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ABSTRACT

Solving partial differential equations (PDEs) is a central task in scientific com-
puting. Recently, neural network approximation of PDEs has received increas-
ing attention due to its flexible meshless discretization and its potential for high-
dimensional problems. One fundamental numerical difficulty is that random sam-
ples in the training set introduce statistical errors into the discretization of the loss
functional which may become the dominant error in the final approximation, and
therefore overshadow the modeling capability of the neural network. In this work,
we propose a new minmax formulation to optimize simultaneously the approxi-
mate solution, given by a neural network model, and the random samples in the
training set, provided by a deep generative model. The key idea is to use a deep
generative model to adjust the random samples in the training set such that the
residual induced by the neural network model can maintain a smooth profile in the
training process. Such an idea is achieved by implicitly embedding the Wasser-
stein distance between the residual-induced distribution and the uniform distribu-
tion into the loss, which is then minimized together with the residual. A nearly
uniform residual profile means that its variance is small for any normalized weight
function such that the Monte Carlo approximation error of the loss functional is
reduced significantly for a certain sample size. The adversarial adaptive sampling
(AAS) approach proposed in this work is the first attempt to formulate two essen-
tial components, minimizing the residual and seeking the optimal training set, into
one minmax objective functional for the neural network approximation of PDEs.

1 INTRODUCTION

Partial differential equations (PDEs) are widely used to model physical phenomena. Typically, ob-
taining analytical solutions to PDEs is intractable, and thus numerical methods (e.g., finite element
methods (Elman et al., 2014)) have to be developed to approximate the solutions of PDEs. However,
classical numerical methods can be computationally infeasible for high-dimensional PDEs due to the
curse of dimensionality or computationally expensive for parametric low-dimensional PDEs (Xiu &
Karniadakis, 2003; Ghosh et al., 2022; Yin et al., 2023; Zhai et al., 2022). To alleviate these diffi-
culties, machine learning (ML) techniques, e.g., physics-informed neural networks (PINN) (Raissi
et al., 2019) and deep Ritz method (E & Yu, 2018), have been adapted to approximate PDEs as sur-
rogate models and have received increasing attention (Han et al., 2018; Zhu & Zabaras, 2018; Zhu
et al., 2019; Weinan, 2021; Karniadakis et al., 2021). The basic idea of deep learning methods for
approximating PDEs is to encode the information of PDEs in neural networks through a proper loss
functional, which will be discretized by collocation points in the computational domain and sub-
sequently minimized to determine an optimal model parameter (Raissi et al., 2019; E & Yu, 2018;
Sirignano & Spiliopoulos, 2018; Zhu et al., 2019).
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The collocation points are crucial to effectively train neural networks for PDEs because they provide
an approximation of the loss functional. In the community of computer vision or natural language
processing, it is well known that the performance of ML models is highly dependent on the quality
of data (i.e., the training set). Similarly, if the selected collocation points fail to yield an accurate
approximation of the loss functional, it is not surprising that the trained neural network will suffer a
large generalization error, especially when the solution has low regularity or the problem dimension
is large. As shown in (Tang et al., 2023; Wu et al., 2023), if the collocation points in the training set
are refined according to a proper error indicator, the accuracy can be dramatically improved. This is
similar to classical adaptive methods such as the adaptive finite element method (Morin et al., 2002;
Mekchay & Nochetto, 2005). In this work, we propose a new framework, called adversarial adap-
tive sampling (AAS), that simultaneously optimizes the loss functional and the training set to seek
neural network approximation for PDEs through a minmax formulation. More specifically, we min-
imize the residual and meanwhile push the residual-induced distribution to a uniform distribution.
To do this, we introduce a deep generative model into the AAS formulation, which not only provides
random samples for the discretization of the loss functional, but also plays the role of the critic in
WGAN (Arjovsky et al., 2017; Gulrajani et al., 2017). In the maximization step, the deep generative
model helps identify the difference in a Wasserstein distance between the residual-induced distribu-
tion and a uniform distribution; in the minimization step, such a difference is minimized together
with the residual. This way, variance reduction is achieved once the residual profile is smoothed and
the loss functional can be better approximated by a fixed number of random samples, which yields a
more effective optimal model parameter, i.e., a more accurate neural network approximation of the
PDE solution.

The main contributions of this paper are as follows.

• We unify PINN and optimal transport into an adversarial adaptive sampling framework,
which provides a new perspective on neural network methods for solving PDEs.

• We develop a theoretical understanding of AAS and propose a simple but effective algo-
rithm.

2 PINN AND ITS STATISTICAL ERRORS

The PDE problem considered here is: find u ∈ F : Ω 7→ R where F is a proper function space
defined on a computational domain Ω ∈ RD, such that

Lu(x) = s(x), ∀x ∈ Ω

bu(x) = g(x), ∀x ∈ ∂Ω,
(1)

where L is a partial differential operator (e.g., the Laplace operator ∆), b is a boundary operator
(e.g., the Dirichlet boundary), s is the source function, and g represents the boundary conditions.
In the framework of PINN (Raissi et al., 2019), the solution u of equation 1 is approximated by a
neural network uθ(x) (parameterized with θ). The parameters θ is determined by minimizing the
following loss functional

J (uθ) = Jr(uθ) + γJb(uθ) with

Jr(uθ) =

∫
Ω

|r(x;θ)|2dx and Jb(uθ) =

∫
∂Ω

|b(x;θ)|2dx,
(2)

where r(x;θ) = Luθ(x) − s(x), and b(x;θ) = buθ(x) − g(x) are the residuals that measure
how well uθ satisfies the partial differential equations and the boundary conditions, respectively,
and γ > 0 is a penalty parameter. To optimize this loss functional with respect to θ, we need to
discretize the integral defined in equation 2 numerically. Let SΩ = {x(i)

Ω }Nr
i=1 and S∂Ω = {x(i)

∂Ω}
Nb
i=1

be two sets of uniformly distributed collocation points on Ω and ∂Ω respectively. We then minimize
the following empirical loss in practice

