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Abstract

Cross-lingual transfer learning (CLTL) for
event detection (ED) aims to develop mod-
els in high-resource source languages that can
be directly applied to produce effective per-
formance for lower-resource target languages.
Previous research in this area has focused on
representation matching methods to develop
a language-universal representation space into
which source- and target-language example rep-
resentations can be mapped to achieve cross-
lingual transfer. However, as this approach
modifies the representations for the source-
language examples, the models might lose dis-
criminative features for ED that are learned
over training data of the source language to pre-
vent effective predictions. To this end, our work
introduces a novel approach for cross-lingual
ED where we only aim to transition the rep-
resentations for the target-language examples
into the source-language space, thus preserving
the representations in the source language and
their discriminative information. Our method
introduces Langevin Dynamics to perform rep-
resentation transition and a semantic preserva-
tion framework to retain event type features
during the transition process. Extensive exper-
iments over three languages demonstrate the
state-of-the-art performance for ED in CLTL.

1 Introduction

Event Detection (ED) is one of the fundamental
problems in Information Extraction (IE). This task
aims to identify and classify the words or phrases
that most clearly evoke events in text (called event
triggers). For instance, given a sentence “He was
fired from the corporation yesterday.”, an ED sys-
tem needs to recognize the word “fired” as an event
trigger of the type Attack. With the advances in
deep learning, recent research has produced impres-
sive performance for ED (Nguyen and Grishman,
2015; Liu et al., 2017; Yang et al., 2019; Liu et al.,
2020; Tran Phu and Nguyen, 2021).

However, despite such progress, existing
datasets for ED are limited to a small set of popular
languages (e.g., English and Chinese) due to the
high cost of data annotation for this task. The lack
of annotated data has thus hindered the develop-
ment of ED systems for a larger set of languages
and the benefits of the technology for broader soci-
ety. To enable ED for more languages while avoid-
ing expensive annotation efforts, recent research
has focused on zero-shot cross-lingual transfer
learning (CLTL) for ED where models are trained
on annotated data of a high-resource source lan-
guage and directly applied to extract events for text
in another low-resource target language (Nguyen
et al., 2021; Guzman Nateras et al., 2023; Nguyen
et al., 2023). In this setting, labeled data is not avail-
able for the target language; however, unlabeled
data can be used to facilitate knowledge transfer
between languages.

The key challenging in CLTL for ED is to
bridge the gap between representation spaces for
the source and target languages to enable knowl-
edge transfer. As such, previous work in this area
has focused on the representation matching ap-
proaches, aiming to transform the representations
for the source and target languages into a com-
mon space to train language-general ED models
over source language data, e.g., via similarity reg-
ularization (Nguyen et al., 2021) or adversarial
learning (Guzman-Nateras et al., 2022). However,
to achieve a common space, the source-language
representations might need to sacrifice language-
specific information, which can involve discrimi-
native features for event prediction due to the mix
of information in the representations for input text.
Consequently, losing discriminative features might
lead to impaired performance for ED.

To this end, our work explores a new direction
for CLTL for ED using representation transition.
Instead of transforming the source-language repre-
sentations, which might eliminate discriminative



features for ED, we only seek to adapt the target-
language representations into the source space
whose results can be directly fed into the source-
language models for event prediction. In this way,
we can preserve the source-language representa-
tions learned over training data for ED to maximize
prediction ability. To achieve this idea, we propose
to employ an energy function to model the represen-
tations for the source-language training examples
where low-energy regions correspond to high like-
lihood of belonging to the source language (LeCun
et al., 2006). Afterward, target-language repre-
sentations can be adapted to the source-language
space by transitioning them into low-energy re-
gions (i.e., minimizing the energy function). As
such, our method leverages Langevin Dynamics
(Welling and Teh, 2011; Du and Mordatch, 2019)
to perform efficient representation transition for
the target language for cross-lingual ED where gra-
dient descent is utilized to iteratively update the
initial target representations into the source lan-
guage with low-energy regions. To our knowledge,
this is the first work to explore energy functions
and Langevin Dynamics for CLTL in IE and ED.

Finally, we introduce a mechanism to regulate
the adapted representations for the target language
examples from Langevin Dynamics so they can
maintain semantic similarity of event types with
the original representations. This regularization
is necessary to ensure that the predictions of the
source language model over the adapted representa-
tions are correct for the target examples. Extensive
evaluations over three languages demonstrate our
state-of-the-art performance for cross-lingual ED.

