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ABSTRACT

A fundamental challenge in neuroscience and AI is understanding how physi-
cal space is mapped into neural representations. While artificial neural networks
can generate brain-like spatial representations, such as place and grid cells, their
“black-box” nature makes it difficult to determine if these representations arise
as general solutions or as artifacts of a chosen architecture, objective function,
or training protocol. Critically, these models offer no guarantee that learned so-
lutions for core navigational tasks, like path integration (updating position from
self-motion), will generalize beyond their training data. To address these chal-
lenges, we introduce a first-principles framework based on an exponential map
model. Instead of using deep networks or gradient-based optimization, the pre-
sented model uses generator matrices to map physical locations into neural repre-
sentations through the matrix exponential, creating a transparent framework that
allows us to identify several exact algebraic conditions underlying key properties
of neural maps. We show that path invariance (ensuring location representations
are independent of traversal route) and exact path integration is achieved if the
generators commute, while translational invariance (maintaining consistent spatial
relationships across locations) demand that generators produce orthogonal trans-
formations. We also show that preserving the metric of flat space requires the
eigenvalues of the generator matrices to form sets of roots of unity. Finally, we
demonstrate that the proposed framework constructs diverse biologically relevant
spatial tuning, including place cells, grid cells, and context-dependent remapping,
and that the exponential map model corresponds to the on-manifold dynamics of
a continuous attractor network. The framework we propose thus offers a transpar-
ent, theoretically-grounded alternative to “black-box” models, revealing the exact
conditions required for a coherent neural map of space.

1 INTRODUCTION

A fundamental challenge in neuroscience and artificial intelligence is to understand the mapping
from physical space to the representational space of neural population activity. In the mammalian
brain, such representations are strongly associated with the hippocampal formation, which contains
specialized neurons that encode spatial information. Most famously, place cells (O’Keefe & Dostro-
vsky, 1971) fire within specific, localized areas of an environment known as place fields, while grid
cells (Hafting et al., 2005) fire in a periodic hexagonal pattern that tessellates the environment and
is hypothesized to provide a neural metric for space (McNaughton et al., 2006; Moser & Moser,
2008; Ginosar et al., 2023). Together, these and other spatially-tuned cells form a high-dimensional
representation of an animal’s location. This neuronal spatial map abruptly reorganizes in response
to environmental changes, a phenomenon known as remapping, indicating that neurons also encode
the environment’s identity (Leutgeb et al., 2004; Fyhn et al., 2007). While the firing patterns of these
spatial neurons are well-characterized, the principles governing their emergence remain unclear.

In recent years, deep learning models, particularly recurrent neural networks (RNNs), trained to
solve navigation tasks have been shown to learn representations that resemble biological place and
grid cells (Banino et al., 2018; Cueva & Wei, 2018; Sorscher et al., 2023). Complementing these end-
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to-end approaches, more structured architectures have demonstrated that such representations can
arise from explicit theoretical constraints, such as the factorization of abstract structural knowledge
from specific sensory experiences (Whittington et al., 2020). In parallel, theoretical frameworks
rooted in reinforcement learning, most notably the Successor Representation (SR), have proposed
that grid cells function as a low-dimensional eigenbasis for the environment’s transition matrix,
effectively encoding a predictive map of space (Stachenfeld et al., 2017). Although these findings
strongly suggest that spatial tuning is a normative solution to the demands of navigation, critical
theoretical limitations remain. The “black-box” nature of deep neural networks makes it difficult
to disentangle whether their learned representations reflect fundamental principles of navigation or
are artifacts of a chosen architecture, objective function, or training protocol (see Fig. 1a) for an
illustration). Furthermore, while SR and structured models improve interpretability, they share a
fundamental limitation with deep learning approaches: they all rely on iterative optimization or
statistical accumulation. Consequently, these methodologies do not offer an algebraic guarantee that
navigational solutions will strictly generalize beyond the training data. In contrast, animals are able
to seamlessly navigate vast, novel environments. To understand how biological brains solve these
navigational challenges efficiently and robustly, there is a need for models that allow for exact and
interpretable solutions to navigation problems.

In this work, we construct spatial representations using a first-principles framework based on the ma-
trix exponential. Instead of relying on neural networks or gradient-based optimization, the presented
approach builds representations from a transparent mathematical foundation. The core component
of the model is a set of generator matrices that directly map a spatial location to a neural popula-
tion firing rate vector. This construction enables us to derive the exact algebraic conditions required
for a coherent neural spatial map. For a neural spatial map to be useful, it must support core nav-
igational computations. One of the most fundamental is path integration, the process by which a
navigator estimates its position by integrating self-motion cues. This process introduces a critical
self-consistency problem: For the map to be coherent, the representation of a location must be in-
dependent of the path taken to reach it. We show that path-independent representations required for
reliable path integration are guaranteed if the model’s generator matrices commute. Furthermore,
we find that equinorm representations, previously used as a learning constraint in neural networks
(Schaeffer et al., 2023; Xu et al., 2022), arise naturally from generators that produce translationally
invariant similarity structures—a desirable property for navigation in open-field environments. We
also show that preserving the metric of flat space (Xu et al., 2022; Schøyen et al., 2025; Xu et al.,
2025) requires the eigenvalues of the generator matrices to form sets of roots of unity on discrete
rings in frequency space. Crucially, when these conditions are met, the framework recovers diverse,
biologically observed tuning curves, such as place cells and grid cells, dictated strictly by the sym-
metry of the generators. We also demonstrate that this framework can be seamlessly generalized
from preserving the metric of space to preserving the similarity of more general inputs, which we
use to model remapping, and even goal-oriented, multi-map navigation in an interpretable manner.
A conceptual overview of the proposed framework and the key spatial map properties we address
are presented in Fig. 1. Finally, we demonstrate that the exponential map can be interpreted as
describing the on-manifold dynamics of a continuous attractor recurrent neural network.

Despite its simplicity, the proposed framework is powerful enough to construct a variety of biolog-
ically plausible tuning curves, including place cells, grid cells, and context-dependent remapping,
from the same underlying mechanism. By grounding spatial representations in a clear algebraic
structure, the presented work provides a theoretically-grounded alternative to black-box models,
revealing exact and interpretable principles that underpin a coherent neural map of space.

2 RESULTS & DISCUSSION

2.1 CONSTRUCTING SPATIAL REPRESENTATIONS WITH AN EXPONENTIAL MAP

Formally, a spatial representation is a map that assigns a neural population vector to every spatial
location, as exemplified in Fig. 1b). For a 2D space with Cartesian coordinates (x, y), the repre-
sentation at a given point is a population vector p(x, y) ∈ RN . Each of the N components of this
vector corresponds to the firing rate of a neuron, making the vector a point in an N -dimensional
state space that captures the activity of the entire neural ensemble. Building upon previous model-
ing approaches Gao et al. (2021); McNamee et al. (2021); Xu et al. (2022), we define this map using
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Translational invariance
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Generator eigenvalues
are sets of roots of unity
on discrete rings

Context-dependent remapping
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dissimilar

low

Context similarity

Figure 1: The exponential map framework for interpretable spatial representations. a) Deep
learning models are “black-boxes” that learn spatial representations, but the underlying principles
are obscured by the complexities of architecture, training, and objective functions. The exponential
map model is a transparent “no-box” alternative, using generator matrices (Gx, Gy) to construct a
population vector p(x, y). b) A neural population vector, which captures the activity of the entire
neural ensemble, is assigned to every location, mapping physical space to a neural representational
space. c) Path Invariance: Path integration can be viewed as a form of parallel transport, where
a vector representing the neural representation is moved along a trajectory in a high-dimensional
state space. Traversing a curved manifold can induce a net transformation in the vector at a point
that is dependent on the traversal route. By imposing simple, interpretable algebraic constraints on
the model’s generators, we can directly enforce fundamental properties. Path invariance is guar-
anteed if the generators commute. d) Translational Invariance: Making the generator matrices
skew-symmetric (GT = −G) imposes several biologically-relevant properties on the representation.
First, it ensures that spatial relationships are consistently maintained across locations (translational
invariance). Second, skew-symmetric generators produce orthogonal representations, meaning the
population vector p(x, y) maintains a constant norm across the entire space. e) Metric Preserva-
tion: Preserving the geometry of flat space requires the generator eigenvalues to form sets of roots
of unity on discrete rings in frequency space, which, for certain symmetry orders gives rise to grid-
like patterns. f) Remapping: Generalizing the framework to non-spatial inputs allows for modeling
remapping. The stacked sheets represent spatial maps for distinct values of a non-spatial context
signal, s. As s changes, the peak of activity shifts location even if the physical position (x, y) is
constant. This remapping preserves similarity: similar context values (neighboring sheets) result in
spatially proximal firing fields.

the matrix exponential:

p(x, y) = exGx+yGyp0, (1)
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where Gx, Gy ∈ RN×N are generator matrices for the cardinal directions and p0 = p(0, 0) is the
representation at some origin point. The generator matrices define how locations in physical space
translate into transformations in the high-dimensional neural state space. The exponential map then
composes these transformations to “transport” the origin vector, p0 to a population vector at any
target location (x, y).

