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Abstract
The unit selection problem aims to identify objects, called units, that are most likely to exhibit a
desired mode of behavior when subjected to stimuli (e.g., customers who are about to churn but
would change their mind if encouraged). Unit selection with counterfactual objective functions was
introduced relatively recently with existing work focusing on bounding a specific class of objective
functions, called the benefit functions, based on observational and interventional data—assuming
a fully specified model is not available to evaluate these functions. We complement this line of
work by proposing the first exact algorithm for finding optimal units given a broad class of causal
objective functions and a fully specified structural causal model (SCM). We show that unit selection
under this class of objective functions is NPPP-complete but is NP-complete when unit variables
correspond to all exogenous variables in the SCM. We also provide treewidth-based complexity
bounds on our proposed algorithm while relating it to a well-known algorithm for Maximum a
Posteriori (MAP) inference.
Keywords: unit selection, structural causal models, counterfactual reasoning

1. Introduction

A theory of causality has emerged over the last few decades based on two parallel hierarchies,
an information hierarchy and a reasoning hierarchy, often called the causal hierarchy (Pearl and
Mackenzie, 2018; Bareinboim et al., 2021). On the reasoning side, this theory has crystalized three
levels of reasoning with increased sophistication and proximity to human reasoning: associational,
interventional and counterfactual, which are exemplified by the following canonical probabilities.
Associational Pr(y|x): probability of y given that x was observed (e.g., probability that a patient
has a flu given they have a fever). Interventional Pr(yx): probability of y given that x was estab-
lished by an intervention, which is different from Pr(y|x) (e.g., seeing the barometer fall tells us
about the weather but moving the barometer needle won’t bring rain). Counterfactual Pr(yx|y′, x′):
probability of y if we were to establish x given that neither x nor y are true (e.g., probability that
a patient who did not take a vaccine and died would have recovered had they been vaccinated). On
the information side, these forms of reasoning require different levels of knowledge, encoded as as-
sociational, causal and functional (mechanistic) models, with each class of models containing more
information than the preceding one. In the framework of probabilistic graphical models (Koller
and Friedman, 2009), such knowledge is encoded by Bayesian networks (Pearl, 1988; Darwiche,
2009), causal Bayesian networks (Pearl, 2000; Peters et al., 2017; Spirtes et al., 2000) and functional
Bayesian networks (Balke and Pearl, 1995) also known as structural causal models (SCMs).

One utility of this theory has been recently crystallized through the unit selection problem intro-
duced by Li and Pearl (2019) who motivated it using the problem of selecting customers to target
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by an encouragement offer for renewing a subscription. Let c denote the characteristics of a cus-
tomer, x denote encouragement and y denote renewal. One can use counterfactuals to describe
the different types of customers. A responder (yx, y′x′) would renew a subscription if encouraged
but would not renew otherwise. An always-taker (yx, yx′) would always renew regardless of en-
couragement. An always-denier (y′x, y

′
x′) would always not renew regardless of encouragement.

A contrarian (yx′ , y′x) would not renew if encouraged but would renew otherwise. One can then
identify customers of interest by optimizing an expression, called a benefit function in (Li and
Pearl, 2019), that includes counterfactual probabilities. In this example, the benefit function has
the form βPr(responder|c) + γPr(always-taker|c) + θPr(always-denier|c) + δPr(contrarian|c)
where β, γ, θ, δ are corresponding benefits. In other words, one can use this expression to score
customers with characteristics c so the most promising ones can be selected for an encouragement
offer. When the above benefit function is contrasted with classical loss functions (for example, ones
used to train neural networks), one sees a fundamental role for counterfactual reasoning as it gives us
an ability to distinguish between objects (e.g., people, situations) depending on how they respond to
a stimulus. This distinction sets apart counterfactual reasoning (third level of the causal hierarchy)
from the more common, but less refined, associational reasoning (first level). It also sets it apart
from interventional reasoning (second level) which is also not sufficient to make such distinctions.

Existing work on unit selection has focused on a very practical setting in which only the structure
of an SCM is available together with some observational and experimental data (Li and Pearl, 2019,
2022a,b,c; Li et al., 2022b). Such data is usually not sufficient to obtain a fully specified SCM so one
cannot obtain point values of the benefit function. Recent work has therefore focused on bounding
probabilities of causation while tightening these bounds as much as possible (Dawid et al., 2017;
Mueller et al., 2021), but with less attention dedicated to optimizing benefits based on these bounds;
see (Li et al., 2022b,a) for a notable exception. In this paper, we complement this line of work by
studying the unit selection problem from a different and computational direction. We are particularly
interested in applying unit selection to structured units (e.g., decisions, policies, people, situations,
regions, activities) that correspond to instantiations of multiple variables (called unit variables). We
assume a fully specified SCM so we can obtain point values for any causal objective function as
discussed in Section 2. By a causal objective function we mean any expression involving quantities
from any level of the causal hierarchy (observational, interventional and counterfactual). This allows
us to seek units that satisfy a broad class of conditions. Examples include: Which combination of
activities are most effective to address a particular humanitarian need (human suffering, disease,
hunger, privation)? Which regions should be focused on to reduce population movements among
refugees? What incentive policy would keep customers engaged for the longest time? We then
consider a particular but broad class of causal objective functions in Section 3 and formally define
the computational problem of finding units that optimize these functions. We dedicate Section 4 to
studying the complexity of unit selection in this setting where we show it has the same complexity
as the classical Maximum a Posteriori (MAP) problem. We then provide an exact algorithm for
solving the unit optimization problem in Section 5 by reducing it to a new problem that we call
Reverse-MAP. We further characterize the complexity of our proposed algorithm using the notion
of treewidth and provide some analysis on how its complexity can change depending on the specific
objective function we use. We finally close with some concluding remarks in Section 6. Some proofs
of our results are included in the main paper, the remaining ones can be found in the appendix.
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2. Counterfactual Queries on Structural Causal Models

We review structural causal models (SCMs) in this section since the unit selection problem is de-
fined on these models; see (Galles and Pearl, 1998; Halpern, 2000) for a comprehensive exposition.
We use uppercase letters (e.g., X) to denote variables and lowercase letters (e.g., x) to denote their
states. We use bold uppercase letters (e.g., X) to denote sets of variables and bold lowercase letters
(e.g., x) to denote their instantiations. The states of a binary variable X are denoted x and x′. We
also write x ∈ x to mean that variable X has state x in instantiation x of variables X.

An SCM has three components. First, a directed acyclic graph with its nodes representing vari-
ables. Root nodes are called exogenous and internal nodes are called endogenous. Second, a prob-
ability distribution θ(U) for each exogenous variable U in the model. Third, for each endogenous
variable V with parents P, the SCM has an equation, called a structural equation, which specifies
a state for V for each instantiation p of its parents P. Let U/V be the exogenous/endogenous
variables in an SCM. The distribution Pr(U,V) specified by the SCM is as follows: Pr(u,v) =∏

u∈u θ(u) if V = v is implied by U = u and the structural equations; otherwise, Pr(u,v) = 0.
SCMs are a special type of Bayesian networks (Pearl, 1989; Darwiche, 2009) which require a

conditional probability table (CPT) for each node in the network. In particular, for node V with
parents P, the CPT specifies the conditional distributions Pr(V |P). A structural equation can be
encoded as a CPT which satisfies Pr(v|p) ∈ {0, 1} for all v and p. Such a CPT is said to be
functional and this is why SCMs are sometimes called functional Bayesian networks.

A Bayesian network can only be used to compute observational probabilities such as Pr(y|x)
which is the probability of Y = y given that we observed X = x. An SCM can also be used to
compute interventional probabilities such as Pr(yx) which is the probability of Y = y after setting
X = x. An SCM can further be used to compute counterfactual probabilities such as Pr(yx, y′x′ |e)
which is the probability of (Y = y after setting X = x and Y = y′ after setting X = x′) in a
situation where we observe E = e.1 We are particularly interested in this form of counterfactual
probabilities as they will be used as ingredients in our objective functions. We next show how to
compute such a counterfactual probability on an SCM by computing an observational probability
on an auxiliary model. This will be essential for the constructions used later in the paper.

Consider the counterfactual probability Pr(yx, y
′
x′ |x, y) on the SCM in Figure 1(a). This query

has three conflicting components: yx, y′x′ and (x, y). The first two involve conflicting actions (x and
x′). Moreover, the actions and outcomes in the first two components conflict with the observation
in the third component (x, y). This is why computing counterfactual probabilities usually requires
an auxiliary model that incorporates multiple worlds (real and imaginary) that all share the same
causal mechanisms (exogenous variables). For the counterfactual queries we are interested in, an
auxiliary model with three worlds will suffice as we discuss next.

