (2) S-CIFAR-10 is obtained by splitting the dataset CIFAR-10 (Krizhevsky
et al., 2009) into 5 consecutive tasks with two classes per task. For each class in the task, there
are 5,000 images for training and 1,000 images for testing. The resolution of these color images is
32∗32∗3. (3) S-CIFAR-100 is obtained by splitting the dataset CIFAR-100 (Krizhevsky et al., 2009)
into 10 consecutive tasks with 10 classes per task. For each class in the task, there are 500 images
for training and 100 images for testing. These images have the same resolution as S-CIFAR-10. (4)
S-Tiny-ImageNet is obtained by splitting the dataset Tiny-ImageNet (Banerjee & Iyer, 2015) into
10 consecutive tasks with 20 classes per task. For each class in the task, there are 500 images for
training and 50 images for testing. The resolution of these color images is 64 ∗ 64 ∗ 3. Note that a
fixed order for all classes is kept in each dataset for sequential training across ten independent runs.
The implementation details are provided in Appendix A.2. The source code will be released soon.

Evaluation Metrics To evaluate the model performance under the Class-IL setting, average accu-
racy (Acc) and average forgetting (Fg) (Buzzega et al., 2020; Fini et al., 2022; Pham et al., 2022)
are reported after learning all tasks across ten independent runs. For the accuracy, it refers to the
accuracy of the last task on the previous tasks, where a larger value indicates a better model perfor-
mance (main metric for continual learning). For the forgetting, it refers to the difference between the
accuracy of the last task on previous task and the acquired maximum accuracy on this task, where
a smaller value indicates a better model performance. Formally, given the number of tasks H and
the accuracy ai,j(j ≤ i) of the task i on the previous task j, as in previous works, average accuracy
Acc (↑) and average forgetting Fg (↓) can be formulated as follows:

Acc(↑) = 1

H

H∑
j=1

aH,j , Fg(↓) = 1

H − 1

H−1∑
j=1

max
τ∈1,...H−1

aτ,j − aH,j . (8)

3.2 MAIN RESULTS

Table 1 shows the comparative results w.r.t. the state-of-the-arts in terms of average accuracy on
the four benchmark datasets. Following (Arani et al., 2022), five baselines are used as competi-
tors: ER (Riemer et al., 2018), GEM (Lopez-Paz & Ranzato, 2017), iCaRL (Rebuffi et al., 2017),
DER++ (Buzzega et al., 2020) and CLS-ER (Arani et al., 2022). Furthermore, four latest methods
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Table 1: Comparison to the state-of-the-arts under the Class-IL setting in terms of average accuracy
over ten independent runs. The standard deviation is given in brackets. All methods (with the same
backbone) are trained from scratch.

Method Buffer Size S-MNIST S-CIFAR-10 S-CIFAR-100 S-Tiny-ImageNet
JOINT (upper bound) – 95.57 (±0.24) 92.20 (±0.15) 70.55 (±0.91) 59.99 (±0.19)

SGD (lower bound) – 19.60 (±0.04) 19.62 (±0.05) 9.32 (±0.06) 7.92 (±0.26)

ER (Riemer et al., 2018) 200 80.43 (±1.89) 44.79 (±1.86) 14.78 (±0.67) 8.49 (±0.16)

GEM (Lopez-Paz & Ranzato, 2017) 200 80.11 (±1.54) 25.54 (±0.76) 13.34 (±0.43) –
iCaRL (Rebuffi et al., 2017) 200 70.51 (±0.53) 49.02 (±3.20) 35.99 (±0.49) 7.53 (±0.79)

ER-ACE (Caccia et al., 2022) 200 85.24 (±0.65) 64.08 (±1.68) 27.85 (±0.61) 12.73 (±0.66)

DER++ (Buzzega et al., 2020) 200 85.61 (±1.40) 64.88 (±1.17) 26.40 (±1.17) 10.96 (±1.17)

X-DER (Boschini et al., 2022) 200 – 65.51 (±1.82) 35.83 (±0.53) 19.98 (±0.76)

CLS-ER (Arani et al., 2022) 200 89.54 (±0.21) 66.19 (±0.75) 35.39 (±1.15) 23.47 (±0.80)

SCoMMER (Sarfraz et al., 2023b) 200 – 67.87 (±0.47) 31.75 (±1.39) 16.61 (±0.46)

ESMER (Sarfraz et al., 2023a) 200 89.21 (±0.26) 68.51 (±0.33) 35.72 (±0.25) 23.37 (±0.11)

BDT-SMT (ours) 200 89.99 (±0.27) 70.19 (±1.13) 38.05 (±0.25) 25.31 (±0.29)