While Eq. (1) provides a constructive method for generating a spatial map, without further con-
straints, an arbitrary choice of generators could produce a map ill-suited for navigation. For instance,
the representation could prove trivial (all locations map to the same vector) or ambiguous (multiple
locations map to the same vector). As we will show, the power of this framework lies in its trans-
parency, allowing us to derive precise algebraic conditions on Gx and Gy that guarantee properties
essential to navigation.

2.2 FROM SPATIAL REPRESENTATION TO PATH INTEGRATION AND PATH INDEPENDENCE

Path integration is a crucial skill possessed by most animals, wherein one’s location is inferred by
integrating past location and self-motion information. In the context of the representation defined in
Eq. (1), path integration is realized if the representation at a new location can be derived from the
current representation via a displacement operator Q:

p(x+∆x, y +∆y) = Q(∆x,∆y)p(x, y). (2)

Intuitively, we can say that we can perform path integration, if, for any past location (x, y) and
the corresponding population vector p(x, y) we can arrive at the correct population vector p(x +
∆x, y+∆y) at the new location (x+∆x, y+∆y) through some operation Q that only depends on
the displacement. Inserting our spatial representation from Eq. (1), we find that we want

e(x+∆x)Gx+(y+∆y)Gyp0 = Q(∆x,∆y)exGx+yGyp0.

This equality suggests that we want

Q(∆x,∆y) = e∆xGx+∆yGy .

However, the exponential function in Eq. (1) is a matrix exponential, which behaves differently from
the regular exponential function. In particular, the Baker-Campbell-Hausdorff formula dictates that

eAeB = eA+B+ 1
2 [A,B]+ 1

12 [A,[A,B]]+ 1
12 [B,[B,A]]+ ...,

where [A,B] = AB−BA is the commutator between matrices A and B. However, this immediately
reveals that if the generator matrices Gx, Gy commute, [Gx, Gy] = 0, then Eq. (2) is automatically
satisfied for any displacement, as

[aGx + bGy, a
′Gx + b′Gy] = (ab′ − a′b)[Gx, Gy],

for all (a, b) and (a′, b′). Thus, if the generators commute, the model can path integrate exactly
and indefinitely. An important effect of this choice is that the representation is path-invariant (as
illustrated in Fig. 1c), meaning that the population vector at a point does not depend on the path taken
to it. This is also demonstrated explicitly in Appendix B. Going forward, we therefore demand that
Gx, Gy commute, which ensures that the representation p is path-integration compatible, as enacted
by Eq. (2). Next, we demonstrate that commuting generator matrices enable an explicit construction
that allows us to specify the similarity structure of the spatial representation.

2.3 ORTHOGONAL TRANSFORMATIONS FOR EGOCENTRIC NAVIGATION

With a path integration-compatible model established, we turn to the properties of the representation
itself. A critical metric for representational structure is the similarity between population vectors
at distinct locations. Considering the path-integrating model defined in Eq. (2), we examine the
normalized inner product (cosine similarity) between a population vector at (x, y) and a target vector
at (x+∆x, y +∆y):

C(x, y,∆x,∆y) =
p(x, y)TQ(∆x,∆y)p(x, y)

|p(x, y)||Q(∆x,∆y)p(x, y)|
,
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Substituting the exponential map form, using that (eA)T = eA
T

, and assuming commuting genera-
tors, the similarity expression transforms to:

C(x, y,∆x,∆y) = pT
0 e

x(GT
x +Gx)+y(GT

y +Gy)+∆xGx+∆yGyp0/Z, (3)

where Z is the normalization factor from before. Inspection of Eq. (3) reveals a fundamental geomet-
ric condition. If the generator matrices Gx and Gy are skew-symmetric (GT = −G), two key prop-
erties emerge. First, the matrix exponential of a skew-symmetric matrix is orthogonal. This ensures
that the transformation preserves the norm of the population vector everywhere (|p(x, y)| = |p0|),
fixing the normalization factor to Z = |p0|2. Second, the position-dependent terms in the expo-
nent vanish because GT + G = 0, as illustrated in Fig. 1d). Consequently, the similarity becomes
strictly translation invariant, depending solely on the displacement (∆x,∆y). We therefore enforce
the condition:

GT
x = −Gx GT

y = −Gy,

which yields the displacement-dependent similarity:

C(∆x,∆y) =
pT
0 e

∆xGx+∆yGyp0

|p0|2
, (4)

This property is functionally critical for navigation. In an open-field regime where no locations are
inherently privileged, the similarity structure should remain consistent across the environment. Fur-
thermore, it enables spatial inferences (such as distance estimation; see Section 2.4) without requir-
ing absolute positional information, making orthogonal transformations an ideal basis for egocentric
navigation.

Similarity translational invariance is a recurring feature in theoretical models of spatial coding. For
instance, in Continuous Attractor Neural Networks (CANNs), the activity profile shifts across the
neural sheet without changing shape, naturally preserving the similarity structure between displaced
states (Burak & Fiete, 2009; McNaughton et al., 2006). Similarly, frameworks based on transition
coding and the Successor Representation (SR) demonstrate that eigenvectors of the environment’s
transition matrix, which essentially encode transition probabilities, naturally capture spatial period-
icities and translational symmetries in open environments (Stachenfeld et al., 2017; Waniek, 2018).
More recently, sequence coding models have shown that encoding trajectories via path integration
leads to conformal isometries, where displacements in neural space differ from physical displace-
ments only by a scale factor (Waniek, 2020; RG et al., 2025). Our framework unifies these obser-
vations by deriving the property explicitly from the algebraic structure of the generator matrices.
While previous approaches often obtain these representations through statistical learning of transi-
tions or optimization of spatiotemporal sequences (Waniek, 2018), we identify the exact algebraic
condition—skew-symmetry (GT = −G)—that guarantees this property for high-dimensional vec-
tor representations. This condition ensures that the induced transformations are orthogonal, thereby
maintaining a constant norm (an equinorm constraint) while rendering the similarity function purely
dependent on displacement. This provides a rigorous algebraic description of the “shift-invariant”
connectivity required by biological circuits, identifying skew-symmetry as the structural necessity
for any path-integrating system that preserves representational similarity.

Given skew-symmetric generators Gx and Gy , we can decompose them into a canonical block di-
agonal form via the spectral theorem:

Gx = RTΣxR and Gy = RTΣyR, (5)

where R ∈ RN×N is an orthogonal matrix, and Σx,Σy are real block diagonal matrices with 2× 2
skew-symmetric blocks. Assuming N is even, the non-zero entries of these blocks correspond to the
imaginary parts of the eigenvalues, which appear in conjugate pairs ±(iλi,x, iλi,y). This structure
ensures that Gx and Gy commute, as the constituent 2 × 2 skew-symmetric blocks commute and
RTR = I . Under these conditions, the similarity function simplifies to:

C(∆x,∆y) =

N∑
i

α2
0,i cos(λi,x∆x+ λi,y∆y), (6)

where α0 = R p0

|p0| and λi,x, λi,y are the imaginary parts of the i-th eigenvalues of Gx and Gy ,
respectively (see Appendix E for the derivation).
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The translational invariance derived here offers a significant functional advantage: the similarity
depends only on the relative difference between inputs, not their absolute values. Consequently,
the framework generalizes naturally to non-spatial variables. By introducing a context signal s
corresponding to its own generator, the system can model “contextual displacements” independent
of spatial displacements. As we explore in Section 2.5 (and illustrate in Fig. 1f), this property allows
a single model to generate distinct, orthogonal spatial maps for different environmental contexts,
mimicking hippocampal remapping (Leutgeb et al., 2004; Fyhn et al., 2007), simply by shifting the
effective origin of the representation.

2.4 PRESERVING THE METRIC OF FLAT SPACE

Given a spatial representation and a notion of representational similarity, we determine what prop-
erties the representation must possess to be geometrically consistent. Following Gao et al. (2021)
and Xu et al. (2022), we posit that a foundational property of any spatial representation is the faith-
ful translation of physical distances into distances on a neural manifold. In the open field, where
all directions and locations are effectively equivalent, distances should not appear warped in any
particular location or direction. Consequently, the metric induced by Eq. (1) must match the flat Eu-
clidean metric, at least up to a constant factor (a condition known as conformal isometry (Xu et al.,
2022)). Demanding metric preservation of a path-integrating, orthogonal representation, yields a
simple condition on the spectra of the generators Gx and Gy: the representation preserves the flat
metric if the eigenvalues form sets of roots of unity (see Appendix D for details and Fig. 1e for an
illustration). Concretely, expressed in polar coordinates as λi,x = ki cos(ϕi) and λi,y = ki sin(ϕi)
(where λ are the imaginary parts of the eigenvalues), a flat metric-preserving representation satisfies

N/2∑
j

ρ2je
2iϕj = 0,

where ρi = αiki is shared by conjugate eigenvalues (see Appendix D). Geometrically, this implies
that the eigenvalue angles ϕi must be evenly spaced on discrete rings in the frequency domain. For
a given ring of radius ρm with symmetry order M , the eigenvalues are distributed as

ϕi → φi + π
i

M
,

with i = 0, 1, ...,M − 1.

