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ABSTRACT

A fundamental challenge in neuroscience and AI is understanding how physi-
cal space is mapped into neural representations. While artificial neural networks
can generate brain-like spatial representations, such as place and grid cells, their
“black-box” nature makes it difficult to determine if these representations arise
as general solutions or as artifacts of a chosen architecture, objective function,
or training protocol. Critically, these models offer no guarantee that learned solu-
tions for core navigational tasks, like path integration (updating position from self-
motion), will generalize beyond their training data. To address these challenges,
we introduce a first-principles framework based on an exponential map model. In-
stead of using deep networks or gradient optimization, the presented model uses
generator matrices to map physical locations into neural representations through
the matrix exponential, creating a transparent framework that allows us to identify
several exact algebraic conditions underlying key properties of neural maps. We
show that path invariance (ensuring location representations are independent of
traversal route) is achieved if the generators commute, while translational invari-
ance (maintaining consistent spatial relationships across locations) demands gen-
erators producing orthogonal transformations. We also show that preserving the
metric of flat space requires the eigenvalues of the generator matrices to form sets
of roots of unity. Finally, we demonstrate that the proposed framework constructs
diverse biologically relevant spatial tuning, including place cells, grid cells, and
context-dependent remapping. The framework we propose thus offers a transpar-
ent, theoretically-grounded alternative to “black-box” models, revealing the exact
conditions required for a coherent neural map of space.

1 INTRODUCTION

A fundamental challenge in neuroscience and artificial intelligence is to understand the mapping
from physical space to the representational space of neural population activity. In the mammalian
brain, such representations are strongly associated with the hippocampal formation, which contains
specialized neurons that encode spatial information. Most famously, place cells (O’Keefe & Dostro-
vsky, 1971) fire within specific, localized areas of an environment known as place fields, while grid
cells (Hafting et al., 2005) fire in a periodic hexagonal pattern that tessellates the environment and
is believed to provide a neural metric for space (Ginosar et al., 2023). Together, these and other
spatially-tuned cells form a rich, high-dimensional representation of an animal’s location. This neu-
ronal spatial map abruptly reorganizes in response to environmental changes, a phenomenon known
as remapping, indicating that neurons also encode the environment’s identity (Leutgeb et al., 2004;
Fyhn et al., 2007). While the firing patterns of these spatial neurons are well-characterized, the
principles governing their emergence remain unclear.

In recent years, deep learning models, particularly recurrent neural networks (RNNs) trained to solve
navigation tasks, have been shown to learn representations that resemble biological place and grid
cells (Banino et al., 2018; Cueva & Wei, 2018; Sorscher et al., 2022; Whittington et al., 2020). These
findings are significant, as they strongly suggest that spatial tuning is a normative solution to the
demands of navigation. However, the “black-box” nature of deep neural networks makes it difficult
to disentangle whether their learned representations reflect fundamental principles of navigation or
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are artifacts of a chosen architecture, objective function, or training protocol (see Fig. 1a) for an
illustration). Another key limitation of this approach is that deep learning models offer no guarantee
that their learned solutions will generalize beyond the training data. In contrast, animals are able to
seamlessly navigate vast, novel environments. To understand how biological brains solve these tasks
so readily, there is a need for models that allow for exact and interpretable solutions to navigation
problems.

In this work, we construct spatial representations using an exponential map model. Instead of re-
lying on neural networks or gradient-based optimization, the presented approach builds represen-
tations from a transparent mathematical foundation. The core component of the model is a set of
generator matrices that directly map a spatial location to a neural population firing rate vector. This
construction allows us to derive the exact algebraic conditions required for a coherent neural spatial
map. For a neural spatial map to be useful, it must support core navigational computations. One
of the most fundamental is path integration, the process by which a navigator estimates its position
by integrating self-motion cues. This process introduces a critical self-consistency problem: For the
map to be coherent, the representation of a location must be independent of the path taken to reach it.
We show that path-independent representations required for reliable path integration are guaranteed
if the model’s generator matrices commute. Furthermore, we find that equinorm representations,
previously used as a learning constraint in neural networks (Schaeffer et al., 2023; Xu et al., 2022),
arise naturally from generators that produce translationally invariant similarity structures—a desir-
able property for navigation in open-field environments. We also show that preserving the metric of
flat space (Xu et al., 2022) requires the eigenvalues of the generator matrices to form sets of roots
of unity on discrete rings in frequency space. When all of these properties are taken into account,
the generated spatial representations are similar to those spatial cells in the brain, depending on a
choice of symmetry. Finally, we demonstrate that this framework can be seamlessly generalized
from preserving the metric of space to preserving the similarity of more general inputs, which we
use to model remapping. A conceptual overview of the proposed framework and the key spatial map
properties we address are presented in Fig. 1.

Despite its simplicity, the proposed framework is powerful enough to construct a wide variety of
biologically plausible tuning curves, including place cells, grid cells, and context-dependent remap-
ping, from the same underlying mechanism. By grounding spatial representations in a clear algebraic
structure, the presented work provides a theoretically-grounded alternative to black-box models, re-
vealing exact and interpretable principles that underpin a coherent neural map of space.

2 RESULTS & DISCUSSION

2.1 CONSTRUCTING SPATIAL REPRESENTATIONS WITH AN EXPONENTIAL MAP

A spatial representation is, in broad terms, a map that assigns a neural population vector to every
spatial location, as exemplified in Fig. 1b). For a 2D space with Cartesian coordinates (x, y), the
representation at a point is a population vector p(x, y) ∈ RN . Each of the N components of this
vector can be thought of as the firing rate of a neuron, making the vector a point in an N -dimensional
state space that captures the activity of the entire neural ensemble. We build upon previous modeling
approaches Gao et al. (2021); McNamee et al. (2021); Xu et al. (2022) and define this map using the
matrix exponential:

p(x, y) = exGx+yGyp0, (1)

where Gx, Gy ∈ RN×N are generator matrices for the cardinal directions and p0 = p(x0, y0) is
the representation at some origin point. Intuitively, the generator matrices define how locations in
physical space translate into transformations in the high-dimensional neural state space. The expo-
nential map then composes these transformations to “transport” the origin vector, p0 to a population
vector at any target location (x, y).

