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Abstract
Despite Low-Rank Adaptation (LoRA)’s popular-
ity for fine-tuning large models, it often exhibits
a noticeable performance gap compared to full
fine-tuning, particularly in complex tasks such
as mathematical reasoning and code generation.
We propose SeedLoRA, a novel fusion approach
that bridges this gap by leveraging complemen-
tary strengths of multiple LoRA models trained
with different random seeds on the same task. Un-
like existing model merging methods that focus
on combining knowledge from different tasks,
SeedLoRA introduces a two-stage fusion strat-
egy specifically designed for single-task scenar-
ios: first identifying and preserving strong shared
patterns across models, then performing princi-
pled subspace fusion in a unified representation
space. Comprehensive experiments on LLaMA2-
7B and Mistral-7B demonstrate that SeedLoRA
significantly improves performance over individ-
ual LoRA models by 4.9% on GSM8K and 6.6%
on HumanEval, effectively matching or exceed-
ing full fine-tuning performance while maintain-
ing the efficiency benefits of LoRA. Our analysis
reveals that this improvement stems from Seed-
LoRA’s ability to effectively combine comple-
mentary strengths learned by different seeds in a
common representation space.

1. Introduction
Parameter-Efficient Fine-Tuning (PEFT) methods have
emerged as promising training schemes in fine-tuning large
language models (LLMs), offering a balance between perfor-
mance and efficiency. Among these, LoRA (Hu et al., 2022)
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has gained popularity due to its effectiveness and simplic-
ity. Despite its advantages, LoRA often exhibits noticeable
performance gap compared to full fine-tuning approaches,
limiting its applicability in scenarios where state-of-the-art
performance is required.

Researchers have proposed various approaches to narrow
the performance gap between LoRA and full fine-tuning
in LLMs. These methods typically fall into three cate-
gories: increasing LoRA’s capacity, optimizing LoRA’s
structure, and combining multiple LoRA adaptations. For
instance, ReLoRA (Lialin et al., 2024) proposes periodically
increasing the rank during training, while DoRA (yang Liu
et al., 2024) and MiLoRA (Wang et al., 2024a) suggest
alternative low-rank structures and initialization strategies.
Techniques such as MultiLoRA (Wang et al., 2023b) and
MoLoRA (Zadouri et al., 2024) attempt to leverage multi-
ple LoRA modules, inspired by Mixture of Experts models.
While these approaches have shown improvements, they of-
ten come at the cost of increased computational complexity
or fail to fully close the gap with full fine-tuning, particu-
larly in challenging domains like mathematical reasoning
and code generation.

In our investigation of these limitations, we made a key
observation: models trained on identical tasks with dif-
ferent random seeds exhibit similar overall performance,
yet demonstrate varying proficiency across different subdo-
mains of the task. This opens the opportunity to combine
their strengths into a more robust model.

Inspired by this insight, we naturally turn to model merging
techniques, which have gained significant attention in the
field of LLMs as means to combine knowledge from mul-
tiple models without increasing inference costs. However,
we find that applying existing merging methods to our sce-
nario presents unique challenges. Specifically, most existing
work on model merging focuses on multi-task scenarios,
aiming to integrate capabilities from models trained on dif-
ferent tasks (Wortsman et al., 2022; Ilharco et al., 2022). In
contrast, our experiments reveal that the challenges faced
in single-task model merging—our focus—differ substan-
tially from those in multi-task scenarios. To elucidate this
distinction, our analysis of cosine similarities reveals a cru-
cial difference: models trained on different tasks exhibit
near-zero similarity, indicating orthogonality, which leads
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to interference issues in multi-task merging. Conversely,
models trained on the same task with different seeds show
high cosine similarity, suggesting a high degree of shared
information. This fundamental difference shifts the primary
challenge in single-task merging from interference mitiga-
tion to effective information combination and redundancy
elimination, necessitating a new approach tailored specifi-
cally to single-task model merging.

Building on these insights, we propose SeedLoRA, a novel
approach to address the unique challenges of single-task
model merging. Our approach capitalizes on the high cosine
similarity and shared information between models trained
on the same task with different seeds, focusing on effective
information combination and redundancy elimination.

At the core of SeedLoRA is a two-stage merging strategy
that addresses the distinct aspects of model fusion. The first
stage focuses on identifying and handling extreme parameter
values - both consistently large magnitudes and conflicting
directions - across different seed-specific models. This stage
ensures robust integration of strongly learned patterns while
preventing destructive interference. The second stage em-
ploys a sophisticated SVD-based fusion approach for the
remaining parameters, operating in a shared subspace to
effectively combine complementary information while elim-
inating redundancy. By decomposing the merging process
into these distinct stages, our method can better preserve the
unique strengths of individual models while creating a more
robust combined representation.

Our experimental results demonstrate the effectiveness of
SeedLoRA. By merging multiple LoRA models with a rank
of 8, we achieve performance comparable to full fine-tuning
in challenging tasks such as mathematical reasoning and
code generation. This approach not only narrows the per-
formance gap between LoRA and full fine-tuning but also
preserves the efficiency advantages of PEFT methods.

