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Abstract
Subgraph representation learning has attracted
growing interest due to its wide applications in
various domains. However, existing methods pri-
marily focus on local neighborhood structures
while overlooking the significant impact of global
structural information, in particular the influence
of multi-hop neighbors beyond immediate neigh-
borhoods. This presents two key challenges: how
to effectively capture the structural relationships
between distant nodes, and how to prevent ex-
cessive aggregation of global structural informa-
tion from weakening the discriminative ability
of subgraph representations. To address these
challenges, we propose GPEN (Global Position
Encoding Network). GPEN leverages a hierar-
chical tree structure to encode each node’s global
position based on its path distance to the root
node, enabling a systematic way to capture rela-
tionships between distant nodes. Furthermore, we
introduce a boundary-aware convolution module
that selectively integrates global structural infor-
mation while maintaining the unique structural
patterns of each subgraph. Extensive experiments
on eight public datasets identify that GPEN sig-
nificantly outperforms state-of-the-art methods in
subgraph representation learning.

1. Introduction
Graphs are widely used to model relational data, such as
transportation networks (Jiang & Luo, 2022), biological
systems (Fout et al., 2017), and social networks (Chen et al.,
2018). In recent years, Graph Neural Networks (GNNs)
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Figure 1. Illustration of the challenge. While fraudulent (Subgraph
A) and legitimate (Subgraph B) transaction schemes exhibit similar
local structures centered around hub nodes and regular transac-
tion patterns, Subgraph A receives funds from suspicious sources
through multiple hops of intermediate accounts, highlighting the
importance of global structural information beyond neighborhoods.

have achieved remarkable success in graph-related tasks,
including node classification (Chen et al., 2020; Xiao et al.,
2022), link prediction (Lei et al., 2019; Long et al., 2022),
and graph classification (Zhang et al., 2018; Xie et al., 2022;
Wei et al., 2023).

Subgraph representation learning, which focuses on captur-
ing meaningful representations of subgraphs within a larger
graph, has attracted growing interest. It has shown strong
potential in various applications, such as predicting cellu-
lar functions in protein-protein interaction networks and
diagnosing rare diseases in phenotype knowledge graphs
(Sharan et al., 2007; Alsentzer et al., 2020b).

However, existing methods focus mainly on local neighbor-
hood structures while overlooking the significant impact
of global structural information (Alsentzer et al., 2020b;
Wang & Zhang, 2022; Jacob et al., 2023; Kim & Oh, 2024),
in particular the influence of multi-hop neighbors beyond
immediate neighborhoods. As illustrated in Figure 1, in
financial transactions, money laundering schemes often de-
liberately mimic legitimate transaction patterns to avoid
detection. Both fraudulent (Subgraph A) and legitimate
(Subgraph B) schemes appear similar when only examining
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their direct transaction behaviors, as they both contain a cen-
tral hub node that processes multiple regular transactions
with surrounding accounts. This structural similarity arises
because fraudsters intentionally construct their schemes to
resemble normal business operations. The key distinction is
the global structural information: fraudulent schemes (Sub-
graph A) receive funds from suspicious sources through
multiple hops of intermediate accounts, deliberately creat-
ing distance between the suspicious source and the final
hub node. This indicates that capturing only local neighbor-
hood structures is inadequate for learning effective subgraph
representations.

Modeling the global structural information presents two
major challenges. First, effectively capturing the structural
relationships between distant nodes is challenging. Current
methods, such as random walk sampling, may overlook
important distant nodes and struggle to encode sampled
sequences into meaningful global features. This requires
capturing global structural information from a more unified
perspective rather than relying on fragmented local views.
Moreover, simply aggregating global structural information
can weaken the discriminative ability of subgraph repre-
sentations. According to the homophily principle, nodes
connected by edges are more likely to share similar proper-
ties. Excessive aggregation of global structural information
may introduce distant nodes that are irrelevant to the sub-
graph, weakening the learning of its intrinsic structure. This
highlights the need for a module that can selectively in-
tegrate global structural information while preserving the
inherent structural characteristics of the subgraph.

To address these challenges, we propose GPEN (Global Po-
sition Encoding Network), which effectively captures global
structural information while preserving inherent subgraph
structures. GPEN leverages a hierarchical tree structure to
encode global position information and control information
aggregation through boundary-aware convolution. Specifi-
cally, GPEN first transforms the graph into a tree structure
to utilize its natural hierarchical organization for position
encoding. Using this tree structure, we encode each node’s
global position based on its path distance to the root node,
enabling a structured way to capture relationships between
distant nodes. This tree-based position encoding effectively
captures multi-hop relationships and addresses the challenge
of modeling global structural information systematically,
rather than relying on fragmentary local views from sam-
pling. Furthermore, as an optional enhancement, we explore
additional benefits of the tree structure and discover a tree
perturbation trick that utilizes the tree’s hierarchical nature
to generate consistently perturbed samples, which helps sta-
bilize model training. To prevent excessive aggregation of
global structural information that could obscure intrinsic
subgraph structures, we introduce a boundary-aware con-
volution module. This module computes difference vectors

between nodes to control information flow during convolu-
tion, allowing the model to selectively integrate global struc-
tural information while maintaining the unique structural
patterns of each subgraph. It helps maintain the subgraph’s
inherent structural characteristics while incorporating useful
information from the global structural information.

We conclude the contributions of GPEN as follows:

• We propose a novel tree-based global position encod-
ing that provides a unified way to capture multi-hop
relationships for all nodes in the graph, effectively ad-
dressing the challenge of modeling global structure.

• We design a boundary-aware convolution module that
selectively integrates global structural information
while preserving intrinsic subgraph structures, prevent-
ing the dilution of structural characteristics.

• Extensive experiments on eight public datasets iden-
tify that GPEN outperforms state-of-the-art methods,
achieving superior performance in subgraph represen-
tation learning.

2. Preliminaries
Notations. Let G = (V,E) denote a undirected graph with
node set V and edge set E ⊆ V × V . S = {S1, S2, ..., Sk}
is a set of subgraph of G. For each subgraph Si = (Vi, Ei)
has a label yi , where Vi ⊆ V and Ei ⊆ E. Furthermore,
the subgraphs may share nodes and/or edges and consist of
multiple components.

Problem Definition. Given a set of subgraphs S =
{S1, S2, ..., Sk} in a graph G = (V,E), GPEN generates a
representation ZSi

for each subgraph to predict its label yi.