S-CIFAR-10 S-CIFAR-100

Figure 3: Detailed accuracy comparative results obtained by the final model on each task over the
two datasets S-CIFAR-10 and S-CIFAR-100.

are included as additional competitors: ER-ACE Caccia et al. (2022), X-DER Boschini et al. (2022),
SCoMMER (Sarfraz et al., 2023b) and ESMER (Sarfraz et al., 2023a). Regarding the five baselines,
except S-CIFAR-100 on which we re-implement all of them, the results on other datasets are di-
rectly reported from (Arani et al., 2022). As for the four latest methods, we re-implement them on
all datasets with their released code. Note that JOINT is the upper bound which indicates that the
data from all tasks are used for training together instead of sequential training, while SGD is the
lower bound which indicates that all tasks are sequentially trained with fine-tuning.

From Table 1, we can observe that: (1) Compared with the state-of-the-arts, our BDT-SMT shows
superior performance by achieving the highest average accuracy across all datasets, indicating the
effectiveness of our BDT-SMT for Class-IL. (2) Our BDT-SMT outperforms the second best ES-
MER by an average value 1.98% on three out of four datasets (except S-MNIST), and outperforms
the third best CLS-ER by an average value 2.24% on all four datasets. Particularly, our BDT-SMT
surpasses ESMER by 2.33% on S-CIFAR-100 and 1.94% on S-Tiny-ImageNet. Additionally, BDT-
SMT surpasses CLS-ER by 4.0% on S-CIFAR-10 and 2.61% on S-CIFAR-100. The obtained results
provide a direct evidence that our BDT-SMT effectively acquires more new knowledge while con-
solidating the old knowledge, which yields significant benefits in enhancing model performance.
Moreover, Fig. 3 shows detailed comparative results obtained by the final model on each task (take
S-CIFAR-10 and S-CIFAR-100 as examples). This clearly demonstrates the effectiveness of our
BDT-SMT, i.e., it can make a better balance between old and new knowledge.

To further show the outstanding ability of our BDT-SMT, we conduct experiments under more
strict and challenging scenarios: smaller memory buffer sizes (|M |, |M | = 200 → 100, 50) and
longer task sequences (H , H = 10 → 20). The comparative results on S-CIFAR-100 and S-Tiny-
ImageNet are shown in Table 2. The five comparative methods include ER (Riemer et al., 2018),
DER++ (Buzzega et al., 2020), CLS-ER (Arani et al., 2022), SCoMMER (Sarfraz et al., 2023b) and
ESMER (Sarfraz et al., 2023a). We implement these methods and ours by adopting the same exper-
imental hyperparameters as in Table 1. It can be observed that: our BDT-SMT consistently achieves
optimal results on both datasets under the two scenarios, indicating the superior generalization abil-
ity of our BDT-SMT under the Class-IL setting. This ability allows the model to maintain excellent
performance even with smaller buffer sizes and longer task sequences.
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Table 2: Comparative results obtained by changing the memory buffer size (|M | = 200→ 100, 50)
or the length of task sequences (Tasks Num) (H = 10 → 20) on S-CIFAR-100 and S-Tiny-
ImageNet respectively. The average accuracy is reported over ten independent runs.

Method S-CIFAR-100 S-Tiny-ImageNet
Buffer Size (with H=10 fixed) |M |=50 |M |=100 |M |=50 |M |=100
ER (Riemer et al., 2018) 10.23 (±0.30) 11.80 (±0.18) 8.11 (±0.08) 8.18 (±0.08)

DER++ (Buzzega et al., 2020) 13.16 (±0.32) 14.80 (±1.71) 8.75 (±1.09) 10.42 (±0.44)

CLS-ER (Arani et al., 2022) 22.80 (±0.48) 27.91 (±0.65) 14.34 (±0.58) 17.53 (±0.88)

SCoMMER (Sarfraz et al., 2023b) 15.48 (±0.40) 23.61 (±1.20) 5.28 (±0.71) 10.33 (±0.55)

ESMER (Sarfraz et al., 2023a) 21.70 (±1.00) 28.22 (±0.89) 13.74 (±0.90) 18.12 (±0.23)

BDT-SMT (ours) 24.45 (±0.63) 31.08 (±0.63) 15.63 (±0.51) 19.33 (±0.70)

Tasks Num (with |M |=200 fixed) H=10 H=20 H=10 H=20
ER (Ratcliff, 1990) 14.78 (±0.67) 14.61 (±0.49) 8.49 (±0.16) 4.82 (±0.19)

DER++ (Buzzega et al., 2020) 26.40 (±1.17) 19.30 (±1.08) 10.96 (±1.17) 8.75 (±0.77)

CLS-ER (Arani et al., 2022) 35.39 (±1.15) 22.19 (±1.90) 23.47 (±0.80) 15.99 (±0.88)

SCoMMER (Sarfraz et al., 2023b) 31.75 (±1.39) 23.52 (±0.48) 16.61 (±0.46) 11.21 (±0.05)

ESMER (Sarfraz et al., 2023a) 35.72 (±0.25) 27.25 (±0.52) 23.37 (±0.11) 10.86 (±0.69)

BDT-SMT (ours) 38.05 (±0.25) 28.11 (±0.38) 25.31 (±0.29) 18.00 (±0.52)

Table 3: Ablative results for our BDT-SMT on S-CIFAR-10 and S-CIFAR-100.