To visualize the spatial representation produced by a particular symmetry M , we note that for or-
thogonal matrices, the entries of the population vector p constitute superpositions of 2D plane waves,
denoted α (see Appendix C). The specific interference pattern is determined by the choice of the
orthogonal matrix R, as p0 = RTα. Figure 2 shows example representations p and plane waves
α for different symmetries M , using a randomly sampled R (see Appendix A for details). For a
single ring, lower-order symmetries such as M = 2 and 3 produce plane wave mixtures oriented at
90◦ and 60◦, respectively. This results in grid-like representations: square-type grids for M = 2
and hexagonal grids for M = 3. Higher-order symmetries, for example, M = 4, yield increas-
ingly complex interference patterns, resembling the honeycomb-like structures recently observed in
RNNs trained for dual-agent path integration (Redman et al., 2024). Notably, some representations
may not appear purely grid-like due to the random mixing induced by R. As M increases, the repre-
sentation becomes heterogeneous and lacks obvious periodicity. However, while the spatial tuning
curves are strongly influenced by R, the similarity function depends only on α. With increasing M ,
the similarity becomes approximately radial; for M = 20, the similarity function approximates a
Bessel function, as predicted in Appendix F.

Beyond uncovering a general condition for metric preservation, we find that the admissible solu-
tions support the modular organization of grid cells observed in the brain (Stensola et al., 2012).
Analyzing the similarity function (see Appendix F) reveals that if modules with the same spacing
form roots of unity in their orientation, and the symmetry of the module orientation is co-prime
to that of the pattern, the representation becomes head-direction independent over a large spatial
range. Furthermore, if the relative spacing of different modules is proportional to the zeros of the
Bessel function J0, the similarity function approximates a Fourier-Bessel series. This allows for
the construction of radially symmetric similarity functions capable of tuning navigation to specific
length scales. Intriguingly, the average ratio of successive low-order Bessel function zeros used to

6
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construct such a series falls within the variability range of experimentally observed grid cell module
spacings (approximately

√
2) (Stensola et al., 2012), suggesting a link between the roots-of-unity

algebraic structure and the organization of the entorhinal cortex.

Figure 2: Metric-preserving representations and roots of unity. Example plane waves (α) and
corresponding representations (p) alongside the similarity function (C) relative to the origin (black
cross) for representations whose eigenvalues form sets of roots of unity, with symmetries M on a
single ring. For each eigenvalue (imaginary part indicated by black dot), the corresponding con-
jugate eigenvalue is also shown. Representations were formed using generators with a single set
root-of-unity solution with varying M , a random orthogonal matrix R, and p0 = RT1.

2.5 SIMILARITY PRESERVATION AND REMAPPING

With the generators defined in Eq. (5) and a choice of similarity function, we can generate spatial
representations for a single environment up to a choice of orthogonal transformation R. However,
animals are capable of distinctly encoding a variety of spatial and non-spatial information, such as
room identity or olfactory cues, through remapping. In this section, we extend our model to this
larger class of representations.

This generalization follows from the observation that between-representation similarities depend
solely on the spatial displacement between them. If we encode non-spatial information while fix-
ing the spatial location, representational similarities depend only on the change in the non-spatial
input. We consider a global scalar signal s, such as a context variable, encoded identically to spatial
coordinates:

p(x, y, s) = exGx+yGy+sGsp0. (7)
The representation is coupled to the non-spatial signal via a generator matrix Gs. As with the spatial
generators, we let Gs = RTΣsR. The similarity between representations for two distinct context
signals s and s′ at a fixed location is then:

p(x, y, s)Tp(x, y, s′) = pT e(s−s′)GRp = pT e∆sGRp.

This inherits the form of the spatial similarity function. Consequently, comparing across contexts
reveals that representations change even as spatial location remains fixed, mimicking the remapping
behavior of spatial cells (Leutgeb et al., 2004; Fyhn et al., 2007).

Encoding non-metric information, such as context, raises a distinct challenge: unlike physical space,
there is no intrinsic metric to preserve. Instead, we require that similar context signals produce sim-
ilar representations, while dissimilar contexts result in orthogonal ones. Prior studies have demon-
strated that such similarity preservation yields localized receptive fields, resembling biological place
fields, when applied to spatial inputs (Sengupta et al., 2018; Pettersen et al., 2024). To implement
this algebraically, we observe that the similarity function may be written as:

C(∆s) =
∑
i

α2
0,i cos(∆sλi,s), (8)

where λi,s denotes the imaginary part of the ith eigenvalue of Gs (assuming fixed spatial loca-
tion). Since this expression is derived from the cosine similarity, it is strictly bounded to the interval
[−1, 1]. To achieve similarity preservation, we seek a profile C(∆s) that decays with increasing

7
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∆s towards a baseline level where inputs are deemed dissimilar. We can approximate a wide class
of such functions by recognizing that Eq. (8) is effectively a cosine series with non-negative coeffi-
cients. Specifically, it may be viewed as a discrete approximation of the inverse Fourier transform
of a symmetric function with a non-negative Fourier spectrum:

f(x) =
1√
2π

∫ ∞

−∞
F (k)eikxdk =

1√
2π

∫ ∞

−∞
F (k) cos(kx)dk

≈ 1√
2πN

N∑
i

F (ki)

p(ki)
cos(kix),

where the summation represents a Monte Carlo estimate of the integral using importance sampling
with density p(ki).

For example, to approximate a Gaussian similarity function f(x) = e−σ2x2

(which ensures that
dissimilar contexts become decorrelated), we sample the eigenvalues λi,s from the Fourier transform
of the Gaussian, that is, a normal distribution N (0, 2σ2). Setting the coefficients α2

0,i = 1/N

(achieved if p0 = 1√
N
RT1) yields:

C(∆s) ≈ e−σ2∆s2 .

Going forward, we set σ = 1.

To demonstrate this remapping behavior, we instantiated a metric-preserving spatial representation
consisting of 10 sets of identical root-of-unity solutions and extended it to encode a non-spatial
signal s via Eq. (7). Multiple sets were used to ensure the Monte Carlo estimate approximates the
Gaussian sufficiently well. The resulting between-context similarity is shown in Fig. 3. Similarities
decay with increasing context dissimilarity, and the rate maps of unit activity shift between contexts,
reproducing remapping dynamics (Fyhn et al., 2007). Crucially, spatial similarities are preserved
for any fixed s, maintaining the grid-like structure derived in the previous section.

Figure 3: Context-dependent remapping and similarity preservation. Between-context simi-
larity as a function of context separation. Also inset are example rate maps for two distant context
values (s = 0, s = 5) corresponding to ∆s = 5. Representations were formed using generators with
10 identical root-of-unity solutions with M = 3, a random orthogonal matrix R, and p0 = RT1.

Finally, we find that relaxing the metric preservation requirement in the spatial domain, demand-
ing only similarity preservation via Gaussian-sampled eigenvalues for Gx and Gy , results in an
approximate Gaussian spatial similarity (see Appendix G). In this regime, spatial representations
become heterogeneous and localized, resembling hippocampal place fields (O’Keefe & Dostrovsky,
1971). Thus, by modulating the similarity function, the exponential map model can generate the
diverse range of spatial tuning curves observed in the brain. Notably, these spatial tuning curves are
compatible with the Probabilistic Population Codes (PPC) framework (Ma et al., 2006; Beck et al.,
2008). Specifically, if neural variability follows a distribution in the exponential family, for exam-
ple, Poisson-like, with linear sufficient statistics, the Gaussian-like tuning curves derived here can
support optimal Bayesian inference via linear integration. In this context, the algebraically derived
representations effectively define the tuning kernel within the PPC formalism.
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3 BIOLOGICAL REALIZATION AND FUNCTIONAL NAVIGATION

While derived from algebraic principles, the exponential map framework maps directly onto bi-
ological mechanisms. We demonstrate that our model emerges from the dynamics of Continuous
Attractor Neural Networks (CANNs) (Appendix H), can learn and even generalize experimental data
(Appendix I), and supports robust, interpretable, multimap goal-oriented navigation (Appendix J).