Spatial GCN. Graph convolution for Spatial GCN is based
on the aggregation of node neighbourhood features. Nodes
update their features by passing and receiving messages
(features). The formulation is:

h(l)
v = M

(
h(l−1)
v ,AGG{h(l−1)

u : u ∈ N (v)}
)

(1)

where h(l)
v represents the feature vector of node v at layer

l. N (v) denotes the neighbours of v. AGG and M denotes
aggregation and update operations, respectively.

Tree. Trees are widely used in computer science and math-
ematics for hierarchical data organization, traversal, and
dynamic programming. A tree is a connected acyclic graph
commonly represented as T = (VT , ET ), where VT is the
set of nodes (vertices) and ET ⊆ VT × VT is the set of
edges. In a tree, any two nodes are connected by exactly one
simple path, and there are no cycles. A tree with n nodes
has exactly n− 1 edges.

2



GPEN: Global Position Encoding Network for Enhanced Subgraph Representation Learning

B

A

C E

D

F

𝑺′

Tree
Construction

Position
Encoding

Subgraph Dataset

Tree

Graph

D E𝑺′

M
LP

𝑺

𝑺

C D E
Subgraph

Max
component

𝑺 C D E

Op�onal
Tree Perturba�on

Vanilla G
raph C

onvolution

C

D

F

A

E
B

𝑥𝑎

𝑟𝑜𝑜𝑡 𝑝𝑎

𝑥 = 𝑥𝑜𝑟𝑖𝑔𝑖𝑛 + 𝑝

Global
Posi�on Encoding

C

D

F

A

E
B

F

C

D E

A

B

C

D

F

A

E
B

𝒩(E)

ℎ𝐸

𝑧𝐸

𝒩(D)

h𝐷

𝑧𝑑

Z𝑆

Z𝑆′

𝒩(C)

ℎC

ℎC

𝑑𝑢
C

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑒c𝑡𝑜𝑟𝑠

𝑧𝑐

ℎD

𝑑𝑢
D

𝑑𝑢
𝐸

Node C

Node D

Node E

Boundary-Aware Convolu�on

Su
b

grap
h

 P
re

d
ic�

o
n

Readout & MLP

Origin Subgraph data

Max component as
new data

𝑺′ D E

𝑺 C D E

Subgraph Data

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑒c𝑡𝑜𝑟𝑠

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑒c𝑡𝑜𝑟𝑠

ℎ𝐸

Target Node

Neighborhood

Select

Aggregate

Node Vectors

Difference
Vector

Final
Representa�on

C

D

F

A

E
B

𝑥𝑎
𝑜𝑟𝑖𝑔𝑖𝑛Graph

𝑮

Figure 2. Framework of GPEN. (1) Left Side (Global Position Encoding): The input consists of the entire graph G and a subgraph
S = {C,D,E}. GPEN utilizes a tree structure to encode each node’s global position, enabling it to capture relationships between
distant nodes. Optionally, the largest connected component in the tree can be used for perturbation. (2) Middle (Boundary-aware
Convolution): After vanilla message-passing, node representations hv in the subgraph are refined using difference vectors dvu between
nodes to selectively integrate global structural information while preserving the subgraph’s inherent characteristics. (3) Right Side
(Subgraph Representation & Prediction): The node representations are aggregated to obtain the subgraph representation {ZS , Zs′},
which is then fed into an MLP to predict the subgraph labels.

3. Methodology
In this section, we describe GPEN in detail. GPEN con-
tains two key modules: (1) Global Position Encoding and
(2) Boundary-aware Convolution. Global position encod-
ing leverages the natural hierarchical organization of a tree
structure to encode each node’s global position, enabling
a systematic way to capture relationships between distant
nodes. Boundary-aware convolution computes difference
vectors between nodes to control information flow during
convolution, allowing the model to selectively integrate
global structural information while maintaining the unique
structural patterns of each subgraph.

Definition 3.1. Global structural information: For a node v
in graph G, its global structural information is characterized
by its hierarchical position in a tree T constructed from
G. Formally, let tv = dT (v, r) denote the shortest path
distance from v to the root node r in T . The global structural
information of v is encoded through tv, which reflects its
structural influence relative to the most central node (root)
in the hierarchical organization of T .

3.1. Global Position Encoding

The global structural information in the entire graph can
affect the labels of subgraphs. To acquire global structural
information for subgraphs, we introduce the global position
of nodes, which takes into account all nodes. To achieve

this, GPEN leverages a tree structure to encode each node’s
global position, enabling a systematic way to capture rela-
tionships between distant nodes. Specifically, GPEN first
estimates node importance through degree-based random
walks, and then utilizes this information to construct a tree
for position encoding. Finally, GPEN encodes each node’s
global position based on its path distance to the root node.

Definition 3.2. Global Position Encoding: Given a tree T
with root r and depth tmax, the global position encoding of
node v is a vector pv ∈ {0, 1}tmax+1 defined as:

pv[i] =

{
1 if i = tv

0 otherwise
, ∀i ∈ {0, 1, . . . , tmax} (2)

where tv = dT (v, r) is the shortest path distance from v to
r in T .

We will explain the process of tree construction and global
position encoding.

3.1.1. TREE CONSTRUCTION

Inspired by PageRank (Page et al., 1999), we leverage node
degrees to measure node importance, as degrees naturally
reflect how well-connected and influential nodes are in the
graph (Borgatti, 2005; Lü et al., 2016; Tan et al., 2023) . The
importance of each node vi is calculated through iteration
based on degrees:
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R(t+ 1) = (1− α)MR(t) + αp (3)

where R(t) is the importance vector at iteration t, M is the
degree-normalized adjacency matrix where M ij = 1

dj
if

there is an edge between nodes i and j (and dj is the degree
of node j), α is the probability of random jumps, and p is
the initial probability vector with each element equal to 1

|V | ,
where |V | is the number of nodes in the graph.

To utilize the importance values for tree construction, we
assign edge weights based on the importance of connected
nodes:

wij = R[i] +R[j] (i, j) ∈ E (4)

The node with the highest importance value is selected as
the root node r:

r = argmax
v∈V

R(v) (5)

Using the edge weights, we construct a weighted graph
G′ = (V,E,W ), where W is the set of weights for the
edges. The weighted graph G′ and root r allow the use of
different algorithms to construct the tree:

T = ALGORITHM(G′, r) (6)

where T is the tree, ALGORITHM denotes algorithms for
tree construction. For example, using the maximum span-
ning tree algorithm, the tree is constructed by connecting all
nodes using the edges with the highest weights.