2 Model

Base Model: Following prior work (Guzman-
Nateras et al., 2022), we formulate ED as a se-
quence labeling problem to facilitate cross-lingual
transfer learning (CLTL). Given an input sentence
of n tokens W = {w1, w2, . . . , wn}, our ED
model needs to predict its corresponding sequence
of labels Y = {y1, y2, . . . , yn}. Here, yi is the
label for the token wi using the BIO annotation
schema to capture event mentions and types in W .

In our model, we first use the multilingual
pre-trained language model XLM-R (Conneau
et al., 2019) as the feature extractor for the
input sentence W , leading to a representation
vector hi for each word wi: h1, h2, . . . , hn =
XLM-RθX (w1, w2, . . . , wn). Here, θX captures

the parameters of XLM-R. Afterward, the represen-
tation hi is fed into a feed-forward network (FFN)
with parameters θC to produce a label distribution
for wi for event prediction. For convenience, in the
following, we will use the subscripts src and tgt to
specify words and representations from the source
and target languages (respectively).
Energy Model and Langevin Dynamics: As dis-
cussed above, to perform CLTL for ED, we pro-
pose to learn an energy function (LeCun et al.,
2006) to model the representation distribution of
the source-language examples. The representa-
tions of the target-language examples can then
be transitioned toward this source distribution to
perform ED. Formally, in our method, an energy
function EθE (h) : Rd → R is implemented as a
feed-forward network with parameters θE to map
a representation h to a scalar. This function can
then be used to define a distribution over the rep-
resentation space: pθE (h) =

exp(−EθE
(h))

ZθE
, where

ZθE =
∫
exp(−EθE (h))dh denotes the normal-

izing term. As such, to draw a sample from this
distribution, we can employ the Langevin Dynam-
ics process (Du and Mordatch, 2019): hk+1 ←
hk − ϵ

2∇hkE(hk) + ω, where ω ∼ N (0, σ) is a
Gaussian noise and ϵ denotes the step size. Here,
the initial representation h0 will be sampled from
an uniform distribution, and then transitioned along
the direction of the gradient of EθE as in gradient
descent. After K steps, the resulting representation
hK is expected to have low energy, thus having
higher chance to be distributed from pθE (h).
Training: Given the training data in the source
language, our method trains an ED model and an
energy function for the source examples in two
steps. In the first step, the base ED model is trained
using the negative log-likelihood loss, optimizing
the parameters θX and θC for XLM-R and FFN:
Lbase(θX , θC) = −

∑n
i=1 log(y

src
i |wsrc

i , θF , θC).
In the second step, we freeze the parameters θX

for XLM-R and train the energy function EθE by
optimizing the negative log-likelihood for the in-
duced representations hi for wi ∈W in the source
language: Leny = −

∑
j∈L logPθE (h

src
j ), where

L involves indexes for the words in the event trigger
spans in W . Here, although computing the normal-
izing term ZθE for E is intractable, the gradient of
logPθE (h) can still be estimated to perform train-
ing in our second step (Du and Mordatch, 2019;
Song and Kingma, 2021): ∇θE logPθE (h) =
EPdata(h) [−∇θEEθE (h)] +EPθE

(h) [∇θEEθE (h)].



As such, the data for the first term is drawn from the
representations for the source language examples
Pdata(h) while those for the second term can be
sampled from the model representation distribution
PθE (h) using our Langevin Dynamics process.

At inference time for CLTL, given an input sen-
tence W tgt in the target language, the representa-
tion htgti for each word wtgt

i ∈W tgt from XLM-R
is iteratively adapted to the source space using K-
step Langevin Dynamics, resulting in the adapted
representation h

tgt
i . Afterward, due to their compat-

ibility, we can apply the source-trained ED model
θC over h

tgt
i to predict the event type for wtgt

i .
Semantic Preservation: Although Langevin Dy-
namics can adapt the representation htgti to achieve
features in the source language, it cannot guarantee
that the adapted representation h

tgt
i can preserve se-

mantic information of event types from htgti to pro-
duce correct prediction based on h

tgt
i . To facilitate

semantic maintenance in the adaption, we propose
to decompose a representation h into language-
invariant and language-specific components z and
l (respectively). As such, our intuition for semantic
maintenance is that the target-to-source adaptation
process should retain language-invariant informa-
tion while eliminating target-specific features and
absorbing source-language features along the way.
We employ both labeled data in the source language
and unlabeled data in the target language to achieve
semantic preservation in this step.
Representation Decomposition: To disentan-
gle the representations, we employ the Varia-
tionl Auto-Encoder (VAE) framework (Kingma
and Welling, 2014) to introduce two encoders
qϕz(z|h) and qϕl