3.1 EMERGENCE FROM ATTRACTOR DYNAMICS AND LOCAL LEARNING

The exponential map model emerges naturally as the effective on-manifold dynamics of a gain-
modulated CANN flowing towards a hypersphere attractor (see Appendix H.1). By analyzing the
Lyapunov energy of the network, we find that the dynamics decompose into a stabilizing non-linear
term, which constrains activity to the manifold, and a linear transport term. On the manifold, the
state evolves according to ż = U(v)z, where U is the velocity-dependent skew-symmetric compo-
nent of the recurrent weights. This formulation physically identifies our algebraic generator matrices
with the synaptic connectivity of the circuit. Consequently, the algebraic constraints derived in this
work map directly to biological connectivity patterns. The skew-symmetry condition, required for
translational invariance, corresponds to the asymmetric component of the recurrent weights. The
commutativity requirement ensures that the time-ordered integration of synaptic inputs simplifies
to a state-independent update (a vanishing Magnus expansion), providing a dynamical definition of
path integration (see Appendix H.2). Thus, the exponential map offers a rigorous description of how
recurrent networks perform exact temporal integration without trajectory-dependent errors. Further-
more, we show that such connectivity matrices need not be hard-coded; rather, they can emerge
naturally via a biologically plausible local learning rule that exploits time-lagged anti-symmetric
correlations. Finally, we establish that for hexagonal grid cells, the grid spacing scales linearly
with the attractor network’s time constant. This finding offers a normative explanation for the grid-
scale hierarchy observed along the dorsal-ventral axis of the medial entorhinal cortex (MEC) (see
Appendix H.3).

3.2 LEARNING FROM DATA AND FUNCTIONAL NAVIGATION

To validate the generative ability of the framework, we trained the model to reproduce experimental
grid cell rate maps by minimizing reconstruction error subject to a commutation penalty (see Ap-
pendix I). The learned model successfully extrapolates grid patterns beyond the training boundaries,
demonstrating that it captures the intrinsic algebraic structure underlying the biological data.

Functionally, the framework enables robust navigation by leveraging principles from Hyperdimen-
sional Computing (HDC) (see Appendix J). Salient locations can be aggregated via “bundling” into
memory vectors pR =

∑
p(xi, yi), creating a similarity landscape that supports navigation via

gradient ascent. Furthermore, context-dependent remapping serves as a “binding” operation, ef-
fectively orthogonalizing representations across contexts. This allows multiple reward maps to be
superimposed within a single neural population, facilitating context-specific retrieval and flexible
goal-oriented navigation.

4 CONCLUSION

In this work, we introduced a first-principles framework for generating neural spatial representations
using an exponential map model. By leveraging generator matrices and the matrix exponential, we
bypassed the “black-box” nature of deep learning models, enabling a transparent and theoretically-
grounded investigation into the principles of neural navigation. We derived the exact algebraic con-
ditions required for a coherent map of space. Specifically, we demonstrated that commuting genera-
tors are necessary to guarantee path-independent representations, a critical requirement for accurate
path integration. Furthermore, we showed that constraining generators to be skew-symmetric pro-
duces orthogonal transformations, yielding representations with translationally invariant similarity
structures, an ideal property for egocentric navigation in open-field environments. We also estab-
lished that preserving the flat metric of Euclidean space requires the generator eigenvalues to form
sets of roots of unity on discrete rings in the frequency domain. Despite its mathematical simplicity,
the proposed framework constructs a diverse range of biologically plausible spatial tuning curves,
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including grid cells and place cells, and models context-dependent remapping by extending these
principles to non-spatial inputs. This work offers an interpretable alternative to conventional deep
learning approaches, revealing the fundamental mathematical structures that may underpin how the
brain represents and navigates through space.

5 LIMITATIONS AND FUTURE WORK

While our framework provides a transparent account of how coherent spatial maps can be formed,
it has several limitations that open avenues for future research.

First, the current model is primarily developed for navigation in flat, open-field environments. An-
imals, however, must navigate complex, curved, and obstacle-laden spaces. Future work should
explore how the generator framework can be extended to represent non-Euclidean geometries. This
may involve introducing position-dependent or non-commuting generators that reflect the local
topology and geometry of the environment.

Second, our remapping model currently uses a scalar context signal. Generalizing this to handle
high-dimensional, structured inputs, such as visual scenes or complex sensory cues, is a critical next
step. The algebraic structure naturally supports vector-valued generators (s · Gs); in this regime,
similarity preservation implies preserving the semantic distances between high-dimensional inputs,
allowing for the modeling of how environmental identity and spatial location are integrated into
a unified representation. This would bridge the gap between our algebraic approach and the rich,
multi-modal inputs processed by biological and artificial systems.

Third, while geometric considerations fix most model parameters, the choice of the orthogonal ma-
trix R remains a degree of freedom. In this work, we restricted our analysis to randomly sampled
matrices, which strongly influence the resulting tuning curves by mixing the underlying plane waves.
Notably, this choice can be dissociated from the representational similarity structure: as shown in
the remapping analysis, selecting an appropriate initial vector p0 renders the similarity function C
independent of R. This suggests that while individual tuning curves depend on R, the overall ge-
ometry of the neural map does not. Future work should investigate whether biological constraints—
such as metabolic energy efficiency (Cueva & Wei, 2018), non-negativity (Sorscher et al., 2023),
or extrinsic distance preservation (Xu et al., 2025)—mandate specific matrices R. In particular, Xu
et al. (2025) demonstrated that hexagonal symmetry (M = 3) is optimal for preserving extrinsic
distances (global Euclidean distance) in periodic representations, potentially explaining the preva-
lence of hexagonal grids over square lattices. Additionally, improved quadrature rules for similarity
function approximation warrant exploration. For instance, the eigenfunctions of the Laplacian can
construct optimal truncated Fourier series (Bronstein et al., 2021), suggesting that coefficient se-
lection strategies beyond our Monte Carlo approach may yield superior approximations, while also
selecting for periodic solutions. Together, these constraints could drive generated representations
toward the specific hexagonal or sparse place-bound tunings observed in the brain.

Finally, while we propose exact algebraic conditions for properties like path integration and metric
preservation, our framework is primarily descriptive rather than prescriptive regarding their acquisi-
tion. Although we have outlined a local learning mechanism for the emergence of skew-symmetric
weights in Appendix H, a critical direction is to extend the framework to incorporate biological noise
and imperfect commutation. Future research should focus on developing learning rules that yield
approximately commuting weight matrices from realistic synaptic plasticity, while quantifying how
deviations from perfect commutation accumulate into path integration errors. This would bridge the
gap between the mathematical idealization and noisy neural circuits, establishing tolerance bounds
for biological navigation systems.

6 CODE AVAILABILITY AND DISCLOSURES

All code used to generate the results and figures in this work will be made available upon publication.

Large language models were used in writing this paper, with usage limited to improving writing and
readability.
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APPENDIX

A METHODS

All computational simulations were implemented using the matrix exponential operator in PyTorch
(Paszke et al., 2019). Random orthogonal matrices were generated using the ortho groupmodule
from the SciPy library (Virtanen et al., 2020), which samples uniformly from the orthogonal group
O(N). For experiments involving root-of-unity solutions, the spatial domain was set to 20 × 20
to capture the full periodicity of the representation. For the similarity-preserving experiments, the
domains were defined as s ∈ [0, 5] for the non-spatial context signal and (x, y) ∈ [−2, 2] for the
spatial coordinates, commensurate with the length scale of the target Gaussian similarity function.

B COMMUTING GENERATORS PRODUCE PATH-INDEPENDENT
REPRESENTATIONS

Since the spatial representation is defined by the exponential map in Eq. (1), we can enforce spe-
cific geometric properties by constraining the generators Gx and Gy . For example, Schaeffer et al.
(2023)proposed that representations should be path-independent, that is, the representation at a given
location must not depend on the trajectory taken to reach it. In the exponential map formalism, this
condition is satisfied generators commute. To illustrate this, consider two distinct paths to a point D
starting from A: a path A → B → D and a path A → C → D. The resulting representations are
generated by composing the transformations for each segment:

pABD = e∆xBDGx+∆yBDGye∆xABGx+∆yABGypA,

pACD = e∆xCDGx+∆yCDGye∆xACGx+∆yACGypA,

where pA denotes the representation at A. If Gx and Gy commute, their linear combinations also
commute. By the Baker-Campbell-Hausdorff (BCH) formula, the composite transformations then
combine into a single exponential summing the exponents:

pABD = e(∆xAB+∆xBD)Gx+(∆yAB+∆yBD)GypA = pACD.

Here, the final state depends only on the net displacement from the initial location, which is identical
for both paths.

Conversely, if the generators do not commute, path dependence arises from non-vanishing terms in
the BCH expansion. For matrices U and V , the expansion is given by:

eUeV = eU+V+ 1
2 [U,V ]+ 1

12 ([U,[U,V ]]−[V,[U,V ]])+....

Applying this to the path A→ B → D, we define U = ∆xABGx+∆yABGy and V = ∆xBDGx+
∆yBDGy . The representation becomes:

pABD = eUeV pA = eU+V+ 1
2 [U,V ]+...pA.

The commutator [U, V ] expands to:

[U, V ] = [∆xABGx +∆yABGy,∆xBDGx +∆yBDGy].

Using the linearity of the commutator and the property [Gx, Gy] = −[Gy, Gx], this simplifies to:

[U, V ] = (∆xAB∆yBD −∆yAB∆xBD)[Gx, Gy].

Crucially, if [Gx, Gy] ̸= 0, the exponent includes a term proportional to the cross product of the path
segment displacements (geometrically related to the area enclosed by the path components).