3.1.2. GLOBAL POSITION ENCODING

The shortest path from every node to the root naturally
divides the tree into different levels. This hierarchical struc-
ture facilitates the efficient encoding of all nodes. The global
positional encoding of a node v can be defined as a one-hot
vector representing its shortest path distance pv from the
root node:

pv = [I(tv = 0), I(tv = 1), ..., I(tv = tmax)] ∈ Rtmax

(7)
where tv is the shortest path distance from the root node, I
is the identity function and tmax is the maximum possible
value of t equal to the depth of the tree. For the function I,
I(q) = 1 when the condition q = true, otherwise 0.

Importantly, the global position encoding is computed of-
fline. The final feature xi for vi ∈ V can be obtained by
concatenating origin feature xorigin

i and pv together, which
will be utilized in subsequent steps of the model.

3.1.3. OPTIONAL TREE PERTURBATION

Beyond using the tree structure for global position encoding,
we further explore its potential and discover a simple trick

to enhance model robustness. The insufficient number of
subgraphs can affect the model’s stability. For example, as
shown in Table 2, the em-user dataset has 57,333 nodes and
4,573,417 edges, but only 324 subgraphs. This substantial
disparity can result in large variations in outcomes under
different seeds.

This trick utilizes the tree structure to generate additional
samples through consistent perturbation. As shown in the
Left Side of Figure 2, for each subgraph S, we extract its
largest connected component in the tree as a new sample:

{
S′ = fc(VS , T )

y′ = y
if |VS′ | ≥ c (8)

where S′ and y′ are the generated subgraph and its label,
VS is the node set of S, and fc denotes the function that se-
lects the largest connected component of VS within T . The
threshold c ensures that only sufficiently large components
are used as new samples.

This trick is effective because the tree is constructed by
considering the weights of all nodes and edges in the entire
graph, preserving much of the original graph’s structural
information. Moreover, since all perturbations are derived
from the same tree structure, they follow a consistent pattern,
ensuring the quality and coherence of the generated samples.

Importantly, this simple trick introduces no additional pa-
rameters that need careful tuning, as it utilizes the already
constructed tree structure. Our experiments show that this
optional step can help reduce the variance of results across
different random seeds.

3.2. Boundary-aware Convolution

Excessive aggregation of global structural information may
weaken the discriminative ability of subgraph representa-
tions by introducing irrelevant distant nodes.

To address this challenge, we propose a boundary-aware
convolution that computes difference vectors between nodes
to control information flow during convolution. Specifi-
cally, for a node in the subgraph, the module first derives
the node feature vectors through vanilla message-passing,
then computes the difference vectors between the nodes
and their neighbors, and finally aggregates the node feature
vectors and the difference vectors to obtain the final node
representation. Formally,

z(l)
v = AGG

(
h(l)
v , {dv

u, : u ∈ N (v)}
)

(9)

where z(l)
v is the final representation of node v at layer l, h(l)

v

represents the feature vector of v as computed by equation 1,
dv
u denotes the difference vectors in the dimensional space
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between v and its neighbour u, and AGG is the aggregation
operation, such as summation.

The difference vectors dv
u are formulated as:

dv
u = h(l)

v − h(l)
u u ∈ N (v) (10)

These difference vectors emphasize the internal structure
of subgraphs by capturing the relative differences between
neighboring nodes, helping maintain the subgraph’s unique
structural patterns.

To achieve the convolution, we introduce a diagonal matrix
Ms which acts as a binary selector for nodes within sub-
graphs, with Msii = 1 if node i is part of the subgraph, and
0 otherwise. The representations of graph are denoted as,

Z(l) = (1− b)H(l) + bMsD
(l) (11)

where b is a balance factor controlling the integration of
global structural information, Z(l) is the representation ma-
trix of nodes, H(l) is the result of vanilla graph convolution
and D(l) is the difference matrix. H and D(l) are formu-
lated as:

H(l) = σ(AH(l−1)W (l−1)) (12)

and

D(l) =

[∑
u∈N (v1)

dv1
u , . . . ,

∑
u∈N (vn)

dvn
u

]T
(13)

where H(0) = X . X is the node feature matrix after global
position encoding, allowing GPEN to preserve subgraph
structures while selectively incorporating global structural
information.

4. Theoretical Analysis
To theoretically validate GPEN, we provide a comprehen-
sive analysis of its key properties. We first demonstrate
that GPEN provides controllable representation learning
through bounded representation discrepancy. Then we show
how the global position encoding effectively captures struc-
tural information. Further analysis proves the stability of
boundary-aware convolution against noise propagation, and
finally establishes generalization guarantees for the tree per-
turbation technique.

We begin by showing that GPEN maintains controllable
representation learning, with bounded discrepancy between
its representations and those of standard GNNs:

Theorem 4.1 (Bounded Representation Discrepancy). Let
ZGPEN and ZGNN denote subgraph representations gener-
ated by GPEN and a standard GNN, respectively. The dis-

crepancy between them is bounded by:

∥ZGPEN − ZGNN∥ ≤ C1

∑
v∈V

∥hv − hGNN
v ∥

+ C2D(D(l)GPEN,HGNN)

+ C3D(XGPEN, XGNN). (14)

where C1, C2, C3 are constants dependent on model
depth L and Lipschitz continuity of aggregation functions.
XGPEN = [Xorigin, P ] and XGNN = Xorigin are the input
features for GPEN and standard GNN respectively, where
P = {pv}v∈V .

The proof is provided in the Appendix A.1. This controlla-
bility result ensures that GPEN’s representations maintain
meaningful connections to standard GNN representations
while incorporating additional structural information. The
bound demonstrates that our extensions provide enhanced
expressiveness within controlled limits.

Building on the controllability result, we next analyze
whether our global position encoding can effectively distin-
guish nodes based on their structural roles:

Theorem 4.2 (Global Position Encoding Distinctness). Let
G = (V,E) be a connected graph, and T be the tree con-
structed using edge weights wij = R(i) + R(j), where
R(v) is the PageRank score of node v. For any two nodes
u, v ∈ V with deg(u) ̸= deg(v), their global position en-
codings satisfy pu ̸= pv .

Full proof is in the Appendix A.2. This theorem confirms
that our tree-based global position encoding successfully
captures structural differences between nodes, particularly
distinguishing nodes with different connectivity patterns.