Equation (1) does what we intended it to; for each location (x, y), it assigns a population vector, and
provides a constructive method for generating a spatial map. However, without further constraints,
an arbitrary choice of generators could produce a map that is ill-suited for navigation. For instance,
the representation could end up being trivial (all locations map to the same vector) or ambiguous
(multiple locations map to the same vector). As we will show, the power of this framework lies
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Figure 1: Conceptual overview of the proposed framework and results. a) Deep learning models
are “black-boxes” that learn spatial representations, but the underlying principles are obscured by
the complexities of architecture, training, and objective functions. The exponential map model is
a transparent “no-box” alternative, using generator matrices (Gx, Gy) to construct a representation
p(x, y). b) A neural population vector, which captures the activity of the entire neural ensemble, is
assigned to every location, mapping physical space to a neural representational space. c) Path In-
variance: Path integration can be viewed as a form of parallel transport, where a vector representing
the neural representation is moved along a trajectory in a high-dimensional state space. Traversing
a curved manifold can induce a net transformation in the vector at a point that is dependent on the
traversal route. By imposing simple, interpretable algebraic constraints on the model’s generators,
we can directly enforce fundamental properties. Path invariance is guaranteed if the generators com-
mute. d) Translational Invariance: Making the generator matrices skew-symmetric (GT = −G)
imposes several biologically-relevant properties on the representation. First, it ensures that spatial
relationships are consistently maintained across locations (translational invariance). Second, skew-
symmetric generators produce orthogonal representations, meaning the population vector p(x, y)
maintains a constant norm across the entire space. e) Metric Preservation: Preserving the geome-
try of flat space requires the generator eigenvalues to form sets of roots of unity on discrete rings in
frequency space, which, for certain symmetry orders gives rise to grid-like patterns. f) Remapping:
Generalizing the framework to non-spatial inputs, like a context signal, allows the model to produce
distinct spatial maps for different contexts, mimicking remapping.

in its transparency, allowing us to derive precise algebraic conditions on Gx and Gy that guarantee
properties essential to navigation.
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2.2 FROM SPATIAL REPRESENTATION TO PATH INTEGRATION AND PATH INDEPENDENCE

Path integration is a crucial skill possessed by most animals, wherein one’s location is inferred by
integrating past location and self-motion information. In terms of the representation in Eq. (1), path
integration is realized if

p(x+∆x, y +∆y) = Q(∆x,∆y)p(x, y). (2)

Intuitively, we can say that we can perform path integration, if, for any past location (x, y) and
the corresponding population vector p(x, y) we can arrive at the correct population vector p(x +
∆x, y+∆y) at the new location (x+∆x, y+∆y) through some operation Q that only depends on
the displacement. Inserting our spatial representation from Eq. (1), we find that we want

e(x+∆x)Gx+(y+∆y)Gyp0 = Q(∆x,∆y)exGx+yGyp0.

This equality suggests that we want

Q(∆x,∆y) = e∆xGx+∆yGy .

However, the exponential function in Eq. (1) is a matrix exponential, which behaves differently from
the regular exponential function. In particular, the Baker-Campbell-Hausdorff formula dictates that

eAeB = eA+B+ 1
2 [A,B]+ 1

12 [A,[A,B]]+ 1
12 [B,[B,A]]+ ...,

where [A,B] = AB−BA is the commutator between matrices A and B. However, this immediately
reveals that if the generator matrices Gx, Gy commute, [Gx, Gy] = 0, then Eq. (2) is automatically
satisfied for any displacement, as

[aGx + bGy, a
′Gx + b′Gy] = (ab′ − a′b)[Gx, Gy],

for all (a, b) and (a′, b′). Thus, if the generators commute, the model can path integrate exactly
and indefinitely! An important effect of this choice is that the representation is path-invariant (as
illustrated in Fig. 1c), meaning that the population vector at a point does not depend on the path taken
to it. This is also demonstrated explicitly in Appendix B. Going forward, we therefore demand that
Gx, Gy commute, which ensures that the representation p is path-integration compatible, as enacted
by Eq. (2). Next, we demonstrate that commuting generator matrices enable an explicit construction
that allows us to specify the similarity structure of the spatial representation.

2.3 ORTHOGONAL TRANSFORMATIONS FOR EGOCENTRIC NAVIGATION

Equipped with a path integration-compatible model, we can begin to consider what makes for a
good or useful representation. However, before designing a representation, we need to know how to
compare representations at different locations. We hold that this is most easily encoded in the sim-
ilarity structure of the representation, that is, the similarity between population vectors at different
locations. Considering the path-integration compatible model Eq. (2), we are therefore interested in
the quantity

C(x, y,∆x,∆y) =
p(x, y)TQ(∆x,∆y)p(x, y)

|p(x, y)||Q(∆x,∆y)p(x, y)|
,

which is just the cosine similarity between the population vector at a location (x, y) and a population
vector at some other location (x+∆x, y+∆y) arrived at through path integration. However, using
that (eA)T = eA

T

, and again demanding commutativity of all involved matrices, the similarity
becomes

C(x, y,∆x,∆y) = pT
0 e

x(GT
x +Gx)+y(GT

y +Gy)+∆xGx+∆yGyp0/Z, (3)
where Z(x, y,∆x,∆y) is shorthand for the norm factor in the original similarity expression. Sur-
prisingly, Eq. (3) reveals that similarities are position-independent, or equivalently, translation in-
variant, if the generator matrices Gx and Gy are skew-symmetric, because the exponents cancel, as
illustrated in Fig. 1d). When Gx and Gy are both skew-symmetric, linear combinations of the two
are also skew-symmetric. For a skew-symmetric matrix A, the corresponding matrix exponential,
eA, is orthogonal. For an orthogonal exponential map, the representation generated by Eq. (1) is
guaranteed to be of constant norm and so Z = |p0|2. Going forward, we will demand that

GT
x = −Gx GT

y = −Gy,
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which ensures that

C(∆x,∆y) =
pT
0 e

∆xGx+∆yGyp0

|p0|2
, (4)

meaning the similarity only depends on the displacement. From a navigational perspective this
is important: For one, it is a sensible choice in the open-field regime, where no locations are in-
herently special, meaning that there is no reason for similarities to appear different at particular
locations. Second, it allows the model to make spatial inferences (such as computing distances; see
Section 2.4) without absolute positional information. Thus, a representation generated by orthog-
onal transformations can make for an ideal basis for egocentric navigation, for example, in novel
environments.

