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Abstract

Due to its great soft-tissue contrast and non-invasive nature, magnetic resonance imaging
(MRI) is uniquely qualified for motion monitoring during radiotherapy. However, real-time
capabilities are limited by its long acquisition times, particularly in 3D, and require highly
undersampling k-space resulting in lower image resolution and image artifacts. In this
paper, we propose a simple recurrent neural network (RNN) architecture to continually
estimate target motion from single k-space spokes. By directly using the incoming k-space
data, additional image reconstruction steps are avoided and less data is required between
estimations achieving a latency of only a few milliseconds. The 4D XCAT phantom was
used to generate realistic data of the abdomen affected by respiratory and cardiac motion
and a simulated lesion inserted into the liver acted as the target. We show that using
a Kooshball trajectory to sample 3D k-space gives superior results compared to a stack-
of-stars (SoS) trajectory. The RNN quickly learns the motion pattern and can give new
motion estimations at a frequency of more than 230 Hz, demonstrating the feasibility of
drastically improving latency of MR-based motion monitoring systems.

Keywords: MR-guided radiotherapy, motion estimation, real-time MRI, recurrent neural
network, XCAT phantom, MR-linac, undersampling

1. Introduction

In recent years, the development of MR-linacs (Lagendijk et al., 2014; Mutic and Dempsey,
2014) has opened up new avenues for great advancements in the field of radiation oncology.
An MR-linac combines a linear accelerator with magnetic resonance imaging (MRI) to
allow online adaptation of the treatment plan before and even during the treatment with a
radiation beam, giving rise to MR-guided radiotherapy. Compared to computed tomography
(CT), the predominant imaging modality in radiotherapy, MRI offers superior soft-tissue
contrast and does not expose the patient to ionizing radiation (Pereira et al., 2014). It
also does not require a highly invasive fiducial marker implantation unlike many X-ray
imaging-based methods (Tang et al., 2007; Fledelius et al., 2014; Bertholet et al., 2017).

One of the critical challenges in realizing the full potential of MR-guided radiotherapy
is the fast and accurate monitoring of intrafraction motion. Due to respiration, cardiac
motion and other factors, the position of the target volume can change significantly during
the treatment. For the liver, motion amplitudes of up to 30 mm have been reported (Park
et al., 2012). This can lead to underdosage of the target volume and overexposure of
surrounding healthy tissue. Tracking the target in real time can mitigate this problem,
reducing the risk of complications and improving treatment outcome (Al-Ward et al., 2018).
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However, acquiring high resolution 3D MRI data typically takes several minutes, which is
too slow for real-time motion monitoring.

Since many MR-based motion monitoring methods rely on MR images, they have to
work on lower resolution or fewer images, like using interleaved 2D slices (Bjerre et al.,
2013; Tryggestad et al., 2013), or reconstruct images from highly undersampled k-space
data (Mickevicius and Paulson, 2017) to achieve a high enough speed. This can be com-
bined with other MRI acceleration techniques like parallel imaging or compressed sensing
to further reduce acquisition times (Tsao and Kozerke, 2012). Deep learning-based recon-
struction methods have also been proposed to further improve the speed and quality of
the reconstructed images (Hammernik et al., 2017; Muckley et al., 2021). Few approaches
work directly on k-space data, including k-space-based navigators (Kober et al., 2012) and
methods using the phase correlation method to register measured data to some reference
k-space data (Vaillant et al., 2014). This is often combined with a patient-specific motion
model built during a less time-critical training phase before the treatment (Liu et al., 2021;
Keijnemans et al., 2022). Huttinga et al. (2020) were able to reduce the latency of their MR-
MOTUS framework from around 5 minutes for 3D motion to 170 ms by also splitting the
reconstruction problem into an offline preparation and an online inference phase (Huttinga
et al., 2022).