JN (uθ) =
1

Nr

Nr∑
i=1

r2(x
(i)
Ω ;θ) + γ

1

Nb

Nb∑
i=1

b2(x
(i)
∂Ω;θ), (3)

which can be regarded as the Monte Carlo (MC) approximation of J(uθ) subject to a statistical error
of O(N−1/2) with N being the sample size. Let uθ∗

N
be the minimizer of the empirical loss JN (uθ)
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and uθ∗ be the minimizer of the original loss functional J(uθ). We can decompose the error into
two parts as follows

E
(∥∥uθ∗

N
− u

∥∥
Ω

)
≤ E

(∥∥uθ∗
N
− uθ∗

∥∥
Ω

)
+ ∥uθ∗ − u∥Ω ,

where E denotes the expectation operator and the norm ∥·∥Ω corresponds to the function space F
for u. One can see that the total error of neural network approximation for PDEs comes from two
main aspects: the approximation error and the statistical error. The approximation error is dependent
on the model capability of neural networks, while the statistical error originates from the collocation
points. Uniformly distributed collocation points are not effective for training neural networks if the
solution has low regularity (Tang et al., 2022; 2023; Wu et al., 2023) since the effective sample size
of the MC approximation of J(uθ) is significantly reduced by the large variance induced by the low
regularity. For high-dimensional problems, information becomes more sparse or localized due to
the curse of dimensionality, which shares some similarities with the low-dimensional problems of
low regularity. Adaptive sampling is needed. In this work, we propose a new framework to optimize
both the approximation solution and the training set.

3 ADVERSARIAL ADAPTIVE SAMPLING

Adversarial adaptive sampling (AAS) includes two components to be optimized. One is a neural
network uθ for approximating the PDE solution, and another is a probability density function (PDF)
model pα (parameterized with α) for sampling. Unlike the deep adaptive sampling method (DAS)
presented in (Tang et al., 2023), in AAS, we simultaneously optimize the two models through an
adversarial training procedure, which provides a new perspective to understand the role of random
samples for the neural network approximation of PDEs.

3.1 A MINMAX FORMULATION

The adversarial adaptive sampling approach can be formulated as the following minmax problem

min
θ

max
pα∈V

J (uθ, pα) =

∫
Ω

r2(x;θ)pα(x)dx+ γJb(uθ), (4)

where V is a function space that defines a proper constraint on pα(x). The choice of V will be spec-
ified in sections 3.2 and 3.3 in terms of the theoretical understanding and numerical implementation
of AAS.

The main difference between J (uθ, pα) and J(uθ) in equation 2 is that the weight function for the
integration of r2(x;θ) is relaxed to pα(x) from a uniform one. First of all, such a relaxation can
also be applied to Jb(·). In this work, we focus on the integration of r2 for simplicity and assume
that Jb(·) is well approximated by a prescribed set S∂Ω. Indeed, some penalty-free techniques (Berg
& Nyström, 2018; Sheng & Yang, 2021) can be employed to remove Jb(·). Second, pα(x) > 0 is
regarded as a PDF on Ω, and an extra constraint on pα is necessary. Otherwise, the maximization
step will simply yield a delta measure, i.e.,

δ(x− x0) = argmax
p>0,

∫
Ω
pdx=1

∫
Ω

r2(x;θ)p(x)dx,

where x0 = argmaxx∈Ω r2(x;θ). Nevertheless, the region of large residuals is of particular im-
portance for adaptive sampling. Third, the maximization in terms of pα is important numerically
rather than theoretically. Indeed, if the statistical error does not exist and the model uθ includes
the exact PDE solution, the minimum of r2 is always reached at 0 as long as pα is positive on Ω.
To reduce the statistical error induced by the random samples from pα, we expect a small variance
Var(r2) in terms of pα. If the variance of the Monte Carlo integration for r2 is smaller than the
variance of r2 in terms of the uniform distribution, the accuracy of the Monte Carlo approximation
will be improved for a fixed sample size, which yields a more accurate solution of PDEs (Tang
et al., 2023). To obtain a small Var(r2), the profile of the residual needs to be nearly uniform. So
an effective training strategy should not only minimize the residual but also endeavor to maintain a
smooth profile of the residual, in other words, the two models uθ and pα need to work together. See
Figure 1 for an informal description of the approach.
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Figure 1: Two neural network
models are simultaneously trained
in the adversarial adaptive sampling
framework. The residual is min-
imized and finally becomes “uni-
form”, while the collocation points
are updated and finally become
nonuniform.

We will model pα using a bounded KRnet, which defines an in-
vertible mapping fα(·) : ID → ID with I = [−1, 1] and yields
a normalizing flow model. In this work, we consider Ω = ID for
simplicity. The bounded KRnet can be achieved by adding a lo-
gistic transformation layer (Tang et al., 2023) or a new coupling
layer proposed in (Zeng et al., 2023). Let z = fα(x) and pZ(z)
be a prior PDF. We define pα as

pα(x) = pZ(fα(x))|∇xfα|.

Depending on a priori knowledge of the problem, the prior
pZ(z) can be chosen as a uniform distribution or more general
models such as Gaussian mixture model.