The main contributions of this paper are:

• A comprehensive analysis of the performance character-
istics of LoRA models trained with different seeds on
the same task, revealing their complementary strengths in
various subdomains.

• Insights into the fundamental differences between single-
task and multi-task model merging, highlighting the need
for specialized approaches in each scenario.

• The introduction of SeedLoRA, a novel intra-task model
merging method that effectively combines information
from multiple models while eliminating redundancy.

• Extensive empirical evidence demonstrating the effective-
ness of SeedLoRA in narrowing the performance gap be-
tween LoRA and full fine-tuning, particularly in complex
tasks like mathematical reasoning and code generation.

2. Preliminaries and Related Work
2.1. LoRA

LoRA enables efficient LLM fine-tuning by introducing
trainable low-rank matrices while keeping original weights
frozen. For a pre-trained weight matrix W ∈ Rd×k, LoRA
introduces the update W ′ = W+BA, where B ∈ Rd×r and
A ∈ Rr×k are low-rank matrices with rank r ≪ min(d, k).
Recent research has expanded upon the LoRA framework,
exploring various enhancement. These include novel initial-
ization method of A and B matrices (MiLoRA (Wang et al.,
2024a), Pissa (Meng et al., 2024a), LoRA-GA (Wang et al.,
2024b)), higher-rank approaches (MoRA (Jiang et al., 2024),
PeriodicLoRA (Meng et al., 2024b), ReLoRA (Lialin et al.,
2024)), innovative structural modification(DoRA (yang Liu
et al., 2024)), advanced training (LoRA+ (Hayou et al.,
2024)).

Drawing inspiration from the Mixture of Experts (MoE)
paradigm, this approach dynamically combines multiple Lo-
RAs , each potentially specialized for different tasks or do-
mains. Examples include MultiLoRA (Wang et al., 2023b),
MoLoRA (Zadouri et al., 2024), LoRAHub (Huang et al.,
2023), and HydraLoRA (Tian et al., 2024). By leveraging
both LoRA’s parameter efficiency and the adaptive capacity
of expert models, Mixture of LoRA aims to create more
versatile models that can perform effectively across a board
range of tasks than single-adaptation LoRA implementa-
tions.

2.2. Model Merge

Model merging aims to combine the knowledge encoded in
multiple trained models into a single, enhanced model. Cur-
rent research in model merging focuses on two main areas:
Multi-task Merging and Same/Similar-task Merging. Multi-
task merging combines models trained on different tasks
into a single model capable of performing multiple tasks,
leveraging task-specific knowledge, and maintaining effi-
ciency. Same/Similar-task merging, though less explored,
focuses on combining models trained on identical or closely
related tasks to enhance robustness and generalization, with
studies showing improved performance on shifted data dis-
tributions. Most work in this area has been conducted in
computer vision, leaving significant opportunities for appli-
cation in fields like natural language processing. Although a
range of methods (Ilharco et al., 2022; Lu et al., 2024; Verma
& Elbayad, 2024; Huang et al., 2024; Salamanca et al.; Tam
et al.; Deep et al., 2024; Lu et al., 2024) for model merging
have been proposed, this paper focuses on a selected set of
methods that provide distinct ways of combining model pa-
rameters. Model soup (Wortsman et al., 2022) improves the
accuracy of fine-tuned models by averaging the weights of
multiple models fine-tuned with different hyperparameters,
rather than selecting only the best individual model.
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3. Proposed Method
3.1. Motivation

Performance Gap between LoRA and Full Fine-Tuning.

Prior research (Biderman et al., 2024) shows LoRA’s per-
formance gap persists even with increased rank or extended
training. In Table 1, we conducted the experiments fine-
tuning LLaMA2-7B with LoRA from rank=8 to rank=64 on
math (MetaMathQA) and code generation (CodeFeedback)
tasks (Yu et al., 2023). The results reveal that although
increasing the rank value of LoRA from 8 to 64 improves
performance on GSM8K and MATH from 39.64 to 41.05,
a significant gap remains when compared with Full Fine-
Tuning. A similar trend was observed in code generation
tasks, where increasing the rank initially improves perfor-
mance, but at extremely high ranks, such as 64, performance
begins to decline. This indicates that while higher ranks can
lead to gains, LoRA still struggles to fully match the perfor-
mance of full fine-tuning, particularly in complex domains
such as mathematical reasoning and code generation. These
observations motivate the need for a novel training strategy
and optimization method to further narrow the performance
gap, enhancing LoRA’s applicability across a wider range
of tasks.

Task r=8 r=16 r=24 r=32 r=64 FT

GSM8K 64.0 65.6 64.9 64.7 65.6 66.5
MATH 15.3 15.3 16.3 16.6 16.5 19.8

Average 39.6 40.4 40.6 40.7 41.1 43.2

Table 1. Fine-Tuning LLaMA-2-7B model with LoRA on Meta-
MathQA (seed=11).