Our approach is to sample the k-space with a radial trajectory and directly use the
incoming radial k-space lines (spokes) to continually estimate the target motion using a
recurrent neural network (RNN). This way, no additional image reconstruction steps are
performed and new motion estimations can be given after the acquisition of each new
spoke in just milliseconds. In a previous work, we demonstrated this approach on a 2D
rigid head motion estimation task achieving sub-millimeter accuracy (Krusen and Ernst,
2024). Motion was simulated by rigidly transforming slices of 25 MRI head scans and the
k-space was sampled using a golden-angle radial trajectory. Additionally, it was shown
that removing the peripheral values of each spoke increases generalization across different
patients.

Here, we extend this approach to a more realistic 3D motion estimation scenario. The
4D XCAT phantom (Segars et al., 2010) is used to generate realistic abdominal MRI data
affected by respiratory and cardiac motion. Since XCAT is a numerical phantom, there
are no interpolation inaccuracies in the generated volumes and k-space sampling can also
be done without interpolation. This sampling of the 3D k-space is done using a kooshball
trajectory (Chan et al., 2009), the 3D generalization of the golden-angle trajectory, and
compared to a stack-of-stars (SoS) trajectory (Chandarana et al., 2011), which uses golden-
angle sampling along the kx-ky plane but Cartesian sampling along the kz dimension. A
slightly adapted RNN is trained on the generated data to track the motion of a spherical
tumor inserted into the liver.

2. Material and Methods

2.1. Motion and MRI simulation

The motion and image data of the abdominal region was mainly generated using the XCAT
phantom (Segars et al., 2010). The 4D XCAT phantom is a numerical phantom supporting
a number of anatomic models of male and female bodies with thousands of anatomical
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structures that simulates cardiac and respiratory motion at any spatial resolution and offers
both deformable vector fields and image volumes as output. For these MRI motion datasets
the resolution was set to 1 mm × 1 mm × 1 mm resulting in volumes of size 320× 320× 320
centered around the liver. Ten different anatomic models were used to create a dataset
and for each model ten sequences of 1 000 time steps were generated. The length of one
time step was set to 4 ms to simulate a steady-state spoiled gradient echo sequence with a
repetition time (TR) of 4 ms.

For each sequence a spherical tumor with a random diameter between 10 and 20 mm
was inserted at a different location inside the liver. To further increase variance between
sequences, different heart and respiration rates were used, and heart and respiration rate
variability were simulated to vary the length of cardiac and respiration cycles during a se-
quence as well. An average resting heart rate of around 65 beats per minute and an average
free-breathing respiration rate of around 13 breaths per minute, as well as the variability
values were taken from Schumann et al. (2021) and Kobayashi (2021) respectively. Addi-
tionally, the initial phase of the cardiac and respiratory cycle at the beginning of a sequence
was randomized and the two XCAT parameters controlling the maximum diaphragm mo-
tion and the maximum expansion of the chest along the anteroposterior axis were varied
after every breath.

−3.787
8.462

−11.343

Figure 1: The XCAT data generation pipeline. Dynamic parameters, like the heart and
respiration rates, the desired rotation and tumor information are given to the
XCAT phantom to generate image volumes and motion data for each time step.
MR contrast and a low-pass filter are applied to the volumes before transforming
them to k-space and adding noise. Finally, the k-space is sampled resulting in
the spoke data for the dataset.

Simulating k-space spoke data from the image volumes generated with the XCAT phan-
tom involved multiple post-processing steps as shown in Figure 1. First, MR contrast is
applied to the volumes. The pixel intensities of different organs and tissues for this step
were extracted from T1-weighted MR images from the Duke Liver Dataset (Macdonald
et al., 2020) and randomly varied between sequences. Additionally, a low-pass filter was
applied to blur the pixelated edges between tissues. The resulting MR image volumes were
transformed to k-space using a fast Fourier transform and complex-valued white Gaussian
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noise was added to achieve a signal-to-noise ratio of 20. Finally, the k-space was sampled
following a kooshball trajectory for one dataset and following a stack-of-stars trajectory for
a second dataset. Both are radial trajectories that would require interpolation. Since the
XCAT phantom allows generating the image volumes at arbitrary rotations, each volume
was already rotated during generation according to the desired k-space trajectory to make
sure that the sampled spokes will align with the grid of the image volumes and no interpo-
lation is necessary. The result is a sequence of 1 000 k-space spokes of 319 sampling points
each.