Similarly, for the path A → C → D with operators W and Z, the commutator [W,Z] introduces
different displacement cross-terms. Consequently, the higher-order corrections differ between the
two paths, and pABD ̸= pACD. Thus, commutativity of the generators is a necessary condition for
the representation to depend solely on the net displacement.
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C FROM GENERATORS TO REPRESENTATIONS

The structure of the spatial representation in Eq. (1) allows for an explicit decomposition of in-
dividual cell responses. Assuming unit-norm p0 and commuting, skew-symmetric generators in
block-diagonal form (as in Eq. (5)), the dynamics in the rotated basis α = Rp are given by:

α(x, y) = exΣx+yΣyα0,

where α0 = Rp0. In this basis, the matrix exponential reduces to a block-diagonal matrix populated
by 2 × 2 rotation matrices. Following Dorrell et al. (2023), the representation decomposes into
independent rotations within distinct 2D subspaces. For the i-th block (i = 1, . . . , N/2), the update
rule is:

αi =

(
cos(Ωi) − sin(Ωi)
sin(Ωi) cos(Ωi)

)
αi

0

where αi ∈ R2 represents the state vector within the i-th subspace. The rotation angle Ωi =
xλi,x + yλi,y couples the spatial displacement to the generator eigenvalues.

Letting αi
1 and αi

2 denote the two components of the i-th block (corresponding to the conjugate
eigenvalue pair), the matrix multiplication yields:

αi
1 = αi

0,1 cos(Ωi)− αi
0,2 sin (Ωi),

αi
2 = αi

0,1 sin(Ωi) + αi
0,2 cos (Ωi).

By applying the harmonic addition theorem, these components can be rewritten as phase-shifted
sinusoids:

αi
1 = Ai cos(xλi,x + yλi,y + ωi),

αi
2 = Ai sin(xλi,x + yλi,y + ωi),

where the amplitude is Ai =
√
(αi

0,1)
2 + (αi

0,2)
2 and the phase is ωi = arctan(αi

0,2/α
i
0,1).

These equations demonstrate that, in the canonical basis, each component acts as a 2D plane wave
with orientation and frequency determined by λi,x and λi,y , and a phase shift ωi along the wave
direction. Since the observed neural representation is given by p = RTα, the firing rate of each
neuron consists of a linear superposition (mixture) of these plane waves.

D METRIC PRESERVATION

Consider the representation along a parametrized trajectory r(t) = (x(t), y(t)):

p(x(t), y(t)) = ex(t)Gx+y(t)Gyp0.

The length of this trajectory in the representational space is given by the path integral of the line
element ds = |dp|. By the chain rule, the differential change in the representation is:

dp =

(
∂p

∂x

dx

dt
+

∂p

∂y

dy

dt

)
dt

The trajectory length L can be expressed in terms of the induced metric gij as:

L =

∫ S

0

√
|dp|2 =

∫ T

0

√∑
ij

gij
dri
dt

drj
dt

dt.

Comparing with the squared line element, we can then simply read off the induced metric g induced
metric, as

g = −
(

pT
0 G

2
xp0 pT

0 GxGyp0

pT
0 GxGyp0 pT

0 G
2
yp0

)
,

where we have used the fact that pTGT
riGrjp = −pT

0 GriGrjp0 due to the skew-symmetry of the
generator matrices.
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We further simplify this using the block-diagonal decomposition G = RTΣR. Since Σ contains
2×2 skew-symmetric blocks, G2

x = RTDxR, where Dx is a diagonal matrix containing the squared
imaginary part of a given eigenvalue −λ2

i,x. The mixed term GxGy similarly diagonalizes to entries
−λi,xλi,y . Letting α0 = Rp0, the metric becomes:

g = −
(
αT

0 Dxα0 αT
0 Dxyα0

αT
0 Dxyα0 αT

0 Dyα0

)
.

Substituting this back into the path length integral yields:

L =

∫ T

0

√√√√ N∑
i=1

α2
0,i(λ

2
i,xẋ

2 + 2λi,xλi,yẋẏ + λ2
i,y ẏ

2) dt

To preserve the flat Euclidean metric (that is, g = σ2I), we require the off-diagonal terms to vanish
and the diagonal terms to be equal:

N∑
i=1

α2
0,iλ

2
ix =

N∑
i=1

α2
0,iλ

2
iy, and

N∑
i=1

α2
0,iλixλiy = 0.

Introducing polar coordinates for the eigenvalues λi,x = ki cosϕi and λi,y = ki sinϕi, and defining
ρi = α0,iki, these conditions become:

N∑
i=1

ρ2i cos
2(ϕi) =

N∑
i=1

ρ2i sin
2(ϕi)

N∑
i=1

ρ2i cosϕi sinϕi = 0.

Using trigonometric identities, this system simplifies to requiring that the weighted sum of phasors
vanishes at double the angle:

N∑
i=1

ρ2i cos(2ϕi) = 0 and
N∑
i=1

ρ2i sin(2ϕi) = 0,

which is equivalent to the complex condition
N∑
i=1

ρ2i e
2iϕi = 0.

Since eigenvalues appear in conjugate pairs (ϕ∗
j = ϕj+π), and e2i(ϕ+π) = e2iϕ, the sum effectively

runs over N/2 independent pairs. Assuming the simplest case, with equal weighting ρi = ρ, the
condition reduces to finding a set of angles such that:

Z =

N/2∑
j=1

e2iϕj = 0.

This condition is satisfied if the N/2 eigenvalue pairs are partitioned into subsets (modules), where
each subset forms a collection of roots of unity that sums to zero. Specifically, for a single module
of symmetry order M , we require M eigenvalue pairs (consuming 2M dimensions of the total N )
with angles distributed uniformly on the circle:

ϕj = π
j

M
, j = 0, 1, . . . ,M − 1.

Consequently, the full high-dimensional representation can be constructed as a linear combination
of such sets. For a system with multiple modules k = 1 . . .K, each with radius ρk, symmetry Mk,
and orientation φk, the total sum vanishes if each module vanishes individually:

Z =

J∑
j=1

ρ2je
2iφj

Mj−1∑
m=0

e
2πi m

Mj .
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In other words, for each radius ρ, there can be multiple rotated sets of roots of unity, each with its
own rotational symmetry.

A comparison with the explicit form of the representation in Appendix C reveals a striking parallel to
the modular organization of grid cells in the medial entorhinal cortex (Hafting et al., 2005; Stensola
et al., 2012), which are similarly organized into modules defined by grid spacing (ρ), orientation
(φ), and symmetry (M ).

E SIMILARITY FUNCTION DERIVATION

We derive the explicit form of the representational similarity starting from the Eq. (4), We assume
the generators are skew-symmetric and commute, admitting the decomposition

Gx = RTΣxR and Gy = RTΣyR,

where R is a shared orthogonal matrix. Using the identity eP
−1AP = P−1eAP , we rewrite the

similarity expression as

C(∆x,∆y) =

(
R

p0

|p0|

)T

e∆xΣx+∆yΣy

(
R

p0

|p0|

)
= αT

0 e
∆xΣx+∆yΣyα0,

where we define the rotated unit vector α0 ≡ R p0

|p0| . Note that
∑

i α
2
0,i = 1 due to the orthogonality

of R.

The exponent matrix Ω = ∆xΣx +∆yΣy retains the block-diagonal, skew-symmetric structure of
the generators. In the power series expansion of the matrix exponential, even powers Ω2n result in
diagonal matrices (as the square of a 2 × 2 skew-symmetric block is diagonal), while odd powers
Ω2n+1 remain skew-symmetric. Since a quadratic form xTAx vanishes for any skew-symmetric
matrix A, odd terms do not contribute to the similarity. The expansion therefore reduces to a sum
over even powers:

C(∆x,∆y) = αT
0

( ∞∑
n

(−1)n

(2n)!
D2n

)
α0,

where D is a diagonal matrix with entries θi = λi,x∆x+λi,y∆y, and λi,· denotes the imaginary part
of the corresponding eigenvalue. Recognizing the Taylor series for the cosine function, the matrix
sum converges to a diagonal matrix with entries cos(θi). Consequently, the similarity simplifies to:

C(∆x,∆y) =
N∑
i

α2
0,i cos(λi,x∆x+ λi,y∆y).

F DESIGNING SPATIAL SIMILARITY FUNCTIONS

We established that the similarity function Eq. (6) takes the general form of a weighted sum of
cosines. To understand the structure of the resulting similarity function, we rewrite the expression
in polar coordinates using x = r cos θ, y = r sin θ, and λi,x = ki cosϕi, λi,y = ki sinϕi:

C =
∑
i

α2
0,i cos(kir cos(θ − ϕi)),

Applying the Jacobi-Anger expansion

cos(z cos(ω)) = J0(z) + 2

∞∑
n=1

(−1)nJ2n(z) cos (2nω)

= J0(z) + 2

∞∑
n=1

(−1)nℜ
{
J2n(z)e

2inω
}
,
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where Jn(z) is the n-th Bessel function of the first kind, we obtain:

C(r, θ) =
∑
j

α2
0,jJ0(kjr) + 2

∞∑
n=1

(−1)nℜ

e2inθ
∑
j

α2
0,jJ2n(kjr)e

2inϕj

 .