Given an SCM G, its triplet model is another SCM constructed by having three copies G1,
G2 and G3 of G and then joining them so they share their exogenous variables; see Figure 1(b).
If X is a variable in G1, we will use [X] to denote its copy in G2 and [[X]] to denote its copy
in G3. A triplet model is a special case of parallel worlds models (Avin et al., 2005) which also
include twin models (Balke and Pearl, 1994).2 We can now compute the counterfactual probability
Pr(yx, y

′
x′ |x, y) on SCM G by operating on the triplet model as follows. First, we mutilate copies

1. The class of causal Bayesian networks sits between Bayesian networks and functional Bayesian networks as it can
be used to compute observational and interventional probabilities but not counterfactual ones (Pearl et al., 2000).

2. Twin models are sufficient to evaluate counterfactual probabilities like Pr(y′
x′ |x, y) and Pr(y′

x, yx′) but not ones
like Pr(yx, y

′
x′ |e) which we are interested in; see also (Tian and Pearl, 2000; Pearl et al., 2000).
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(a) SCM (b) triplet model (c) mutilated triplet model

Figure 1: Reducing the counterfactual probability Pr(yx, y
′
x′ |x, y) on the model in (a) to an obser-

vational probability Pr([y], [[y′]] | [x], [[x′]], x, y) on the model in (c).

G2 and G3 in the triplet model by removing the edges pointing into variables [X] and [[X]] and
setting [X] = x and [[X]] = x′ (since we are intervening on these variables). The result is a
mutilated triplet model shown in Figure 1(c). We can then evaluate Pr(yx, y

′
x′ |x, y) on the SCM

G by computing the observational probability Pr([y], [[y′]] | [x], [[x′]], x, y) on the mutilated triplet
model. Intuitively, the triplet model can be viewed as capturing three worlds G1, G2 and G3. World
G1 captures the observation x, y; world G2 captures the intervention X = x, and world G3 captures
the intervention X = x′. This above treatment can be directly generalized to counterfactual queries
of the form Pr(yx,wv|e) where E,X,Y,V,W are sets of variables. It is precisely this class of
counterfactual queries that we shall use in the rest of the paper, starting with the next section.

3. Causal Objective Functions and Unit Selection

A causal objective function can be any expression that involves observational, interventional or
counterfactual probabilities where the goal of unit selection is to find objects (units) that optimize
this function. However, inspired by (Li and Pearl, 2019), our treatment will be based on a specific
class of causal objective functions which is a linear combination of counterfactual probabilities of
the form Pr(yi

xi ,wi
vi |ei,u) where i = 1, . . . , n. We call U the unit variables since our goal is to

find instantiations u of these variables (i.e., units) that optimize the objective function.3 Variables
XiVi represent treatments, variables YiWi represent outcomes, (Xi ∪ Vi) ∩ (Yi ∪Wi) = ∅,
and variables Ei represent evidence. Unit variables are shared by all components of the objective
function but each component can have its own treatment, outcome and evidence variables.

We will further assume that unit variables U are exogenous in the SCM (i.e., root variables)
while treatment, outcome and evidence variables are endogenous. However, not all exogenous vari-
ables need to be unit variables. This is consistent with the assumption in (Li and Pearl, 2022a) that
unit variables (also called characteristics) cannot be descendants of treatment or outcome variables.

3. An anonymous reviewer pointed out that the term “unit” is often used to designate the unit of analysis; that is, the
entity that is characterized by random variables. For example, the unit in many medical studies is the the patient,
the unit in many management studies is the company, and the unit in many studies of crime rates is the city or
municipality. In this context, “unit selection” could be assumed to involve selecting the unit of analysis which is
different from our use of the term in this paper.
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This leads us to objective functions of the following form:4

L(u) =
n∑

i=1

wi · Pr(yi
xi ,w

i
vi |ei,u) where wi ≥ 0 and

n∑
i=1

wi = 1 (1)

We can now formally define the unit selection inference problem on structural causal models.

Definition 1 (Unit Selection) Given an SCM G, a subset U of its variables, and an objective func-
tion L(u) such as Equation (1), the unit selection inference problem is to compute argmaxu L(u).

The benefit function discussed in (Li and Pearl, 2019) has the following form:

L(u) = βPr(yx, y
′
x′ |u) + γPr(yx, yx′ |u) + θPr(y′x, y

′
x′ |u) + δPr(y′x, yx′ |u) (2)

This class of objective functions falls as a special case of Equation (1) by setting n = 4, Ei = ∅,
Xi = Vi = {X} and Yi = Wi = {Y } for i = 1, . . . , 4, where X,Y are binary variables. That
is, each component i of the objective function uses the same single, treatment variable X and the
same single, outcome variable Y . A more general form was proposed in (Li and Pearl, 2022b) in
which treatment X has values x1, . . . , xm and outcome Y has values y1, . . . , yk so the objective
function can have up to km components, each corresponding to a distinct response type such as
Pr(y2x1

, y1x2
, y1x3

, y3x4
, y2x5

|u) when k = 3 and m = 5. This class of objective functions is
more general than Equation (1) in that it allows one to express more response types but it assumes
one treatment variable and one outcome variable. The class of objective functions we consider
in Equation (1) allows compound treatments and outcomes. It also allows us to seek units from a
particular group. For example, if A and B are two medications (binary treatments) and T and P refer
to high temperature and high blood pressure (binary outcomes), and E is the age group with values
e1, . . . , e4, then the objective function can include terms such as Pr((t, p′)a,b , (t

′, p′)a′,b | e3, u),
which is the probability that a member of the third age group would have high temperature and
normal blood pressure if administered both medications and would have normal temperature and
blood pressure if administered only the second medication. Moreover, since the objective function
components can have different treatment and outcome variables, one can select units based on their
responses to distinct stimuli (e.g., effect of one type of encouragement on membership renewal and
the simultaneous effect of another type of encouragement on increased purchases).5

4. The Complexity of Unit Selection

We show next that unit selection is NPPP-complete for the class of causal objective functions given in
Equation (1). We also show that this problem is NP-complete when unit variables correspond to all
exogenous variables in the SCM.6 We start by providing an efficient reduction from unit selection

4. The conditions we place on weights wi are meant for convenience and they are not restrictive.
5. Going beyond the form in Equation (1), one can use causal objective functions with more general ingredients, such

as: the probability of a patient being a responder given they are not a contrarian, Pr(yx, y′
x′ |¬(y′

x, yx′)); or the
probability that a patient would not have had a stroke if they were on a diet (y′

d) or had exercised (y′
e) given that they

did neither (d′, e′), i.e., Pr(y′
d ∨y′

e|y, d′, e′). Such general quantities have not been treated in the literature but some
discussions have argued for their significance and treated some special cases; e.g., (Pearl, 2017).

6. For a discussion of complexity classes that are relevant to Bayesian network inference, see (Shimony, 1994) on
the MPE decision problem being NP-complete, and (Park, 2002; Park and Darwiche, 2004a) on the MAP decision
problem being NPPP-complete. Roth (1996) shows that computing node marginals in a Bayesian network is #P-
complete. For a textbook discussion of these complexity results, see (Darwiche, 2009, Ch. 11).
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into a variant of the well-known MAP inference problem, which we call Reverse-MAP. We then
follow by studying the complexity of Reverse-MAP and unit selection.

Recall that our goal is to find units u that maximize the value L(u) of the objective function.
The first step in solving this optimization problem is to be able to evaluate the objective L(u). We
next show a construction which allows us to evaluate L(u) by evaluating a single observational
probability involving unit variables U but on an extended and mutilated model. This construction
will serve two purposes. First, it will permit us to characterize the complexity of unit selection when
using objective functions in the form of Equation (1). Second, we will later use the construction to
develop a specific algorithm for solving the unit selection problem using these objective functions.

Consider each term Pr(yi
xi ,w

i
vi |ei,u) in Equation (1). We reviewed in Section 2 how this

quantity can be reduced to a classical conditional probability on a triplet model Gi. The next step
is to encode a linear combination of these conditional probabilities as a conditional probability on
some model G′. This is done using the following construction.

Definition 2 (Objective Model) Consider an SCM G with parameters θ and the objective function
L in Equation (1). The objective model G′ for ⟨G,L⟩ has parameters θ′ and constructed as follows:

1. Construct a triplet model Gi of G for each term Pr(yi
xi ,w

i
vi |ei,u) in L (see Section 2). Join

G1, . . . , Gn so that their unit variables U are shared. This leads to model G′.

2. Add a node H to G′ as a parent of all outcome nodes Z = {[Yi], [[Wi]]}ni=1. Node H has
states h1, . . . , hn and prior θ′(hi) = wi. Each node Z ∈ Z now has parents PZ ∪ {H},
where PZ are the parents of Z in G′ before node H is added. Let zi be the state of Z in the
corresponding instantiation yiwi of objective function L. The new CPT for Z is:

PZ H Z θ′(Z|PZ , H)
p hi zi θ(zi|p)
p hi z̄i θ(z̄i|p)
p h̄i zi 1.0
p h̄i z̄i 0.0

Here, z̄i, h̄i denote any states of variables Z,H that are distinct from states zi, hi.