Having established the effectiveness of position encoding,
we analyze the stability of our boundary-aware convolution
mechanism:

Theorem 4.3 (Noise Robustness). Let h̃v = hv + ϵv be
noisy node features with ϵv ∼ N (0, σ2I). The covariance
of boundary-aware convolution outputs satisfies:

Cov(zBA
v ) ⪯ (1 + 3|N (v)|+ |N (v)|2)σ2I,

while standard GNN aggregation yields Cov(zGNN
v ) =

|N (v)|σ2I . Furthermore, boundary-aware convolution
achieves higher signal-to-noise ratio (SNR).

The detailed proof is included in Appendix A.6. This sta-
bility analysis reveals that our boundary-aware convolution
effectively suppresses noise propagation compared to stan-
dard GNN aggregation. The difference vectors used in
boundary-aware convolution help maintain structural dis-
tinctness while reducing noise amplification, which is essen-
tial for robust subgraph representation learning.
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Model ppi-bp hpo-metab hpo-neuro em-user

MLP 0.445 ± 0.009 0.386 ± 0.035 0.404 ± 0.019 0.524 ± 0.060
GBDT 0.446 ± 0.000 0.404 ± 0.000 0.513 ± 0.000 0.694 ± 0.000
Sub2Vec 0.388 ± 0.003 0.472 ± 0.032 0.618 ± 0.009 0.779 ± 0.041
GNN-seg 0.361 ± 0.025 0.542 ± 0.028 0.647 ± 0.003 0.725 ± 0.010
SubGNN 0.599 ± 0.025 0.537 ± 0.025 0.644 ± 0.019 0.816 ± 0.041
GLASS 0.619 ± 0.022 0.614 ± 0.016 0.685 ± 0.016 0.888 ± 0.019
SSNP 0.636 ± 0.022 0.587 ± 0.032 0.682 ± 0.013 0.888 ± 0.016
S2N 0.643 ± 0.041 0.639 ± 0.072 0.686 ± 0.019 0.890 ± 0.035

GPEN 0.644 ± 0.009 0.639 ± 0.009 0.691 ± 0.006 0.912 ± 0.013

Table 1. The mean micro-F1 scores (average of 10 runs) with standard deviations on four real-world datasets.

Finally, we analyze how our optional tree perturbation tech-
nique enhances model generalization:

Theorem 4.4 (Generalization Bound). Let β(k) =√
ES′ [∥S∆S′∥]/k measure perturbation effects. With prob-

ability 1− δ, the expected risk L(h) is bounded by:

L(h) ≤ Lemp(h)+

√
2dVC ln(em/k)

m
+

√
ln(1/δ)

2m
+β(k),

where dVC is the VC dimension and m, k are the numbers
of original and perturbed subgraphs.

The full proof can be found in Theorem A.7 in the Ap-
pendix.This generalization bound demonstrates that tree
perturbation improves model generalization by generating
structurally consistent augmented samples. The bound quan-
tifies how the additional samples from tree perturbation help
reduce overfitting.

The theoretical analysis above establishes four key prop-
erties of GPEN: (1) controllable representation learning
with bounded discrepancy, (2) effective structural distinc-
tion through global position encoding, (3) robust feature
learning via boundary-aware convolution, and (4) enhanced
generalization through tree perturbation. Together, these
properties validate our approach to subgraph representation
learning and demonstrate how GPEN addresses the chal-
lenges outlined in the introduction.

5. Experimental Evaluation
5.1. Experimental Settings

5.1.1. DATASETS.

We use the same four real-world datasets and four synthetic
datasets (Alsentzer et al., 2020b; Wang & Zhang, 2022; Kim
& Oh, 2024). Detailed information about these datasets is
presented in Table 2 and Appendix A.2.1. The datasets are
divided according to the split ratios outlined in the baselines
(Alsentzer et al., 2020b; Wang & Zhang, 2022; Jacob et al.,
2023; Kim & Oh, 2024).

# nodes # edges # Subgraphs # Classes

ppi-bp 17,080 316,951 1,591 6
hpo-metab 14,587 3,238,174 2,400 6
hpo-neuro 14,587 3,238,174 4,000 10
em-user 57,333 4,573,417 324 2

density 5,000 29,521 250 3
cut-ratio 5,000 83,969 250 3
coreness 5,000 118,785 221 3
component 19,555 43,701 250 2

Table 2. Statistics of all datasets.

5.1.2. BASELINES

We compare GPEN with GNN-seg, MLP, GBDT, Sub2Vec
(Adhikari et al., 2018), SubGNN (Alsentzer et al., 2020b),
GLASS (Wang & Zhang, 2022), SSNP (Jacob et al., 2023),
and S2N (Kim & Oh, 2024) as our baselines. For detailed
baseline introductions and experimental settings, please re-
fer to Appendix A.2.

5.2. Experimental Results

5.2.1. REAL-WORLD DATASETS.

GPEN outperforms all existing models on four real-world
datasets. The results are summarized in Table 1, which re-
ports the average micro-F1 scores and standard deviations
for each model and dataset (averaged over 10 runs with
different seeds). The em-user dataset which contains denser
connections and a higher average node degree. GPEN easily
outperforms other baselines on the em-user datasets, likely
because the larger graph sizes result in deeper trees, making
the tree structure more impactful. This result highlights
GPEN’s superiority in capturing node interaction patterns
in a larger graph setting, validating the great performance
of GPEN. Notably, simpler baselines like MLP and GBDT
that only consider node features perform poorly (0.524 and
0.694 on em-user), while methods that partially capture
global structure (GLASS, SSNP) show better results but
still fall short of GPEN’s comprehensive approach. This
empirically validates our theoretical analysis that effective
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Method density cut ratio coreness component

Sub2Vec 0.459 ± 0.038 0.354± 0.044 0.360± 0.060 0.657± 0.054
GNN-seg 0.952± 0.019 0.346± 0.035 0.593± 0.038 1.000± 0.000
SubGNN 0.919± 0.019 0.629± 0.041 0.659± 0.098 0.958± 0.101
GLASS 0.930± 0.028 0.935± 0.019 0.840± 0.028 1.000± 0.000
S2N 0.963± 0.057 0.892± 0.044 0.726± 0.114 1.000± 0.000

GPEN 0.956± 0.016 0.936± 0.016 0.876± 0.019 1.000± 0.000

Table 3. The mean micro-F1 scores (average of 10 runs) with standard deviations on four synthetic datasets.
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Figure 3. Hyperparametric Analysis

subgraph representation requires both global position in-
formation and selective feature integration. Finally, GPEN
achieves lower standard deviations while maintaining higher
accuracy, validating the theoretical stability of our modules.