This decomposes the similarity into a purely radial component (the J0 term) and a mixed term
dependent on head direction θ.

Further simplification relies on the structure of the eigenvalues. If the representation preserves the
flat metric (see Appendix D), the eigenvalues form discrete roots-of-unity constellations. Assuming
constant weighting α0,j on each ring j, the inner phasor sum becomes:

∑
j

α2
0,jJ2n(kjr)e

2inϕj =
∑
j

α2
0,jJ2n(kjr) e

2inφj

Mj−1∑
m=0

e2πimn/Mj ,

where the geometric series
∑Mj−1

m=0 e2πimn/Mj vanishes unless n is a multiple of the symmetry order
Mj . Consequently, angular dependence only arises at harmonic orders n = ℓMj . For large M , the
similarity function becomes approximately isotropic (head-direction independent).

We can further suppress low-order angular terms by requiring the orientation offsets φj of different
modules to also form a root-of-unity constellation. Specifically, if we sum over a set of orientations
indexed by l such that:∑

j

α2
0,jJ2n(kjr)e

2inϕj =
∑
j

α2
0,jJ2n(kjr)

∑
l

e2inφl

M−1∑
m=0

e2πimn/M ,

and the orientations satisfy the condition
∑

l e
2inφl =

∑N−1
l=0 e2πiln/N , then non-zero terms persist

only when n is a multiple of N and simultaneously a multiple of M . If M and N are coprime, the
lowest order angular dependence is pushed to n = MN . In this case, the full similarity function is:

C(r, θ) =
∑
j

α2
0,jJ0(kjr) + 2MN

∞∑
ℓ=1

(−1)ℓNMα2
0,jJ2ℓMN (kjr) cos (2ℓMNθ).

The magnitude of the angular terms is governed by the high-order Bessel functions. For small
arguments z, the Bessel function of order γ behaves as:

Jγ(z) ≈
1

Γ(γ + 1)

(z
2

)γ
Here, the order is γ = 2ℓMN . For large MN , this term decays rapidly near the origin (z

√
γ + 1).

Consequently, for a large range of displacements r, the angular terms vanish, and the similarity
becomes effectively radial:

C(r, θ) ≈
∑
j

α2
0,jJ0(kjr).

Intriguingly, this connection offers a theoretical prediction for grid spacing ratios. The ratio of
successive zeros of the Bessel function J0 converges toward an average value close to

√
2 when

including low-order zeros (Fig. 4). This falls precisely within the variability range of grid module
spacing ratios observed experimentally (Stensola et al., 2012). While grid scale ratios are often
assumed to be

√
2 to maximize spatial range, our framework suggests they may arise from the

optimal approximation of a radial similarity kernel via a Fourier-Bessel expansion. Finally, we
note that while this ratio determines relative scaling, the Fourier-Bessel series inherently defines an
absolute length scale related to the domain of approximation. This suggests that the absolute grid
scale may be set by the size of the region the animal needs to encode reliably.

G SIMILARITY-PRESERVING SPATIAL REPRESENTATIONS

By relaxing the strict requirement for metric preservation, we can explore representations designed
to preserve similarity structure. Following the approach outlined in Section 2.5, we consider the case

18
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Figure 4: Bessel function zeros and grid scale ratios. Ratio of subsequent zeros of the Bessel
function J0 (large dots), alongside a cumulative average (dashed line).

where generator eigenvalues are sampled from a normal distribution. This choice yields an approx-
imate Gaussian similarity function. To demonstrate that this generalizes to spatial representations,
we simulated a population of N = 256 units with generator eigenvalues for Gx and Gy sampled
from N (0, 2). The results are shown in Fig. 5. Unlike the periodic, grid-like patterns character-
istic of low-order roots-of-unity solutions (metric preservation), these units exhibit heterogeneous,
spatially localized tuning curves reminiscent of hippocampal place fields (O’Keefe & Dostrovsky,
1971). Given that place cells are known to encode both spatial and non-spatial cues, such as ol-
factory context, (Anderson & Jeffery, 2003), this result suggests that the context-dependent model
in Eq. (7) could be naturally extended to model conjunctive representations of space and context,
consistent with recent theoretical proposals (Pettersen et al., 2024).

Figure 5: Emergence of place-like fields from similarity preservation. Left: Example rate maps
for a model where generator eigenvalues are sampled from a normal distribution, resulting in an
approximately Gaussian similarity function. Right: The resulting spatial similarity function relative
to the origin.

H BIOLOGICAL INTERPRETATION

The exponential map framework provides a rigorous algebraic description of spatial representa-
tions. Here, we demonstrate that this framework is not merely an abstraction but emerges as the
on-manifold dynamics of a gain-modulated Continuous Attractor Neural Network (CANN).
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H.1 CONTINUOUS ATTRACTOR FORMULATION

We consider the general dynamics of a recurrent neural network Zhang (1996); Ocko et al. (2018)
governed by:

τ
dz

dt
= W [v(t)]σ(z(t)), (9)

where z ∈ RN is the neural state vector and τ is the effective time constant. Here, W [v] represents
the effective state-transition matrix modulated by an external input v, such as 2D velocity, and σ
is a generalized non-linear function. Note that this formulation subsumes standard leaky-integrator
models (for example, τ ż = −z+ Jϕ(z)) if the decay term is absorbed into the effective interaction
Wσ(z). We investigate the case where network activity flows toward a low-dimensional manifold
M, specifically a unit hypersphere, consistent with the orthogonal transformations derived in our
algebraic framework. To determine necessary conditions for a hypersphere attractor, we consider
the Lyapunov energy function:

E(t) =
1

2
(∥z(t)∥2 − 1)2, (10)

assuming a unit radius (R = 1) for simplicity. This energy quantifies the deviation of the state from
the manifold surface. The time evolution of the energy along a trajectory in the neural state space
is determined via the chain rule. Letting u = ∥z∥2 − 1 denote the deviation from the manifold, we
have:

Ė ≡ dE

dt
=

dE

du

du

dt
= uu̇.

The rate of change of the squared norm is derived using the product rule on the inner product zT z:

d

dt
(∥z∥2) = d

dt
(zT z) = żT z+ zT ż = 2zT ż,

where the last step follows from the symmetry of the Euclidean inner product (aTb = bTa). Com-
bining these terms yields:

Ė = (∥z∥2 − 1)2zT ż.

Substituting the effective network dynamics from Eq. (9), the energy derivative becomes:

τĖ = (∥z∥2 − 1)2zTW [v]σ(z).

This form of the energy derivative implies a specific condition for convergence. If the effective
interaction satisfies

W [v]σ(z) = −(∥z∥2 − 1)M(v)z,

where M is an input-dependent matrix chosen such that the symmetric form is positive definite, then
the energy derivative becomes:

τĖ = −2(∥z∥2 − 1)2zTM(v)z ≤ 0.

Since the quadratic form zTMz is positive, the energy is strictly non-increasing, driving any non-
zero neural state toward the hypersphere (Ė = 0 only when ∥z∥ = 1). A simple sufficient condition
is for the symmetric part of M to have positive eigenvalues.

We observe that this attractor network admits a fundamental symmetry: the evolution of the energy
is invariant under the transformation

M(v)→M(v) + Û(v),

provided Û is skew-symmetric (ÛT = −Û ). This invariance holds because the quadratic form of
any skew-symmetric matrix vanishes identically (zT Ûz = 0), meaning Û does not contribute to the
energy derivative. By choosing Û(v) = (∥z∥2 − 1)−1U(v) and setting σ(z) = (∥z∥2 − 1)z, the
general hypersphere attractor admits the effective dynamics:

τ ż = U(v)z+Mσ(z). (11)

This decomposition reveals two distinct functional components: the non-linear term (scaled by M )
enforces the attractor dynamics normal to the manifold, while the linear term (scaled by U ) drives
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transport along the manifold. Whenever the state is on the manifold, z∗ ∈ M, the attractor contri-
bution vanishes (σ(z∗) = 0). The on-manifold dynamics then reduce to pure transport:

τ ż∗(t) = U(v(t))z∗(t).

For constant velocity inputs, this linear system has the exact solution:

z∗(t) = e
t
τ U(v)z∗(0).

Thus, the exponential map exactly describes the trajectory of the neural state on the attractor man-
ifold. This framework can be realized by a simple recurrent neural network where U is a gain-
modulated skew-symmetric matrix (encoding path integration) and M is a positive definite matrix
(enforcing stability).