3.2. Narrowing the Performance Gap via Model
Merging

Analyzing LoRA and Full Fine-Tuning Performance. We
conducted a comprehensive analysis to better understand
the performance discrepancy between LoRA and full fine-
tuning across various subdomains. Our approach involves
visualizing the performance of multiple models trained with
different random seeds using both LoRA and full fine-tuning
techniques. Specifically, we leverage the Massive Multitask
Language Understanding (MMLU) benchmark, which cov-
ers a wide range of subjects and allows for fine-grained per-
formance analysis. Figure 1 illustrates the performance of
LoRA and full fine-tuning models across different MMLU
subdomains. The results reveal an interesting pattern: while
LoRA models generally underperform compared to full fine-
tuning, they exhibit competitive performance in specific
subdomains. This nuanced performance distribution led to a

key observation: different LoRA models, each trained with
unique random seeds, tend to excel in distinct subdomains.
Building on this insight, we formulated a hypothesis: by
strategically merging multiple LoRA models, each is trained
with a distinct seed and with its own specialized strengths,
we could potentially achieve performance comparable to
full fine-tuning.
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Figure 1. Performance comparison of LoRA and Full FT across
MMLU subdomains.

The Definition of Single-Task model Merging. To explore
our hypothesis of combining LoRA models with diverse
strengths, we turn to the concept of model merging, which is
the process of combining multiple models to enhance overall
performance. While model merging is typically applied to
integrate models trained on different tasks, we propose a
novel application: merging models trained on a single task
with different random seeds to achieve superior performance
within that task. The proposed method is defined as follows:

Let θpre be the pre-trained base model, and {θ1, θ2, . . . , θn}
be a set of n models fine-tuned on the same task using LoRA,
each with a different random seed si. Each fine-tuned model
θi can be represented as θi = θpre+τi, where τi is the LoRA
delta model for the i-th fine-tuned model, obtained using
seed si. We then aim to merge these seed-specific delta
models:

τm = Merge(τ1, τ2, . . . , τn). (1)

The merging is performed layer-wise for each LoRA
adapter:

τ (ℓ)m = Merge(τ (ℓ)1 , τ
(ℓ)
2 , . . . , τ (ℓ)n ), (2)

where τ
(ℓ)
i represents the ℓ-th layer of the i-th delta model

trained with seed si. The final merged model is obtained
by:

θm = θpre + τm = θpre + Merge(τ1, τ2, . . . , τn). (3)

This approach leverages the diverse strengths of multiple
LoRA models, each potentially excelling in different sub-
domains, to create a merged model that approaches or even
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Figure 2. Cosine similarity comparison between LoRA delta mod-
els trained on the same and different tasks.

surpasses the performance of full fine-tuning models. By
focusing on models trained on a single task with different
seeds, we capture a broader spectrum of task-specific knowl-
edge while maintaining LoRA’s efficiency advantages.

3.3. Difference between Multi-Task and Single-Task
Model Merging

Before delving into our proposed single-task model merge
method, we conducted a cosine similarity analysis to high-
light its crucial differences from traditional multi-task ap-
proaches. To illustrate this, we trained 6 LoRA models: 3
for a mathematical reasoning task and 3 for an instruction
following task, each with distinct random seeds (seed=1, 2,
3). Figure 2 shows our findings, highlighting a significant
contrast in LoRA delta model (τ = BA) cosine similarity
between multi-task and single-task scenarios, profoundly
impacting merging strategies:

• Multi-task Scenarios: Delta models from different tasks
exhibit near-zero cosine similarity, indicating orthogonal
learned knowledge. For multi-task merging, the main chal-
lenge is aggregating this diverse knowledge and resolving
interference from unrelated information, aiming to retain
unique contributions without compromising other tasks.

• Single-task Scenarios: In contrast, Delta models trained
on the same task with different random seeds consistently
show significantly positive cosine similarity. This reveals
strong inherent correlation and high knowledge sharing
(redundancy). Consequently, for single-task merging, the
core challenge shifts to identifying and integrating subtle
complementary information from training randomness.
While interference risk exists, precisely extracting truly
beneficial and unique contributions from this abundant,
similar, and redundant information becomes critical.

These fundamental differences explain why current main-
stream multi-task merging techniques perform suboptimally
in single-task scenarios. Methods like TIES-Merging and
DARE primarily address interference from unrelated knowl-
edge in orthogonal multi-task models. However, for highly
similar and redundant single-task models, these strategies
often fail to capture and integrate the subtle complementar-
ity embedded within shared information. Their core design
wasn’t for extracting insights from high similarity, making
them inefficient or ineffective here.

These limitations underscore the urgent need for a novel
method tailored to single-task model merging. An effective
strategy must leverage high knowledge sharing and manage
redundancy, but also precisely extract and integrate com-
plementary information from training randomness while
mitigating minor interference.

3.4. SeedLoRA: A Two-Stage Approach for Model
Merging

To tackle the redundancy, complementarity, and potential
interference observed in single-task LoRA model merging,
we propose SeedLoRA, a novel two-stage fusion strategy.
This approach is designed to precisely integrate multiple
LoRA adapters fine-tuned on the same task but initialized
with different random seeds.