3.2 UNDERSTANDING OF AAS

For simplicity and clarity, we remove Jb(uθ) and consider

min
θ

max
p∈V

J (uθ, p) =

∫
Ω

r2(x;θ)p(x)dx. (5)

We choose V as
V := {p(x)|∥p∥Lip ≤ 1, 0 ≤ p(x) ≤ M},

where M is a positive number. We define a bounded metric

dM (x,y) = min{M,d(x,y)}, x,y ∈ RD,

where d(x,y) = ∥x − y∥2 is the Euclidean metric in RD. Without loss of generality, let Ω be a
compact subset of RD with total Lebesgue measure 1, and µ and ν two probability measures on Ω.
The Wasserstein distance dWM (µ, ν) between µ and ν for the metric dM (x,y) is

dWM (µ, ν) = inf
π∈Π(Ω×Ω)

∫
Ω×Ω

dM (x,y) dπ(x,y),

where Π(Ω × Ω) is the collection of all joint probability measures on Ω × Ω. The dual form (see
e.g. (Villani, 2003), Theorem 1.14 and Remark 1.15 on Page 34) of dWM is

dWM (µ, ν) = sup
{∫

Ω

ϕ(x) d(µ− ν)(x)
∣∣∣ 0 ≤ ϕ(x) ≤ ∥dM∥∞ = M, and ∥ϕ∥Lip ≤ 1

}
, (6)

where ∥ϕ∥Lip is the Lipschitz norm of function ϕ. We now reformulate the maximization problem
as

sup
p∈V

∫
Ω

r2(x; θ)p(x)dx

= sup
p∈V

∫
Ω

r2(x; θ)p(x)dx−
∫
Ω

r2(x; θ)dx

∫
Ω

p(x)dx+

∫
Ω

r2(x; θ)dx

∫
Ω

p(x)dx

≤
∫
Ω

r2(x; θ)dx

(
sup
p∈V

[∫
Ω

p(x)dµr −
∫
Ω

p(x)dµu

]
+ sup

p∈V

∫
Ω

p(x)dx

)
≤(dWM (µr, µu) +M)

∫
Ω

r2(x;θ) dx,

where µr and µu indicate the probability measures on Ω induced by r2(x) and the uniform distribu-
tion on Ω respectively. It can be shown that the constant M exists if we modify the function space
V as

V̂ = {p(x)|∥p∥Lip ≤ 1, p(x) ≥ 0,

∫
Ω

p(x)dx = 1},

where p(x) can then be regarded as a PDF. It is seen that the upper bound includes both the loss of
the standard PINN and the Wasserstein distance between the residual induced distribution µr and
the uniform distribution µu. For any u, the existence of function ũ, which has the same total residual
loss as u and a uniform residual profile, is theoretically guaranteed (for detailed construction and
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these properties of ũ, please see the proof of Theorem 4 in Appendix A.2). This ensures that we can
simultaneously reduce the residual and the Wasserstein distance between the (renormalized) residual
and the uniform distribution. Once the residual profile is smoothed, variance reduction is achieved
such that the Monte Carlo approximation of J (uθ, p) will be more accurate for a fixed sample size.
This eventually reduces the statistical error of the approximate PDE solution.

We now summarize our main analytical results. Consider

inf
u

sup
p∈V̂

J (u, p) =

∫
Ω

r2(u(x))p(x) dx, (7)

with the following assumption.
Assumption A1. The operator r in equation 7 is a surjection from a function space E1(RD) to
C∞

c (Ω), the class of C∞ functions that are compactly supported on Ω.

In general, E1(RD) can be any function space, such as space of neural networks, smooth functions,
or Sobolev spaces. And this assumption means for any smooth function f ∈ C∞

c (Ω), equation
r2(u∗) = f admits some solution u∗. For example, if r is Laplacian ∆, the assumption means
we can find a solution for ∆u = f for any f in C∞

c (Ω). With this assumption, we can prove the
following main theorem for the min-max problem equation 7 (for the detailed proof, please see the
Section A.2 in the supplementary material),
Theorem 1. Let µ be the Lebesgue measure on RD, which represents the uniform probability distri-
bution on Ω. In addition, we assume Assumption A1 holds. Then the optimal value of the min-max
problem equation 7 is 0. Moreover, there is a sequence {un}∞n=1 of functions with r(un) ̸= 0 for all
n, such that it is an optimization sequence of equation 7, namely,

lim
n→∞

J (un, pn) = 0,

for some sequence of functions {pn}∞n=1 satisfying the constraints in equation 7. Meanwhile, this
optimization sequence has the following two properties:

1. The residual sequence {r(un)}∞n=1 of {un}∞n=1 converges to 0 in L2(dµ).

2. The renormalized squared residual distributions

dνn ≜
r2(un)∫

Ω
r2(un(x)) dx

dµ(x)

converge to the uniform distribution µ in the Wasserstein distance dWM .

3.3 IMPLEMENTATION OF AAS

In the previous section, we have shown that pα(x) and uθ(x) in equation 4 play a similar role as
the critic and generator in WGAN (Arjovsky et al., 2017; Gulrajani et al., 2017). The generator of
WGAN minimizes the Wasserstein distance between two distributions; PINN minimizes the resid-
ual; AAS achieves a tradeoff between the minimization of the residual and the minimization of the
Wasserstein distance between the residual-induced distribution and the uniform distribution. From
the implementation point of view, a particular difficulty is the constraint ∥p∥Lip ≤ 1 induced by the
function space V̂ . In this work, we propose a weaker constraint that can be easily implemented. We
consider

min
θ

max
pα>0,∫

Ω
pα(x)dx=1

J (uθ, pα) =

∫
Ω

r2(x;θ)pα(x)dx− β

∫
Ω

|∇xpα(x)|2dx, (8)

where we use a H1 regularization term to replace explicit control on the Lipschitz condition. The
constraints on a PDF are naturally satisfied because pα is a normalizing flow model. pα(x) > 0 as
long as the prior is positive since fα(·) is an invertible mapping. It can be shown that the maximizer
for a fixed uθ is uniquely determined by the following elliptic equation{

2β∇2p∗ + r2(x;θ)− 1
|Ω|

∫
Ω
r2(x;θ)dx = 0, x ∈ Ω,

∂p∗

∂n = 0, x ∈ ∂Ω.
(9)
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In the deep learning framework, the neural networks are in general (particularly when solving PDEs)
differentiable. So the regularity constraint ∥p∗∥Lip ≤ M is equivalent to ∥∇p∗∥∞ ≤ M on a
compact set Ω. Thus, we can adjust the penalty parameter β to implicitly control this regularity.
Such a choice is demonstrated to be empirically sufficient since we focus on PDE approximation
instead of PDF approximation.