Method S-CIFAR-10 S-CIFAR-100
Acc (↑) Fg (↓) Acc (↑) Fg (↓)

Base (CLS-ER) (Arani et al., 2022) 66.19 (±0.75) 29.01 (±3.25) 35.39 (±1.15) 35.58 (±1.35)

Base+BDT 67.82 (±1.78) 20.47 (±5.49) 36.89 (±0.67) 30.84 (±1.52)
Base+BDT+SMT (ours) 70.19 (±1.13) 19.54 (±3.60) 38.05 (±0.25) 33.08 (±0.52)

3.3 ABLATION STUDY

To demonstrate the impact of proposed novel components on the performance of our BDT-SMT, we
conduct ablative experiments on S-CIFAR-10 and S-CIFAR-100. The proposed novel components
are the BDT strategy and SMT mechanism applied in our BDT-SMT. We thus take the originally
followed method CLS-ER (Arani et al., 2022) as the baseline, which is denoted as Base. On the
basis of Base (CLS-ER), we first add the BDT strategy, which is denoted as Base+BDT. Then, we
add the SMT mechanism, which is denoted as Base+BDT+SMT (i.e., our full BDT-SMT).

The ablative results are shown in Table 3. It can be clearly seen that: (1) When the BDT strategy is
applied, the average accuracy is improved over Base, and especially the forgetting is greatly reduced
(8.54% on S-CIFAR-10 and 4.74% on S-CIFAR-100). These gains strongly prove the effectiveness
of the BDT strategy in retaining old knowledge and mitigating the forgetting. (2) When the SMT
mechanism is also applied, a further improvement in average accuracy is observed (2.37% on S-
CIFAR-10 and 1.16% on S-CIFAR-100) in comparison to Base+BDT. The improvement shows the
effectiveness of SMT in better acquiring new knowledge, which contributes to the overall enhance-
ment of model performance. Meanwhile, we can see that the average forgetting on S-CIFAR-100
increases, which may be due to lower forgetting caused by the lower maximum accuracy obtained
on the previous tasks when only BDT is applied (see Eq. (8)). It is important to notice that the av-
erage accuracy is the primary metric to measure the continual learning performance. Furthermore,
compared with Base, the average accuracy and average forgetting are significantly improved and
decreased respectively (improved by 4.0% for Acc and decreased by 9.47% for Fg on S-CIFAR-10,
improved by 2.66% for Acc and decreased by 2.5% for Fg on S-CIFAR-100), demonstrating that the
proposed BDT and SMT have significant contributions to the improvement of model performance.
Moreover, these results show the complementarity of the two proposed components, which is highly
instructive for developing more advancing continual learning methods.

Considering the core role of both BDT and SMT, we conduct experiments on S-CIFAR-10 to thor-
oughly analyze the influence of two crucial hyperparameters, namely m̂ and k, on the performance
of our BDT-SMT. We keep other hyperparameters fixed, to explore the forward transport momen-
tum parameter m̂ ∈ {0.9, 0.99, 0.999, 0.9999} and the threshold parameter k ∈

{
1, 1

2 ,
1
3 ,

1
4

}
. Fig. 4

shows the comparative results for average accuracy (Acc) and average forgetting (Fg) across ten
independent runs with different hyperparameters m̂ and k, respectively. It can be clearly seen that:
(1) When m̂ is 0.999, our BDT-SMT obtains the highest average accuracy and the lowest average
forgetting. When m̂ is too small or too large, average accuracy and average forgetting tend to be
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� for BDT-SMT � for BDT-SMT � for BDT-SMT � for BDT-SMT

Acc   Fg Acc   Fg

(a) (b) (c) (d)

Figure 4: Comparative results of our BDT-SMT with different hyperparameters m̂ (a-b, with k = 1
3

fixed) and k (c-d, with m̂ = 0.999 fixed) on S-CIFAR-10.

Table 4: Comparative results of SMT-Mean and Mean-ER using a single semantic memory model
under the Class-IL setting. The average accuracy is reported over ten independent runs.