The tumor motion simulated by the XCAT phantom by default is a translation along
the sagittal axis (y-axis) and longitudinal axis (z-axis) based on the respiratory phase and
parameters like the maximum diaphragm motion and the maximum expansion of the chest.
To have motion in all three dimensions, a custom sinusoidal motion trajectory was used
that resembles the default motion along the y-axis and z-axis but also includes a smaller
motion along the x-axis. On average, the motion amplitude along the x-axis is 30% and
along the y-axis is 50% of the amplitude along the z-axis. Cardiac motion is simulated and
affects the overall image volumes and k-space data, but does not contribute to the motion
of the tumor. The resulting motion data is a sequence of translational motion along all
three axes.

In addition to the two datasets for both trajectories with a TR of 4 ms, another one
with a TR of 40 ms is generated for each, for a total of four datasets. The higher TR
allows longer simulated sequences spanning multiple cardiac and respiratory cycles without
generating much longer sequences in this computationally expensive process.

2.2. Network training
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Figure 2: The preprocessing steps and network architecture. A complex-valued input spoke
is split into real and imaginary data, shortened to the central 10 %, scaled down
and its two halves are averaged during preprocessing. The gated recurrent unit
(GRU) layer learns the temporal relation of the data before the fully connected
(FC) layers with ReLU activation and dropout in between give the motion esti-
mation.
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Before passing through the network, the input data goes through a few preprocessing
steps. First, the complex-valued spoke data is split into its real and imaginary parts, since
most machine learning methods only work on real-valued input data. Then, peripheral data
of the spoke is removed leaving only the central 10 %. This improves generalization and
leads to a more stable and fast training, as previously shown (Krusen and Ernst, 2024).
To further improve generalization, the average of the two symmetric halves of the spoke is
used. Finally, the data is scaled by a constant factor that is sufficiently large, so that all
current and future values are most likely in the range of [−1, 1].

During training two methods are used to increase the amount and variety of training
data. The first method is subsequence learning. For each sequence of 1 000 time steps in the
dataset there are many subsequences that can also be used for training. In particular, all
999 subsequences that only start later than the full sequence provide distinct and new data,
since the start condition changes, so both the progression of the internal state of the GRU
is different and the target motion is relative to a different initial position. Out of those, the
500 subsequences that are at least 500 time steps long are used as additional training data.

The second method is applying different augmentations to the training data in each
epoch. This gives more variety to the data during training, especially since the subsequence
learning introduces many repeat inputs of the same data which can quickly cause overfitting.
Three different augmentations are applied to the input data every time before passing it
into the network. First, each spoke is scaled by a random factor between 0.9 and 1.1. Since
this only alters the magnitude, the resulting spoke is still a valid input for the resulting
motion target. Second, each individual value is multiplied by a factor sampled from a
normal distribution with a mean of 1 and a standard deviation of 0.1. This can be seen as
additional noise that changes every iteration. Lastly, there is a 5 % chance for a spoke to be
swapped with the next one in a sequence. While this slightly invalidates the target values,
the time between subsequent spokes is short enough that the changes to the target values
would be miniscule. Furthermore, a noise augmentation is also applied to the target data
by adding a value sampled from a normal distribution with a mean of 0 and a standard
deviation of 0.1.

Network training is done using the Adam optimizer (Kingma and Ba, 2014) and a
learning rate of 0.001 that decays with a factor of 0.75 every 5 epochs for 25 epochs. All
subsequences of same length are processed in one batch resulting in a batch size of 80. The
mean square error between estimated and actual motion at each time step is used as the loss
function. The training was performed on an NVIDIA A100 using the Pytorch framework
and took about one hour.