The first stage effectively manages inter-model redundancy
and resolves potential interference by identifying and han-
dling extreme parameter dimensions—those with consis-
tently large magnitudes (robust) or opposing signs (conflict-
ing). The second stage then targets the residual dimen-
sions, which encompass all other parameters that survived
the initial filtering. These residual dimensions contain sub-
tle variations and complementary information that cannot
be effectively merged through simple averaging, necessitat-
ing sophisticated subspace fusion techniques to extract and
integrate their contributions within a unified low-rank repre-
sentation space. Through this divide-and-conquer strategy,
we can comprehensively leverage shared knowledge, un-
cover unique complementarities, and mitigate interference,
thereby narrowing the performance gap between LoRA and
full fine-tuning.

Stage 1: Identifying Robust and Conflicting Dimensions.

Given n LoRA adapters, each adapter τi introduces low-
rank parameter increments on top of a pre-trained model
θpre. Let τi(j) represent the value in dimension j of the i-th
adapter. We begin by defining a threshold σ to mark “large”
magnitudes, and we scan through every dimension j across
all n adapters:

Robust Dimensions. If a sizeable subset of adapters exhibit
|τi(j)| ≥ σ and share the same sign, we mark these entries
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as robust. Their consistent sign and large magnitude suggest
that most adapters converge on a similar direction for that
parameter. These robust dimensions represent the highly
consistent shared core knowledge among models, illustrat-
ing their inherent redundancy. In practice, we average them
to retain their collective strength, thereby effectively pro-
cessing and leveraging this redundancy, and emphasizing
the core shared patterns among models.

τrobust(j) =
1

|Ij |
∑
i∈Ij

τi(j), (4)

where Ij is the set of adapters whose value in dimension j
exceeds τ and matches the dominant sign.

Conflicting Dimensions. If multiple distinct groups of
adapters produce equally large but opposite-sign values in
the same dimension, that dimension is regarded as a conflict-
ing dimension. This indicates strong learning opposition in
that specific parameter direction. If left unaddressed, this
opposition will lead to negative interference at the model
level, significantly undermining the effectiveness of straight-
forward averaging. Following related work on multi-task
model merging (e.g., TIES (Yadav et al., 2023)), we resolve
these conflicts by assigning them to one of the dominant
sign groups (e.g., retaining only the majority sign). This step
effectively prevents interference caused by parameter con-
flicts from contaminating subsequent processing, ensuring
the robustness of the fusion.

Stage 2: Subspace Fusion for Residual Dimensions

After addressing parameter redundancy and interference
in Stage 1, our second stage focuses on integrating com-
plementary information from the remaining dimensions.
These Residual Dimensions hold distinct, valuable contribu-
tions from different models. Since directly combining these
unique patterns in their original high-dimensional space
is challenging, our Subspace Fusion approach leverages
SVD to align and combine their underlying complementary
insights within a common subspace. This enables more
precise identification and combination of complementary
strengths, while also filtering out potential noise.

The specific process consists of the following steps:

Step 1: Dimensionwise Averaging.

For each layer ℓ, consider the original updates τ (ℓ)i from the
i-th adapter. For each dimension j that was not classified as
robust or conflict in Stage 1 (i.e., a residual dimension), we
build a single averaged value M

(ℓ)
avg by averaging across all

adapters i:

M (ℓ)
avg(j) =

1

n

n∑
i=1

τ
(ℓ)
i (j) (5)

where n is the total number of adapters. This step collapses
moderate differences into a single, consolidated update.

Step 2: SVD-Based Low-Rank Decomposition. While
the averaged matrix M

(ℓ)
avg provides a consolidated represen-

tation, directly merging individual adapters in the original
parameter space may not effectively capture their comple-
mentary strengths. SVD decomposition identifies the princi-
pal directions of variation across models and establishes a
common coordinate system where model differences can be
systematically compared and merged, enabling more precise
fusion of complementary information.

We perform a truncated singular value decomposition on
M

(ℓ)
avg:

M (ℓ)
avg ≈ U (ℓ) Σ(ℓ) V (ℓ)⊤. (6)

The rank r is chosen to capture the principal directions while
discarding less important components. The matrices U (ℓ) ∈
Rd×r and V (ℓ) ∈ Rk×r (for a layer of shape d× k) define
a shared basis in the row and column spaces, respectively,
whereas Σ(ℓ) indicates the importance of each direction.

Step 3: Re-Projection of Individual Adapters. Each
adapter’s parameters τ

(ℓ)
i can then be projected onto this

common subspace. In this way, multiple single models can
be aligned and easily edited or merged. Specifically, we
compute a coordinate matrix:

Z
(ℓ)
i =

(
U (ℓ)

)⊤
τ
(ℓ)
i V (ℓ), (7)

which projects adapter i to the common subspace. By this
way, we can further edit or fuse these projected matrices
{Z(ℓ)

i } to merge the knowledge from different models in
the next step.

Step 4: Fusion and Reconstruction. To form a single
merged model for these dimensions in stage 2, we merge
{Z(ℓ)

i } into a fused set of coordinates Z̃(ℓ). Specifically,
we reuse existing fusion methods like TIES, DARE, and
Weighted Averaging. Finally, we reconstruct:

τ
(ℓ)
fused = U (ℓ) Z̃(ℓ) V (ℓ)⊤. (8)

This yields a single low-rank representation of the parame-
ters in stage 2.