Method Buffer Size S-MNIST S-CIFAR-10 S-CIFAR-100 S-Tiny-ImageNet
JOINT (upper bound) – 95.57 (±0.24) 92.20 (±0.15) 70.55 (±0.91) 59.99 (±0.19)

SGD (lower bound) – 19.60 (±0.04) 19.62 (±0.05) 9.32 (±0.06) 7.92 (±0.26)

Mean-ER 200 88.32 (±0.65) 61.88 (±2.43) 29.45 (±1.17) 17.68 (±1.65)

SMT-Mean 200 89.33 (±0.36) 64.06 (±1.32) 31.22 (±0.88) 23.68 (±0.39)

BDT-SMT 200 89.99 (±0.27) 70.19 (±1.13) 38.05 (±0.25) 25.31 (±0.29)

compromised since transferring too much information of old parameters would affect the learning
of new knowledge, and transferring too little would affect the consolidation of old knowledge. (2)
When k is 1

3 , our BDT-SMT achieves the best overall performance even if average forgetting is
slightly higher compared with k = 1

4 . Thus, we set the forward transport momentum parameter
m̂ = 0.999 on almost all benchmarks, and set the threshold parameter k = 1

3 on all benchmarks.

3.4 FURTHER EVALUATION

To further validate the effectiveness of our proposed components (i.e., the BDT strategy as well as
the SMT mechanism) for improving model performance under the Class-IL setting, we conduct extra
experiments by employing a single semantic memory model (denoted as SMT-Mean), and compare
its performance against the baseline Mean-ER described in (Arani et al., 2022), which also utilizes
a single semantic memory model. Table 4 shows the comparative results between SMT-Mean and
Mean-ER on all four benchmarks. It can be observed that: our SMT-Mean significantly outperforms
Mean-ER in all cases. More importantly, SMT-Mean can match or even exceed the performance of
some classic methods in Table 1 (e.g., iCaRL (Rebuffi et al., 2017), and DER++ (Buzzega et al.,
2020)). Particularly, the accuracy of our SMT-Mean slightly exceeds that of CLS-ER/ESMER (Sar-
fraz et al., 2023a) on S-Tiny-ImageNet. These results fully demonstrate the effectiveness of pro-
posed two components, which are extremely beneficial/instructive for continual learning. Further-
more, our BDT-SMT exhibits superior performance over SMT-Mean on all benchmarks, indicating
that the complementary application of two semantic memory models is more beneficial to enhancing
the model performance compared to using only a single one.

4 CONCLUSION

In this paper, we have proposed a novel CLS-based method termed BDT-SMT to acquire more
new knowledge from new tasks while consolidating old knowledge so as to make a better balance
between them under the Class-IL setting. To effectively mitigate the forgetting, we first devise a
bidirectional transport strategy between old and new models, which is quite different from the latest
works (Arani et al., 2022; Sarfraz et al., 2023b;a) with only one unidirectional process (i.e., back-
ward transport). Moreover, to ensure that the representation of new knowledge is not impaired by the
old knowledge during forward transport, we design a selective momentum mechanism to selectively
update parameters with the evaluation of parameters importance. Extensive experiments on four
benchmark datasets demonstrate that our BDT-SMT significantly outperforms the state-of-the-arts
under the Class-IL setting. Since the proposed BDT and SMT have a high flexibility/generalizability,
we will explore how to apply them to other continual learning settings and even (momentum-based)
contrastive learning settings in our ongoing research.
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A APPENDIX

A.1 RELATED WORK

Knowledge Distillation Knowledge distillation (Hinton et al., 2015) is essential in the rehearsal-
based methods (Ratcliff, 1990; Riemer et al., 2018; Hou et al., 2019; Buzzega et al., 2020; Zhou
et al., 2021; Caccia et al., 2022), which mainly consolidates the old knowledge and mitigates forget-
ting by distilling knowledge on the replayed data. For example, earlier work iCaRL Rebuffi et al.
(2017) mitigates forgetting by replaying the exemplars for nearest-mean-of-exemplars classification
and aligning the output scores of the previous step with the current step for distillation. Recent
work Dark Experience Replay (DER) Buzzega et al. (2020) mitigates forgetting by matching the
network’s logits of samples at the current step with the logits of previous steps, where samples are
replayed from the memory buffer. DER++ Buzzega et al. (2020) differs from DER in that the re-
played samples are also trained with the current new data for classification except for distillation.
Most recently, as a modified version of DER, X-DER Boschini et al. (2022) is proposed, the differ-
ence is that X-DER includes a regularly update memory buffer by inserting secondary information
(‘future past’) and a future preparation to incoming tasks. Although X-DER improves the model
performance compared to DER, it suffers from a very long training time, hindering its practical ap-
plication for other datasets. The above methods are all simple applications of knowledge distillation.