2.3. Evaluation

The trained networks are evaluated using a 5-fold cross validation. Each fold consists of
the 10 full sequences of two different body models, resulting in 20 sequences per fold. The
mean absolute error (MAE) between the estimated and actual motion at each time step is
used as the evaluation metric. The average MAE of all sequences and folds is then used to
compare the performance of the networks.

Furthermore, the jitter of the output signal is calculated to determine how smooth the
output is. This is an important quality for actually compensating the estimated motion,
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since a jittery output could exceed the mechanical capabilities of a subsequent multileaf
collimator (MLC) for example. The jitter is calculated as the first derivative of the error
between the estimated and actual motion. The mean absolute jitter then quantifies how
much the output signal oscillates around the target. To reduce the jitter and smoothen the
output, a simple moving average filter can be applied to the output signal. A filter length
of 3 implies delaying the output signal by 1 time step and is used here to evaluate the effect
on the jitter and the MAE.

The network trained on the Kooshball dataset is compared to the network trained on
the stack-of-stars dataset for both a TR of 4 ms and 40 ms. To put their scores into context,
two simple additional estimators are used. The first one is a constant estimator that always
outputs the mean motion of the target over the whole sequence to show the best possible
error if no motion estimation is performed. The second one is a hypothetical perfect estima-
tor with latency, whose output is the exact target function but delayed by 200 ms. 200 ms is
the maximum suggested latency for real-time motion monitoring (Murphy et al., 2002) and
comparable to existing approaches like MR-MOTUS (Huttinga et al., 2022). This estimator
shows the impact of just latency on the error. The reported error and uncertainty that real
approaches have is not considered here and would further increase the total error.

3. Results

The inference time of the trained networks is around 0.3 ms on an NVIDIA GeForce GTX
970, making the TR the main factor for the latency of the approach. Assuming a TR of
4 ms, the network can give new motion estimations at a frequency of more than 230 Hz.

Table 1: Quantitative results of the 5-fold cross validation. The mean absolute error (MAE)
and the jitter of the output signal are shown for two different trajectories and
two different TRs. The results of two simple additional estimators are shown for
comparison, a constant estimator and a perfect estimator with a latency of 200 ms.

Method TR (ms) x MAE (mm) y MAE (mm) z MAE (mm) Jitter
RNN (Kooshball) 4 0.56 ± 0.48 0.95 ± 0.80 1.86 ± 1.57 0.076
RNN (SoS) 4 0.96 ± 0.83 1.59 ± 1.34 3.18 ± 2.69 0.071
Const. mean 4 1.89 ± 1.11 3.14 ± 1.86 6.31 ± 3.72 0.024
Perfect w. delay 4 0.59 ± 0.45 0.98 ± 0.77 1.96 ± 1.51 0.009

RNN (Kooshball) 40 0.64 ± 0.57 1.07 ± 0.93 2.13 ± 1.88 0.185
RNN (SoS) 40 2.11 ± 1.88 3.47 ± 3.07 6.89 ± 6.07 0.330
Const. mean 40 1.88 ± 1.05 3.15 ± 1.76 6.32 ± 3.51 0.231
Perfect w. delay 40 0.57 ± 0.41 0.96 ± 0.69 1.92 ± 1.38 0.081