To validate this derivation, we simulated the dynamics of Eq. (11) using Euler integration. We
constructed the connectivity matrices as U = A − AT and M = BTB, where A,B ∈ RN×N

were sampled from a normal distribution. These choices ensure that U is skew-symmetric and M
is positive definite. We simulated 100 trajectories initialized randomly within a hypercube of side
length 0.1, using a time step dt = 5 · 10−5 and total duration T = 0.03 (for example, seconds,
but units are arbitrary). For each trajectory, we computed the Lyapunov energy defined in Eq. (10).
Points satisfying the condition E ≤ ε = 10−4 were classified as “close points,”, representing
states effectively on the manifold. Subsequently, we computed the deviation between the evolving
network state and the theoretical exponential map trajectory initiated from the first identified close
point. The results are shown in Fig. 6 and demonstrate three key properties. First, the Lyapunov
decays to zero for all trajectories, indicating that the manifold is attractive and that our construction
effectively realizes an attractor network (Fig. 6a). Second, the network state on the manifold is
accurately described by the exponential map; the Euclidean distance between the simulated state
and the theoretical exponential evolution approaches zero after convergence (Fig. 6b). Finally, to
demonstrate that the network state evolves on the manifold, we computed the deviation between the
network state and the first close point. As shown in Fig. 6c, this deviation increases after the close
point is reached, indicating that the network moves away from z∗ over time, in a manner consistent
with the dynamics captured by the exponential map.

a) b) c)

Figure 6: Exponential maps describe the on-manifold dynamics of a recurrent attractor net-
work. a) Time evolution of the Lyapunov energy of the hypersphere attractor network for 100
trajectories randomly initialized in a hypercube. The gray lines represent individual trajectories and
the dark line represents the average. b) Squared distance between the network state z and the theo-
retical exponential map evolution of the first close point on the attractor (z∗), occurring at t = t∗. c)
Squared distance between network state z and the static first close point on the attractor (z∗), show-
ing divergence due to transport. The dashed line indicates the average time to convergence ⟨t∗⟩.

H.2 CONNECTION TO THE PATH-INTEGRATING EXPONENTIAL MAP

As we saw in the previous section, we can decompose the weight matrix into a baseline component
that sustains the attractor bump and a skew symmetric component that determines the on-manifold
dynamics of the attractor network. To bridge this general result with the specific exponential map
structure proposed in the main text, we adopt the mechanism of velocity-driven updating standard
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in continuous attractor models (Burak & Fiete, 2009; McNaughton et al., 2006). Specifically, we
define the transport operator U to be linearly modulated by the self-motion signal v(t).

By defining U(v(t)) = vx(t)Ux + vy(t)Uy , the linearized dynamics become:

τ ż = (vxUx + vyUy)z

The solution to this time-varying matrix differential equation involves the time-ordered exponential
(T ):

z(t) = T
{
exp

(∫ t

0

1

τ
(vx(ξ)Ux + vy(ξ)Uy)dξ

)}
z(0).

Mathematically, the time-ordered exponential expands into the infinite series known as the Magnus
expansion (Blanes et al., 2009). This series includes integral terms involving nested commutators of
the operators at different time points, such as, [U(v(ξ1)), U(v(ξ2))]. Expanding this term reveals
that it is proportional to the commutator of the basis matrices, [Ux, Uy].

For the system to perform exact path integration, the resulting population vector p(x, y) must de-
pend solely on the net accumulated displacement, independent of the specific velocity history v(t)
or trajectory taken. This path-independence requires the time-ordered exponential to reduce to a
standard matrix exponential of the integrated inputs:

z(t) = exp

(∫ t

0

1

τ
(vx(ξ)Ux + vy(ξ)Uy)dξ

)
z(0).

This simplification occurs if the commutator terms in the Magnus expansion vanish. Consequently,
exact path integration imposes the algebraic constraint that the effective skew-symmetric matrices
must commute: [Ux, Uy] = 0.

Under this condition, we can integrate the velocity inputs directly. Identifying the spatial coordinates
as x(t) =

∫ t

0
vx(ξ)dξ and y(t) =

∫ t

0
vy(ξ)dξ, we recover the exponential map model:

z(t) = exGx+yGyz(0),

where the generator matrices are identified as Gx = 1
τUx and Gy = 1

τUy .

This derivation provides a rigorous physical interpretation of the abstract generators: they corre-
spond to the velocity-modulated synaptic connectivity U scaled by the inverse effective time con-
stant 1/τ . Furthermore, it demonstrates that the algebraic condition for path independence (com-
muting generators) derived in the main text is dynamically equivalent to the requirement for a neural
circuit to perform exact temporal integration without trajectory-dependent errors.

H.3 MEMBRANE DYNAMICS AND GRID SCALE HIERARCHIES

The identification of the generator matrices as G = 1
τU in the previous section implies an intrinsic

coupling between the network’s time constant τ and the spatial scale of the resulting representation.
To derive this relationship, consider the path-integrating solution on the manifold:

z(x, y) = e
1
τ (xUx+yUy)z0.

As established in Appendix C, the activity of any unit in this representation decomposes into a
superposition of plane waves. For a metric-preserving representation, for example, M = 3, these
waves are generated by rotations in 2D subspaces. The phase angle Φi for the i-th subspace is given
by:

Φi(x, y) =
1

τ
(xλi,x + yλi,y),

where λi,· are the imaginary parts of the eigenvalues of the connectivity matrices U . Converting to
polar coordinates with spatial displacement r and head direction θ, the argument becomes:

Φi(r, θ) =
1

τ
rki cos(θ − ϕi),

where ki represents the intrinsic frequency (magnitude of the eigenvalue) and ϕi the orientation
of the wave. The pattern repeats at integer multiples of 2π. Considering motion along the wave’s
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propagation direction (θ = ϕi), the fundamental spatial period Λi is determined by the condition
Φi(Λi, ϕi) = 2π. Solving for Λi yields:

Λi =
2πτ

ki
.

This result demonstrates that the period of the constituent plane waves scales linearly with the net-
work’s time constant τ .

For a hexagonal grid cell representation (M = 3), the global grid pattern is constructed from the
interference of three such plane waves. Since the grid spacing corresponds to the distance between
pattern repetitions, it is geometrically constrained to be a fixed multiple of the constituent wave
periods. Consequently, the grid spacing λgrid must also scale linearly with the time constant:

λgrid ∝ τ.

This algebraic derivation mirrors the known topographic organization of the medial entorhinal cor-
tex (MEC). Experimental evidence confirms that the membrane time constants of MEC stellate cells
increase along the dorsal-ventral axis (Giocomo et al., 2007; Giocomo & Hasselmo, 2008), correlat-
ing precisely with the expansion of the grid scale. Furthermore, genetic perturbations that increase
the integrative time constant (such as HCN1 channel knockouts) cause a corresponding expansion
in grid spacing (Giocomo et al., 2011). Our framework thus provides a normative mathematical
explanation for this phenomenon: the spatial scale of the neural map is physically grounded in the
integration speed of the underlying neural substrate.

H.4 EMERGENCE OF SKEW-SYMMETRIC CONNECTIVITY VIA LOCAL LEARNING

We investigate a biologically plausible local learning rule capable of driving the weight matrix W
toward skew-symmetry. Motivated by the requirement that the symmetric component of the connec-
tivity must vanish to preserve the manifold energy, we propose the update rule:

∆Wij = η (ri(t) rj(t+ τ)− rj(t) ri(t+ τ))− αWij ,

where ri and rj denote pre- and postsynaptic activities, τ represents a small temporal lag, η is the
learning rate, and α is a local decay term.

Decomposing the weight matrix into symmetric (S = W+WT ) and antisymmetric (A = W−WT )
components reveals distinct evolutionary dynamics. Since the Hebbian term Hij = ri(t)rj(t+ τ)−
rj(t)ri(t + τ) is inherently antisymmetric (Hij = −Hji), it contributes zero to the update of the
symmetric component. Consequently, the dynamics of S are governed solely by the decay term:

∆S = −αS.

This ensures that any initial symmetric connectivity decays asymptotically to zero. Conversely, the
antisymmetric component is reinforced by the Hebbian term:

∆A = 2η (ri(t) rj(t+ τ)− rj(t) ri(t+ τ))− αA.

Thus, A is driven by the time-lagged anti-correlated activity patterns while being stabilized by the
decay α. In the steady state, the antisymmetric part converges to:

A∗ =
2

α
⟨ri(t) rj(t+ τ)− rj(t) ri(t+ τ)⟩t,

where the brackets denote a time average. This implies that the learned skew-symmetric connectivity
is determined by the statistics of the time-lagged antisymmetric correlations in the network activity.
By controlling these correlations, the network can, in principle, learn specific generator structures.

To validate this mechanism, we simulated the training of a 32×32 weight matrix. We initialized the
weights and the neural activity rates from a normal distribution, with parameters set to α = 0.001
and η = 0.01. The evolution of the weights was tracked over 5000 iterations. The results, shown in
Fig. 7, demonstrate that the magnitude of the symmetric component decays to zero, while the skew-
symmetric component persists. This confirms that the proposed rule effectively filters out symmetric
connectivity, allowing skew-symmetric generators to emerge naturally from local plasticity rules.
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Figure 7: Emergence of skew-symmetric connectivity via local learning. Evolution of weight
matrix components under the anti-symmetric Hebbian learning rule. The symmetric component
(decaying curve) vanishes over time, while the skew-symmetric component (fluctuating curve) per-
sists, driven by the correlation structure of the inputs.