To update θ at the minimization step, we approximate the first term of J (uθ, pα) in equation 8
using Monte Carlo methods:∫

Ω

r2 [uθ(x)] pα(x)dx ≈ 1

m

m∑
i=1

r2
[
uθ(x

(i)
α )

]
, (10)

where x
(i)
α can be generated from the probability density pα efficiently thanks to the invertible

mapping fα(·). To update α at the maximization step, we approximate J (uθ, pα) by importance
sampling:

J (uθ, pα) ≈
1

m

m∑
i=1

r2
[
uθ(x

(i)
α′ )

]
pα(x

(i)
α′ )

pα′(x
(i)
α′ )

− β · 1

m

m∑
i=1

|∇xpα(x
(i)
α′ )|2

pα′(x
(i)
α′ )

, (11)

where pα′ is a PDF model with known parameters α′ and each x
(i)
α′ is a sample drawn from pα′ .

Using equation 10 and equation 11, we can compute the gradient with respect to θ and α, and the
parameters can be updated by gradient-based optimization methods (e.g., Adam (Kingma & Ba,
2017)). The training procedure is similar to GAN (Goodfellow et al., 2014) and can be summarized
in Algorithm 1, where we let pα′ = pαk

in equation 11, i.e., the PDF model from the last step is
used for importance sampling when computing J (uθ, pα).

Algorithm 1 AAS for PDEs

Input: Initial pα and uθ, maximal iteration M , batch size m, initial training set SΩ,0 = {x(i)
α0}Nr

i=1

and S∂Ω,0 = {x(i)
∂Ω,0}

Nb
i=1.

1: for k = 0, . . . ,M do
2: for j steps do
3: Sample m samples from SΩ,k and sample m samples from S∂Ω,k.
4: Update uθ by descending the stochastic gradient of J (θ,α) (see equation 10).
5: end for
6: for j steps do
7: Sample m samples from SΩ,k.
8: Update pα by ascending the stochastic gradient of J (θ,α) (see equation 11).
9: end for

10: Generate SΩ,k+1 ⊂ Ω through pαk
.

11: end for
Output: uθ

4 RELATED WORK

There is a lot of related work, and we summarize the most related lines of this work.

Adaptive sampling. Adaptive sampling methods have been receiving increasing attention in solving
PDEs with deep learning methods. The basic idea of such methods is to define a proper error
indicator (Wu et al., 2023; Yu et al., 2022) for refining collocation points in the training set, in which
sampling approaches (Gao & Wang, 2023) (e.g., Markov Chain Monte Carlo) or deep generative
models (Tang et al., 2023) are often invoked. To this end, an additional deep generative model (e.g.,
normalizing flow models), or classical PDF model (e.g., Gaussian mixture models (Gao et al., 2022;
Jiao et al., 2023)) for sampling is usually required, which is similar to this work. However, there
are some crucial differences between existing approaches and the proposed adversarial adaptive
sampling (AAS) framework. First, in AAS, the evolution of the residual-induced distribution has
a clear path. That is, this residual-induced distribution is pushed to a uniform distribution during
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training. Because minimizing the Wasserstein distance between the residual-induced distribution
and the uniform distribution is naturally embedded in the loss functional in the proposed adversarial
sampling framework. Second, unlike the existing methods, our AAS method admits an adversarial
training style like in WGAN, which is the first time to minimize the residual and seek the optimal
training set simultaneously for PINN.

Adversarial training. In (Zang et al., 2020), the authors proposed a weak formulation with primal
and adversarial networks, where the PDE problem is converted to an operator norm minimization
problem derived from the weak formulation. Although the adversarial training procedure is em-
ployed in (Zang et al., 2020), it does not involve the training set but the function space. Introducing
one or more discriminator networks to construct adversarial training is studied in (Zeng et al., 2022),
where the discriminator is used for the reward that PINN predicts mistakes. However, this approach
does not optimize the training set but implicitly assigns higher weights for samples with large point-
wise residuals through adversarial training.

5 NUMERICAL RESULTS

We use some benchmark test problems presented in (Tang et al., 2023) to demonstrate the proposed
method. All models are set to be the same as those in DAS-PINNs (Tang et al., 2023) and trained
by the Adam method (Kingma & Ba, 2017). The hyperparameters of neural networks are set to
be the same as those in DAS-PINNs (Tang et al., 2023). For comparison, we also implement the
DAS algorithm (Tang et al., 2023) and the RAR algorithm (Lu et al., 2021; Yu et al., 2022) as the
baseline models. The training of neural networks is performed on a Geforce RTX 3090 GPU with
TensorFlow 2.0. The codes of all examples will be released on GitHub once the paper is accepted.

5.1 ONE-PEAK PROBLEM

We start with the following equation which is a benchmark test problem for adaptive finite element
methods (Mitchell, 2013; Morin et al., 2002):

−∆u(x) = s(x) in Ω,

u(x) = g(x) on ∂Ω,
(12)

where x = [x1, x2]
T and the computation domain is Ω = [−1, 1]2. The following reference solution

is given by
u(x1, x2) = exp

(
−1000[(x1 − 0.5)2 + (x2 − 0.5)2]

)
,

which has a peak at (0.5, 0.5) and decreases rapidly away from (0.5, 0.5). The reference solution is
imposed on the boundary. The source term s(x) is derived by the exact solution and is listed in the
supplementary A.5. A uniform meshgrid with size 256× 256 in [−1, 1]2 is generated and the error
is defined to be the mean square error on these grid points. From Figure 2(a), it can be seen that our
AAS method can give an accurate approximation for this peak test problem. Note that the uniform
sampling strategy is not suitable for this test problem as studied in (Tang et al., 2023). The training
behaviour for different regularization parameters (i.e., β) is shown in Figure 2(a) and Figure 2(b).
It can be seen that the error behavior is similar for β = 5, 10, 20. Figure Figure 2(c) shows the
evolution of the residual variance and the training set during training for β = 5, where the variance
decreases as the training step increases and the training set finally concentrates on (0.5, 0.5) with a
heavy tail. The comparison of different adaptive sampling methods is presented in Table 1, which
also included the results of the following test problems.