CLS Theory Recently, inspired by the CLS theory, a line of methods (Pham et al., 2021; 2022;
Arani et al., 2022; Sarfraz et al., 2023b;a) are proposed to mitigate forgetting with a combination of
distillation and CLS theory. The CLS Kumaran et al. (2016); Singh et al. (2022) theory proposes
that there are two interacting systems in the brain: a fast learning system ‘hippocampus’ encodes
new information rapidly as short-term memory, then transfers the acquired information (experience)
to the ‘neocortex’. The slow learning system ‘neocortex’ slowly acquires structural information as
long-term memory, leading to the construction of semantic knowledge over time. Based on the CLS
theory, DualNet Pham et al. (2021) is proposed to mitigate forgetting by using a supervised network
as fast net for supervised learning and an unsupervised network as slow net for self-supervised learn-
ing with the samples replayed from memory buffer. As an improved version, DualNet++ Pham et al.
(2022) introduces a regularization strategy between fast net and slow net to prevent the co-adaptation
between them. The recent work CLS-ER Arani et al. (2022) builds long-term and short-term seman-
tic memory models inspired by the CLS theory, and employs the experience replay strategy to align
the output logits between the old and new models. Similar methods also include the latest works
SCoMMER (Sarfraz et al., 2023b) and ESMER (Sarfraz et al., 2023a), which are both proposed
based on the CLS theory. Among them, SCoMMER (Sarfraz et al., 2023b) proposes a seman-
tic dropout mechanism that simulates the sparse coding idea of the brain, enforcing the model to
have similar activation units for semantically similar inputs while reducing overlap for semantically
dissimilar inputs. ESMER (Sarfraz et al., 2023a) simulates the brain’s idea of learning more infor-
mation from small errors, and proposes a modulation mechanism based on error sensitivity to help
the model learn more information. These methods have achieved promising results in balancing old
and new knowledge, but they are not stable enough to represent both the old and new knowledge
well such as the representation of new knowledge is often impaired (see Fig. 3).

A.2 IMPLEMENTATION DETAILS

For fair comparisons, our BDT-SMT builds on the framework of CLS-ER (Arani et al., 2022) with-
out modification to the backbone (i.e., a fully-connected network with two hidden layers for S-
MNIST, and ResNet18 (He et al., 2016) without pretraining for other three datasets), and adopts
its reported experimental settings including batch size, minibatch size, training epochs, backward
transport parameter for all benchmarks. The memory buffer size is set to 200, and the reservoir
sampling Vitter (1985) is adopted as the updating strategy for memory buffer to ensure sampling
with the same probability. To select the optimal hyperparameters for our BDT-SMT, we perform the
grid-search strategy on a small validation set of each dataset. During training, Stochastic Gradient
Descent (SGD) optimizer is adopted with the learning rate η = 0.1 for S-MNIST/S-CIFAR-10 and
η = 0.05 for S-CIFAR-100/S-Tiny-ImageNet. For the forward transport momentum parameter m̂,
we set m̂ = 0.99 for S-MNIST and m̂ = 0.999 for S-CIFAR-10/S-CIFAR-100/S-Tiny-ImageNet.
For the threshold k used in SMT, we set it to 1

3 for all benchmarks. Detailed hyperparameter settings
are provided in Appendix A.5. Additionally, the pseudocode of the algorithm that computes the
normalized importance of parameters at the end of each task is given in Alg. 1.
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Algorithm 1 Normalized Importance Evaluation
Input: current model F t(·), current data Dt, learning rate η

current replay data for previous tasks Mt

the normalized importance Ωt−1
i of θt−1

W [i] at the end of task t− 1
Output: the learned normalized importance Ωt

i

Initialization: ωt
i ← 0, D ← Dt ∪Mt, θtW [i]← θt−1

W [i]
for 1..N epochs do

for (x, y) in D do
Compute the loss L by Eq. (6)
Compute the gradient g(θtW [i])=∇θt

W [i]L by backpropagation
Compute the updated parameters θtW [i]← θtW [i]− η · g(θtW [i])
Compute the updated importance ωt

i by Eq. (4)
end for

end for
Update△t

i ← θtW [i]− θt−1
W [i], and then update Ωt

i ← Ωt−1
i +

ωt
i

(△t
i)

2+ε

return the updated normalized importance Ωt
i

Table 5: Average accuracy comparison results over three independent runs on random classes order.
Method Buffer Size S-CIFAR-10 S-CIFAR-100
CLS-ER (Arani et al., 2022) 200 64.04 (±1.27) 35.34 (±0.41)

SCoMMER (Sarfraz et al., 2023b) 200 66.38 (±0.65) 29.31 (±0.41)