We also note that recent models of spatial cells have included norm constraints which have been
shown to be conducive to grid-like representations Gao et al. (2021); Dorrell et al. (2023); Xu et al.
(2022); Schaeffer et al. (2023). However, similarity translational invariance has not, to the best
of our knowledge, been explored explicitly in the past in the context of spatial representations.
Furthermore, similarity invariance could be interesting to study also in other task domains. As an
example, batch and in particular layer normalization Ba et al. (2016); Ioffe & Szegedy (2015) are
reminiscent of norm constraints, and can greatly improve learning performance in neural networks.
Investigating whether this could be facilitated by some between-representation similarity invariance
could provide valuable insights into the goings-on of deep neural networks.

Once Gx and Gy are skew-symmetric, they may each be expressed in a very useful block diagonal
form with

Gx = RTΣxR and Gy = RTΣyR, (5)

where R ∈ RN×N is an orthogonal matrix, and Σx and Σy are block diagonal, with 2 × 2 skew
symmetric blocks along the diagonal. Note that for simplicity, we will restrict ourselves to the case
where N is even. In this case, the non-zero entries of Σx and Σy are the imaginary parts of the
eigenvalues of Gx and Gy , which come in conjugate pairs ±(iλi,x, iλi,y). Notice that this choice
ensures that Gx and Gy commute, as the 2 × 2 skew symmetric matrices that make up the blocks
of Σx and Σy commute, and RTR = RRT = I . With these prerequisites, the similarity admits the
particularly simple form

C(∆x,∆y) =

N∑
i

α2
0,i cos(λi,x∆x+ λi,y∆y), (6)

where α0 = R p0

|p0| and λi,x, λi,y being the imaginary part of the i-th eigenvalues of Gx and Gy ,
respectively (see Appendix E for a derivation).

The translational invariance induced by skew-symmetric generators comes with a non-trivial ad-
vantage: The similarity is invariant to a constant, non-spatial shift, similar to remapping behavior
(see Section 2.5 for details and Fig. 1f) for an illustration) (Leutgeb et al., 2004; Fyhn et al., 2007).
Between-context similarities share the same similarity function as the spatial case, except that trans-
lations are taken between contexts, not locations. Notably, this enables a single, static model to
produce different spatial representations when comparing across contexts.

2.4 PRESERVING THE METRIC OF FLAT SPACE

Given a spatial representation and a notion of representational similarity, we can finally consider
what properties the representation should possess. As proposed by (Gao et al., 2021; Xu et al., 2022),
we champion that one of the foundational properties of any spatial representation is its translation
of physical distances into distances on a neural manifold. More specifically, we restrict ourselves
to the open field (where all directions and locations are, for all purposes, equal). In this case, one
would not expect distances to appear warped in any particular location or direction, and thus the
metric induced by Eq. (1) should match the flat metric, at least up to a constant factor (a so-called
conformal isometry (Xu et al., 2022)).

When we impose this requirement on the path integrating, orthogonal representation, we arrive at
a simple condition on the eigenvalues of the generators Gx and Gy: If these form sets of roots of
unity, then the representation preserves the flat metric (see Appendix D for details and Fig. 1e) for
an illustration). Concretely, we write λi,x = ki cos(ϕi) and λi,y = ki sin(ϕi) in polar coordinates
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(which are, again, the imaginary parts of the ith eigenvalues of Gx and Gy), a flat metric-preserving
representation satisfies

N/2∑
j

ρ2je
2iϕj = 0,

with ρi = αiki being shared by conjugate eigenvalues (see Appendix D for specifics). Said differ-
ently, if the eigenvalue angles ϕi are evenly spaced on discrete rings, the representation preserves
the flat metric. More precisely, for a given ring of radius ρm, there are M eigenvalues which are
evenly spaced on the ring, which may possess some shared orientation offset φi

ϕi → φi + π
i

M
,

with i = 0, 1, ...,M − 1. To see what kind of representation a particular symmetry M produces,
we first note that for orthogonal matrices, the entries of the representation p can be viewed as
mixtures of 2D plane waves, which we denote α (see Appendix C) . However, the exact mixture is
determined by the choice of matrix R, as p0 = RTα. Figure 2 shows example representations p
and plane waves α for different symmetries M , when R is a randomly sampled orthogonal matrix
(see Appendix A for details). Also shown is the similarity function relative to the origin.

Considering the case of a single ring, we see that lower order symmetries such as M = 2 and 3,
produces mixtures of plane waves oriented at 90 and 60 degrees, respectively. Notably, this results in
grid-like representations, with square-type grids for M = 2, and hexagonal-type grids for M = 3.
Notice, however that some representations are not purely grid-like, due to the random mixing by
R. For greater values of M , however, the representation becomes heterogenous, and without any
obvious periodicity. While the representation is strongly influenced by a choice of R, the similarity
is independent of it (it only depends on α). Markedly, with increasing M , the similarity becomes
approximately radial, and for M = 20, the similarity function is an approximate Bessel function, as
predicted in Appendix F for a single ring of eigenvalues.