5.2 TWO-PEAK PROBLEM

We next consider the following equation

−∇ · [u(x)∇v(x)] +∇2u(x) = s(x) in Ω,

u(x) = g(x) on ∂Ω,
(13)

where x = [x1, x2]
T, v(x) = x2

1 + x2
2, and the computation domain is Ω = [−1, 1]2. Following

(Tang et al., 2023), the exact solution of equation 13 is set to be as

u(x1, x2) = e−1000[(x1−0.5)2+(x2−0.5)2] + e−1000[(x1+0.5)2+(x2+0.5)2],
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Figure 2: The results for the peak test problem. (a) The error behaviour. (b) The variance behavior.
(c) The evolution of the training set.

which has two peaks at the points (0.5, 0.5) and (−0.5,−0.5). Here, the Dirichlet boundary condi-
tion on ∂Ω is given by the exact solution. From Figure 3(a) and Figure 3(b), it can be seen that our
AAS method can give an accurate approximation for this two-peak test problem. The error behavior
for different regularization parameters (i.e., β) is shown in Figure 3(c). Figure 4 shows the evolution
of the residual variance and the training set during training for β = 5, where the residual variance
decreases as the training step increases and the training set finally concentrates on (−0.5,−0.5)and
(0.5, 0.5) with a heavy tail.
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Figure 3: The results for the two-peak test problem. (a) The exact solution. (b) AAS approximation.
(c) The error behavior.
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Figure 4: The evolution of the residual variance and the training set for the two-peak test problem.
Left: The variance behavior. Right: The evolution of the training set.
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5.3 HIGH-DIMENSIONAL NONLINEAR EQUATION

In this part, we consider the following ten-dimensional nonlinear partial differential equation

−∆u(x) + u(x)− u3(x) = s(x), x in Ω = [−1, 1]10

u(x) = g(x), x on ∂Ω.
(14)

The exact solution is u(x) = e−10∥x∥2
2 and the Dirichlet boundary condition on ∂Ω is imposed by

the exact solution. The source term s(x) is derived by the exact solution and is listed in the supple-
mentary A.5. The error is defined to be the same as in (Tang et al., 2023). Figure 5 shows the results
of the ten-dimensional nonlinear test problem. Specifically, Figure 5(a) shows the error behavior
during training for different regularization parameters, and Figure 5(b) shows the evolution of the
residual variance. Figure 5(c) shows the samples during the adversarial training process, where we
select the components x1 and x2 for visualization. We have also checked the other components,
and the results are similar. It is seen that the training set finally becomes nonuniform to get a small
residual variance. The results of different adaptive sampling strategies for the three test problems
are summarized in Table 1.
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Figure 5: The results of the ten-dimensional nonlinear test problem. (a) The error behavior. (b) The
variance behaviour. (c) The evolution of the training set, x1 − x2 plane (β = 10).

Table 1: Error comparison of adaptive sampling methods

Method
Test problem PDE equation 12 PDE equation 13 PDE equation 14

PINN 9.74e-04 3.22e-02 1.01
RAR (Lu et al., 2021) - - 9.83e-01

DAS-G (Tang et al., 2023) 3.75e-04 1.51e-03 9.55e-03
DAS-R (Tang et al., 2023) 1.93e-04 6.21e-03 1.26e-02

AAS (this work) 2.97e-05 1.09e-04 1.31e-03

6 CONCLUSIONS

We developed a novel adversarial adaptive sampling (AAS) approach that unifies PINN and optimal
transport for neural network approximation of PDEs. With AAS, the evolution of the training set can
be investigated in terms of the optimal transport theory, and numerical results have demonstrated the
importance of random samples for training PINN more effectively.
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Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International Conference on Machine Learning, pp. 214–223. PMLR, 2017.

Jens Berg and Kaj Nyström. A unified deep artificial neural network approach to partial differential
equations in complex geometries. Neurocomputing, 317:28–41, 2018.

Weinan E and Bing Yu. The deep Ritz method: A deep learning-based numerical algorithm for
solving variational problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Howard C Elman, David J Silvester, and Andrew J Wathen. Finite elements and fast iterative solvers:
With applications in incompressible fluid dynamics. Oxford University Press, USA, 2014.

Lawrence C Evans. Partial Differential Equations. American Mathematical Soc., 2010.

Wenhan Gao and Chunmei Wang. Active learning based sampling for high-dimensional nonlinear
partial differential equations. Journal of Computational Physics, 475:111848, 2023.

Zhiwei Gao, Liang Yan, and Tao Zhou. Failure-informed adaptive sampling for PINNs. arXiv
preprint arXiv:2210.00279, 2022.

Sayan Ghosh, Govinda Anantha Padmanabha, Cheng Peng, Valeria Andreoli, Steven Atkinson,
Piyush Pandita, Thomas Vandeputte, Nicholas Zabaras, and Liping Wang. Inverse aerodynamic
design of gas turbine blades using probabilistic machine learning. Journal of Mechanical Design,
144(2), 2022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of Wasserstein GANs. Advances in Neural Information Processing Systems, 30,
2017.

Jiequn Han, Arnulf Jentzen, and E Weinan. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510,
2018.

Yuling Jiao, Di Li, Xiliang Lu, Jerry Zhijian Yang, and Cheng Yuan. GAS: A Gaussian mixture
distribution-based adaptive sampling method for PINNs. arXiv preprint arXiv:2303.15849, 2023.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2017.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DeepXDE: A deep learning library
for solving differential equations. SIAM Review, 63(1):208–228, 2021.

Khamron Mekchay and Ricardo H Nochetto. Convergence of adaptive finite element methods for
general second order linear elliptic PDEs. SIAM Journal on Numerical Analysis, 43(5):1803–
1827, 2005.

William F Mitchell. A collection of 2D elliptic problems for testing adaptive grid refinement algo-
rithms. Applied Mathematics and Computation, 220:350–364, 2013.