We say the objective model G′ has n components, and call H the mixture variable as it encodes
a mixture of the objective function terms. The CPTs for variables [Yi], [[Wi]] in model G′ reduce to
their original CPTs in SCM G when H = hi, and imply [Yi] = yi, [[Wi]] = wi when H ̸= hi. The
objective L(u) in SCM G is a classical probability in the objective model G′ (proof in Appendix A).

Theorem 3 Consider an SCM G with unit variables U. Let L be the objective function in Equa-
tion (1), and let G′ be an objective model for ⟨G,L⟩. Let X = {[Xi]}ni=1,Y = {[Yi]}ni=1,
W = {[[Wi]]}ni=1, V = {[[Vi]]}ni=1 and E = {Ei}ni=1. We have L(u) = Pr ′(y,w|x,v, e,u),
where y,w,x,v, e are the instantiations of variables Y,W,X,V,E in objective function L.

Consider the SCM in Figure 1(a) and the causal objective function L(u) = w1 ·Pr(yx, y′x′ |u)+
w2 · Pr(yx, yx′ |u). Figure 2 shows a corresponding objective model G′ constructed according to
Definition 2. We now have L(u) = Pr ′([y1], [[y′1]], [y2], [[y2]] | [x1], [[x′1]], [x2], [[x′2]], u).

Theorem 3 suggests that we can optimize the objective function L(u) on an SCM G by comput-
ing the instantiation argmaxu Pr(y,w|x,v, e,u) on an objective model G′. The is similar to the
classical MAP problem on model G′, except that the optimized variables U appear after the condi-
tioning operator instead of before it. This leads to our definition of the Reverse-MAP problem.
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Figure 2: An objective model with two components for the SCM in Figure 1(a).

Definition 4 (Reverse-MAP) Consider an SCM G with distribution Pr and suppose U,E1,E2

are disjoint sets of variables in G. The Reverse-MAP instantiation for variables U and instantia-
tions e1, e2 is defined as follows: RMAP(U, e1, e2) ≜ argmaxu Pr(e1 | u, e2).

To see the connection between Reverse-MAP and MAP, note that argmaxu Pr(e1|u, e2) =
argmaxu Pr(u, e1, e2)/Pr(u, e2) where argmaxu Pr(u, e1, e2) = argmaxu Pr(u|e1, e2) is the
known MAP problem (Pearl, 1989). In general, the MAP instantiation argmaxu Pr(u, e1, e2) is not
the Reverse-MAP instantiation since Pr(u, e2) also depends on U; see Appendix B for a concrete
example that illustrates this point. We now have the following result, proven in Appendix C.

Corollary 5 There are polynomial-time reductions between the Reverse-MAP problem and the unit
selection problem with objective functions in the form of Equation (1).

We next characterize the complexity of Reverse-MAP under different conditions. Consider a
decision version of the problem, D-Reverse-MAP, defined as follows.

Definition 6 (D-Reverse-MAP) Given an SCM with rational parameters that induces distribution
Pr , some target variables U, some evidence e1, e2 and a rational threshold p, the D-Reverse-MAP
problems asks whether there is an instantiation u of U such that Pr(e1|u, e2) > p.

The next theorem shows that D-Reverse-MAP is NPPP-complete, like classical MAP (Park and
Darwiche, 2004b). Its proof can be found in Appendix D.

Theorem 7 D-Reverse-MAP is NPPP-complete.

We can now characterize the complexity of unit selection using Theorem 7 and Corollary 5.

Corollary 8 Unit selection is NPPP-complete assuming the objective function in Equation (1).
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In an SCM, exogenous (root) variables represent all uncertainties in the model and the endoge-
nous (internal) variables are uniquely determined by exogenous variables. This property of SCMs
significantly reduces the complexity of unit selection when the unit variables correspond to all SCM
exogenous variables. This is implied by the following result which is proven in Appendix E.

Theorem 9 D-Reverse-MAP is NP-complete if its target variables are all the SCM root variables.

Corollary 10 Unit selection is NP-complete when the unit variables are all the SCM exogenous
(root) variables, assuming the objective functions in Equation (1).

5. Unit Selection using Variable Elimination

Section 4 provided a reduction from unit selection on an SCM to Reverse-MAP on an objective
model. In Section 5.1, we provide a variable elimination (VE) algorithm for Reverse-MAP which
can be applied to the objective model to solve unit selection. In Section 5.2, we analyze the com-
plexity of this method and compare it to the complexity of Reverse-MAP on the underlying SCM.

5.1. Reverse-MAP using Variable Elimination

Our VE algorithm for Reverse-MAP will employ the same machinery and techniques used in the VE
algorithm for classical MAP (Dechter, 1999). Hence, we will first review the VE algorithm for MAP
using the treatment in (Darwiche, 2009, Ch 10) and then discuss the algorithm for Reverse-MAP.

The VE algorithm is based on the notion of a factor f(X) which maps each instantiation x of
variables X into a non-negative number f(x). VE employs a number of factor operations including
multiplying two factors (f · g), summing out a variable from a factor (

∑
X f ), maximizing out a

variable from a factor (maxX f ), and dividing two factors (f/g). Let G be an SCM and assume its
variables Z are partitioned into three disjoint sets U,V,E, where U are the target variables and E
are the evidence variables. Let S = Z\U in the following discussion. We will treat the CPT of each
variable Z in SCM G as a factor over Z and its parents P, denoted fZ(ZP). The SCM distribution
is then Pr(Z) =

∏
Z∈Z fZ . We capture evidence e by creating an evidence factor λe(E) for each

e ∈ e with λe(e
′) = 1 if e′ = e and λe(e

′) = 0 otherwise. The MAP probability is then given by7

MAPp(U, e) = max
u

Pr(u, e) = max
u

∑
v

Pr(u,v, e) = max
U

∑
S

∏
Z∈Z

fZ
∏
e∈e

λe(E) (3)

Figure 3: SCM

This is in contrast to the MAP instantiation which is argmaxu Pr(u, e).
With some minor bookkeeping, the VE algorithm for computing the MAP
probability can also return a MAP instantiation; see, e.g., (Darwiche, 2009,
Ch 10). Hence, we will focus next on computing the MAP probability.

Consider the SCM in Figure 3 and suppose U = {A,B} and the evi-
dence e is {E = e}. In this case, MAPp(AB, e) will be equal to

max
AB

∑
CDE

fA(A)fB(AB)fC(AC)fD(BCD)fE(CE)λe(E) (4)

7. The left side of Equation 3 is a scalar (probability) while the right side is a factor over an empty set of variables,
which is called a scalar factor. Such a factor maps only one instantiation, the empty one, to a scalar.
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Algorithm 1 MAP VE(G,U, e)

Input: SCM G, target variables U, evidence e
Output: scalar factor containing MAPp(U, e)

1: procedure MAIN
2: πS ← an elimination order for non-target variables
3: πU ← an elimination order for target variables U
4: F ← {f : f is a CPT of SCM G} ∪ {λe : λe is an evidence factor for e ∈ e}
5: G ← ELIMINATE(

∑
,F , πS)

6: p← ELIMINATE(max,G, πU)
7: return p
8: end procedure

Algorithm 2 Eliminating Variables using Sum or Max
Input: an operation⃝ ∈ {

∑
,max}, a set of factors F , a total variable order π

Output: a set of factors
1: procedure ELIMINATE(⃝,F , π)
2: for i = 1 to length of order π do
3: V ← ith variable in order π
4: G ← factors in F that mention variable V
5: fi ←

∏
f∈G f

6: fi ←⃝V fi
7: replace factors G in F with factor fi
8: end for
9: return F

10: end procedure

A naive evaluation of this expression multiplies all factors to yield a factor f(ABCDE) over all
variables, then computes maxAB

∑
CDE f(ABCDE), leading to O(n exp(n)) complexity where

n is the number of model variables. The VE algorithm tries to compute this expression more effi-
ciently with pseudocode provided in Algorithm 1 (MAP VE). The product of factors F on Line 4
represents the joint distribution Pr(Z, e) so we first sum out variables S from F on Line 5 to com-
pute a set of factors G whose product represents the marginal Pr(U, e). We then maximize out
variables U from G on Line 6 leading to a scalar factor p that contains the MAP probability (see
Footnote 7). Algorithm 1 eliminates variables one by one using Algorithm 2 and a total variable
order π = ⟨πS, πU⟩, known as an elimination order. MAP VE requires variables U to appear
last in order π since summation does not commute with maximization. An order that satisfies this
constraint is known as a U-constrained elimination order. The complexity of MAP VE depends
on the used elimination order π. In each elimination step of Algorithm 2, we multiply all factors
that mention variable π(i) to obtain factor fi on Line 6. The variables in fi are called a cluster Ci

so eliminating variables π(1), . . . , π(n) induces clusters C1, . . . ,Cn. The width w of elimination
order π is the size of largest cluster minus one and the complexity of MAP VE is O(n exp(w)).