Final Assembly of the Fused Adapter. We assemble the fi-
nal fused LoRA adapter τfinal by combining these subspace-
fused residual parameters with the robust and conflict out-
comes from Stage 1. In particular, for each layer ℓ:

τ
(ℓ)
final = τ

(ℓ)
robust + τ

(ℓ)
conflict + τ

(ℓ)
fused, (9)

where τ (ℓ)robust includes dimensions identified as consistently
large and same-sign, τ (ℓ)fused is the outcome of the SVD-
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Method seed 11 seed 42 seed 202 SeedLoRA Model Soup TIES DARE

Evaluating LLaMA2-7B on GSM8K. The performance of Full Fine-Tuning is 66.5.

LLaMA2-7B
LoRA (r=8) 64.0 63.8 64.1 68.9 66.6 65.7 65.7
LoRA+ (r=8) 64.4 64.7 65.4 69.8 67.0 63.2 56.7
DoRA (r=8) 64.6 64.7 64.7 68.9 66.3 66.0 67.3

Evaluating LLaMA2-7B on MATH. The performance of Full Fine-Tuning is 19.8.

LLaMA2-7B
LoRA (r=8) 15.3 15.3 14.9 17.8 15.7 16.0 15.5
LoRA+ (r=8) 15.4 15.5 16.0 18.2 16.1 16.7 16.4
DoRA (r=8) 15.4 15.4 14.9 17.8 16.0 15.8 15.6

Evaluating Mistral-7B on GSM8K. The performance of Full Fine-Tuning is 78.6.

Mistral-7B
LoRA (r=8) 75.4 75.7 76.3 80.7 79.1 75.1 75.1
LoRA+ (r=8) 76.5 73.5 75.9 80.3 79.7 79.4 78.7
DoRA (r=8) 77.0 75.7 76.5 81.0 77.0 79.1 78.5

Evaluating Mistral-7B on MATH. The performance of Full Fine-Tuning is 28.5.

Mistral-7B
LoRA (r=8) 25.9 24.8 25.4 28.8 28.5 24.8 25.0
LoRA+ (r=8) 25.1 25.2 25.4 28.0 27.9 25.9 24.3
DoRA (r=8) 25.9 25.3 25.8 29.0 28.3 26.5 25.7

Table 2. Fine-Tuning LLaMA-2-7B and Mistral-7B with LoRA on MetaMathQA.

based merging on residual entries, and τ
(ℓ)
conflict reflects any

decisions made about sign-divergent dimensions.

Once aggregated across all layers, the result is a single low-
rank update τfinal that retains the efficiency of LoRA while
exploiting each adapter’s advantages. Robust dimensions
are preserved in their collectively strong direction, conflicts
are neutralized to avoid destructive interference, and resid-
ual parameters are reconciled through a shared subspace.

4. Experimental Results
4.1. Experimental Setting

Training and Evaluation: For code generation, we use
Code-Feedback (Zheng et al., 2024) as training data,
LLaMA2-7B (Touvron et al., 2023) and Mistral-7B-v0.1
(Jiang et al., 2023) serve as base models. We evalu-
ate using HumanEval (Chen et al., 2021), an established
benchmark for Python text-to-code generation. For com-
prehensive assessment, we incorporate HumanEval+ from
EvalPlus (Liu et al., 2024). For math reasoning, the Meta-
MathQA (Yu et al., 2023) dataset is employed to fine-tune
on the LLaMA2-7B and Mistral-7B models. The evalua-
tion is conducted using the GSM8k (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) benchmarks, which
are specifically constructed to test the model’s capacity for
mathematical reasoning and problem-solving. For the gen-
eral domain, the TÜLU V2 (Wang et al., 2023a) dataset is

utilized in training on the LLaMA2-7B and Mistral-7B-v0.1.
Following the setting of Open-Instruct (Ivison et al., 2023),
we evaluate model on MMLU (Hendrycks et al., 2020),
GSM8k, BBH (Suzgun et al., 2022), TyDiQA (Clark et al.,
2020), TruthfulQA (Lin et al., 2021) and HumanEval.

4.2. Mathematical Reasoning

To validate the efficacy of our proposed merge method, we
first evaluate the LoRA models with 3 different seeds on
GSM8K and MATH, followed by an assessment of our
merged model. The experimental results, shown in Table 2,
demonstrate that the merged model substantially improve
the performance of each independent model. Notably, for
LoRA fine-tuning on LLaMA2-7B, SeedLoRA can improve
the performance of vanilla LoRA from 64.1 to 68.9 on
GSM8K and from 15.3 to 17.8 on MATH. Furthermore,
to evaluate the generalizability, we extend our evaluation
to LoRA variants (such as LoRA+ and DoRA) and more
advanced pre-trained LLM (such as Mistral-7B). These ad-
ditional experiments consistently demonstrate performance
improvement when using our model merging approach. Fi-
nally, we also conduct experiments to compare SeedLoRA
with current popular model merge methods, such as Model
Soup (Wortsman et al., 2022), TIES (Yadav et al., 2023)
and DARE (Yu et al., 2024). The experimental results on
Table 2 illustrate these methods can also improve the per-
formance of vanilla LoRA, but SeedLoRA can obtain more
performance gain .
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Figure 3. (a) Singular Value Analysis. (b) Generalization Analysis (c) Training Loss Analysis.