Pedro Morin, Ricardo H Nochetto, and Kunibert G Siebert. Convergence of adaptive finite element
methods. SIAM Review, 44(4):631–658, 2002.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

10



Published as a conference paper at ICLR 2024

Hailong Sheng and Chao Yang. PFNN: A penalty-free neural network method for solving a class
of second-order boundary-value problems on complex geometries. Journal of Computational
Physics, 428:110085, 2021.

Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics, 375:1339–1364, 2018.

Kejun Tang, Xiaoliang Wan, and Qifeng Liao. Adaptive deep density approximation for Fokker-
Planck equations. Journal of Computational Physics, 457:111080, 2022.

Kejun Tang, Xiaoliang Wan, and Chao Yang. DAS-PINNs: A deep adaptive sampling method for
solving high-dimensional partial differential equations. Journal of Computational Physics, 476:
111868, 2023.

Michael E Taylor. Partial Differential Equations I: Basic Theory, 2nd Edition. Springer, 2011.

Cédric Villani. Topics in Optimal Transportation. Number 58 in Graduate Studies in Mathematics.
American Mathematical Society, 2003.

E Weinan. The dawning of a new era in applied mathematics. Notices of the American Mathematical
Society, 68(4):565–571, 2021.

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, 2023.

Dongbin Xiu and George Em Karniadakis. Modeling uncertainty in flow simulations via generalized
polynomial chaos. Journal of Computational Physics, 187(1):137–167, 2003.

Pengfei Yin, Guangqiang Xiao, Kejun Tang, and Chao Yang. AONN: An adjoint-oriented neural
network method for all-at-once solutions of parametric optimal control problems. arXiv preprint
arXiv:2302.02076, 2023.

Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed
neural networks for forward and inverse PDE problems. Computer Methods in Applied Mechanics
and Engineering, 393:114823, 2022.

Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou. Weak adversarial networks for high-
dimensional partial differential equations. Journal of Computational Physics, 411:109409, 2020.

Li Zeng, Xiaoliang Wan, and Tao Zhou. Bounded KRnet and its applications to density estimation
and approximation. arXiv:2305.09063, 2023.

Qi Zeng, Spencer H Bryngelson, and Florian Tobias Schaefer. Competitive physics informed net-
works. In ICLR 2022 Workshop on Gamification and Multiagent Solutions, 2022.

Jiayu Zhai, Matthew Dobson, and Yao Li. A deep learning method for solving Fokker-Planck
equations. In Mathematical and Scientific Machine Learning, pp. 568–597. PMLR, 2022.

Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks for
surrogate modeling and uncertainty quantification. Journal of Computational Physics, 366:415–
447, 2018.

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. Journal of Computational Physics, 394:56–81, 2019.

11



Published as a conference paper at ICLR 2024

A APPENDIX

We add the proof of Theorem 1 and additional numerical experiments here.

A.1 PRELIMINARIES FROM OPTIMAL TRANSPORT THEORY

Definition 2. Suppose X is a metric space equipped with the metric d(x,y), and µ and ν are
two probability measures on X . The Wasserstein distance (as known as the Kantorovich–Rubinstein
metric) dWd(µ, ν) between to probability measures µ and ν for the metric function d(x,y) is defined
to be

dWd(µ, ν) = inf
π∈Π(X×X)

∫
X×X

d(x,y) dπ(x,y),

where Π(X ×X) is the collection of all probability measure on X ×X such that

π(A×X) = µ(A), π(X ×B) = ν(B)

for all measurable sets A,B ⊂ X .

For the analysis of the adaptive algorithm in this work, we consider the metric dM (x,y) induced by
the Euclidean metric d(x,y) = ∥x− y∥2

dM (x,y) = min{M,d(x,y)}, x,y ∈ X.

Then the metric dM (x,y) is always bounded by M (reachable, namely ∥dM∥∞ = M ). We denote
the Wasserstein distance for dM (x,y) by dWM (·, ·).
According to the optimal transport theory, the Wasserstein distance can be described by its dual form
(see e.g. (Villani, 2003), Theorem 1.14 and Remark 1.15 on Page 34).
Theorem 3 (Kantorovich-Rubinstein theorem). Let X be a Polish space and let d be a lower semi-
continuous metric on X . Let ∥ · ∥Lip denote the Lipschitz norm of a function defined as

∥ϕ∥Lip = sup
x ̸=y

|ϕ(x)− ϕ(y)|
d(x,y)

.

Then

dWM (µ, ν) = sup
{∫

X

ϕ(x) d(µ− ν)(x)
∣∣∣ 0 ≤ ϕ(x) ≤ ∥dM∥∞ = M, and ∥ϕ∥Lip ≤ 1

}
.

In this work, we restrict ourselves on a compact domain X = Ω ⊂ RD of learning, and without loss
of generality, we assume the Lebesgue measure of Ω is 1.

A.2 THE FIRST CONVERGENCE THEOREM AND ITS PROOF

Theorem 4. Let µ be the Lebesgue measure on X , which represents the uniform probability distri-
bution on Ω. In addition, we assume Assumption A1 holds.

Then the optimal value of the min-max problem equation 5 is 0. Moreover, there is a sequence
{un}∞n=1 of functions with r(un) ̸= 0 for all n, such that it is an optimization sequence of problem
equation 5, namely,

lim
n→∞

J (un, pn) = 0. (15)

for some sequence of functions {pn}∞n=1 ⊂ V . Meanwhile, this optimization sequence has the
following two properties:

1. The residual sequence {r(un)}∞n=1 of {un}∞n=1 converges to 0 in L2(dµ).

2. The renormalized squared residual distributions

dνn ≜
r2(un)∫

Ω
r2(un(x)) dx

dµ (16)

converge to the uniform distribution µ in the Wasserstein distance dWM .

12



Published as a conference paper at ICLR 2024

Proof. Consider a minimizing sequence un, n = 1, 2, . . . of

inf
u

∫
Ω

r2(u(x)) dx, (17)

where without loss of generality, we can assume that
∫
Ω
r2(un(x)) dx ≤ 1

n .