Besides uncovering a general condition for metric preservation, we also find that the admissible
solutions allow for the modular organization found in grid cells in the brain (Stensola et al., 2012).
Furthermore, when considering the similarity function (see Appendix F), we find that if modules
with the same spacing form roots of unity in their orientation, and the symmetry of the module ori-
entation is co-prime to that of the pattern, the representation is head-direction independent over a
large spatial range. In the same vein, we also find that if the relative spacing of different modules
is proportional to the zeroes of the Bessel function J0, then the similarity function approximates
a Fourier-Bessel series, which could be used to construct a range of different radially symmetric
similarity functions, which could conceivably be used tune navigation to certain length scales. Fur-
thermore, we find that the average ratio of successive Bessel function zeros used to construct a
Fourier-Bessel series falls in the same variability range as the experimentally observed ratio of

√
2

between grid cell module spacings (Stensola et al., 2012), suggesting a possible link between our
findings and the organization of entorhinal grid cells (see Appendix F).

2.5 SIMILARITY PRESERVATION AND REMAPPING

With our choice of generators in Eq. (5) and a choice of similarity function, we are able to gener-
ate spatial representations for a single environment up to a choice of orthogonal transformation R.
However, animals are capable of distinctly encoding a variety of both spatial and non-spatial (such
as room smell or identity) information through so-called remapping. In this section, we will demon-
strate that we can effectively model remapping behavior, extending our model to a much larger class
of representations.

This result follows from noting that the between-representation similarities only depend on the spa-
tial displacement between them. If, on the other hand, the representation in Eq. (1) were to encode
non-spatial information and we fix spatial locations, representational similarities depend only on the
change in the non-spatial input. To see this, we can consider the encoding of a simple signal; a
global scalar signal s, such as the smell of the recording environment. We then encode this in the
exact same manner as spatial coordinates, by defining

p(x, y, s) = exGx+yGy+sGsp0. (7)

6
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Figure 2: Example plane waves (α) and corresponding representations (p) alongside the similarity
function (C) relative to the origin (black cross) for representations whose eigenvalues form sets of
roots of unity, with symmetries M on a single ring. For each eigenvalue (imaginary part indicated
by black dot), the corresponding conjugate eigenvalue is also shown. Representations were formed
using generators with a single set root-of-unity solution with varying M , a random orthogonal matrix
R, and p0 = RT1.

The representation is now coupled to the non-spatial signal by a generator matrix Gs. Notably,
Gs can be made to inherit the favorable properties of the spatial representation, by setting Gs =
RTΣsR, as with the spatial case. We can then consider the similarity between representations, for
two distinct context signals s and s′ while keeping spatial location fixed:

p(x, y, s)Tp(x, y, s′) = pT e(s−s′)GRp = pT e∆sGRp,

which inherits the expression for the similarity from the spatial case. From this we can conclude
that when comparing between different contexts, representations can change even as spatial location
remains fixed (the nature of the modulation is codified by the choice of Gs), similar to remapping in
spatial cells (Leutgeb et al., 2004; Fyhn et al., 2007).

Encoding non-metric information such as a context signal raises an additional challenge compared
to the purely spatial case, as there is no clear metric or distance function that should be preserved.
Instead, we can consider the more general case, where Gs should be chosen so that similar context
signals produce similar representations, and dissimilar contexts result in dissimilar representations.
This kind of input similarity preservation has been studied previously, and has been shown to result
in localized receptive fields similar to place fields, when applied to spatial similarity (Sengupta
et al., 2018; Pettersen et al., 2024). So, how could we choose Gs to perform similarity preservation?
Returning to the similarity function, we note that it may be written as

C(∆s) =
∑
i

α2
0,i cos(∆sλi,s), (8)

where λi,s denotes the imaginary part of the ith eigenvalue of Gs, whenever spatial location is fixed.
Since this expression is derived from the cosine similarity, it is bounded by [−1, 1]. As the goal is
similarity preservation, we want for C(∆s) to approximate a function that decays with increasing
∆s to some baseline level at which inputs are deemed dissimilar. We can approximate several such
functions, by noting that Eq. (8) is a cosine series with non-negative coefficients. In fact, it may be
viewed as a discrete approximation of the inverse Fourier transform of a symmetric function with a
non-negative Fourier spectrum, as

f(x) =
1√
2π

∫ ∞

−∞
F (k)eikxdk =

1√
2π

∫ ∞

−∞
F (k) cos(kx)dk

≈ 1√
2πN

N∑
i

F (ki)

p(ki)
cos(kix),

where the approximation is a Monte Carlo estimate of the integral using importance sampling, with
ki sampled according to some density p(ki). While there are several functions that meet the specified
criteria, an especially important example is the Gaussian function, whose Fourier transform is itself
a Gaussian (which is symmetric and non-negative):

if f(x) = e−σ2x2

, then F (k) =
1√
2σ2

e−k2/(4σ2),

7
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Figure 3: Between-context similarity as a function of context separation. Also inset are example
ratemaps for two distant context values (s = 0, s = 5) corresponding to ∆s = 5. Representations
were formed using generators with 10 identical root-of-unity solutions with M = 3, a random
orthogonal matrix R, and p0 = RT1.

so if we sample the eigenvalues λi,s from a Gaussian distribution with density

pi(λi,s) =
1√
4πσ2

e−λ2
i,s/(4σ

2),

the series coefficients simplify to

α2
0,i =

1√
2πN

F (λi,s)

pi(λi,s)
=

1

N
,

which ensures that
C(∆s) ≈ e−σ2∆s2 ,

meaning similar contexts are highly similar, while dissimilar contexts become decorrelated, as
desired. Going forward, we will set σ = 1. Notice that this result also requires us to choose
αi = 1/

√
N , which is easily achieved if Rp0 = 1√

N
1, or p0 = 1√

N
RT1.