4.3. Code Generation

Building upon our findings in mathematical reasoning, we
further evaluate the performance gain of our merged model
on the Code Generation task. Table 3 presents the exper-
imental results of individual training models and merged
models on CodeFeedback benchmark. The data demon-
strates that our merged model consistently outperforms in-
dividual models in the HumanEval and HumanEval+ tasks.
Particularly, SeedLoRA exhibits exceptional performance
on HumanEval (+) benchmark, surpassing the best individ-
ual LoRA by both 6.1% on LLaMA2-7B and Mistral-7B.

To contextualize our method’s performance within a broader
range of model merging approaches, we conducted a com-
parative analysis with popular approaches such as Model
Soup, TIES and DARE. Our finding indicates our method
achieves superior performance compared to these existing
merge methods. For instance, our method enhances the per-
formance of model soup from 34.1% to 40.2% for LoRA.

LoRA SeedLoRA MS TIES DARE

Full FT LLaMA2-7B on Humaneval: 40.3

LoRA 34.1 40.7 34.1 38.4 36.0
LoRA+ 36.6 39.2 39.0 32.3 30.5
DoRA 34.1 37.3 32.3 33.5 34.8

Full FT LLaMA2-7B on Humaneval+: 37.1

LoRA 30.5 36.6 29.9 34.1 30.5
LoRA+ 34.1 36.6 34.1 28.7 27.4
DoRA 32.3 32.3 29.3 29.9 31.7

Table 3. LLaMA2-7B model with LoRA (Delta) on CodeFeedback
(Humaneval and Humaneval+). MS represents Model Soup.

4.4. Instruction Following

Having examined the effectiveness of our proposed method
SeedLoRA in specialized domains, we now extend our eval-

uation to general domain instruction tuning tasks. The ex-
perimental results, shown in the Table 4, demonstrate that
our proposed method continues to improve upon the per-
formance of the best individual model. However, the mag-
nitude of improvement in this domain is less pronounced
than observed in math reasoning and code generation. We
believe this discrepancy arises from the nature of general do-
main tasks, where models are required to follow instructions
rather than acquire new knowledge, as is often necessary for
mathematical and coding tasks. Moreover, this observation
underscores the efficacy of our method while also highlight-
ing the challenges of achieving substantial gains in areas
where LoRA already performs close to full fine-tuning.

4.5. Further Discussions

Why Merging Models from the Same Task Can Improve
the Performance? To understand the performance improve-
ments achieved by merging models from the same task (but
different seeds), we conduct two key analyses: knowledge
fusion and generalization ability.

Firstly, we evaluate whether the merged model can effec-
tively fuse the knowledge from two individual models. We
employ Singular Value Decomposition (SVD) to analyze
the knowledge representation in each model. Figure 3a il-
lustrates the singular value distribution of individual LoRA
models (each with rank 8) and the merged SeedLoRA model.
Notably, SeedLoRA exhibits a broader range of non-zero
singular values compared to the individual LoRA, suggest-
ing successful knowledge fusion from multiple sources.

Inspired by SWA (Izmailov et al., 2018), which claims that
averaging weights can lead to wider optima and better gener-
alization, we investigate whether our model exhibits similar
benefits. We analyze the training loss and the performance
on downstream evaluation tasks, as shown in Figure 3b
and Figure 3c. Interestingly, SeedLORA demonstrates a
slightly higher training loss but achieves superior evalua-
tion performance on downstream evaluation tasks which
takes different distributions from the training data. This
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Figure 4. The comparison between vanilla LoRA training with different seeds, with higher rank, with more epochs and Full Fine-Tuning
(Full FT). (a) Comparison on MetaMathQA benchmark. (b) Comparison on Code-Feedback benchmark. (c) The Performance Comparison
between LoRA and Seed LoRA under the similar training cost constraint.

Method MMLU GSM8K BBH TyDiQA HumanEval Average

LoRA

LoRA (r=8) 49.2 22.5 43.3 51.8 14.9 36.4
SeedLoRA 49.9 22.0 46.3 52.7 15.5 37.3

Model Soup 50.3 20.5 45.5 50.9 15.2 36.5
TIES 49.3 19.5 43.3 53.6 15.1 36.2
DARE 50.2 22.5 44.3 53.4 15.3 37.0

LoRA+

LoRA+ (r=8) 49.7 25.0 46.5 53.1 16.0 38.1
SeedLoRA 51.0 25.5 46.9 52.8 18.0 38.8

Model Soup 51.2 24.5 45.7 52.7 17.4 38.3
TIES 50.2 23.0 42.9 52.8 17.5 37.3
DARE 50.1 22.0 43.1 52.9 17.4 37.1