Now

sup
∥p∥Lip≤1
0≤p≤M

J (un, p)

= sup
∥p∥Lip≤1
0≤p≤M

[ ∫
Ω

r2(un(x))p(x) dx−
∫
Ω

r2(un(x)) dx

∫
Ω

p(x) dx+

∫
Ω

r2(un(x)) dx

∫
Ω

p(x) dx
]

≤
∫
Ω

r2(un(x)) dx
(

sup
∥p∥Lip≤1
0≤p≤M

[ ∫
Ω

p(x) dνn(x)−
∫
Ω

p(x) dx
]
+ sup

∥p∥Lip≤1
0≤p≤M

∫
Ω

p(x) dx
)

= (dWM (νn, µ) +M)

∫
Ω

r2(un(x)) dx. (18)

By the assumption of the theorem, for each n, we can find a function ũn(x) so that the Wasserstein
distance dWM (ν̃n, µ) ≤ 1

n , where ν̃n is the measure defined as in equation 16 by replacing un(x)
with ũn(x). In fact, for each n, we can find, by partition of unity, a sequence of functions in C∞

c (Ω)
converging to 1Ω in the Sobolev norm of W k,1 (See for example (Evans, 2010)). So we can find a
function wn in C∞

c (Ω), such that ∥wn(x) − 1Ω(x)∥1 ≤ 1
n on Ω. Since r is a surjection, there is

some ũn(x) so that

r2(ũn) = wn

∫
Ω

r2(un(x)) dx,

and ∫
Ω

r2(ũn) dx =

∫
Ω

wn(x) dx

∫
Ω

r2(un(x)) dx

≤ (1 +

∫
Ω

1Ω(x) dx)

∫
Ω

r2(un(x)) dx

= 2

∫
Ω

r2(un(x)) dx.

This means {ũn}∞n=1 is also a minimizing sequence of equation 17, and it yields

dWM (ν̃n, µ) = sup
∥p∥Lip≤1
0≤p≤M

[ ∫
Ω

p(x) dν̃n(x)−
∫
Ω

p(x) dx
]

= sup
∥p∥Lip≤1
0≤p≤M

∫
Ω

p(x)
[ r2(ũn)(x)∫

Ω
r2(ũn(x)) dx

− 1Ω(x)
]
dx

= sup
∥p∥Lip≤1
0≤p≤M

∫
Ω

p(x)
[
wn(x)− 1Ω(x)

]
dx

≤ M

n
.

So we get from equation 18 that

0 ≤ lim
n→∞

sup
∥p∥Lip≤1
0≤p≤M

J (ũn, p) ≤ lim
n→∞

4M

∫
Ω

r2(un) dx = 0,

which means that {ũn}∞n=1 is also a minimizing sequence of equation 5, that is,

lim
n→∞

J (ũn, pn) = 0., (15)

for some sequence of functions {pn}∞n=1 ⊂ V . Meanwhile, we have the following properties of ũn:
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1. The residual sequence {r(ũn)}∞n=1 converges to 0 in L2(dµ), since∫
Ω

r2(ũn) dx ≤ 2

∫
Ω

r2(un) dx ≤ 2

n
→ 0, as n → ∞

2. The renormalized squared residual distributions

dν̃n ≜
r2(ũn)∫

Ω
r2(ũn(x)) dx

dµ

converges to the uniform distribution µ in the Wasserstein distance dWM .

A.3 REPLACEMENT OF THE BOUNDEDNESS CONDITION IN THEOREM 4

For the boundedness constraint for “test function” p in 4, we prove that it can be removed in our
circumstance. And with the following lemma and its following remark, and Theorem 4, we can
obtain our main Theorem 1, which is stated again with its assumption in the following.

Assumption. The operator r in equation 7 is a surjection from a function space E1(RD) to C∞
c (Ω),

the class of C∞ functions that are compactly supported on Ω.

Theorem. Let µ be the Lebesgue measure on RD, which represents the uniform probability distri-
bution on Ω. In addition, we assume Assumption A1 holds. Then the optimal value of the min-max
problem equation 7 is 0. Moreover, there is a sequence {un}∞n=1 of functions with r(un) ̸= 0 for all
n, such that it is an optimization sequence of equation 7, namely,

lim
n→∞

J (un, pn) = 0,

for some sequence of functions {pn}∞n=1 satisfying the constraints in equation 7. Meanwhile, this
optimization sequence has the following two properties:

1. The residual sequence {r(un)}∞n=1 of {un}∞n=1 converges to 0 in L2(dµ).

2. The renormalized squared residual distributions

dνn ≜
r2(un)∫

Ω
r2(un(x)) dx

dµ(x)

converge to the uniform distribution µ in the Wasserstein distance dWM .

Although the residue r2 is renormalized to a probability distribution for the analysis of the algorithm,
itself is not a probability distribution, and not treated as so. Actually, in the implementation of our
algorithm, the “test function” p is seen as sampling distribution density and the residue r2 is just the
PDE operator (or any kind of objective function whose minimum is 0). In the implementation, we
establish p as a generative model, that is, an invertible transform between an unknown distribution
(an adversarial distribution to the residual distribution if we think the algorithm as a similarity to
GANs) and an “easy-to-sample” distribution such as normal or uniform distribution. So we assume p
to be the density function of a probability distribution. Under this assumption, we have the following
result.

Lemma 5. Let Ω be a compact subset of RD. If a positive function f : Ω → R is K-Lipschitz
continuous, and f is the density function of a probability distribution, namely,

∫
Ω
f dx = 1, then

there is some constant M = M(Ω,K), so that f ≤ M . In other words,

f ≤ M, ∀f ∈ S =
{
f ≥ 0

∣∣∥f∥Lip ≤ K, and
∫
Ω

f dx = 1
}
.

Proof. For any x, y ∈ Ω, we have

0 ≤ f(x) = f(x)− f(y) + f(y) ≤ K|x− y|+ f(y) ≤ KD(Ω) + f(y),
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where D(Ω) is the diameter of Ω. Taking integral with respect to y over Ω on both sides, we have

0 ≤ f(x)µ(Ω) ≤ KD(Ω)µ(Ω) + 1,

where µ(Ω) is the Lebesgue measure (volume) of Ω, that is,

0 ≤ f(x) ≤ KD(Ω) +
1

µ(Ω)
.