5.2.2. SYNTHETIC DATASETS.

The synthetic datasets provide controlled experiments to
validate specific components of GPEN. As shown in Table
3, GPEN achieves state-of-the-art performance on three out
of four datasets, with particularly strong results on tasks
requiring global structural understanding.

On the cut-ratio dataset, which tests boundary structure
recognition, GPEN achieves 0.936 accuracy with ±0.016
deviation, outperforming other methods and demonstrating
the effectiveness of our boundary-aware convolution mod-
ule. The strong performance on coreness (0.876), which
evaluates both boundary and positional information, further
validates GPEN’s ability to capture multi-hop relationships
through global position encoding.

While simpler models like GNN-seg perform well on den-
sity and component tasks that primarily test local struc-
ture recognition, they struggle with tasks requiring global
context (0.346 on cut-ratio). In contrast, GPEN maintains
competitive performance on local structure tasks (0.956 on
density) while excelling at tasks requiring global informa-
tion, empirically validating its design goal of balancing local
and global structural information.

The consistently lower standard deviations across all

No. GPE BWC OTP ppi-bp emuser

1 ✓ ✓ ✓ 0.644± 0.009 0.912± 0.013

2 ✓ ✓ 0.633± 0.019 0.898± 0.032
3 ✓ ✓ 0.590± 0.016 0.796± 0.050
4 ✓ ✓ 0.631± 0.013 0.864± 0.028
5 ✓ 0.632± 0.013 0.857± 0.033
6 ✓ 0.585± 0.028 0.796± 0.054
7 ✓ 0.584± 0.019 0.796± 0.032
8 0.588± 0.022 0.850± 0.076

Table 4. The mean micro-F1 scores and their standard deviations,
averaged over 10 runs, for the ablation studies.

datasets (e.g., ±0.016 on cut-ratio compared to ±0.044 for
S2N) demonstrate the stability benefits of our tree-based po-
sition encoding and boundary-aware feature integration ap-
proach, aligning with our theoretical analysis of the model’s
representational properties.

5.2.3. ABLATION STUDY

To validate the power of the modules, we conducted ab-
lation studies by removing each corresponding module
from GPEN. For convenience, we use abbreviations for the
three modules: Global Position Encoding (GPE), Boundary-
aware Convolution (BWC), and Optional Tree Perturbation
(OTP). The results of the ablation experiments are shown in
Table 4. Each module acting individually cannot improve
performance and may even worsen it on the emuser dataset.
However, when the two modules work together, the results
improve, and the best performance is achieved when all
three modules are used together. This indicates that the
three modules are interdependent. When they work together,
they can better utilize both global and local structural infor-
mation of the subgraphs, achieving optimal performance. It
can be observed that removing GPE module leads to a sig-
nificant performance drop, highlighting the important role
of global position encoding in subgraph representation. Ad-
ditionally, when the OTP module is introduced, GPEN not
only shows improved results but also experiences a reduc-
tion in standard deviation, demonstrating the effectiveness
of the OTP module.
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Figure 4. Hyperparametric Analysis

Tree ppi-bp hpo-metab hpo-neuro em-user

Breadth-First Search Tree 0.560 ± 0.054 0.515 ± 0.031 0.606 ± 0.037 0.857 ± 0.047
Depth-First Search Tree 0.579 ± 0.047 0.494 ± 0.030 0.605 ± 0.034 0.846 ± 0.035
Minimum Spanning Tree/Steiner Tree 0.570 ± 0.030 0.587 ± 0.026 0.683 ± 0.019 0.833 ± 0.022

Maximum Spanning Tree 0.644 ± 0.009 0.638 ± 0.009 0.691 ± 0.006 0.912 ± 0.013

Table 5. Different constructing tree algorithms for the tree

5.2.4. TREE ANALYSIS

We evaluated four tree construction algorithms to determine
their impact on GPEN’s performance: Breadth-First Search
Tree (BFS), Depth-First Search Tree (DFS), Minimum Span-
ning Tree (MST), and Maximum Spanning Tree (MaxST).

Table 5 shows that the maximum spanning tree algorithm
achieved the best results. This is likely because we use
edge weights to construct the tree, and the maximum span-
ning tree algorithm focuses on retaining high-weight edges,
preserving the more informative structures of the graph.

Specifically, the effectiveness of MaxST stems from its
ability to preserve critical structural information by priori-
tizing connections between high-importance nodes through
edge weights wij = R[i] +R[j], where R[i] represents the
PageRank-derived importance score. This approach cap-
tures the graph’s hierarchical backbone more effectively
than traversal-based methods (BFS/DFS) or minimum-
weight approaches (MST).

MaxST demonstrates significant performance improve-
ments, particularly in dense graphs such as hpo-metab and
hpo-neuro, substantially outperforming BFS and DFS meth-
ods. Additionally, MaxST exhibits superior stability with
consistently lower standard deviations.

While MaxST has higher computational complexity
(O(|E| log |V |)) compared to BFS/DFS (O(|V |+ |E|)), the
significant performance gains justify this cost. The en-
hanced quality of global position encodings and improved
model robustness make MaxST the optimal choice for tree

construction in GPEN.

5.2.5. HYPERPARAMETRIC ANALYSIS

We conducted comprehensive experiments to understand
the impact of three key hyperparameters in GPEN: the bal-
ance factor b, the tree-based data augmentation threshold
c, and the batch size. Our analysis reveals distinct patterns
that provide insights into the model’s behavior and design
principles.

Tree-based Data Augmentation Threshold c. The thresh-
old parameter c determines the minimum size of connected
components used for generating augmented samples. Our
experiments reveal an interesting trade-off, as shown in
Figure 3. Lower thresholds tend to generate numerous but
potentially noisy augmented samples, as smaller connected
components may not preserve meaningful structural prop-
erties of the original subgraphs. Higher thresholds, while
ensuring quality, restrict the quantity of augmented data,
limiting the regularization benefits. The optimal perfor-
mance typically occurs at moderate threshold values, where
the augmentation process achieves a sweet spot between
sample quality and quantity. This pattern is particularly
pronounced in datasets with larger average subgraph sizes,
where the tree structure provides more opportunities for
meaningful augmentation.

Balance Factor b. The balance factor controls the integra-
tion of local structural features and global position infor-
mation during boundary-aware convolution. As illustrated
in Figure 4(a), we observe a consistent pattern across all
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datasets: optimal performance emerges when b falls within a
moderate range, typically between 0.6 and 0.8. This finding
validates our theoretical framework that effective subgraph
representation requires careful balance between local and
global information. When b is too low, the model fails to
leverage crucial local structural patterns that define sub-
graph boundaries. Conversely, excessively high values lead
to over-emphasis on local structures, causing the model to
lose sight of important global contextual information. The
consistency of this optimal range across diverse datasets sug-
gests that this balance is a fundamental requirement rather
than a dataset-specific phenomenon.