The table below depicts the trace of MAP VE when computing the MAP probability in Equa-
tion (4) using the elimination order π = E,D,C,B,A. The trace shows that MAP VE evaluates
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the following factorized expression and that the width of order π is 2 (largest cluster has size 3):

MAPp(AB, e) = max
A

fA(A)

[
max
B

fB(AB)

[∑
C

fC(AC)

[∑
D

fD(BCD)

[∑
E

fE(CE)λE

]]]]

i eliminated var factors G (Line 4, Algorithm 2) new factor fi (Line 6, Algorithm 2) Ci

1 E fE(CE) λE f1 =
∑

E fE(CE) λE CE
2 D fD(BCD) f2 =

∑
D fD(BCD) BCD

3 C fC(AC) f1(C) f2(BC) f3 =
∑

C fC(AC) f1(C) f2(BC) ABC
4 B fB(AB) f3(AB) f4 = maxB fB(AB) f3(AB) AB
5 A fA(A) f4(A) p = maxA fA(A) f4(A) A

Choosing a good elimination order is critical for the complexity of VE. The treewidth of an
SCM G is defined as the minimum width attained by any elimination order. Since MAP requires
U-constrained orders, the U-constrained treewidth of G is defined as the minimum width attained
by any U-constrained elimination order (Park and Darwiche, 2004b).

We are now ready to introduce our VE algorithm for Reverse-MAP. Again, we assume that the
model variables Z are partitioned into disjoint sets U,V,E, where U are the target variables and
S = Z \U. But we further partition the evidence variables E into E1 and E2. Again, we focus on
computing the Reverse-MAP probability RMAPp(U, e1, e2) instead of the instantiation:

max
u

Pr(e1|u, e2) = max
u

Pr(u, e1, e2)

Pr(u, e2)
= max

u

∑
v Pr(u,v, e1, e2)∑
v Pr(u,v, e2)

= max
U

∑
S

∏
Z∈Z

fZ
∏

e∈e1∪e2

λe∑
S

∏
Z∈Z

fZ
∏
e∈e2

λe

Our algorithm, called RMAP VE, runs two passes of elimination as shown in Algorithm 3.
In the first pass (Line 4), we sum out variables S under evidence e1, e2 and in the second pass
(Line 5), we sum out variables S under evidence e2. This leads to two sets of factors G1 and
G2 which correspond to marginal distributions Pr(U, e1, e2) and Pr(U, e2). Now we need to
divide Pr(U, e1, e2) and Pr(U, e2) to compute Pr(e1|U, e2). We next show that this can be
done efficiently by “dividing” G1 and G2 as shown on Line 8. The key idea is that if we run the
two passes of elimination according to the same elimination order, then there will be a one-to-one
correspondence between the factors in G1 and G2. Let (gi1, g

i
2) be the corresponding pairs of factors

for i = 1, . . . , k where k = |G1| = |G2|. What we need is
(∏n

i=1 g
i
1

)
/
(∏n

i=1 g
i
2

)
since this

represents Pr(e1|U, e2). But due to the mentioned correspondence, this equals
∏n

i=1 g
i
1/g

i
2. Thus,

we can divide each pair of corresponding factors to obtain the set of factors G as done on Line 8.
We finally maximize out target variables U from G to obtain the Reverse-MAP probability (Line 9).

RMAP VE has the same complexity as MAP VE if both use the same elimination order. Sup-
pose there are k factors in G1/G2/G and the largest factor has size c. The cost of division on Line 8
is O(k exp(c)) while the cost of maximization on Line 9 is at least O(k exp(c)) so the cost of
division is dominated by the cost of maximization. Hence, the complexity of RMAP VE is still
O(n exp(w)) where n is the number of variables and w is the width of used U-constrained order π.
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Algorithm 3 RMAP VE(G,U, e1, e2)

Input: SCM G, target variables U, evidence e1 and e2
Output: scalar factor containing RMAPp(U, e1, e2)

1: procedure MAIN
2: πS ← an elimination order for non-target variables
3: πU ← an elimination order for target variables U
4: F1 ← {f : f is a CPT of SCM G} ∪ {λe : λe is an evidence factor for e ∈ e1, e2}
5: F2 ← {f : f is a CPT of SCM G} ∪ {λe : λe is an evidence factor for e ∈ e2}
6: G1 ← ELIMINATE(

∑
,F1, πS)

7: G2 ← ELIMINATE(
∑

,F2, πS)
8: G ← {g1/g2 : g1, g2 are corresponding factors in G1,G2}
9: p← ELIMINATE(max,G, πU)

10: return p
11: end procedure

5.2. Bounding the Complexity of Unit Selection using Variable Elimination

We can solve unit selection by applying RMAP VE to an objective model of the SCM as shown by
Theorem 3. However, RMAP VE (and MAP VE) is expected to be more expensive on the objective
model compared to the given SCM since the former is larger and denser than the latter. But how
much more expensive? In particular, is RMAP VE always tractable on the objective model when it
is tractable on the underlying SCM? We consider this question next using the lens of treewidth which
is commonly used to analyze elimination algorithms. Recall also that MAP VE and RMAP VE
have the same complexity when applied to the same SCM using the same target variables.

Our starting point is to study the treewidth of an objective model in relation to the treewidth of
its underlying SCM. We will base our study on the techniques and results reported in (Han et al.,
2022) which studied the complexity of counterfactual reasoning. In particular, given an elimination
order π of SCM G, we next show how to construct an elimination order π′ for the objective model
G′ while providing a bound on the width of order π′ in terms of the width of order π. Recall that we
use [X] and [[X]] to denote the copies of variable X in a triplet model where X = [X] = [[X]] if
X is exogenous. Moreover, if U is a unit variable, then U = U1 = · · · = Un in an objective model.

Definition 11 Let G be an SCM and G′ be a corresponding objective model with n components.
If π is an elimination order for G, the corresponding elimination order π′ for G′ is obtained by
replacing each non-unit variable X in π by X1, . . . , Xn, [X1], . . . , [Xn], [[X1]], . . . , [[Xn]] then
appending the mixture variable H to the end of the order.

Consider the elimination order π = A,X, Y, U for the SCM in Figure 1(a). The corresponding
elimination order π′ for the objective model in Figure 2 is as follows:

π′ = A1, A2, X1, X2, [X1], [X2], [[X1]], [[X2]], Y1, Y2, [Y1], [Y2], [[Y1]], [[Y2]], U,H

The following bound (Theorem 14) follows from Lemma 12 and Theorem 13 which concerns
n-world models. Given an SCM G and a subset U of its roots, an n-world model is obtained by
creating n copies of G that share nodes U (Han et al., 2022). This notion corresponds to parallel
worlds models (Avin et al., 2005) when U contains all roots of SCM G. An objective model with
n components can be viewed as a 3n-world model but with an additional mixture node H and

11
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some edges that originate from H . Lemma 12 and Theorem 14 are proven in Appendix G and
Appendix H.

Lemma 12 Consider an SCM G and suppose SCM G′ is obtained from G by adding a root node H
as a parent of some nodes in G. If π is an elimination order for G and has width w, then π′ = ⟨π,H⟩
is an elimination order for G′ and has width w′ ≤ w + 1.

Theorem 13 (Han et al. (2022)) Consider an SCM G, a subset U of its roots and a corresponding
n-world model G′. If G has an elimination order π with width w, then there exists a corresponding
elimination order π′ of G′ that has width w′ ≤ n(w + 1)− 1.

Theorem 14 Consider an SCM G and a corresponding objective model G′ with n components.
Let π be an elimination order for G and let π′ be the corresponding elimination order for G′. If π
has width w and π′ has width w′, then w′ ≤ 3n(w + 1).

Corollary 15 If w is the treewidth of an SCM G and w′ is the treewidth of a corresponding objective
model G′ with n components, then w′ ≤ 3n(w + 1).

As mentioned earlier, RMAP VE and MAP VE require a U-constrained elimination orders in
which unit variables U appear last in the order. Hence, a U-constrained elimination order for an
objective model must place the mixture variable H before U. This leads to the next definition.

Definition 16 Let G be an SCM with unit variables U and let G′ be a corresponding objective
model with n components. If π is a U-constrained elimination order for G, the corresponding U-
constrained elimination order π′ for G′ is obtained by replacing each non-unit variable X in π by
X1, . . . , Xn, [X1], . . . , [Xn], [[X1]], . . . , [[Xn]] then inserting mixture variable H just before U.

Consider the U-constrained order π = A,X, Y, U for the SCM in Figure 1(a). The correspond-
ing U-constrained elimination order for the objective model in Figure 2 is

π′ = A1, A2, X1, X2, [X1], [X2], [[X1]], [[X2]], Y1, Y2, [Y1], [Y2], [[Y1]], [[Y2]], H, U

We now have the following bound on the U-constrained treewidth of objective models, which
is somewhat unexpected when compared to the bound on treewidth. In particular, while the bound
on treewidth grows linearly in the number of components in the objective model, the bound on
U-constrained treewidth is independent of such a number. Moreover, the bound on U-constrained
treewidth can depend on the number of unit variables which is not the case for treewidth.