So we have
M = M(Ω,K) = KD(Ω) +

1

µ(Ω)
.

e The converse of this lemma is also true in the sense that if f is bounded by some constant M , then
the integral

∫
Ω
f dx ≤ Mµ(Ω), and f can be renormalized into a probability density function with

constant Mµ(Ω). And similar to boundedness for the gradient (or Lipschitz constant) discussed in
section 3.3, a constant renormalizer will not affect the training procedure.

A.4 DEVIATION OF EQUATION 9 AND ITS SOLUTION

For a given r(x;θ), consider the following minimization problem:

min
pα>0

L(pα) = β

∫
Ω

|∇xpα|2dx−
∫
Ω

r2(x;θ)pα(x)dx+ λ

(∫
Ω

pα(dx)− 1

)
,

where the positivity of pα is guaranteed by the KRnet and λ is the Lagrange multiplier for the mass
conservation of PDF. Assuming that ∂pα

∂n = 0 on the boundary ∂Ω, where n is a unit normal vector
on ∂Ω pointing outward. We have the first-order variation of L(pα) for a perturbation function
δp(x)

δL =2β

∫
Ω

∇pα · ∇δpdx−
∫
Ω

r2δpdx+ λ

∫
Ω

δpdx

=2β

(∫
∂Ω

δp∇pα · ndΓ−
∫
Ω

δp∇2pαdx

)
−

∫
Ω

r2δpdx+ λ

∫
Ω

δp(x)dx

=− 2β

∫
Ω

δp∇2pαdx−
∫
Ω

r2δpdx+ λ

∫
Ω

δp(x)dx

=−
∫
Ω

(2β∇2pα + r2 − λ)δpdx,

where we applied integration by parts and the homogeneous Neuman boundary conditions. The
optimality condition δL

δp = 0 yields{
2β∇2pα(x) + r2(x;θ)− λ = 0, x ∈ Ω,

∂pα

∂n = 0, x ∈ ∂Ω.
(19)

From the compatibility condition for Neumann problems, we have∫
Ω

(r2(x;θ)− λ)dx = 0, (20)

which yields that

λ =
1

|Ω|

∫
Ω

r2(x;θ)dx.

Assume that Ω is a bounded domain with smooth boundary. It can be shown that if r ∈ Hk(Ω) and
∂Ω ∈ Ck+2 with k ∈ N, the solution of equation 9 satisfies (Taylor, 2011)

∥pα∥Hk+2(Ω) ≤ C∥f∥Hk(Ω),

where f(x) = (λ− r2)/(2β) and C > 0 is a general constant that does not depend on r. According
to the Sobolev Imbedding Theorem (Adams & John Fournier, 2003),

W k,1(Ω) → C0,1(Ω),
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when D = k − 1. Thus up to a set of measure zero, we have

∥pα∥C0,1(Ω) ≤ C1∥pα∥Wk,1(Ω) ≤ C2∥pα∥Hk(Ω),

where C1 and C2 are general constants independent of pα. So pα is Lipschitz continuous when
the boundary and r(x) are sufficiently smooth. However, this also means that the H1 regularization
used in equation 8 induces a weaker constraint than the Lipschitz condition in Lemma 5.

A.5 SUPPLEMENTARY EXPERIMENTS

About the setting of s(x) and g(x). The source term s(x) is derived by the exact solution, i.e.,
we can set the source function by plugging the exact solution into the equation to get s(x). We set
g(x) = u(x) since the Dirichlet boundary condition is imposed on ∂Ω.

Parametric Burgers’ Equation. We also test the proposed AAS method using parametric PDEs
that are commonly used in the design of engineering systems and uncertainty quantification. Specif-
ically, we consider the following parametric Burgers’ equation, which is a benchmark problem stud-
ied in DeepXDE.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν[(

∂u

∂x
)2 + (

∂u

∂y
)2]

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= ν[(

∂v

∂x
)2 + (

∂v

∂y
)2]

x, y ∈ [0, 1], and t ∈ [0, 1]

where u and v are the velocities along x and y directions respectively, and ν ∈ (0, 1] is a parameter
that represents the kinematic viscosity of fluid. Here, the Dirichlet boundary conditions are imposed
on all boundaries. The exact solution is obtained as follows.

u(x, y, t) =
3

4
− 1

4[1 + exp((−4x+ 4y − t)/(32ν))]
,

v(x, y, t) =
3

4
+

1

4[1 + exp((−4x+ 4y − t)/(32ν))]
,

The problem setup space is x = [t, x, y, ν], i.e., D = 4. When ν is small, solving this problem is
quite challenging. We use the proposed AAS method to train a neural network uθ(x) to approx-
imate the solution over the entire space x = [t, x, y, ν] ∈ [0, 1]4. Figure 6 shows the numerical
results, which demonstrate that the proposed AAS method is able to accurately solve this parametric
Burgers’ equation. We can train the models using the strategy as discussed in Remark 2, i.e., we
gradually add the data points to the current training set. AAS with fixed β = 5 means that we use a
similar training strategy as DAS-G presented in (Tang et al., 2023) with a fixed β, while AAS with
decay β = 5 means that β has a decay scheme at every 100 stages with decay rate 0.9. Adding the
data points gradually to the current set of random samples is more stable than that of replacing all
data points.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Iteration 1e5

10−3

10−2

10−1

Er
ro
r

AAS with fixed β=5
AAS with decay β=5
AAS with replace strategy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Iteration 1e5

10−14

10−12

10−10

10−8

10−6

10−4

10−2

Va
ria

nc
e

AAS with fi ed β=5
AAS with decay β=5
AAS with replace strategy

Figure 6: The results of the parametric Burgers’ equation. Left: The error behavior. Right: The
evolution of the variance.
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