The results of the cross validation are shown in Table 1. The RNN trained on the
Kooshball dataset has a much lower MAE than the RNN trained on the stack-of-stars
dataset for both TRs. For the more realistic TR of 4 ms, the Kooshball RNN has an MAE
of 0.56 mm, 0.80 mm and 1.86 mm along the x-axis, y-axis and z-axis, respectively, slightly
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outperforming the perfect estimator with a delay. Appendix A shows how the MAE varies
greatly between sequences and during a respiration cycle, explaining the large confidence
intervals. The dataset with a TR of 40 ms causes both RNN methods to perform worse, while
the two additional estimators expectedly perform similarly. In particular, the SoS RNN got
even worse than the constant estimator anymore, suggesting that it does not learn much
anymore. Appendix B shows that the subsequence learning and using half spokes during
preprocessing improve the accuracy of the RNN. Applying a simple moving average filter to
the output of the Kooshball RNN reduces the jitter to 0.030 while only slightly increasing
the MAE to 0.57 mm, 0.96 mm and 1.87 mm, respectively. The SoS RNN shows a similar
result. Smoothening the output for the higher TR of 40 ms would also reduce the jitter,
but due to the longer delay, the MAE would also see an undesirable increase.
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Figure 3: Example motion sequences. The output of the Kooshball RNN follows the target
well but underestimates the peaks, mainly for a TR of 40. The SoS RNN produces
a less accurate output with an oscillation caused by the start of a new stack.

The sequences in Figure 3 show example outputs of both RNN methods for both TRs
overlaid on the target motion. The Kooshball RNN is able to follow the target motion
accurately but often underestimates the peaks of the target motion. For the SoS RNN this
behaviour can also be seen, albeit less accurately and with a noticeable oscillation with a
period of around 20 time steps. This is exactly the number of slices in a stack in the dataset,
showing one of the problems of the SoS trajectory for continuous motion estimation.

4. Discussion

This work presents an learning-based approach that can rapidly estimate 3D motion from
raw k-space data. The 4D XCAT phantom was used to generate abdominal MRI data
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affected by realistic respiratory and cardiac motion. A spherical tumor is inserted into the
liver to provide a tracking target for the motion estimation. As a first step and due to the
limits of the XCAT phantom, the tumor does not rotate or deform during motion unlike
some of the other generated organs. However, these effects are typically small compared to
the overall displacement of a tumor (Xu et al., 2014) and the phantom offers a reproducible
way to generate volume data together with the corresponding motion data at a temporal
resolution that is not feasible with real data.

The presented RNN learns the motion pattern of the tumor to quickly give accurate
motion estimations. While the accuracy is not as high as in the rigid 2D case (Krusen and
Ernst, 2024), the MAE is still small and allows for smaller planning target volumes and
shorter treatment times. A hypothetical perfect estimator with a latency of 200 ms already
has a similar error just due to latency and it does not yet take into account the actual
tracking error that existing comparable approaches have. Improvements to the accuracy
could be achieved by simulating more varied motion, possibly in combination with a more
complex network architecture. Due to the periodic nature of respiratory motion the RNN
could learn the general respiration pattern and not taking variations between respirations
into account, as example outputs in Figure 3 could suggest. Training on more varied and
less periodic data worked well for the 2D case (Krusen and Ernst, 2024) and could not
just improve accuracy but also allow accurate motion estimation of other non-periodic
intrafraction motion types, like slow drifting motion or patient motion.

The Kooshball trajectory was shown to be superior to the stack-of-stars trajectory for
this task. As the 3D generalization of the golden-angle trajectory, it provides a faster and
more even coverage of 3D k-space avoiding artifacts like the oscillation seen in the SoS
output and resulting in a much lower MAE.

The main advantage of the approach is its very low latency. The effect that even a
delay of just 200 ms has, which is considered enough for real-time motion monitoring, can
be seen in the result of the hypothetical perfect estimator. With a estimation frequency of
more than 230 Hz, the approach can apply a simple moving average filter to smoothen the
output without an impact on the MAE. Additionally, predictions into the future, which are
necessary in a motion compensation system to account for the system latency, are much
more accurate with a short latency.