DoRA

DoRA (r=8) 49.4 25.5 46.3 50.4 16.0 37.5
SeedLoRA 50.0 28.5 46.6 52.2 15.2 38.5

Model Soup 50.4 23.0 47.7 51.0 15.2 37.5
TIES 49.8 22.5 45.6 53.1 14.9 37.2
DARE 49.7 23.5 45.3 53.3 14.7 37.3

Table 4. LLaMA-2-7B model with LoRA on Tulu-v2. For the results of LoRA and its variants, we report the best performance of 3 LoRA
models, which is trained with different seeds.

pattern indicates improved generalization ability, suggest-
ing SeedLoRA learns more robust, task agnostic features
rather than overfitting the training data. These findings on
knowledge fusion and generalization provide insight into the
mechanisms underlying SeedLoRA’s improved performance
across various tasks.

Comparing with Higher Rank LoRA. To further validate
the effectiveness of our approach, we compare SeedLoRA
with higher rank LoRA models. The main reason is that
we are training 3 models, so we compare with training one
LoRA with rank 8*3. Since our experiments focus on merg-
ing three LoRA models with rank 8, we perform an ablation
study comparing our merged model with a single LoRA
model with rank 24. As shown in Figure 4, SeedLoRA
outperforms the higher-rank LoRA model. This highlights

the advantage of SeedLoRA in effectively combining the
strengths of multiple lower-rank models, achieving better
performance than simply increasing the rank of a single
model.

Training SeedLoRA with Similar Cost as Formal LoRA.
Our method requires obtaining several LoRA models trained
on the same tasks. While some suitable models can be
found on platforms like Huggingface, it is often necessary
to train multiple models by ourselves, potentially incurring
additional training time. To address this, we investigate
whether we can achieve better performance with comparable
training cost using SeedLoRA.

Specifically, we propose an alternative to the standard 3-
epoch LoRA fine-tuning of LLaMA2-7B: training 3 indi-
vidual models with 1 epoch each, then merging these 3
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partially trained models. We conduct this experiment on
MetaMathQA benchmark, with the results shown in Figure
4(c). Remarkably, this approach outperforms the standard
3-epoch training while maintaining the same overall training
time. This finding suggests a potentially new, more efficient
training paradigm for PEFT.
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Figure 5. Scaling Results of LLaMA2-13B on MetaMathQA.

Training with More Epochs. The Training paradigm of
SeedLoRA can be regarded as training LoRA with more
epochs. To rigorously validate the superior performance
of SeedLoRA, we train vanilla LoRA with more epochs
and compare our merged model with it. We conduct the
experiment on MetaMathQA and Code-Feedback and the
comparison result is shown in the Figure 4 and Figure 3c.
The results illustrate that SeedLoRA can outperform LoRA
training with more epochs on both math reasoning and code
generation tasks, although training more epochs can slightly
improve its performance.

Scaling Results. To verify the scalability of SeedLoRA, we
conduct experiments on pre-trained models with larger num-
ber of parameters. Specially, we evaluate the performance of
SeedLoRA on the LLaMA2-13B model, The results are pre-
sented in Figure 5. SeedLoRA achieves approximately 2.3%
performance gain compared to the best individual LoRA
model. This demonstrates that SeedLoRA can effectively
improve the performance even on larger models, highlight-
ing its scalability and potential for enhancing models across
different sizes.

5. Conclusions
In this paper, we introduce SeedLoRA, a novel single-task
model merging approach designed to enhance LoRA fine-
tuning. Our method effectively narrows the performance
gap between LoRA and full fine-tuning in complex tasks
like mathematical reasoning and code generation by com-
bining complementary strengths of models trained with
different seeds. Notably, SeedLoRA consistently outper-
forms existing merging techniques in single-task scenarios.
The effectiveness of SeedLoRA stems from its ability to

fuse knowledge from individual models that specialize in
different sub-domains, leading to improved generalization.
By bridging the performance gap between PEFT methods
and full fine-tune, our work highlights the potential to en-
able broader adoption of state-of-the-art LLMs in resource-
constrained environments.
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A. Appendix
A.1. Implementation Details

Training is conducted on Nvidia A100 and H100 GPUs using BFloat16 precision. We set weight decay to 0 and employ a
cosine learning rate scheduler with a 0.03 ratio linear warmup. For evaluation, we utilize vLLM (Kwon et al., 2023) to
conduct our tests, ensuring efficient and scalable inference.

Model Dataset Method r α LR LR Scheduler Warmup Epochs Batch Size σ

LLaMA2-7B MetaMathQA LoRA 8 16 3e-5 cosine 300 3 128 median
LLaMA2-7B Tulu-v2 LoRA 8 16 3e-5 cosine 500 2 128 median
LLaMA2-7B Code-Feedback LoRA 8 16 3e-5 cosine 300 3 32 median

Mistral-7B MetaMathQA LoRA 8 16 3e-5 cosine 300 3 128 median
Mistral-7B Tulu-v2 LoRA 8 16 3e-5 cosine 500 2 128 median
Mistral-7B Code-Feedback LoRA 8 16 5e-5 cosine 300 3 32 median

Table 5. LLaMA-2-7B model with LoRA on Tulu-v2. For the results of LoRA and its variants, we report the best performance of 3 LoRA
models, which is trained with different seeds.