Theorem 17 Let G be an SCM with unit variables U and let G′ be a corresponding objective
model. If π is a U-constrained elimination order for G with width w and π′ is the corresponding
U-constrained elimination order for G′ with width w′, then w′ ≤ max(3w+3, |U|). If the objective
function in Equation (1) has one outcome variable (Yi = Wi = {Y } for all i), then w′ ≤ 3w + 3.

Corollary 18 Let G be an SCM with unit variables U and let G′ be a corresponding objective
model. If w and w′ are the U-constrained treewidths of G and G′, then w′ ≤ max(3w + 3, |U|).
Moreover, if the objective function in Equation (1) has a single outcome variable, then w′ ≤ 3w+3.

12
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The above bounds can be significantly tighter depending on the objective function properties. Corol-
lary 18 identifies one such property which is satisfied by the benefit function in (Li and Pearl, 2019);
see Equation (2). Moreover, the factor 3 in these bounds is an implication of using a triplet model
which may not be necessary. Consider components Pr(yi

xi ,w
i
vi |ei,u) in the objective function of

Equation (1). If Ei=∅ for all i, then a twin model is sufficient when building an objective model
(similarly if Yi=Xi=∅ or Wi=Vi=∅). The objective function in Equation (2), from (Li and
Pearl, 2019), has Ei=∅ for all i so it leads to the tighter bound w′ ≤ 2w + 2. More generally, if
the objective function properties lead to removing the dependence on |U| in the bound of Corol-
lary 18, then RMAP VE on an objective model is tractable if RMAP VE (MAP VE) is tractable
on the underlying SCM. Otherwise, the bound in Corollary 18 does not guarantee this. Recall that
MAP, Reverse-MAP and unit selection using Equation (1) are all NPPP-complete as shown earlier.

We provide in Appendix J a preliminary experiment and an extensive discussion in relation to
the complexities of three algorithms: (1) MAP VE (Algorithm 1) which solves MAP by operating
on an SCM; (2) RMAP VE (Algorithm 3) which solves unit selection by operating on an objective
model; and (3) a baseline, bruteforce method which solves unit selection by operating on a twin
or triplet model (depending on the objective function). The main finding of the experiment is that,
as the size of the problem grows,8 the gap between the complexities of MAP VE and RMAP VE
narrows while the gap between the complexities of RMAP VE and the bruteforce method grows
(the bruteforce method is significantly worse and becomes impractical pretty quickly). Appendix J
also identifies a class of SCM structures (and unit variables) for which the number of unit variables
is unbounded but the complexity of RMAP VE on an objective model is bounded.

We finally note that the complexity bounds we provided for MAP VE and RMAP VE are in
terms of treewidth, but tighter bounds can be obtained using the recent notion of causal treewidth (Chen
and Darwiche, 2022; Darwiche, 2020), which is no greater than treewidth and can sometimes be
bounded when treewidth is not (Darwiche, 2022) by leveraging functional dependencies in the
SCMs. This is a subject for future work.

6. Conclusion

We studied the unit selection problem in a computational setting which complements existing stud-
ies. We assumed a fully specified structural causal model so we can compute point values of causal
objective functions, allowing us to entertain a broader class of functions than is normally considered.
We showed that the unit selection problem with this class of objective functions is NPPP-complete,
similar to the classical MAP problem, and identified an intuitive condition under which it is NP-
complete. We further provided an exact algorithm for the unit selection problem based on variable
elimination and characterized its complexity in terms of treewidth, while relating this complexity to
that of MAP inference. In the process, we defined a new inference problem, Reverse-MAP, which
is also NPPP-complete but captures the essence of unit selection more than MAP does.
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Appendix A. Proof of Theorem 3

The proof of this theorem requires a lemma which requires the following definition. We will say
that a set of variables Z decomposes a DAG if removing the outgoing edges from Z splits the DAG
into at least two disconnected components.

Lemma 19 Consider an SCM G with distribution Pr and three disjoint set of variables X,Y,Z.
Suppose Z decomposes G into disconnected components G1 and G2. If X1,Y1 are subsets of
X,Y pertaining to G1, and X2,Y2 are subsets of X,Y pertaining to G2, then Pr(y|x, z) =
Pr(y1|x1, z)Pr(y2|x2, z).

Proof Since Z decomposes G, we have dsepG(X1,Z,X2) and dsepG(X1Y1,Z,X2Y2). We have:

Pr(y|x, z) = Pr(y,x|z)
Pr(x|z)

=
Pr(y1,y2,x1,x2|z)

Pr(x1,x2|z)
=

Pr(y1,x1|z)Pr(y1,x1|z)
Pr(x1|z)Pr(x2|z)

(5)

=

[
Pr(y1,x1|z)
Pr(x1|z)

] [
Pr(y2,x2|z)
Pr(x2|z)

]
= Pr(y1|x1, z)Pr(y2|x2, z)

Equation (5) follows from dsepG(X1,Z,X2) and dsepG(X1Y1,Z,X2Y2). This concludes our
proof. Although we only consider the case of two subnetworks here, it is easy to see that this lemma
generalizes to an arbitrary number of subnetworks decomposed by Z.

We are now ready to prove Theorem 3. By construction of G′, U ∪ {H} decomposes G′ into
its n components G1, G2, . . . Gn. We have:

Pr ′(y,w | x,v, e,u) =
n∑

i=1

Pr ′(y,w, hi | x,v, e,u)

=
n∑

i=1

Pr ′(y,w | x,v, e,u, hi)Pr ′(hi | x,v, e,u)

=
n∑

i=1

Pr ′(y,w | x,v, e,u, hi)Pr ′(hi) (6)

=
n∑

i=1

 n∏
j=1

Pr ′(yj ,wj | xj ,vj , ej ,u, hi)

Pr ′(hi) (7)

=
n∑

i=1

∏
j ̸=i

pr′(yj ,wj | xj ,vj , ej ,u, hi)

Pr ′(yi,wi | xi,vi, ei,u, hi)Pr
′(hi)

(8)

=

n∑
i=1

∏
j ̸=i

1.0

Pr ′(yi,wi | xi,vi, ei,u) wi (9)

=
n∑

i=1

wi Pr(y
i
xi ,w

i
vi | ei,u)

= L(u) (10)
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Equation (6) follows since the auxiliary root H is d-separated from X ∪V ∪ E ∪U. Equation (7)
follows from Lemma 19 since U∪{H} decomposes G such that all triplet models are disconnected.
Equation (8) follows from the construction of the new CPTs of Yi and Wi: if H = hi, then the
original CPTs of Yi and Wi are preserved, and the values of Yj and Wj are fixed to yj and w for
all j ̸= i. Equation (9) follow from the property of the triplet network.

Appendix B. Example for MAP and Reverse-MAP

Consider the simple model in Figure 4. We have argmaxu Pr(u, v1) = u2 for MAP while argmaxu Pr(v1|u) =
u1 for R-MAP.

(a)

U θ(A)

u1 0.2
u2 0.8

(b)

U V θ(V |U)

u1 v1 0.6
u1 v2 0.4
u2 v1 0.3
u2 v2 0.7

(c)

Figure 4: An example for illustrating the difference between MAP and R-MAP.

Appendix C. Proof of Corollary 5

We can reduce Reverse-MAP argmaxu Pr(e1|u, e2) to unit selection by choosing an objective
function in the form of Equation (1) with the following settings: n = 1, w1 = 1, X1 = {},
Y1 = E1 and E1 = E2. This is clearly a polynomial-time reduction. We already showed a
reduction from unit selection to Reverse-MAP in Theorem 3. Let |G| denote the size9 of SCM G
and n be the number of components in the causal objective function. By inspecting Definition 2, we
can immediately see that the time for constructing the objective model G′ is O(n · |G|). Moreover,
the size of objective model G′ is also O(n · |G|).

Appendix D. Proof of Theorem 7

Membership in NPPP is immediate. Given an instantiation u of U, it is easy to verify if u is a
solution by querying the PP-oracle if Pr(e1|u, e2) > p which is a problem known as D-MAR (Dar-
wiche, 2009). To prove hardness, we show that E-MAJSAT (Littman et al., 1998) can be reduced
to D-Reverse-MAP in polynomial time, based on a slight modification of the reduction to classical
MAP proposed in (Park, 2002; Park and Darwiche, 2004b). The E-MAJSAT problem is defined as
follows. Given a Boolean formula α over Boolean variables Z = U∪V: Is there an instantiation u
of U such that the majority of instantiations v of V satisfy uv |= α (formula α holds at uv)? We
show that we can answer E-MAJSAT by answering D-Reverse-MAP on an SCM Gα that simulates
the formula α and that can be constructed efficiently. The SCM Gα is constructed inductively, as