ESMER (Sarfraz et al., 2023a) 200 66.45 (±1.01) 36.27 (±0.42)

BDT-SMT (ours) 200 66.94 (±0.65) 37.69 (±0.49)

Table 6: Comparative results under the Domain-IL setting.
Method Buffer Size R-MNIST P-MNIST
CLS-ER (Arani et al., 2022) 200 91.99 (±0.54) 83.65 (±0.28)

ESMER (Sarfraz et al., 2023a) 200 90.80 (±0.49) 81.74 (±0.30)

BDT-SMT (ours) 200 92.83 (±0.27) 87.13 (±0.24)

A.3 MORE EXPERIMENTAL RESULTS

Random Classes Order Table 5 shows the comparative results when using a random classes order
for sequential training (all experiments in the main paper are conducted with a fixed classes order).
Specifically, we first obtain a random classes order by creating a pseudo-random number generator
using a random seed, and then use the randperm function to ensure that the random classes order
is the same for each independent run. We conduct the experiments (buffer size is 200) on the two
datasets including S-CIFAR-10 (H = 5) and S-CIFAR-100 (H = 10), and make comparisons
with the-state-of-the-arts including CLS-ER (Arani et al., 2022), SCoMMER (Sarfraz et al., 2023b)
and ESMER (Sarfraz et al., 2023a). The experimental parameter settings are adopted as the same
with the experiments in the main paper. Here, we set the random seed to 0 for two datasets. From
Table 5, it can be seen that our BDT-SMT achieves the highest average accuracy on both datasets.
Especially for the dataset S-CIFAR-100, our BDT-SMT significantly outperforms the second-best
ESMER. These results provide additional evidence of the effectiveness of our method, highlighting
the beneficial impact of the two novel components we have devised: the BDT strategy and the SMT
mechanism for continual learning. These two components enable our BDT-SMT to consistently
maintain a stable and superior performance even in scenarios with random classes order.

Domain Incremental Learning Setting We conduct experiments to investigate the performance of
our proposed BDT-SMT under the domain incremental learning (Domain-IL) setting. The Domain-
IL setting is usually used to deal with problems with the same label space (Y ) but different input
distributions (X), e.g., cats in cartoons and cats in reality. Table 6 shows the comparative results on
the two datasets Rotated MNIST (R-MNIST) (Lopez-Paz & Ranzato, 2017) and Permuted MNIST
(P-MNIST) (Kirkpatrick et al., 2017), following CLS-ER (Arani et al., 2022). The avarage accu-
racy is reported over three independent runs. The comparative methods include the state-of-the-art
methods CLS-ER and ESMER (Sarfraz et al., 2023a). We implement CLS-ER using the published
hyperparameters, while for ESMER, we fine-tune the hyperparameters as they are not provided.
From Table 6, we can observe that our BDT-SMT achieves the best performance on both datasets.
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Table 7: Comparative results with different PIE algorithms.
Method Buffer Size S-CIFAR-10 S-CIFAR-100
PIE-MAS 200 66.11 (±0.25) 36.34 (±0.62)

PIE-EWC 200 68.01 (±0.68) 36.77 (±0.10)

PIE-SI (ours) 200 70.19 (±1.13) 38.05 (±0.25)

Table 8: Computational cost comparison results between our BDT-SMT and CLS-ER.

Method Compute Time (s) Storage (MiB)
S-CIFAR-10 S-CIFAR-100 S-CIFAR-10 S-CIFAR-100

CLS-ER (Arani et al., 2022) 8216 14626 2667 1167
BDT-SMT 8680 14874 2745 1211

Table 9: Performance (average accuracy) of three models in BDT-SMT for the main experiments.
Dataset Buffer Size Stable Model Working Model Plastic Model
S-MNIST 200 89.99 (±0.27) 89.88 (±0.35) 89.96 (±0.20)

S-CIFAR-10 200 70.19 (±1.13) 53.43 (±1.55) 65.52 (±1.84)

S-CIFAR-100 200 38.05 (±0.25) 19.09 (±0.37) 22.83 (±0.48)

S-Tiny-ImageNet 200 25.31 (±0.29) 9.87 (±0.29) 17.54 (±0.49)

Specifically, the BDT-SMT outperforms ESMER by an average margin of 3.71% and surpasses
CLS-ER by an average margin of 2.16% on the two datasets. These results fully demonstrate the
outstanding performance of our BDT-SMT under the Domain-IL setting.