(l|h) to transform a represen-
tation h into stochastic dimensional spaces for
language-invariant and language-specific represen-
tations z and l respectively. In addition, a de-
coder pϕh

(h|z, l) is introduced to infer the repre-
sentation h from z and l. Here, the distributions
qϕz(z|h), qϕl

(l|h), and pϕh
(h|z, l) are assumed

to be Gaussian and feed-forward neural networks
with parameters ϕz , ϕl, and ϕh are leveraged to
compute the means and variances for the distri-
butions from corresponding representations. To
this end, VAEs learn the parameters by minimiz-
ing the negation of the variational lower bound:
LVAE = −Eqϕz (z|h)qϕl (l|h)

[log pϕh
(h|z, l)] +

KL(qϕz(z|h)||p(z)) + KL(qϕl
(l|h)||p(l)), where

the first term is the reconstruction loss, p(z) and
p(l) are the standard Gaussian distribution, and

the Kullback-Leibler (KL) divergences serve as the
regularization. This loss can be obtained from un-
labeled data for both source and target languages.

For the language-invariant representation, we
expect z to encode information on event types to
allow transferability across languages. As such, we
utilize z to predict the event type y using training
examples in the source language. In particular, a
feed-forward network is introduced to compute the
distribution P (y|z) from z and the log-likelihood
Eqϕz (z|h)[logP (y|z)] is used to train the network.
For the representation l, its language-specific in-
formation is achieved by computing the distribu-
tion P (d|l) with a feed-forward network FFL to
predict the language identity d for h (i.e., d ∈
{source, target}). FFL can then be trained with
the objective Eqϕl (l|h)

[logP (d|l)] using unlabeled
data in both source and target languages. Conse-
quently, to promote the expected features for z and
l, we minimize the combined function: Ldec =
−Eqϕz (z|h)[logP (y|z)]− Eqϕl (l|h)

[logP (d|l)].

Model Langauge Pairs
Source EN EN ZH ZH AR AR
Target ZH AR EN AR EN ZH

BERT-CRF 68.5 30.9 37.5 20.1 40.1 58.8
BERT-CRF-LAT 70.0 33.5 41.2 20.3 37.2 55.6
BERT-CRF-FTUT 69.4 33.4 42.9 20.0 36.5 56.3
BERT-CRF-CCCAR 72.1 42.7 45.8 20.7 40.7 59.8
XLMR-CRF 70.5 43.5 41.7 32.8 45.4 61.8
XLMR-CRF-LAT 70.2 43.4 42.3 33.2 45.2 60.9
XLMR-CRF-FTUT 71.1 43.7 42.1 32.9 45.9 62.1
XLMR-CRF-CCCAR 74.4 44.1 49.5 34.3 46.3 62.9
XLMR-OACLED 74.6 44.9 45.8 35.1 48.0 63.1
RepTran (ours) 77.7 46.6 50.6 39.5 50.8 66.2
-Ldec 74.1 43.7 46.2 36.6 45.4 63.8
-Lz 76.5 45.1 48.4 37.2 48.7 64.3
-Ll 75.2 43.9 47.3 36.1 46.5 63.4
- sem. preservation 74.3 42.9 46.6 35.7 45.2 62.9

Table 1: Cross-lingual performance (F1 scores) on test data.
Each column corresponds to one language pair where source
languages are shown above the target languages. The proposed
model is significantly better than other models with p < 0.01.

Representation Constraints: Given the represen-
tation htgt for a word in the target language, we
expect that its language-invariant features for event
types in ztgt will be preserved in the adapted repre-
sentation h̄tgt from Langevin Dynamics to enable
successful ED with the source language model. To
implement this idea, we first compute the language-
invariant components ztgt and z̄tgt from htgt and
its adapted version h̄tgt via: ztgt ∼ qϕz(z|htgt) and
z̄tgt ∼ qϕz(z|h̄tgt). Afterward, the maintenance of
language-invariant information is enforced by min-
imizing the L2 difference between ztgt and z̄tgt,
leading to the objective: Lz = ||ztgt − z̄tgt||22.