Batch Size Effects. The impact of batch size on model
performance, depicted in Figure 4(c), reveals the interplay
between optimization dynamics and model convergence.
Smaller batch sizes generally lead to better performance,
which can be attributed to more frequent parameter updates
and increased stochasticity in the optimization process. This
stochasticity helps the model escape local minima and ex-
plore the parameter space more effectively. As batch size
increases, we observe performance degradation, particularly
notable in tasks requiring fine-grained structural discrimi-
nation. This degradation stems from two factors: reduced
gradient update frequency per epoch and the averaging effect
of larger batches, which can smooth out important learning
signals from individual subgraphs with unique structural
patterns.

Dataset-Specific Sensitivity. Different datasets exhibit
varying degrees of sensitivity to hyperparameter changes,
as evidenced in Figure 4(b). Datasets with clear structural
boundaries (such as component-based tasks) demonstrate
remarkable robustness to hyperparameter variations, main-
taining stable performance across wide parameter ranges.
In contrast, tasks requiring nuanced integration of multi-
scale information (such as coreness prediction) show higher
sensitivity. This disparity underscores the importance of
our dual-module design: while some tasks primarily benefit
from either global position encoding or boundary-aware
convolution, complex tasks require precise coordination be-
tween both modules, making them more sensitive to the
balance factor and other hyperparameters.

6. Related Work
6.1. Graph Neural Networks.

While traditional deep learning approaches (Schuster & Pali-
wal, 1997; Krizhevsky et al., 2012) have achieved remark-
able success with Euclidean data like images (Cheng et al.,
2020) and text (Zheng & Zheng, 2019), numerous real-
world applications require modeling data in non-Euclidean
graph structures. This necessity led to the development
of Graph Neural Networks (GNNs), which have become

powerful tools for processing graph-structured data. Var-
ious architectures have emerged, including GCN (Kipf &
Welling, 2016), GAT (Velickovic et al., 2017), and Graph-
Sage (Hamilton et al., 2017), each offering unique ap-
proaches to graph learning.

6.2. Subgraph Representation Learning.

The field of subgraph analysis has experienced significant
growth (Alsentzer et al., 2020a), with applications ranging
from predicting graph evolution (Meng et al., 2018) to en-
hancing graph classification (Wang et al., 2021). However,
the specific challenge of learning subgraph representations
remained largely unexplored until recently. A breakthrough
came with SubGNN (Alsentzer et al., 2020b), which estab-
lished the foundations of subgraph representation learning
and prediction. The model innovates through its anchor-
based information sampling mechanism, which bridges lo-
cal subgraph structures with global graph context through
carefully designed information channels. Building on this
foundation, GLASS (Wang & Zhang, 2022) introduced a
novel perspective by developing a mask-based approach to
distinguish subgraph boundaries. Following these works,
researchers have proposed some approaches to balance rep-
resentational power with computational efficiency. Recent
advances include SSNP (Jacob et al., 2023), which improves
efficiency through stochastic neighborhood sampling during
the readout phase, and S2N (Kim & Oh, 2024), which trans-
forms the subgraph learning problem through an innovative
graph coarsening approach that balances computational effi-
ciency with comprehensive structural preservation. The field
has also benefited from adapting existing methodologies.
For instance, Sub2Vec (Adhikari et al., 2018), originally de-
signed for community detection, demonstrates how random
walk sampling and language modeling techniques (Le &
Mikolov, 2014) can capture subgraph characteristics.

7. Conclusion
In this paper, we present GPEN, a novel method for sub-
graph representation learning that addresses two key chal-
lenges: capturing structural relationships between distant
nodes and preventing excessive aggregation of global struc-
tural information. Through hierarchical tree-based position
encoding, GPEN systematically captures multi-hop relation-
ships between nodes, overcoming the limitations of existing
local neighborhood-based approaches. The boundary-aware
convolution module selectively integrates global structural
information while preserving the intrinsic characteristics
of each subgraph, thus effectively balancing the trade-off
between global and local structural information. Extensive
experiments on eight public datasets validate GPEN’s supe-
rior performance compared to state-of-the-art methods.
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A. Appendix
A.1. Theoretical Analysis

Theorem A.1 (Controllability of Representation Discrepancy). Let S = (V,E,X) be a subgraph with |V | = n, and let
ZGPEN and ZGNN denote the subgraph representations generated by GPEN and a standard GNN, respectively. Assume the
following:

• ϕ is the tree construction function.

• f : Rd × Rd → Rd is a Lipschitz continuous function with Lip(f) =
∏L

l=1 γ
(l), where γ(l) is the spectral norm bound

of the parameter matrix W (l) at layer l.

• The message-passing functions g (Boundary-aware Convolution) and m (standard GNN) are Lipschitz continuous with
constants Lip(g) and Lip(m), respectively.

• All parameter matrices {W (l)} satisfy ∥W (l)∥2 ≤ γ for some γ > 0.

Then, the discrepancy between representations is bounded by:

∥ZGPEN − ZGNN∥ ≤ C1

∑
v∈V

∥hv − hGNN
v ∥+ C2D(D(l)GPEN,HGNN) + C3D(XGPEN, XGNN), (15)

where:

• hv = ϕ(v,G) is the global position encoding of node v,

• D(l)GPEN = {d(l)u |u ∈ V } is the multiset of local representations from the l-th Boundary-aware Convolution,

• XGPEN = [Xorigin, P ] and XGNN = Xorigin are the input features for GPEN and standard GNN respectively, where
P = {pv}v∈V ,

• D(A,B) = infπ∈Π supa∈A ∥a− π(a)∥ is the optimal matching metric,

• Constants C1 = L · Lip(f), C2 = L · d · Lip(f), and C3 = Lip(f) · Lip(m) depend on the model depth L and hidden
dimension d.