Comparison with Other Parameter Importance Evaluation Algorithms In the main paper, we
devise the Parameter Importance Evaluation (PIE) algorithm according to SI (Zenke et al., 2017) for
experiments. Furthermore, other works such as Elastic Weight Consolidation (EWC) (Kirkpatrick
et al., 2017) and Memory Aware Synapses (MAS) (Aljundi et al., 2018) have also introduced their
respective PIE algorithms. Among them, EWC calculates the parameter importance by estimat-
ing the diagonal values of the Fisher Information Matrix. MAS uses the sensitivity of the output
function to estimate the parameter importance. To verify that the PIE algorithm designed accord-
ing to SI is more applicable to our BDT-SMT, we introduce the PIE algorithms designed according
to EWC/MAS into our method for comparative analysis. For better distinction, we denote these
methods as PIE-EWC, PIE-MAS and PIE-SI (ours) respectively. For fair comparisons, these com-
parative methods adopt the same experimental parameter settings as ours. Table 7 shows the average
accuracy comparison results over ten independent runs. It can be observed that the PIE-SI achieves
the best average accuracy on both datasets, exhibiting a significant performance advantage over the
other methods. This outcome provides strong evidence for the superior applicability of the PIE
algorithm designed according to SI in our work.

Computational Cost We mainly conduct a computational cost comparison between our BDT-SMT
and the followed method CLS-ER (Arani et al., 2022), focusing on two key aspects: the average
computation time per task (Compute Time) and the total memory storage requirements (Storage).
Table 8 shows the comparative results on the S-CIFAR-10 and S-CIFAR-100. It is evident that the
computational cost of our BDT-SMT is comparable to that of CLS-ER on each dataset, which further
shows the effectiveness of our method at a similar computational cost.

A.4 PERFORMANCE ANALYSIS

In the BDT-SMT, the stable model is used for inference since it obtains more and better representa-
tion of general structured knowledge over time through the transferring and flowing of knowledge
between models (P ⇔ W ⇔ S). Here, we list the average performance (i.e., average accuracy
over ten independent runs) of three models in BDT-SMT for the main experiments (i.e., Table 1), as
shown in Table 9. It can be observed that the stable model has stronger generalization ability across
tasks and thus achieves the best average performance on the sequential tasks of all benchmarks.

Moreover, we show the task-wise performance of our BDT-SMT on the S-CIFAR-10 in Fig. 5, where
the results are obtained from one run randomly selected from ten independent runs. After learning
one or more tasks on the dataset, the resulting model is evaluated on the test set of the previous
tasks. From Fig. 5, it can be seen that: (1) The stable model accumulates and consolidates more
knowledge of earlier tasks, and also learns more knowledge of recent and new tasks. (2) The plastic
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Figure 5: The task-wise performance of our BDT-SMT on S-CIFAR-10 test set.

Table 10: Hyperparameter settings of BDT-SMT and SMT-Mean. ‘U’/‘L’ refers to uniform/longtail.

Dataset Buffer Size BDT-SMT SMT-Mean
bs γ η fS fP m̂ bs γ η f m̂

S-MNIST 200 10 2.0 0.1 0.9 1.0 0.99 10 2.0 0.1 1.0 0.99
S-CIFAR-10 200 32 0.15 0.1 0.1 0.6 0.999 32 0.15 0.1 0.3 0.999
S-CIFAR-100 200 32 0.15 0.05 0.1 0.3 0.999 32 0.15 0.05 0.2 0.999
S-Tiny-ImageNet 200 32 0.1 0.05 0.04 0.08 0.999 32 0.1 0.05 0.06 0.999
P-MNIST 200 128 1.0 0.2 0.8 1.0 0.99 – – – – –
R-MNIST 200 128 0.75 0.2 1.0 1.0 0.999 – – – – –

Table 11: Hyperparameter settings of SCoMMER (Sarfraz et al., 2023b) and ESMER (Sarfraz et al.,
2023a). ζ refers to ‘Activation Sparsity’ in SCoMMER.

Dataset Buffer Size SCoMMER ESMER
ζ η πh πs γ r η αl β γ α r

S-MNIST 200 – – – – – – 0.03 0.99 0.9 2.0 0.99 0.2
S-CIFAR-10 200 0.8 0.1 0.5 2.0 0.15 0.5 0.03 0.99 1.2 0.15 0.999 0.1
S-CIFAR-100 200 0.9 0.1 0.5 3.0 0.15 0.2 0.03 0.99 1.0 0.15 0.999 0.2
S-Tiny-ImageNet 200 0.9 0.05 0.5 3.0 0.1 0.1 0.03 0.99 2.5 0.15 0.999 0.07
P-MNIST 200 – – – – – – 0.2 0.99 0.9 1.0 0.9 0.2
R-MNIST 200 – – – – – – 0.2 0.99 0.9 1.0 0.99 0.2