9. The size of an SCM is the space needed to store the SCM structure and parameters. For example, if the SCM is
represented by a functional Bayesian Network, its size is usually the total number of entries in the network CPTs.
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shown in (Park and Darwiche, 2004b),10 and always has a single leaf node, denoted Sα. The con-
struction is based on three rules: (1) If α = X , then Gα has a single binary node X with values
{0, 1} and a uniform prior so Sα = X; (2) If α = ¬β, then Gα is constructed from Gβ by adding a
binary node Sα as a child of Sβ ∈ Gβ with structural equation Sα = 1− Sβ; and (3) If α = β ∧ γ
(α = β ∨ γ), then Gα is constructed from Gβ and Gγ by adding a binary node Sα as a child of
Sβ ∈ Gβ and Sγ ∈ Gγ with structural equation Sα = Sβ · Sγ (Sα = Sβ + Sγ). We are now
ready for the last step of the proof. Given a Boolean formula α over variables Z = U ∪ V, and
given its SCM Gα that has distribution Pr , we next show that there is an instantiation u such that
Pr(Sα = 1|u) > 1/2 (D-Reverse-MAP query) iff there is an instantiation u such that the majority
of instantiations v of V satisfy uv |= α (E-MAJSAT query). Let |Z| = n and sα denote Sα = 1.
By construction of Gα (Park and Darwiche, 2004b), we have Pr(z) = 1/2n for all instantiations z;
Pr(sα|z) = 1 if z |= α and Pr(sα|z) = 0 otherwise. Then Pr(z, sα) = Pr(sα|z)Pr(z) = 1/2n if
z |= α and Pr(z, sα) = 0 otherwise. We finally have:

Pr(sα|u) =
Pr(u, sα)

Pr(u)
=

∑
v Pr(u,v, sα)∑
v Pr(u,v)

=

∑
v:uv|=α(1/2

n)∑
v(1/2

n)
=

card({v ∈ V : uv |= α})
card(V)

Now that we have shown membership and hardness, D-Reverse-MAP is NPPP-complete.

Appendix E. Proof of Theorem 9

Recall Definition 6 of D-Reverse-MAP: Is there an instantiation u such that Pr(e1|u, e2) > p?
Membership in NP is immediate. Since U is the set of exogenous variables, evidence variables
E are functionally determined by U. Hence, it is easy to check whether an instantiation u is a
solution by first computing the instantiation e of E implied by u (using structural equations) and
then checking whether e is consistent with e1, e2. If the answer is yes, then Pr(e1|u, e2) = 1,
otherwise Pr(u, e2) = 0 or Pr(e1|u, e2) = 0. To show hardness, we show that SAT can be
reduced to D-Reverse-MAP under the conditions stated in the theorem. Given a Boolean formula
α over variables U, we construct an SCM Gα as in the proof of Theorem 7. SCM Gα has a single
leaf node Sα and its root nodes are U. By construction of Gα, we have Pr(Sα = 1|u) = 1 if u
satisfies α and Pr(Sα = 1|u) = 0 otherwise. By choosing p = 0, e1 = {Sα = 1} and e2 = ∅,
the D-Reverse-MAP query (is there u such that Pr(Sα = 1|u) > 0) answers yes iff there is an
instantiation u that satisfies the formula α (SAT query). This concludes our proof.

Appendix F. Review of Elimination Concepts

We review here the standard notions of elimination process, clusters and moral graphs which we
use in some of the upcoming proofs; see (Darwiche, 2009, Ch 9) for a detailed treatment.

The moral graph of an SCM G is obtained from G by adding an undirected edge between every
pair of common parents and then undirecting all edges. Eliminating a variable X from a graph G
is done by connecting every pair of neighbors for X in G, and then removing node X from G.
Eliminating variables from an SCM G is done by eliminating variables from its moral graph G′.
Eliminating variables from a moral graph G′ using variable order π induces a graph sequence G′ =

10. (Park and Darwiche, 2004b) intended to construct a Bayesian network, but their construction is an SCM since all
internal nodes in the network have functional CPTs.
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G1, . . . , Gn where graph Gi+1 is obtained by eliminating variable π(i) from Gi. We use Gi(X) to
denote X and its neighbors in graph Gi. We also use C(X) to denote the cluster of variable X ,
which is X and its neighbors just before eliminating X . If X = π(i), then C(X) = Gi(X). We
also use Ci to denote the cluster for X , C(X), in this case.

Appendix G. Proof of Lemma 12

This proof uses the elimination concepts and notations reviewed in Appendix F.
Let G′

m be the moral graph of G′ and C′
i be the cluster induces by eliminating variable Xi from

G′. Let n be the number of variables in G. To prove Lemma 12, it suffices to prove the following
statement: C′

i ⊆ Ci ∪ {H} for i = 1, . . . , n, which we prove next by induction.
Let neigh(X) denote the neighbors of X in Gm and let neigh′(X) denote the neighbors of X

in G′
m. Let Z denote the children of H in G′. For each Z ∈ Z, let PZ denote the parents of Z in

G. First, we show the statement holds when i = 1. When creating G′
m from G′, the introduction of

node H would cause two classes of edges that do not exist in Gm to be added to G′
m: 1) (Z,H) for

Z ∈ Z; 2) (Y,H) if Y is a parent of some node Z ∈ Z, that is Y and H are common parents of some
node Z. This means that before the elimination starts, for any node X , if X ∈ Z∪Z∈Z PZ , we have
neigh′(X) = neigh(X) ∪ {H}; otherwise neigh′(X) = neigh(X). Hence, C ′

1 ⊆ {C1} ∪ {H}.
Consider now the elimination of Xi+1 assume that the statement holds for 1, 2, . . . , i. We observe
that if C′

j ⊆ Cj ∪ {H}, then the elimination of Xj would cause only one type of additional edges
be added to G′

m, that is (Y,H) for Y ∈ neigh(Xj). This is because the elimination of Xj will
form a clique among neigh(Xj) ∪ {H} in G′

m, but neigh(Xj) already forms a clique after Xj is
eliminated from Gm. This implies that eliminating Xj (j ≤ i) will never cause any additional edge
to be added among any two nodes that are both not H (in other words, all additional edges added
are incident on H). Thus, before we eliminate Xi+1, we have neigh′(Xi+1) ⊆ neigh(Xi+1)∪{H}
and this implies C′

i+1 ∩Ci+1 ∪ {H} which concludes the proof.

Appendix H. Proof of Theorem 14

An N -world model is obtained by creating N copies of a directed acyclic graph (DAG) while
joining them so a subset of their roots are shared (Han et al., 2022). Hence, an objective model as
in Definition 2 corresponds to an N -world model except for the addition of mixture node H and
its outgoing edges. Before adding the mixture node H , an objective model with n components
corresponds to a 3n-world model so its treewidth is ≤ 3n(w+1)− 1 by Theorem 13. After adding
node H , its treewidth is ≤ 3n(w + 1) by Lemma 12.

Appendix I. Proof of Theorem 17

This proof uses the elimination concepts and notations reviewed in Appendix F.
For a node X in an SCM G, we use [X]k to denote its kth duplicate in an n-world model of G.

If node X is shared between all n worlds, then [X]k = X for all k. For a set of variables X, we use
[X]k to denote {[X]k : X ∈ X}.

Let G be an SCM, U be a subset of its roots (unit variables) and let G′ be a corresponding
objective model with n components. Our proof is based on constructing an augmented objective
model G′′ by adding edges to G′ and then showing that the bounds of Theorem 17 hold for G′′. Our
proof is based on Lemmas 20 and 22 which we formally state and prove later:
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– Lemma 20 complements Theorem 13 by showing that any U-constrained elimination order
for an SCM can be converted into a U-constrained elimination order for a corresponding
n-world model while preserving the width of the order.

– Lemma 22 concerns the augmentation of an SCM by a root node H and some edges that orig-
inate from H . In particular, given a U-constrained elimination order of width w for the SCM,
the lemma shows how to construct a U-constrained elimination order for its augmentation
with width ≤ max(w + 1, |U|).

We start by showing how to construct the augmented objective model G′′ from G′. Let H be
the mixture node of G′ and Z = {Yi,Wi}ni=1 be the set of all outcome variables in the objective
function of Equation (1). We obtain G′′ by adding to G′ an edge H → Z for each Z ∈ Z if such an
edge does not already exist in G′. The edges of G′′ are a superset of the edges of G′ so it suffices to
show that the bounds of Theorem 17 hold for G′′. We will next use Gt to denote a triplet (3-world)
model of G. We will also use Gb to denote the augmentation of Gt with mixture node H and edges
H → Z for Z ∈ Z. Note that the augmented objective model G′′ corresponds to n copies of Gb

that share root nodes U ∪ {H}. Hence, G′′ is an n-world model of Gb.
Let π be a U-constrained elimination order for G with width w. Since Gt is a triplet (3-world)

model of G, Theorem 13 tells us that there exists an elimination order πt of Gt with width wt such
that wt ≤ 3w+2 (order πt will also be U-constrained). Recall that Gb is obtained from Gt by adding
a root node H and some edges that emanate from H . By Lemma 22, there exists an elimination
order πb for Gb with width wb such that wb ≤ max(wt + 1, |U|) = max(3w + 3, |U|). Moreover,
if the objective function has a single outcome variable Y , then H has a single child Y in Gb so, also
by Lemma 22, we have wb ≤ 3w+3. Since G′′ is an n-world model of Gb based on roots U∪{H}
of Gb, we have w′′ = wb by Lemma 20. In summary, we have w′ ≤ w′′ ≤ max(3w+3, |U|). If the
objective function has a single outcome variable, we have w′ ≤ 3w + 3. This concludes the proof
of Theorem 17.