Proof. We decompose the discrepancy via triangle inequality:

∥ZGPEN − ZGNN∥ ≤
∥∥∥f (∑hv,

∑
d
(l)
v

)
− f

(∑
hGNN
v ,

∑
d
(l)
v

)∥∥∥︸ ︷︷ ︸
Term 1

+
∥∥∥f (∑hGNN

v ,
∑

d
(l)
v

)
−
∑

hGNN
v

∥∥∥︸ ︷︷ ︸
Term 2

. (16)

Bounding Term 1: By Lipschitz continuity of f and the norm inequality:

Term 1 ≤ Lip(f)
(∥∥∑(hv − hGNN

v )
∥∥+ ∥∥∥∑ d

(l)
v

∥∥∥)
≤ Lip(f)

(∑
∥hv − hGNN

v ∥+
∑
∥d(l)v ∥

)
(by triangle inequality)

≤ Lip(f)
(∑
∥hv − hGNN

v ∥+ n ·maxv ∥d(l)v ∥
)
. (17)

Using the optimal matching metric D(·, ·), we have:

max
v
∥d(l)v ∥ ≤ D(D(l)GPEN,HGNN). (18)
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Bounding Term 2: By Lipschitz continuity of f and m:

Term 2 ≤ Lip(f) ·
∥∥∥∑ d

(l)
v −

∑
m(
∑

αvwxw)
∥∥∥

≤ Lip(f) · Lip(m) ·D(XGPEN, XGNN). (19)

Combining bounds:

∥ZGPEN − ZGNN∥ ≤ Lip(f)
∑
∥hv − hGNN

v ∥+ Lip(f) · n ·D(D(l)GPEN,HGNN)

+ Lip(f) · Lip(m) ·D(X,X)

= C1

∑
∥hv − hGNN

v ∥+ C2D(D(l)GPEN,HGNN) + C3D(XGPEN, XGNN), (20)

where C1 = L · Lip(f), C2 = L · d · Lip(f), and C3 = Lip(f) · Lip(m), incorporating the model depth L and hidden
dimension d.

Theorem A.2 (Global Position Encoding Distinctness with Tree Construction Constraints). Let G = (V,E) be a connected
graph and u, v ∈ V with deg(u) ̸= deg(v). Let T be constructed via using maximum spanning tree (MST) with edge
weights wij = R(i) + R(j), where R(v) is the PageRank score of node v. Assuming node importance R(v) is strictly
increasing with degree (i.e., deg(u) > deg(v) =⇒ R(u) > R(v)), then their global position encodings satisfy pu ̸= pv .

Proof. We first establish two lemmas:

Lemma A.3 (Monotonicity of PageRank). Under the iteration in Eq.(3) with α ∈ (0, 1), for connected graphs, deg(u) >
deg(v) =⇒ R(u) > R(v).

Proof. From the PageRank equation R = (1− α)MR+ αp, where Mij = 1/ deg(i). For node u with higher degree:

R(u) = (1− α)
∑

j∈N(u)

R(j)

deg(j)
+

α

|V |

By the Perron-Frobenius theorem, stationary distribution components satisfy R(u)/ deg(u) > R(v)/ deg(v) when
deg(u) > deg(v). Hence R(u) > R(v).

Lemma A.4 (MST Path Property). In MST T with edge weights wij = R(i) +R(j), the path from any node v to root r is
monotonically increasing in R(·) values.

Proof. Suppose there exists a decreasing edge (x, y) on the path with R(x) > R(y). Then replacing it with edge (y, z)
where R(z) > R(y) would increase the total weight, contradicting MST maximality.

Now consider u, v with deg(u) > deg(v). By Lemma A.3, R(u) > R(v). Let r =v R(v). There are two cases:

Case 1: v lies on the path from u to r in T . By Lemma A.4, distT (u, r) = distT (v, r) + distT (u, v) > distT (v, r).

Case 2: u and v belong to different subtrees. Let w be the lowest common ancestor. Then:

distT (u, r) = distT (u,w) + distT (w, r) ̸= distT (v, w) + distT (w, r) = distT (v, r)

since u and v cannot have identical distances to w while maintaining MST maximality under weight ordering.

Thus pu ̸= pv in all cases.

Corollary A.5 (Degree-Induced Structural Distinctness). Let I(v) = tv denote the global structural information of node v
defined as its depth in T . For any u, v ∈ V with deg(u) ̸= deg(v), their structural information satisfies I(u) ̸= I(v). The
converse does not hold: I(u) ̸= I(v) may occur even when deg(u) = deg(v).

Proof. The first statement follows directly from Theorem A.2. For the converse, consider a graph with two 3-degree
nodes u and v where u connects to leaf nodes while v connects to hub nodes. Their MST depths may differ despite equal
degrees.
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Theorem A.6 (Stability of Boundary-aware Convolution). Let h̃v = hv + ϵv be the observed node features with additive
noise ϵv ∼ N (0, σ2I), where {ϵv}v∈V are mutually independent. Given a subgraph S ⊆ G, define the following two
aggregation operators:

• Standard GNN aggregation: zGNN
v =

∑
u∈N (v) h̃u

• Boundary-aware aggregation: zBA
v = h̃v +

∑
u∈N (v)(h̃v − h̃u)

Then the covariance matrices satisfy:

Cov(zBA
v ) = (1 + 3|N (v)|+ |N (v)|2)σ2I and Cov(zGNN

v ) = |N (v)|σ2I

Furthermore, the signal-to-noise ratio (SNR) satisfies:

E[∥zBA
v ∥22]

Tr(Cov(zBA
v ))

≥ E[∥zGNN
v ∥22]

|N (v)|σ2d

where d is the feature dimension.

Proof. We first analyze the boundary-aware aggregation. Let dvu = h̃v − h̃u = (hv − hu) + (ϵv − ϵu). The aggregation
becomes:

zBA
v = hv +

∑
u∈N (v)

(hv − hu)︸ ︷︷ ︸
signal term

+ ϵv +
∑

u∈N (v)

(ϵv − ϵu)︸ ︷︷ ︸
noise term

The noise covariance is:

Cov(zBA
v ) = Cov

(
ϵv +

∑
u

(ϵv − ϵu)

)
= Cov

(
(1 + |N (v)|)ϵv −

∑
u

ϵu

)
Using independence of {ϵv}:

= (1 + |N (v)|)2σ2I + |N (v)|σ2I = [1 + 2|N (v)|+ |N (v)|2 + |N (v)|]σ2I

= (1 + 3|N (v)|+ |N (v)|2)σ2I

For standard GNN aggregation:
Cov(zGNN

v ) =
∑

u∈N (v)

Cov(ϵu) = |N (v)|σ2I

The SNR comparison follows from:

E[∥zBA
v ∥22]

Tr(Cov(zBA
v ))

≥ ∥E[zBA
v ]∥22

(1 + 3|N (v)|+ |N (v)|2)σ2d
≥ ∥E[z

GNN
v ]∥22

|N (v)|σ2d

where the first inequality uses Jensen’s inequality and the second follows from ∥E[zBA
v ]∥22 = ∥hv +

∑
(hv − hu)∥22 ≥

∥
∑

hu∥22 = ∥E[zGNN
v ]∥22 by triangle inequality and the fact that (1 + 3|N (v)|+ |N (v)|2) ≥ |N (v)| for |N (v)| ≥ 1.