To demonstrate this remapping behavior in action, we took a metric-preserving spatial representa-
tion, consisting of 10 sets of identical root-of-unity solutions, and extended it to encode a non-spatial
signal s, according to Eq. (7). Note that we include multiple sets of roots of unity, as the Monte
Carlo estimate requires a larger number of terms (that is, cells) to provide a fair approximation of
the Gaussian. The eigenvalues of the generator Gs were sampled according to a normal distribution,
as described before. The resulting between-context similarity is shown in Fig. 3, for different con-
textual displacements. Notably, similarities decay with increasing context dissimilarity. Also shown
are example rate maps of unit activity, which demonstrate that spatial representations shift between
contexts, mimicking remapping behavior (Fyhn et al., 2007). Note that spatial similarities are pre-
served as long as the context signal is fixed, meaning that for a particular s, the spatial similarity is
as shown in Fig. 2 for M = 3.

Lastly, we find that if the metric preservation requirement is relaxed, and we instead demand only
similarity preservation in space using the same Gaussian similarity function for spatial locations
(with eigenvalues of the generator matrices Gx, Gy sampled from a normal distribution, following
the Fourier approach described previously), the resulting spatial similarity is approximately Gaus-
sian (see Appendix G). In this case, spatial representations become heterogeneous and more strongly
tuned to specific locations, resembling the tuning curves of place cells (O’Keefe & Dostrovsky,
1971). Thus, by altering the similarity function, the exponential map model can generate a diverse
range of spatial tuning curves observed in the brain.

3 CONCLUSION

In this work, we introduced a first-principles framework for generating neural spatial representa-
tions using an exponential map model. By leveraging generator matrices and the matrix exponen-
tial, we bypassed the “black-box” nature of deep learning models, allowing for a transparent and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

theoretically-grounded investigation into the principles of neural navigation. We derived the ex-
act algebraic conditions required for a coherent map of space. Specifically, we demonstrated that
commuting generators guarantee path-independent representations, a critical component for accurate
path integration. Furthermore, we showed that by constraining the generators to be skew-symmetric,
and thus producing orthogonal transformations, the resulting representations exhibit translational
invariance in their similarity structure, an ideal property for egocentric navigation in open-field en-
vironments. We also established that preserving the flat metric of Euclidean space requires the
generator eigenvalues to form sets of roots of unity on discrete rings in frequency space. Despite
its mathematical simplicity, the proposed framework is capable of constructing a diverse range of
biologically plausible spatial tuning, including grid cells and place cells, and modeling context-
dependent remapping by extending the same principles to non-spatial inputs. This work offers an
interpretable alternative to conventional deep learning approaches, revealing the fundamental math-
ematical structures that may underpin how the brain represents and navigates through space.

4 LIMITATIONS AND FUTURE WORK

While our framework provides a transparent account of how coherent spatial maps can be formed,
it has several limitations that open avenues for future research. The current model is primarily de-
veloped for navigation in flat, open-field environments. Animals, however, must navigate complex,
curved, and obstacle-laden spaces. Future work should explore how the generator framework can
be extended to represent non-Euclidean geometries, potentially by introducing position-dependent
or non-commuting generators that reflect the local topology and geometry of the environment.

Second, our remapping model considers only a simple scalar context signal. A natural next step is
to generalize this to handle high-dimensional, structured inputs, such as visual scenes or complex
sensory cues, to model how environmental identity and spatial location are integrated into a unified
representation. This would connect our algebraic approach more closely with the rich, multi-modal
inputs that biological systems and artificial agents must process.

Third, while most model parameters have been fixed by simple geometric considerations, there is
still a matter of finding conditions that fix the choice of the orthogonal matrix R. In this work,
we have only considered randomly sampled orthogonal matrices, and it is evident that this choice
strongly influences the appearance of the generated representations by mixing the underlying plane
waves. Interestingly, however, this freedom can be dissociated from the representational similarity
structure. As shown when modeling similarity preservation for remapping, by selecting an appropri-
ate initial vector p0 the similarity function C becomes independent of the specific choice of R. This
suggests that while individual tuning curves are shaped by R, the overall geometry of the neural map
need not be. Future work should explore if meaningful energy constraints (Cueva & Wei, 2018) or
non-negativity (Sorscher et al., 2022) constraints could mandate particular matrices R. This could,
in turn, drive generated representations to be even more closely related to the striking hexagonal or
sparse place-bound tunings observed in the brain.

Finally, while we propose exact conditions for properties like path integration and metric preserva-
tion, we do not specify the biological mechanisms or learning rules that would allow a neural circuit
to satisfy these constraints. The proposed framework is descriptive, not prescriptive, in how these
solutions are achieved. Investigating how biologically plausible learning rules, such as Hebbian
plasticity or gradient-based learning in recurrent neural networks, might converge to these mathe-
matically ideal solutions is a critical direction for future inquiry. For instance, could the norm and
similarity constraints explored here serve as powerful priors or regularizers for training more robust
and generalizable navigation agents? Answering such questions will help bridge the gap between
our theoretical work and its implementation in both biological and artificial neural systems.
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APPENDIX

A METHODS

All simulations were carried out using the matrix exponential in PyTorch (Paszke et al., 2019).
To generate random, orthogonal matrices, we used the ortho group functionality from the SciPy
library (Virtanen et al., 2020), which uniformly samples matrices from the orthogonal group O(N).
For root-of-unity solutions, the arena size was 20×20 to reveal the full pattern of the representation,
while for the similarity-preserving case the domain was s ∈ [0, 5] in the non-spatial, and x, y ∈
[−2, 2] for the spatial case, in line with the scale used for the desired Gaussian similarity function.

Large language models were used in writing this paper, with usage limited to improving writing and
readability.

B COMMUTING GENERATORS PRODUCE PATH-INDEPENDENT
REPRESENTATIONS

Because the entire spatial representation is furnished by the exponential map in equation 1, we can
easily impose constraints on the representation by constraining the generators Gx and Gy . For
example, Schaeffer et al. (2023)proposed that representations should be path-independent. In other
words, the representation at a point, should not be contingent on the path travelled to get there.