In addition, to realize the target-to-source tran-
sition of htgt to h̄tgt, we expect that the language-



specific component of h̄tgt, i.e., l̄tgt ∼ qϕl
(l|h̄tgt),

should be predictive for the source language. To
this end, we update our model so the language pre-
diction network FFL can predict the source lan-
guage from l̄tgt. As such, we obtain the distribution
P (d|l̄tgt) from FFL and minimize the likelihood
loss: Ll = −Eqϕl (l|h̄

tgt)[P (source|l̄tgt)].
Finally, the overall loss to train our model in the

second step is: L = Leny+LV AE+Ldec+Lz+Ll.

3 Experiments

Datasets and Hyper-parameters: Following pre-
vious work on CLTL for ED (M’hamdi et al., 2019;
Nguyen et al., 2021), we evaluate our proposed
method (called RepTran) on the dataset ACE05
(Walker et al., 2006). This dataset contains docu-
ments in three languages: English (EN), Chinese
(ZH) and Arabic (AR) with annotations for 33
event types. The same data split and preprocessing
as in previous work (Nguyen et al., 2021) are em-
ployed for a fair comparison. For each language,
the data split provides training, development, and
test portions for experiments. Given the three lan-
guages, we consider six possible pairs of languages
to form the source and target languages in our cross-
lingual transfer learning experiments. For each
language pair, we train the models on the training
data of the source language and evaluate the per-
formance on the test data of the target language.
Unlabeled data for the target language is obtained
by removing labels from its training data portion
as done in previous work (Nguyen et al., 2021).

We utilize the XLM-R base model with 768
dimensions in the hidden vectors to be compa-
rable with previous work (Nguyen et al., 2021;
Guzman-Nateras et al., 2022). We tune the hyper-
parameters for our model over the development
data using the EN→ZH language pair. The same
hyper-parameters are employed to train models for
other language pairs in our experiments. In par-
ticular, the following values are selected for our
model: 2 layers for the feed-forward networks
with 768 dimensions for the hidden layers, 3e-5
for the AdamW optimizer, 16 for the batch size,
and K = 128 for the number of update steps, ϵ = 5
for the step size in the update rule, and σ = 0.005
for the variance in the Gaussian noise for the target-
language representation adaptation with Langevin
Dynamics.
Baselines: We compare our method with a vari-
ety of baselines for CLTL for ED, based on multi-

lingual language models, i.e., mBERT-CRF and
XLMR-CRF (Nguyen et al., 2021), fine-tuning
with unlabeled target data (FTUT), i.e., BERT-
CRF-FTUT and XLMR-CRF-FTUT (Nguyen et al.,
2021), representation matching, i.e., BERT-CRF-
CCCAR and XLMR-CRF-CCCAR (Nguyen et al.,
2021), and adversarial training, i.e., BERT-CRF-
LAT, XLMR-CRF-LAT (Nguyen et al., 2021),
and XLMR-OACLED (Guzman-Nateras et al.,
2022). As such, XLMR-CRF-CCCAR and XLMR-
OACLED represent the current state-of-the-art
methods for CLTL for ED over ACE05.

Evaluation: Table 1 presents the cross-lingual per-
formance of the models. The most important obser-
vation from the table is that the proposed method
RepTran is significantly better than the baselines
across all six language pairs, thus clearly demon-
strating the benefits of the Langevin-based repre-
sentation transition for cross-lingual ED. In addi-
tion, to evaluate the contribution of the proposed se-
mantic preservation, we perform an ablation study
where each introduced loss (i.e., Ldec, Lz , and Ll)
is excluded from the training process. We also ex-
plore the complete removal of the semantic preser-
vation component. It is clear from the table that
removing any of the components would hurt the
performance of RepTran significantly, thus con-
firming the importance of the semantic preservation
techniques in our model.

Representation Visualization: To illustrate the
Lengevin-based representation adaptation process
from the target to the source language space in Rep-
Tran, we visualize the representations of the event
triggers in the target language along its adaptation
process. In particular, using English and Chinese
as the source and target languages, Figure 1 shows
the t-SNE representation visualization for a sample
of target-language event triggers for the most fre-
quent event types at different steps in the adaptation
process. It is clear from the figure that the target
language representations are gradually shifted to-
ward the source language space based on Langevin
Dynamics and the energy function (i.e., the trian-
gles become closer and closer to the circles). Im-
portantly, due to the introduction of our semantic
preservation mechanism, the final states of the tar-
get language representations (i.e., K = 128) can
also preserve their information about event types
as demonstrated by the proximity of the circles and
triangles of the same colors for event types.
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Figure 1: T-SNE visualization for the representation transition process from Chinese event triggers (i.e., the target) to the
English language space (i.e., the source) based on Langevin Dynamics and the energy function. Circles and triangles indicate
representations for the English and Chinese examples respectively while colors encode event types.