We will next formally state and prove Lemmas 20 and 22 which we used in the above proof.

Lemma 20 Consider an SCM G, a subset U of its roots, and a corresponding n-world model G′

for G that shares U. If w is the width of a U-constrained elimination order π for G, and w′ is the
width of the corresponding U-constrained elimination order π′ for G′, then w = w′.

Given an elimination order π for an SCM G, we can convert it into a corresponding elimina-
tion order π′ for its n-world model G′ (referenced in the above lemma) by replacing each variable
X /∈ U in π with its duplicates [X]1, [X]2, . . . , [X]n, as in Definition 2 in (Han et al., 2022). If
π is U-constrained, then π′ will also be U-constrained. Moreover, we define a graph sequence for
the n-world model G′

1, G
′
2, . . . , G

′
n where G′

1 is the moral graph of G′, and G′
i+1 is obtained by

eliminating all duplicates of variable π(i), i.e. [π(i)]1, [π(i)]2, . . . , [π(i)]n, from G′
i.

Proof Suppose we eliminate variables from G/G′ using orders π/π′. We claim that at every
elimination step i, the following properties hold:

A) For each node X /∈ U, G′
i([X]k) = [Gi(X)]k

B) For each node U ∈ U, G′
i(U) =

⋃n
k=1 [Gi(U)]k
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We next show that properties A), B) imply w′ = w and then prove these properties. Let Y =
π(i). If Y /∈ U, then when its duplicate [Y ]k is eliminated from G′, we have C′([Y ]k) = [C(Y )]k.
If Y ∈ U, then when Y is eliminated from G′, we have C′(Y ) =

⋃n
k=1 [Gi(Y )]k = Gi(Y ) =

C(Y ) since all non-shared nodes have been eliminated before Y , i.e. [Gi(Y )]k = Gi(Y ). This
means that the cluster induced by eliminating a variable from G′ always has the same size as the
cluster induced by eliminating the corresponding variable from G, which implies w′ = w.

We next prove properties A), B) by induction. By definition of an n-world model, these proper-
ties hold initially for G′

1. Suppose they hold for G′
i and consider G′

i+1. Let Y = π(i). Then G′
i+1

is the result of eliminating nodes [Y ]1, . . . , [Y ]n from G′
i. We consider two cases.

Case: Y /∈ U. Consider each node Z in G′
i. If Z is not a neighbor of [Y ]1, . . . , [Y ]n in G′

i, then
G′

i+1(Z) will not be affected by the elimination of [Y ]1, . . . , [Y ]n and the properties hold by the
induction hypothesis. Otherwise, node Z falls into two cases: A) a duplicate [X]k of a node X /∈ U
B) a shared node U ∈ U.

A) by the induction hypothesis, neighbors of [X]k in G′
i must belong to the k-th world, so [X]k

can only be a neighbor of the k-th duplicate [Y ]k. This means that G′
i+1([X]k) can only be

affected by the elimination of [Y ]k. By definition of variable elimination, we have:

G′
i+1([X]k) = G′

i([X]k) ∪G′
i([Y ]k) \ {[Y ]k}

= [Gi(X)]k ∪ [Gi(Y )]k \ {[Y ]k} by the induction hypothesis

= [Gi(X) ∪Gi(Y ) \ {Y }]k

= [Gi+1(X)]k by definition of variable elimination

This proves property A).

B) by the induction hypothesis, U must be a neighbor of all duplicates [Y ]1, . . . , [Y ]n. We have:

G′
i+1(U) = G′

i(U)

n⋃
k=1

G′
i([Y ]k) \ {[Y ]k}nk=1

=
( n⋃
k=1

[Gi(U)]k
)( n⋃

k=1

[Gi(Y )]k
)
\ {[Y ]k}nk=1 by the induction hypothesis

=

n⋃
k=1

[Gi(U)]k ∪ [Gi(Y )]k \ {[Y ]k}

=

n⋃
k=1

[Gi(U) ∪Gi(Y ) \ {Y }]k

=

n⋃
k=1

[Gi+1(U)]k by definition of variable elimination

This proves property B).

Case: Y ∈ U. In this case, G′
i only contains nodes in U. Property A) holds trivially. And the

relation in property B) reduces to G′
i(U) =

⋃n
k=1 [Gi(U)]k = Gi(U). By the induction hypothesis,

we know G′
i = Gi and thus G′

i+1 = Gi+1. Property B) holds. This concludes the proof.
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The proof of Lemma 22 requires the following result on eliminating variables from graphs.

Lemma 21 Consider a DAG G, a subset U of its nodes, and a node H in G where H /∈ U. Let
G1 be the moral gragh of G, and G2 be the result of eliminating all nodes other than {H}∪U from
G1. For any node X ∈ U, X is adjacent to H in G2 if and only if there exists a path between X
and H in G1 that does not include a node in U \ {X}.

Proof We first prove the if direction. Suppose there exists such a path (X, . . . , Z1, Y, Z2, . . . ,H)
in G1. Eliminating node Y from G1 will lead to a path (X, . . . , Z1, Z2, . . . ,H). Since nodes in
U \ {X} cannot appear along this path, eliminating all nodes other than {H} ∪U will lead to the
edge (X,H) in G2. We next prove the only-if direction by contraposition. Suppose there is no path
between X and H in G1 that does not include a node in U\{X}. There are two cases: 1) there is no
path between X and H; 2) every path between X and H includes at least one node U ∈ U \ {X},
which has the form (X, . . . , U, . . . ,H). In the first case, X and H will be disconnected in G2. In the
second case, eliminating all nodes other than {H} ∪U from such paths will lead to X −→ U −→ H ,
so X cannot be directly adjacent to H in G2. This concludes the proof.

Lemma 22 Consider an SCM G and a subset U of its roots. Suppose SCM G′ is obtained from
G by adding a root node H as a parent of some nodes Z in G where Z ∩ U = ∅. Let π be
a U-constrained elimination order for G, and let π′ be a U-constrained elimination order of G′

obtained from π by placing H just before variables U. If π has width w and π′ has width w′, then
w′ ≤ max(w + 1, |U|). Moreover, if H has a single child in G′, then w′ = w + 1.

Proof Let X denote variables other than U in G, and let U′ = U∪{H}. Suppose we first eliminate
variables X, then H , and finally U from G′ using order π′. This results in a graph sequence
G′

1, . . . , G
′
j , G

′
j+1/2, G

′
j+1, . . . , G

′
j+k where j = |X| and k = |U|. Here, G′

j+1/2 is obtained by
eliminating all variables X from G′

1, and G′
j+1 is obtained by eliminating H from G′

j+1/2. We
claim:

• if i ≤ j, then for each node X ̸= H in G′
i, we have G′

i(X) ⊆ Gi(X) ∪ {H}.

• if i > j, then for each node X ̸= H in G′
i, we have G′

i(X) ⊆ U′. Moreover, if H has a
single child in G′, then G′

i(X) = Gi(X).

We first show that the above claim implies the lemma, and then follow by proving the claim. Sup-
pose we are eliminating variable Y from G′. If Y /∈ U′ then i ≤ j and the above claim implies
C′(Y ) ⊆ C(Y ) ∪ {H}. If Y ∈ U′ then i > j and the above claim implies C′(Y ) ⊆ U′,
and C′(Y ) = C(Y ) when H has a single child. This guarantees the statement of the lemma:
w′ ≤ max(w + 1, |U|), and w′ = w + 1 if H has a single child in G′.

We next prove our claim by induction. Let Z denote the children of H in G′. When constructing
the moral graph G′

1 from G′, the introduction of node H causes two classes of edges that do not
exist in G1 to be added to G′

1: (Z,H) for Z ∈ Z, and (Y,H) if Y is a parent of some node Z ∈ Z,
that is Y and H are common parents of some node Z. All of these extra edges are incident on H ,
meaning that for any node X in G′

1, G′
1(X) ⊆ G1(X) ∪ {H}. Thus, our claim holds for G′

1. Next,
assume our claim holds for G′

i (induction hypothesis) and consider G′
i+1. We have two cases.
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Case: i ≤ j. Let Y = π(i). Consider each node X in G′
i+1. If node X is not a neighbor

of Y in Gi/G
′
i, then X is not affected by the elimination of Y , i.e., G′

i+1(X) = G′
i(X) and

Gi+1(X) = Gi(X). So the claim holds by the induction hypothesis. Otherwise, we can bound
G′

i+1(X) as follows:

G′
i+1(X) = G′

i(X) ∪G′
i(Y ) \ {Y } by the definition of elimination

⊆
(
Gi(X) ∪ {H}

)
∪
(
Gi(Y ) ∪ {H}

)
\ {Y } by the induction hypothesis

⊆
(
Gi(X) ∪Gi(Y ) \ {Y }

)
∪ {H}

⊆ Gi+1(X) ∪ {H}

Case: i > j. For this case, G′
i only contains nodes in U′. It is trivial that G′

i(X) ⊆ U′ for each
node X in G′

i. Recall that eliminating H from G′
j+1/2 results in G′

j+1. By the induction hypothesis,
all extra edges in G′

j+1/2 that do not exist in Gj+1 must be incident on H . Consider the special
case where H has a single child in G′. We claim that in this case, every two nodes in G′

j+1/2(H)

are adjacent in G′
j+1/2, meaning that the neighbors of H already forms a clique in G′

j+1/2. Thus,
eliminating H from G′

j+1/2 will not add any fill-in edges in G′
j+1. This guarantees G′

j+1 = Gj+1,
i.e, G′

i(X) = Gi(X) for all i >= j + 1. We finally turn to proving this claim by contradiction.
Suppose that node U1 and U2 are neighbors of H in G′

j+1/2 but are not adjacent in G′
j+1/2. By

Lemma 21, in G′
1, there must be a path P1 between U1 and H that does not include nodes in

U\{U1}, and a path P2 between U2 that does not include nodes in U\{U2}. Since H is a root and
only has one child Z in G′, P1 must have the form (U1, . . . , Z,H) in G′

1 and P2 must have the form
(U2, . . . , Z,H) in G′

1. Thus, there must be a path (U1, . . . , Z, . . . , U2) in G′
1 that does not contain

nodes in U′ \ {U1, U2}. By Lemma 21, after eliminating all nodes other than U ′ from G′
1, U1 and

U2 must be adjacent in G′
j+1. This leads to a contradiction.

Appendix J. Preliminary Experiment

We provide next a preliminary experiment in which we compare the complexities of three algo-
rithms: (1) MAP VE (Algorithm 1) for computing MAP (operates on an SCM); (2) RMAP VE
(Algorithm 3) for solving unit selection (operates on an objective model); and (3) a baseline, brute-
force method for solving unit selection (operates on a twin-model). We consider the complexities of
these algorithms on random SCMs generated using the method in (Han et al., 2022). This method
generates a random DAG and then ensures that each internal node in the DAG has at least one par-
ent which is a root node by adding additional root nodes (to mimic the structure of SCMs). Such
DAGs tend to have many root nodes and are particularly difficult for algorithms whose complexity
is exponential in the constrained treewidth, like MAP VE and RMAP VE, as we show later.

Given a random SCM structure, we randomly select different percentages of roots to be unit
variables U. We assume the objective function of (Li and Pearl, 2019) given in Equation (2).
This function has a single outcome variable which we choose randomly from the SCM leaves.
Moreover, as discussed earlier, this function requires only a twin model when constructing the
objective model since it does not include evidence variables. We do not prune the SCMs used by
MAP VE, the objective models used by RMAP VE, or the twin models used by the bruteforce
method (see (Darwiche, 2009, Ch. 6)) so the choice of interventional variables do not affect our
complexity analysis (no evidence variables in the objective function of Equation (2)). The time
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complexity of MAP VE is O(n · exp(w)), where n is the number of SCM nodes and w is the
width of a U-constrained elimination order for the SCM. The time complexity of RMAP VE is
O(n1 · exp(w1)), where n1 is the number of nodes in the objective model and w1 is the width
of a U-constrained elimination order for the objective model. The bruteforce method enumerates
every instantiation u and returns the one maximizing the objective L(u). Its time complexity is
O(n2 · exp(w2)), where n2 is the number of nodes in the twin model used to evaluate L(u) and
w2 = |U|+the width of an unconstrained elimination order for the twin model. Hence, we compare
the complexities of these three algorithms by reporting the number of nodes n, n1, n2 and the
corresponding widths w, w1, w2. These are depicted in Table 1 which also reports the number of
SCM roots (R) and the percentage of roots used as unit variables (ur).

Before we highlight the outcomes of this experiment, we provide some insights into the class
of used SCMs and their difficulty. We next characterize a class of problems for which the U-
constrained treewidth is no smaller than the number of unit variables, |U|. The random SCMs we
use in this experiment resemble this class of problems given how they are constructed.

Definition 23 Consider a connected DAG G and a subset U of its roots. We say that U are external
to G if the DAG remains connected after removing nodes U and all their incident edges.

Markovian SCMs (each root node has a single child) satisfy the above condition.

Lemma 24 Consider a connected DAG G, a subset U of its roots, and its moral graph G′. Let S
be the subset of U such that for every two nodes U1 and U2 in S, there exists a path between U1 and
U2 in G′ that does not include any node in U \ {U1, U2}. If π is a U-constrained elimination order
of G that has width w, then we have w ≥ |S|.

Proof By Lemma 21, every two nodes U1 and U2 in S will be adjacent after all nodes other than
U are eliminated from G′. Thus, nodes in S will form a clique after all nodes other than U are
eliminated. This leads to a cluster of size |S| during the elimination process, so |S| is a lower bound
for the width of any U-constrained elimination order.

Our main insight is stated in the following corollary which shows that MAP VE and RMAP VE
must be exponential in the number of unit variables for the class of SCMs (and unit variables)
identified by Definition 23. The baseline method can be significantly worse since it is exponential
in the number of unit variables plus the unconstrained treewidth of the twin model.

Corollary 25 Consider a connected SCM G, a subset U of its roots, and a U-constrained elimina-
tion order π with width w. If U are external to G, then w ≥ |U|.

Proof Consider any two nodes U1 and U2 in U. Suppose that X1 is a child of U1 and X2 is a child
of U2. Since U are external to G, there exists a path (X1, . . . , X2) in the moral graph of G that does
not include any nodes in U. Thus, there exists a path (U1, X1, . . . , X2, U2) that do not include any
nodes in U \ {U1, U2}. By Lemma 24, this implies w ≥ |U| since S = U.

We can now highlight the patterns in Table 1. The complexities of MAP VE and RMAP VE are
relatively close with the latter being more expensive than the former. Moreover, the gap between
them narrows as the number of SCM variables (n) and the number of unit variables (ur) increase.
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ur 20% 40% 60%
n n2 R n1 w w1 w2 n1 w w1 w2 n1 w w1 w2

10 14 6 52 5.5 7.2 7.3 49 5.5 7.4 8.3 46 5.5 7.5 9.3
15 21 9 82 7.4 10.0 10.6 76 7.4 10.2 12.6 70 7.5 11.0 14.6
20 30 12 116 10.1 14.0 16.0 110 10.1 14.5 18.0 101 10.1 15.4 21.0
25 37 15 140 11.0 16.8 19.7 131 11.0 17.4 22.7 122 11.2 18.4 25.7
30 43 17 163 11.3 18.8 21.6 154 11.4 19.2 24.6 142 11.8 20.7 28.6
35 50 19 190 12.4 21.4 24.2 178 12.4 21.9 28.2 166 12.8 23.5 32.2
40 57 22 218 13.3 24.3 27.8 206 13.6 24.9 31.8 191 14.3 26.6 36.8
45 64 24 246 14.3 26.6 29.8 231 14.4 27.2 34.8 216 15.6 28.9 39.8

ur 80% 100%
n n2 R n1 w w1 w2 n1 w w1 w2

10 14 6 43 5.5 7.7 10.3 37 6.3 8.3 12.3
15 21 9 64 8.2 11.8 16.6 58 9.6 12.6 18.6
20 30 12 95 10.5 15.6 23.0 86 12.8 16.4 26.0
25 37 15 113 12.8 18.8 28.7 104 15.9 19.9 31.7
30 43 17 133 13.8 21.2 31.6 121 18.0 21.6 35.6
35 50 19 154 15.6 24.0 36.2 142 19.6 23.6 40.2
40 57 22 179 17.6 27.0 40.8 164 23.0 26.6 45.8
45 64 24 201 20.1 30.6 44.8 186 25.6 29.2 49.8

Table 1: Comparing the complexities of MAP VE for solving MAP (n exp(w)), RMAP VE for
solving unit selection (n1 exp(w1)), and the bruteforce method for solving unit selection
(n2 exp(w2)). Each data point is an average over 25 runs. All elimination orders are
computed using the minfill heuristic (Kjærulff, 1990).

Note that according to Theorem 17, w1/w ≤ 2 yet Table 1 shows that this ratio can be signifi-
cantly smaller than 2. Finally, the bruteforce method is significantly worse than RMAP VE and the
gap between the two grows as the number of SCM variables (n) and unit variables (ur) increase.

We close this discussion by identifying a class of problems with an unbounded number of unit
variables U yet a bounded U-constrained treewidth. This class is depicted in Figure 5. The U-
constrained treewidth is 3, which can be shown using the U-constrained elimination order S1, . . . ,
Sn, . . . , U1, . . . , Un. This is a class of problems for which unit selection using RMAP VE is tractable
even when the number of unit variables is unbounded, assuming one uses a suitable objective func-
tion (e.g., the benefit function of (Li and Pearl, 2019) given in Equation (2)).

Figure 5: The unit variables are U = U1, . . . , Un. The U-constrained treewidth is 3.
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