A.2. The Performance Analysis about LoRA and Full Fine-Tuning on MBPP

In Table 6, we conducted the experiments fine-tuning LLaMA2-7B with LoRA from rank=8 to rank=64 on code generation
(CodeFeedback) tasks (Yu et al., 2023). The results illustrate that although increasing the rank value of LoRA from 8 to 64
improves performance on HumanEval from 34.1 to 35.4, a significant gap remains when compared with Full Fine-Tuning.

Task rank=8 rank=16 rank=24 rank=32 rank=64 Full FT

HumanEval 34.1 34.1 34.8 34.8 35.4 40.3
HumanEval+ 28.0 32.3 31.7 31.7 31.7 37.1
MBPP (+) 45.8 (38.6) 43.7 (36.0) 44.2 (36.2) 46.6 (39.7) 42.1 (36.2) 53.1

Average 40.0 (33.3) 38.9 (34.2) 39.5 (34.0) 40.7 (35.7) 38.8 (34.0) 46.7

Table 6. LLaMA-2-7B model with LoRA (Delta) on Code-Feedback (seed=11).

A.3. The experimental Results for Fine-Tuning Mistral-7B on Code-Feedback.

Table 7 presents the experimental results of Mistral-7B model with LoRA on CodeFeedback. The results demonstrate that
our merged model consistently outperforms individual models in the HumanEval and HumanEval+ tasks.

Method seed 11 seed 42 seed 202 SeedLoRA Model Soup TIES DARE

HumanEval
LoRA (r=8) 53.0 51.8 48.2 58.0 53.7 55.5 56.7
LoRA+ (r=8) 54.3 48.8 47.6 56.9 54.3 51.8 54.3
DoRA (r=8) 54.3 55.5 45.1 57.6 54.3 56.7 55.5

HumanEval+
LoRA (r=8) 49.4 47.6 40.9 51.2 50.6 49.4 50.0
LoRA+ (r=8) 48.2 43.9 40.2 49.4 48.2 47.6 48.8
DoRA (r=8) 47.6 49.4 42.1 49.6 48.8 51.8 50.2

Table 7. Mistral-7B model with LoRA (Delta) on CodeFeedback (HumanEval and HumanEval+).
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A.4. The experimental Results for Fine-Tuning Mistral-7B on Tulu-v2

Table 8 demonstrates that our proposed method on Tulu-v2 can continue to improve upon the performance of the best
individual model with fine-tuning Mistral-7B.

MMLU-0 GSM8K BBH TyDiQA HumanEval Average

LoRA (r=8)
59.4 46.0 55.0 59.9 33.8 50.8
58.8 44.0 56.6 59.5 35.5 50.9
58.2 50.5 58.7 59.0 31.4 51.6

SeedLoRA 61.0 52.0 59.6 62.0 33.2 53.6
TIES 58.3 42.5 53.8 60.4 33.7 49.7
DARE 58.5 42.0 56.2 60.5 35.4 50.5

LoRA+ (r=8)
60.8 45.0 59.4 58.2 34.1 51.5
61.2 45.5 59.7 59.7 32.2 51.7
60.5 47.0 58.6 59.1 32.0 51.4

SeedLoRA 61.6 47.0 60.8 60.2 35.2 53.0
TIES 60.6 46.0 57.9 58.8 34.1 51.5
DARE 60.4 41.0 56.3 59.2 34.2 50.2

DoRA (r=8)
61.1 46.0 58.8 58.9 34.3 51.8
60.3 52.0 58.8 60.1 33.1 52.9
60.3 52.0 58.5 59.9 32.9 52.7

SeedLoRA 62.0 51.5 61.0 61.2 34.2 54.0
TIES 60.5 46.5 58.2 58.2 35.3 51.8
DARE 60.5 44.0 57.4 59.3 35.6 51.4

LoRA (r=24) 60.4 46.5 57.4 59.6 31.8 51.1

LoRA (epoch=6) 56.5 47.0 54.0 55.5 32.5 49.1

Table 8. Mistral-7B model with LoRA (Delta) on Tulu-v2.

A.5. The Number of Models

To investigate scaling behavior when merging additional models, we conducted experiments merging up to 6 different seed
models in Table 9. We should also mention that these results might vary slightly from previous findings due to differences in
experimental environments. These results show significant initial gains when merging 2 models (+3.7% on GSM8K), with
continued improvements up to 4 models (+5.7% on GSM8K). Beyond 4 models, we observe diminishing returns without
performance degradation.

Task N=1 N=2 N=3 N=4 N=5 N=6

GSM8K 64.0 67.7 68.4 69.7 69.6 69.8
MATH 15.3 16.6 17.3 17.1 16.6 17.1
Average 39.7 42.2 43.0 43.4 43.1 43.5

Table 9. LLaMA2-7B on MetaMathQA with More Seed Models.

13