In the exponential map formalism, this can be achieved exactly by demanding that the involved
generators commute. Consider, for example, the representations at distinct points A, B, C, and D.
Then, the path A → B → D should give the same representation as the path A → C → D. The
corresponding generated representations are

pABD = e∆xBDGx+∆yBDGye∆xABGx+∆yABGypA,

and
pACD = e∆xCDGx+∆yCDGye∆xACGx+∆yACGypA,

where pA denotes the representation at A, while pABD denotes the representation at D, arrived at
via B and so on. Note that to arrive at the final representations, we simply compose transforms from
A to B/C, with transformations from B/C to D.

If Gx and Gy commute, so does any linear combination thereof. By the Baker-Campbell-Hausdorff
formula, composite transformations may then be combined into a single transformation, i.e.

pABD = e(∆xAB+∆xBD)Gx+(∆yAB+∆yBD)GypA = pACD,

as the final state only depends on the displacement from the initial location, which is equal for both
paths. Notably, if commutation is not satisfied, the generated state depends on the commutation
relation of the generators, scaled by displacements along path segments.

In the non-commutative case, the path-dependence of the final representation arises due to the non-
zero commutator of the generators Gx and Gy . Consider again the two paths, A → B → D and
A → C → D, with their respective representations:

pABD = e∆xBDGx+∆yBDGye∆xABGx+∆yABGypA,

pACD = e∆xCDGx+∆yCDGye∆xACGx+∆yACGypA.

When Gx and Gy do not commute, the Baker-Campbell-Hausdorff formula governs the combination
of the exponential terms. Specifically, for matrices U and V ,

eUeV = eU+V+ 1
2 [U,V ]+ 1

12 ([U,[U,V ]]−[V,[U,V ]])+....

Applying this to each path, the combined transformations for pABD and pACD differ due to the
commutator terms introduced by the BCH expansion.
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Let U = ∆xABGx +∆yABGy and V = ∆xBDGx +∆yBDGy . Then

pABD = eUeV pA = eU+V+ 1
2 [U,V ]+...pA.

Expanding [U, V ], we obtain

[U, V ] = [∆xABGx +∆yABGy,∆xBDGx +∆yBDGy],

and when Gx and Gy do not commute, we have that

[U, V ] = (∆xAB∆yBD −∆yAB∆xBD)[Gx, Gy],

as [Gx, Gy] = −[Gy, Gx]. Notably, non-commuting generators Gx and Gy give rise to contributions
that depend on the product of path segment displacements, and higher-order commutators will also
contribute correction terms to the exponent. Similarly, for pACD, the combined transformation is:

pACD = eW eZpA = eW+Z+ 1
2 [W,Z]+...pA,

where W = ∆xACGx + ∆yACGy and Z = ∆xCDGx + ∆yCDGy . The commutator [W,Z]
introduces terms analogous to [U, V ], but these terms now depend on products of path segment dis-
placements, specific to the path A → C → D (and higher-order terms). Thus, the representations
at D, in general, depend on the specific path taken to get to it. In the commutative case, all com-
mutators vanish, and the final representation depends only on the net displacement, which is path
independent.

C FROM GENERATORS TO REPRESENTATIONS

Given the form of the spatial representation in equation 1, we can rewrite a particular entry (i.e., a
cell’s spatial response) in a more insightful form. In particular, if we assume that p0 is a unit vector
(for simplicity), and that generators are skew symmetric, commute, and are written in block diagonal
form (as in equation 5), then

α(x, y) = exΣx+yΣyα0,

with α = Rp, and α0 = Rp0 as before. Then, the matrix exponential itself now reduces to a
block diagonal matrix, with 2×2 rotation matrices along the diagonal. This particular case has been
studied previously by (Dorrell et al., 2023), and the resulting representation may stated as rotations
in distinct 2D planes, where the action of a given block is

αi =

(
cos(Ωi) − sin(Ωi)
sin(Ωi) cos(Ωi)

)
αi

0

where the uppercase indexes a block, meaning i = 1, 2, ..., N/2 (as there are N/2 blocks). Thus,
αi ∈ R2 is just a slice of the original transformed representation. Furthermore, Ωi = xλi,x + yλi,y

is a rotation angle that couples spatial location (or, for path integrating models, displacement) to
eigenvalues of the generator matrices.

For a particular block, we have

αi
− = cos(Ωi)α

i
0,− − sin (Ωi)α

i
0,+

αi
+ = cos(Ωi)α

i
0,− + sin (Ωi)α

i
0,+,

where αi
± is the entry corresponding to the eigenvalue (+) of the ith block, and its conjugate (−),

respectively. As each entry is just a sum of two sinusoids, it can be written as

αi
− = Ai cos(xλi,x + yλi,y + ωi)

αi
+ = Ai sin(xλi,x + yλi,y + ωi),

where A2
i = α2

0,+ + α2
0,− and ωi = arctan(−α0,+/α0,−). Thus, before transformation by R, each

entry is 2D plane wave, whose orientation and frequency is fixed by λi,x and λi,y , and phase shifted
by ωi along the wave direction. Furthermore, the representation p = RTα therefore consists of a
mixture of plane waves.
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D METRIC PRESERVATION

Consider the representation along a parametrized trajectory r(t) = (x(t), y(t)), i.e.

p(x(t), y(t)) = ex(t)Gx+y(t)Gyp0.

In the representation, a line element can be written as ds = |dp|, where

dp =

(
∂p

∂x

dx

dt
+

∂p

∂y

dy

dt

)
dt

by the chain rule, meaning the length of a trajectory becomes

L =

∫ S

0

√
|dp|2 =

∫ T

0

√∑
ij

gij
dri
dt

drj
dt

dt.