I LEARNING EXPONENTIAL MAPS FROM DATA

To validate the practical applicability of our theoretical framework, we demonstrate that the expo-
nential map model can learn to reproduce and generalize experimental neural data. Using publicly
available recordings of grid cells from rats navigating an open field (Gardner et al., 2022), we trained
the model to capture the generative structure of the spatial code.

We formulated a one-step predictive model where the predicted firing rate ĝ at a target location is
generated from the rate at a source location via the matrix exponential. For a spatial displacement
(∆x,∆y) corresponding to small integer index steps, the update rule is:

ĝ[x+∆x, y +∆y] = e∆xGx+∆yGy ĝ[x, y],

where Gx and Gy are learnable generator matrices. We optimized the model using stochastic gradi-
ent descent to minimize a composite loss function:

L =
1

K

K∑
k

∥gtarget − ĝpred∥2 +
1

N2

N2∑
i,j

((GxGy)ij − (GyGx)ij)
2.

The first term represents the reconstruction error between the predicted activity and the experimen-
tal rate map g (averaged over a batch size K). The second term is a commutation penalty, which
enforces the algebraic constraint [Gx, Gy] ≈ 0. This constraint is critical for ensuring path inde-
pendence and allows the model to learn consistent spatial maps without requiring computationally
expensive multi-step training sequences.

For the training protocol, generators Gx and Gy were initialized as random uniform matrices scaled
by 1/

√
N , where N is the number of simulated neurons. Optimization was performed using the

Adam optimizer (Kingma & Ba, 2017) with a learning rate of 0.001 for 20, 000 iterations. Training
samples were generated by selecting random starting locations within the experimental rate maps
and taking single steps of up to two pixels; boundary effects were mitigated by reflecting steps that
exceeded the rate map limits.

To evaluate the model’s generative capacity, we reconstructed global rate maps by path integrating
from the center of the arena (origin) to a dense grid of position coordinates (x, y):

p(x, y) = exGx+yGyp(0, 0).

To test extrapolation, we extended this coordinate grid to cover an area with twice the side length of
the original experimental enclosure.
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The results, shown in Fig. 8, demonstrate that the exponential map not only reproduces the training
data but successfully generalizes the grid pattern well beyond the boundaries of the original record-
ing enclosure (indicated by the black square). The loss history (Fig. 9) confirms that the model
simultaneously minimizes reconstruction error and enforces commutativity. This indicates that the
commutation constraint enables the model to extract the robust, intrinsic algebraic structure of the
spatial representation directly from noisy biological data. We note, however, that the learned rate
maps exhibit more uniform peak firing rates than their biological counterparts. We hypothesize that
this uniformity may be an emergent consequence of the commutation penalty and the strict path
invariance it enforces. While this idealization abstracts away biological heterogeneity, which may
stem from noise or conjunctive inputs not modeled here, it allows the framework to robustly capture
the intrinsic spatial phase and periodicity of the grid pattern.

These results suggest several promising avenues for future inquiry. First, future work should com-
pare the remapping dynamics of metric-preserving model units (Fig. 3) with biological recordings
to determine if they exhibit the coherent remapping characteristic of entorhinal and hippocampal
ensembles (Fyhn et al., 2007). Second, fitting exponential map models to other cell types, such as
place cells, offers a pathway to deriving interpretable models of their underlying dynamics. Specif-
ically, it remains to be determined whether the exponential map can account for the heterogeneous,
apparently stochastic spatial arrangement of biological place fields. A compelling validation would
involve fitting the model to rate maps recorded in restricted enclosures and generating predictive
extrapolations for larger environments. Comparing these predictions against experimental data from
expanded arenas would rigorously test the model’s ability to capture the intrinsic generative structure
of the spatial code.

J BINDING AND BUNDLING AS A BASIS FOR MULTIPLE-MAP,
REWARD-ORIENTED NAVIGATION

While our primary focus has been on the geometric and computational properties of spatial rep-
resentations, navigation involves more than localization. In this section, we demonstrate that the
exponential map framework supports reward-based navigation in an interpretable manner by draw-
ing on principles from Hyperdimensional Computing (HDC) (Kanerva, 2009).

HDC encodes information using distributed representations based on high-dimensional vectors,
commonly termed hypervectors. A core property of such high-dimensional spaces is the “con-
centration of measure,” which ensures that randomly sampled vectors become nearly orthogonal
with high probability with increasing vector dimension. HDC systems exploit this phenomenon via
two primary operations. The first is bundling, or superposition, which aggregates vectors to form
a composite representation that remains similar to its inputs. The second is binding, an operation
that combines vectors to produce a result that is dissimilar, and effectively orthogonal, to its con-
stituents. We show that the exponential map naturally implements these operations, thereby tying
together spatial representation, memory, and goal-oriented behavior.

J.1 BUNDLING: CONSTRUCTING REWARD MAPS

Assuming a similarity-preserving representation, such as the Gaussian similarity derived in Sec-
tion 2.5, we can implement a simple memory mechanism by “bundling” the population vectors of
salient locations. Let {ri}NR

i=1 be a set of locations associated with a reward. A composite memory
vector pR is formed by summing the representations:

pR =
1

NR

NR∑
i

p(ri).

Querying the current location p(r) against this memory yields a similarity score CR:

CR(r) = p(r)TpR =
1

NR

NR∑
i

p(r)Tp(ri).

Since the pairwise similarity approximates a Gaussian, the resulting score CR(r) ≈
1

NR

∑
i e

−∥r−ri∥2/σ2

acts as a smooth reward density map (a mixture of Gaussians). This allows an
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a) b)

c)

Figure 8: Generative modeling and extrapolation of experimental grid cells. a) Experimental
grid cell rate maps used for training. b) Synthetic rate maps generated by the exponential map model
within the training domain. c) Extrapolated rate maps in the extended environment. The model
captures the grid structure within the training domain and successfully extrapolates the periodic
pattern beyond the boundaries (indicated by the black outline). Rate maps are matched cell-to-cell
across rows.

agent to navigate to rewards by simply following the gradient of the similarity surface:

rt+1 ← rt + η∇rCR,

where η is a step size. Biologically, this gradient ascent could be approximated by sampling local
steps and moving in the direction of increasing similarity.

J.2 BINDING: CONTEXT-DEPENDENT MAP RETRIEVAL

While bundling creates a single reward map, complex navigation requires storing distinct maps for
different contexts, for instance distinguishing between a “Food” context and a “Home” context. The
standard HDC “binding” operation, often implemented via element-wise multiplication, orthogo-
nalizes vectors. In our framework, context-dependent remapping functions as an intrinsic binding
operation.

Recall that the context generator Gs produces orthogonal transformations. If the remapping is suffi-
ciently strong, implying dissimilar contexts, the representations become nearly orthogonal. We can
thus form a general, context-dependent memory vector pR,S that bundles spatial locations across
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Figure 9: Optimization and commutation dynamics. Evolution of the total loss function during
the optimization of the exponential map model on experimental grid cell data.

different contexts, such as rooms s1 and s2:

pR,S =

N1∑
i=1

p(ri, s1) +

N2∑
j=1

p(rj , s2) (12)

= es1Gs

∑
i

p(ri) + es2Gs

∑
j

p(rj). (13)

When we query this composite memory with a current state in context s1, the orthogonality of the
remapping filters out the interference from context s2:

CR,S(r, s1) = p(r, s1)
TpR,S

= p(r, s1)
T
∑
i

p(ri, s1) + p(r, s1)
T
∑
j

p(rj , s2)

≈ CR1(r) + 0.

Here, the cross-context term vanishes because the relative context shift ∆s = s2 − s1 decorrelates
the vectors (as shown in Fig. 3). This mechanism allows for the superposition of multiple, dis-
tinct cognitive maps within a single neural population, enabling context-specific retrieval without
crosstalk.

Figure 10 illustrates this capability. We constructed a memory vector summing three target locations
across two contexts (“Home” and “Food”). Querying with the appropriate context signal retrieves
the correct spatial map, guiding gradient-based navigation to the relevant targets. This demonstrates
that the exponential map framework naturally supports flexible, goal-oriented navigation through
the algebraic composition of bundling and binding operations.
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Query "Food" context Query "Home" context

Memory Similarity gradient

Figure 10: Multi-map, reward-oriented navigation using exponential maps. Bottom left: A
composite memory vector stores the locations of three objects (Cheese, Hamburger, Home) belong-
ing to two distinct contexts (Food and Home). Top left: Querying the memory with the “Food”
context retrieves a similarity map highlighting the two food items. Top right: Querying with the
“Home” context retrieves the home location. Bottom right: Gradient ascent on the retrieved “Food”
similarity map generates a trajectory towards the rewards. The similarity function was constructed
to be approximately Gaussian (N = 300).
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