5. Conclusion

In this work, we present an RNN approach to continuously estimate 3D motion from raw
k-space data. By directly using the k-space data coming in from a 3D radial trajectory,
the network can estimate motion with minimal latency at a frequency of more than 230 Hz.
To train and validate the approach, the 4D XCAT phantom was used to generate realistic
abdominal MRI data with an inserted tumor affected by respiratory and cardiac motion.
The Kooshball trajectory was shown to be superior to the SoS trajectory for this task, since
it more evenly covers the entire 3D k-space. The speed of the approach allows smoothening
the output with a simple moving average filter and demonstrates the feasibility of a very low-
latency MR-based motion monitoring system. Future work will focus on further improving
the accuracy of the approach.
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Appendix A. Error analysis

Figure 4 shows the errors, averaged over all three axes, for the 10 sequences of one body
model with a TR of 4 as box plots. It can be seen that our RNN-based method and the
hypothetical perfect estimator with delay perform similar on most sequences, like their

11



Krusen Ernst

similar overall MAE suggests. However, the variation in MAE between sequences is quite
high, explaining the large confidence intervals of all methods in Table 1. The large number
of outliers of the RNN-based method seen in sequences 2 and 7 stems from uncertainty at
the beginning of the sequences. In the initial time steps, when the RNN did not receive
much data yet, the output can sometimes be less or even more accurate than during the
rest of the sequence.
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Figure 4: Box plots showing the absolute errors of the 10 sequences with a TR of 4 of a
single body model for three methods.

Another cause of variation in error is the respiration phase. As seen in Figure 5, the
mean absolute error varies during a respiration cycle. The value for the current respiration
phase used by the XCAT phantom is scaled between 0 and 1, with 0 being full exhale and
0.4 being full inhale. The RNN has the largest errors around the full inhale phase when the
motion amplitudes is largest which is typical for motion estimation methods. The delayed
perfect estimator on the other hand has much larger variations during a respiration cycle
and the smallest errors around the full inhale phase. This is due to the speed of motion
being the slowest around the full inhale and full exhale phases, whereas the speed is much
faster and the errors much larger inbetween these phases. Since the perfect estimator is
delayed it is more sensible to fast motion.

Appendix B. Ablation studies

To investigate the effect of certain components of the approach on the accuracy, an ablation
study is performed. The results can be seen in Table 2. In a first experiment, the full k-space
spokes are used as input to the RNN instead of the average of the two symmetric halves of
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Figure 5: The mean absolute error over the respiration phase. The phase is scaled from 0
to 1, with 0 being full exhale and 0.4 being full inhale.

every spoke. The resulting MAE is slightly higher than the presented RNN, especially for
a TR of 4, confirming the advantage of this preprocessing step.

The second experiment evaluates the effect of subsequence learning by training the RNN
without using subsequences. To keep results somewhat comparable, the training without
subsequences runs for 1000 epochs instead of 25 and the learning rate decays every 200
epochs instead of every 5. While this still results in less total sequences processed during
training, the results are already pretty clear with no real improvement happening during
most of the training. The MAE for these experiments is much higher than that of the
presented RNN. The dataset with a TR of 4, which also has much less variation in the
target motion, is particularly affected by this and leads to overfitted results worse than the
constant estimator.
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Table 2: Quantitative results of the ablation study. The mean absolute error (MAE) and
the jitter of the presented RNN are compared to those of an RNN trained with
full k-space spokes as input and one trained without subsequences for two different
TRs.

Method TR (ms) x MAE (mm) y MAE (mm) z MAE (mm) Jitter
RNN (Kooshball) 4 0.56 ± 0.48 0.95 ± 0.80 1.86 ± 1.57 0.076
full spokes 4 0.66 ± 0.54 1.13 ± 0.92 2.19 ± 1.81 0.076
no subsequences 4 1.54 ± 1.40 2.63 ± 2.40 5.29 ± 4.79 0.190

RNN (Kooshball) 40 0.64 ± 0.57 1.07 ± 0.93 2.13 ± 1.88 0.185
full spokes 40 0.67 ± 0.62 1.12 ± 1.03 2.21 ± 2.04 0.174
no subsequences 40 1.42 ± 1.15 2.38 ± 1.94 4.78 ± 3.84 0.452
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