Comparing with the squared line element, we can then simply read off the induced metric g induced
metric, as

g = −
(

pT
0 G

2
xp0 pT

0 GxGyp0

pT
0 GxGyp0 pT

0 G
2
yp0

)
,

since
∂p

∂ri
= Grip,

meaning
∂p

∂ri

T ∂p

∂rj
= pTGT

riGrjp = −pT
0 GriGrjp0

with r = (x, y), as the generator matrices are skew symmetric, and commute. We can simplify
further by noting that

G2
x = RTΣxRRTΣxR = RTΣ2

xR

= RTDxR,

where Dx is a diagonal matrix, whose entries are the square of the generators’ eigenvalue, −λ2
x,

as Σx is block diagonal with 2D skew-symmetric blocks (and eigenvalues are purely imaginary).
Note that the same pattern holds for the other metric entries, with the off-diagonal product GxGy =
RTDxyR resulting in a diagonal matrix with products of eigenvalues on the diagonal, −λxλy . We
may then write

g = −
(
αT

0 Dxα0 αT
0 Dxyα0

αT
0 Dxyα0 αT

0 Dyα0

)
with α0 = Rp0 as before. With this simplified form, the length of an induced path becomes

L =

∫ T

0

√√√√ N∑
i=1

α2
0,i(λ

2
i,xẋ

2 + 2λi,xλi,yẋẏ + λ2
i,y ẏ

2) dt

If we want our representation to preserve the flat metric, i.e., g = σ2I for some σ, we need that
N∑
i=1

α2
0,iλ

2
ix =

N∑
i=1

α2
0,iλ

2
iy

and
N∑
i=1

α2
0,iλixλiy = 0.

Surprisingly, a rather straightforward solution exists: If we first introduce polar coordinates, λix =
ki cosϕi, λiy = ki sinϕi, we obtain the conditions

N∑
i=1

ρ2i cos
2(ϕi) =

N∑
i=1

ρ2i sin
2(ϕi)

N∑
i=1

ρ2i cosϕi sinϕi = 0,

14
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where ρi = αiki, or, equivalently

N∑
i=1

ρ2i cos (2ϕi) = −
N∑
i=1

ρ2i cos (2ϕi)

N∑
i=1

ρ2i sin (2ϕi) = 0

which is readily derived by power-reduction and half-angle identities. Thus, we actually require

N∑
i=1

ρ2i cos(2ϕi) = 0 and
N∑
i=1

ρ2i sin(2ϕi) = 0.

However, this just means that we need

N∑
i=1

ρ2i e
2iϕi = 0

as both the imaginary and real parts should vanish. Note, however, that for each ϕj , there is a
conjugate ϕ∗

j = ϕj + π, as the eigenvalues of the generator matrices come in conjugate pairs.
Therefore, the full expression can be written

N/2∑
i=1

(ρ2i + (ρ∗i )
2)e2iϕj+2πi = 0,

but the conjugate phase shift does not impact the sum as e2πi = 1. However, this enforces a
requirement on our choice of ρi, which we will take to be equal to ρ∗i going forward. Note also that
we already restricted ourselves to the case where N is even.

The simplest case is when ρi is a shared quantity, i.e. when ρi = ρ, as we only need

Z =

N/2∑
j=1

e2iϕj = 0.

Notably, this requirement holds for any set of roots of unity, so if we simply choose

ϕj = π
j

N
, j = 0, 1, ..., N − 1

then the representation preserves the Euclidean metric! However, we can find a broader class of
solutions by noting that a rotation of a set of roots of unity, i.e., letting ϕi → φi + π i

N for a shared
phase φi, maintains Z = 0 as the sum of phasors still cancel. Furthermore, the radius of a given
set of roots of unity does not matter, as long as the roots lie on the same ring in the complex plane.
Finally, any linear combination of such sets also sums to zero, as each set of roots of unity sums to
zero individually. Therefore, a solution may be of the form

Z =

J∑
j=1

ρ2je
2iφj

Mj−1∑
m=0

e
2πi m

Mj .

In other words, for each radius ρ, there can be multiple rotated sets of roots of unity, each with its
own rotational symmetry.

Comparing with the explicit form of the representation in Appendix C, this result is reminiscent of
the modular organization of grid cells in the Entorhinal Cortex (Hafting et al., 2005; Stensola et al.,
2012), which are organized in distinct modules with different grid spacings (a particular ρ), pattern
orientations (a phase offset φ), and a pattern symmetry (a shared Mj).
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E SIMILARITY FUNCTION DERIVATION

To derive an explicit form of the similarity between different representations, we start from the
similarity function in equation 4, and demand that generators are skew symmetric, and commute by
taking

Gx = RTΣxR and Gy = RTΣyR,

where R is orthogonal and shared by Gx and Gy . We then make use of another property of the
matrix exponential, namely that for a similarity transformation P−1AP , for some matrices A and P,
we may write

eP
−1AP = P−1eAP.

Using the block diagonal form, the similarity in equation 4 may therefore be written as

C(∆x,∆y) =

(
R

p0

|p0|

)T

e∆xΣx+∆yΣy

(
R

p0

|p0|

)
= αT

0 e
∆xΣx+∆yΣyα0,

where we have dubbed α0 ≡ R p0

|p0| for legibility, and
∑

i α
2
0,i = 1 as R is orthogonal. Notice that

the exponent matrix is still skew symmetric, with the same 2D block structure as before. Expanding
the matrix exponential, one finds that even powers of this matrix are diagonal, while odd powers are
skew symmetric. As the quadratic form vanishes under a skew symmetric matrix, we are left with a
sum over even powers of the form

C(∆x,∆y) = αT
0

( ∞∑
n

(−1)n

(2n)!
D2n

)
α0, (9)

where D is a diagonal matrix with entries dii = λi,x∆x + λi,y∆y, with λi,x being the imaginary
part of the i-th eigenvalue of Gx, and so on. However, the matrix sum in equation 9 is nothing but
a diagonal matrix with cosine entries along the diagonal (by the Taylor expansion of the cosine).
Therefore, the similarity admits a particularly simple form

C(∆x,∆y) =

N∑
i

α2
0,i cos(λi,x∆x+ λi,y∆y).