model accumulates and consolidates more knowledge of recent and new tasks. (3) The working
model learns more knowledge of new tasks. These results more clearly verify the effectiveness of
our BDT-SMT, which can acquire more new knowledge from new tasks while consolidating the old
knowledge. More concretely, we can observe the performance of the final obtained model (stable
model) on learned tasks (i.e., the last row in the figure): firstly, the stable model can maintain a better
classification performance on earlier tasks, indicating that the old knowledge can be better consol-
idated by the proposed BDT strategy; Secondly, the stable model achieves a good classification
performance on recent and new tasks, indicating that the new knowledge can be better represented
by the proposed SMT mechanism. These results show that our method can generalize well on both
old and new tasks due to the combination of BDT and SMT. The combination of two components
brings great benefits for continual learning, which enables the model to maintain a better balance
between old and new knowledge to further improve model performance.

A.5 HYPERPARAMETER SETTINGS

Best Values Table 10 shows the optimal hyperparameter settings of our BDT-SMT and SMT-Mean
(i.e., single semantic memory model). In the table, bs denotes the batch size, γ denotes the balancing
parameter in the loss function, η denotes the learning rate, fS and fP denote the frequency parameter
of stable model and plastic model, f denotes the frequency parameter of single semantic memory
model in SMT-Mean, and m̂ denotes the forward transport momentum parameter. The selection
of these hyperparameters is conducted with the backward transport momentum parameter mi(i ∈
P, S), minibatch size and threshold parameter k fixed. The value of backward transport momentum
parameter is the same as the corresponding forward transport momentum parameter for each dataset.
The minibatch sizes are as follows: 128 for S-MNIST/P-MNIST/R-MNIST and 32 for S-CIFAR-
10/S-CIFAR-100/S-Tiny-ImageNet. The threshold parameter k is set to 1

3 for all datasets.

16



Under review as a conference paper at ICLR 2024

Table 12: Hyperparameter (‘p’) values choice of our BDT-SMT and SMT-Mean.
Method p S-MNIST S-CIFAR-10 S-CIFAR-100 S-Tiny-ImageNet P-MNIST R-MNIST

SMT-Mean

γ [1.5, 2.0] [0.1, 0.15, 0.2] [0.1, 0.15, 0.2] [0.1, 0.15, 0.2] – –
η [0.03, 0.05, 0.1] [0.05, 0.1, 0.15] [0.03, 0.05, 0.1] [0.03, 0.05, 0.1] – –
f [0.6, 0.9, 1.0] [0.2, 0.3, 0.6] [0.1, 0.2, 0.5] [0.04, 0.06, 0.08] – –
m̂ [0.99, 0.999] [0.99, 0.999] [0.99, 0.999] [0.99, 0.999] – –

BDT-SMT

γ [1.5, 2.0] [0.1, 0.15, 0.2] [0.1, 0.15, 0.2] [0.1, 0.15, 0.2] [1.0, 1.5] [0.5, 0.75, 1.0]
η [0.03, 0.1, 0.2] [0.03, 0.1, 0.2] [0.03, 0.1, 0.3] [0.03, 0.05, 0.1] [0.1, 0.2] [0.1, 0.2]
fS [0.5, 0.9] [0.1, 0.3, 0.5] [0.1, 0.3, 0.5] [0.02, 0.04, 0.06] [0.5, 0.8] [0.9, 1.0]
fP [0.8, 1.0] [0.3, 0.6, 0.8] [0.3, 0.6, 0.8] [0.06, 0.08, 0.10] [0.8, 1.0] [1.0]
m̂ [0.99, 0.999] [0.9, 0.99, 0.999, 0.9999] [0.99, 0.999] [0.99, 0.999] [0.99, 0.999] [0.99, 0.999]

Moreover, for the experiments of SCoMMER (Sarfraz et al., 2023b)/ESMER (Sarfraz et al., 2023a)
on the datasets S-CIFAR-100 and S-Tiny-ImageNet, the best hyperparameter values are selected by
fine-tuning the hyperparameters provided in the released code. This is due to the fact that these
methods only provide hyperparameter values for shorter sequential tasks (i.e., H = 5 for S-CIFAR-
100), while these parameters perform poorly when transferred to longer sequential tasks (e.g., H =
10). The detailed hyperparameter settings of these two methods are presented in Table 11. As for
the hyperparameter settings of other comparative methods can be seen in our released code.

Values Choice In Table 12, we provide a list of hyperparameter values for selecting the best values
in the grid-search strategy of our BDT-SMT/SMT-Mean (the buffer size is 200). For fair compar-
isons, we keep the experimental settings as close as possible to the CLS-ER (Arani et al., 2022),
mainly adjusting the hyperparameters γ, η, fS , fP , m̂. Note that in addition to the hyperparameter
list we provide, there may be other better hyperparameter values for the model.
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