4 Related Work

A large body of previous ED research is dedicated
to monolingual learning, i.e., training and testing
over the same languages (Nguyen et al., 2016; Yang
and Mitchell, 2016; Lu and Nguyen, 2018; Lai
et al., 2020; Lin et al., 2020). The models might
consider different domains (Nguyen and Nguyen,
2018; Man Duc Trong et al., 2020). To address the
language barriers, recent work has studied CLTL
for ED, focusing on mapping representations for
different languages into the same space for transfer
learning, e.g., using bilingual resources (Muis et al.,
2018; Liu et al., 2019), multilingual language mod-
els (M’hamdi et al., 2019), and adversarial train-
ing (Guzman-Nateras et al., 2022). Our work is
also related to previous work on data projection for
ED and IE where texts in the target language are
translated and aligned into the source language for
prediction at test time (Riloff et al., 2002; Yarmo-
hammadi et al., 2021; Yu et al., 2023). However,
data projection requires high-quality machine trans-
lation and alignment systems, which might not be
available for different languages. Our method is
different as we project representations (not actual
texts) in the target to the source language space to
avoid translation systems.

5 Conclusion

We introduce a novel method for CLTL for ED
where representations of examples in the target
language are transferred into the source language
space at test time for prediction with the source lan-
guage model. Our extensive experiments confirm
the benefits of the proposed method. In the future,
we plan to extend our method to other tasks in IE.
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Limitations

In this work, we develop a novel cross-lingual
transfer learning method for event detection that
achieves state-of-the-art performance on bench-
mark datasets for this problem. However, our work
still has several limitations that can be further ex-
plored in future work. First, our RepTran method
leverages Langevin Dynamics to perform represen-
tation transition for target language examples at in-
ference time to achieve knowledge transfer. While
our experiments demonstrate the superior perfor-
mance of this approach for cross-lingual ED, our
method does involve an additional computational
cost at inference time for representation transition.
In Appendix A, we show that this additional cost
is not substantial and it can be acceptable given
the demonstrated benefits. Nonetheless, we believe
that future work can explore this direction further
to reduce computational costs at inference time
for RepTran to improve its efficiency and applica-
tions. Second, our method relies on the multilin-
gual pre-trained language model XLMR to encode
text in different languages. Although XLMR can
support more than 100 languages, the world has
more than 7000 languages and our method cannot
be applied directly to many other languages. Ex-
tending the language set of pre-trained language
models is an important direction that can improve
our method. Finally, to perform semantic preserva-
tion, our methods need to employ unlabeled data
in the target language. While unlabeled data can
be more available for many languages, it might
still be challenging to retrieve text for extremely
low-resource languages. As such, future research
can explore methods to relax this requirement of
unlabeled data for the target language to maximize
the applicability of cross-lingual transfer learning
methods for ED.
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A Speed Inference Evaluation

Our Langevein-based representation transition
method needs to adapt each target language ex-
ample at inference time into the source language
space to allow event prediction with the source lan-
guage ED model. As such, compared to previous
cross-lingual ED method, in addition to the encod-
ing cost for a target language example at inference
time, our method needs to perform an additional
step to transition the representations into the source
language space based on the energy function. This
implies an additional computational cost for pre-
dicting each target language example.

Model Inference Time
XLMR-CRF 1.00x
RepTran (K = 64) 1.15x
RepTran (K = 128) 1.24x

Table 2: Latency cost for our RepTran model. All results
are computed with a single NVIDIA V100 GPU.

To measure the impact of this additional cost for
the inference time of our method, Table 2 compares
the inference time of the baseline XLMR-CRF and
our model RepTran over test data. Using the in-
ference time of XLMR-CRF as the reference, we
show the inference time for adaptation steps at both
K = 64 and K = 128 (the final step). Although
the representation transition does increase the in-
ference time for RepTran, the additional cost is not
substantial and can be acceptable to achieve greater
cross-lingual performance for ED.