F DESIGNING SPATIAL SIMILARITY FUNCTIONS

We found in general that the similarity function equation 6 may be written as a weighted sum of
cosines. However, it is yet unclear what the representational similarity could, or should, be. To
untangle this question, we can first rewrite it in polar coordinates,

C =
∑
i

α2
0,i cos(kir cos(θ − ϕi)),

where we have introduced x = r cos θ, y = r sin θ and λi,x = ki cosϕi, λi,y = ki sinϕi. Using the
Jacobi-Anger expansion, we may further write

cos(z cos(ω)) = J0(z) + 2

∞∑
n=1

(−1)nJ2n(z) cos (2nω)

= J0(z) + 2

∞∑
n=1

(−1)nℜ
{
J2n(z)e

2inω
}
,

where Jn(z) is the nth Bessel function of the first kind. If the sum is well-behaved, we can use this
identity to rewrite the similarity function as

C(r, θ) =
∑
j

α2
0,jJ0(kjr) + 2

∞∑
n=1

(−1)nℜ

e2inθ
∑
j

α2
0,jJ2n(kjr)e

2inϕj

 ,
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i.e., as a purely radial contribution (the sum over J0) plus a mixed radial–head-direction–dependent
part. At this point, no further simplification is possible unless we impose additional constraints on
the representation.

However, the inner sum ∑
j

α2
0,jJ2n(kjr)e

2inϕj

closely resembles the phasor sum obtained in Appendix D. In particular, if the representation is
metric-preserving (so that eigenvalues are distributed in discrete root-of-unity constellations) and
we assume α0,j is constant on each ring, we can set

∑
j

α2
0,jJ2n(kjr)e

2inϕj =
∑
j

α2
0,jJ2n(kjr) e

2inφj

Mj−1∑
m=0

e2πimn/Mj ,

where the inner sum is a geometric series of the form

Mj−1∑
m=0

e2πimn/Mj =

{
Mj , n = ℓMj (ℓ ∈ Z),
0, otherwise.

Thus, if the representation contains multiple symmetries Mj , the lowest-order head-
direction–dependent term appears at n = Mmin. If all rings share the same symmetry order M ,
then only terms with n = ℓM survive. For large M , i.e., a near-uniform distribution of eigenvalues
around the circle, the similarity becomes approximately head-direction independent.

We can further suppress low-order angular terms by also requiring orientation offsets to form a
root-of-unity constellation. That is, if∑

j

α2
0,jJ2n(kjr)e

2inϕj =
∑
j

α2
0,jJ2n(kjr)

∑
l

e2inφl

M−1∑
m=0

e2πimn/M ,

and the orientations themselves satisfy∑
l

e2inφl =

N−1∑
l=0

e2πiln/N ,

then only terms with n = zN and simultaneously n = pM survive (for z, p ∈ Z). The most head-
direction–independent representation arises when M and N are coprime, in which case angular
terms appear only at multiples of MN .

In this case, the similarity is just

C(r, θ) =
∑
j

α2
0,jJ0(kjr) + 2MN

∞∑
ℓ=1

(−1)ℓNMα2
0,jJ2ℓMN (kjr) cos (2ℓMNθ).

However, when 0 < z <<
√
γ + 1 then

Jγ(z) ≈
1

Γ(γ + 1)

(z
2

)γ
meaning that for large NM , the correlation is approximately head direction independent for a large
range of displacements, r, and takes the following form

C(r, θ) ≈ Ĉ(r)

=
∑
j

α2
0,jJ0(kjr).

Thus, when the eigenvalues that generate the representation are modularly arranged in constellations
of roots of unity, the resulting similarity function is approximately radial. Also, for a single set of
roots of unity, the similarity function is approximately J0(kr). However, if more rings are included,
the final approximate expression is a Fourier-Bessel series in kjr! Thus, the metric-preserving
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Figure 4: Ratio of subsequent zeros of the Bessel function J0 (large dots), alongside a cumulative
average (dashed line).

representation can approximate a range of functions for small/intermediate r, if kj are proportional
to the zeros of J0 (which is how a Fourier-Bessel series is constructed).

Intriguingly, the ratio between subsequent, low-order zeroes of the Bessel function falls in the same
variability range as that observed experimentally for grid cell modules (Stensola et al., 2012). The
average ratio is often reported as being close to

√
2. For Bessel zeroes, however, the cumulative

average depends on the number of zeroes included, but for a small number of zeroes the mean is
close to this particular value, which is shown in Fig. 4. Thus, the ratios of grid cell spacings could
conceivably be related to zeroes of the Bessel function.

G SIMILARITY-PRESERVING SPATIAL REPRESENTATIONS

If we drop the requirement that the spatial representation should preserve the metric of space, we
can instead consider similarity-preserving representations. As a concrete example, we consider the
case where generator eigenvalues are sampled from a normal distribution, as described in 2.5. Then,
the representation is approximately similarity-preserving, and the spatial similarity is approximately
Gaussian, as shown in the non-spatial case. To demonstrate that this generalizes to spatial represen-
tations, we ran a simulation where eigenvalues of generators Gx and Gy with N = 256 units were
sampled according to a normal distribution N (0, 2). The result is shown in Fig. 5, where example
ratemaps of a similarity-preserving spatial representation is shown. Notably, units do not display a
strong periodic tuning, as with the low-order roots-of-unity solutions for metric preservation. How-
ever, representations are in some cases tuned to particular locations, reminiscent of Hippocampal
place fields. When viewed in light of the fact that place cells are known to respond to spatial, as
well as nonspatial cues, such as room smell (Anderson & Jeffery, 2003), it could be interesting to
model conjunctive representations of space and context, similar to (Pettersen et al., 2024), using the
context-dependent model in equation 7.
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Figure 5: Similarity-preserving spatial representations. The left-hand side shows example ratemaps
of a model whose eigenvalues are sampled from a normal distribution, such that the similarity func-
tion is approximately Gaussian. The resulting similarity, relative to the origin, is shown on the
right-hand side.
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