Theorem A.7 (Generalization Bound with Tree Perturbation). LetH be the hypothesis class with VC dimension dVC (Vapnik
& Chervonenkis, 2015), trained on m original subgraphs S1, . . . , Sm and k perturbed subgraphs S′

1, . . . , S
′
k generated

via tree perturbation. Let Lemp(h) and L(h) denote the empirical and expected risks respectively. With probability at least
1− δ over the sample generation, for any h ∈ H:

L(h) ≤ Lemp(h) +

√
2dVC ln(em/k)

m
+

√
ln(1/δ)

2m
+ β(k)

where β(k) =
√

ES′ [∥S△S′∥]
k measures the perturbation effect, and ∥S△S′∥ is the symmetric difference between original

and perturbed subgraphs.
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Proof. We proceed through three key steps:

Lemma A.8 (Rademacher Complexity with Augmentation). Let Rm(H) be the Rademacher complexity (Bousquet et al.,
2003) ofH on original samples. The augmented complexity satisfies:

Rm+k(H) ≤
m

m+ k
Rm(H) + k

m+ k

(
Rk(H) +

√
E[∥S△S′∥]

2k

)

Proof. Using the contraction property of Rademacher complexity:

Rm+k ≤ E

sup
h

 1

m

m∑
i=1

σih(Si) +
1

k

k∑
j=1

σ′
jh(S

′
j)


Decompose into original and perturbed terms, then apply Talagrand’s concentration inequality on the perturbation term
(Boucheron et al., 2003).

Lemma A.9 (VC Dimension Preservation). The tree perturbation process preserves the VC dimension:

dVC(H′) ≤ 2dVC(H)

whereH′ is the augmented hypothesis space.

Proof. Each perturbation can be viewed as a restriction operator fc acting on the original space. By the Sauer-Shelah lemma,
the growth function of the composed space satisfies ΠH′(n) ≤ Π2

H(n).

Lemma A.10 (Stability of Perturbation). The expected symmetric difference satisfies:

E[∥S△S′∥] ≤ E[|VS | − c]I{|VS |>c}

where c is the size threshold in Eq.(8).

Proof. By the perturbation definition S′ = fc(VS , T ), the difference comes from nodes outside the largest connected
component. Apply linearity of expectation over the node selection process.

Combining these results via PAC-Bayes framework (Catoni, 2007):

L(h) ≤ Lemp(h) + 2Rm+k(H) +

√
ln(1/δ)

2(m+ k)

Substitute Lemma A.8 and bound Rk(H) using Lemma A.9 through Dudley entropy integral:

Rk(H) ≤ C

√
dVC ln(ek/dVC)

k

Finally apply Lemma A.10 to bound the perturbation term β(k).

A.2. Experimental Details

A.2.1. DATASETS

(1) real-world datasets. The ppi-bp dataset is a molecular biology dataset for predicting cellular functions of protein
groups involved in common biological processes. The hpo-metab and hpo-neuro datasets are clinical diagnostic datasets
for predicting the type of rare metabolic or neurological disorder based on phenotype and genotype data from a knowledge
graph. The em-user dataset is a user profiling dataset for predicting user characteristics, such as gender, based on their
workout history within a social fitness network.

(2) synthetic datasets. These four synthetic datasets are constructed by generating specific structured subgraphs on base
graphs. The labels for each dataset are determined by binning the subgraph specific structure (Alsentzer et al., 2020b).
Detailed information about these datasets is presented in Table 6.
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Dataset Nodes Edges Subgraphs Average Nodes per Subgraph

Density 5,000 29,521 250 20.0 ± 0.0
Cut Ratio 5,000 83,969 250 20.0 ± 0.0
Coreness 5,000 118,785 221 20.0 ± 0.0
Component 19,555 43,701 250 74.2 ± 52.8
PPI-BP 17,080 316,951 1,591 10.2 ± 10.5
HPO-METAB 14,587 3,238,174 1,400 14.4 ± 6.2
HPO-NEURO 14,587 3,238,174 4,000 14.8 ± 6.5
EM-USER 57,333 4,573,417 324 155.4 ± 100.2

Table 6. Subgraph Properties in Synthetic and Real-World Datasets

A.2.2. BASELINES

To prove our model validity, we compare GPEN with the following baselines:

(1) SubGNN (Alsentzer et al., 2020b) utilizes subgraph-level message passing with artificial channels;

(2) GLASS (Wang & Zhang, 2022) employs a label trick with a mask matrix to differentiate between subgraph internal and
external regions;

(3) SSNP (Jacob et al., 2023) introduces a Stochastic Subgraph Neighborhood Pooling strategy, sampling neighboring nodes
during subgraph readout;

(4) S2N (Kim & Oh, 2024) translates subgraphs to nodes using graph coarsening methods, while capturing both local and
global structures of the subgraph.

(5) Sub2Vec (Adhikari et al., 2018) generates subgraph embeddings by sampling random walks and using Paragraph2Vec;

(6) GNN-seg is a standard MPNN that performs graph classification by treating each subgraph as an independent graph,
ignoring its external connections; and (7) MLP and (8) GBDT aggregate node embeddings for subgraph classification,
disregarding the overall graph structure.

A.2.3. IMPLEMENTATION DETAILS

we set the number of iterations t for PageRank to 100, with the damping factor a set to 0.85. Similar to GLASS and SubGNN,
our model pre-trains nodes to generate node features for real-world datasets. Additionally, global position encoding is added
as the initial feature for all datasets. We calculate the vector differences of node representations using a COO-formatted
sparse adjacency matrix A, which significantly reduces memory usage. We use classic loss functions for classification tasks:
BCE loss for binary classification and cross-entropy loss for multi-class classification.

Algorithm 1 Global Position Encoding
Input: Graph G = (V,E)
Output: Global Position Encodings {pv}v∈V

1: R← Eq.(3)
2: wij ← R[i] +R[j],∀(i, j) ∈ E
3: r ← argmaxv∈V R[v]
4: G′ ← (V,E,W ),W = {wij}
5: T ← Eq.(6)
6: for all v ∈ V do
7: tv ← distT (v, r)
8: pv ← one hot(tv)
9: end for{pv}v∈V
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