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Abstract

In computational pathology, fully-supervised convolutional neural networks have been
shown to perform well on tasks such as histology segmentation and classification but re-
quire large amounts of expert-annotated labels. In this work, we propose a self-supervised
learning pretext task that utilizes the multi-resolution nature of whole slide images to re-
duce labeling effort. Given a pair of image tiles cropped at different magnification levels,
our model predicts whether one tile is contained in the other. We hypothesize that this
task induces the model to learn to distinguish different structures presented in the images,
thus benefiting the downstream classification. The potential of our method was shown in
downstream classification of lung adenocarcinoma histologic subtypes using H&E-images
from the National Lung Screening Trial.

Keywords: Self-supervised learning, pretext task, histopathology, lung adenocarcinoma

1. Introduction

Early-stage invasive lung adenocarcinoma (LUAD) exhibits heterogeneous biological be-
haviors within the same tumor. Patients are classified as having one of five predominant
histologic subtypes (lepidic, acinar, papillary, micropapillary, solid), each associated with
a different prognosis. Supervised convolutional neural networks can improve the accuracy
and reduce subjectivity of LUAD histologic subtype classification (Gertych et al., 2019).
However, they rely on a large amount of expert annotation. Self-supervised learning (SSL)
techniques that leverage the multi-resolution nature of whole slide images (WSIs) can be
used to reduce labeling effort. WSIs can be acquired at different magnification levels (low
to high are 5x, 10x, 20x, 40x) with higher levels capturing local cellular features (more
zoomed in) and lower levels capturing global spatial morphology (more zoomed out). As
shown in Figure 1a, each subtype has a different gland architecture and cell morphology,
which should be reflected in the learned embeddings. In this work, we propose a pretext
task PProposed that predicts whether an image cropped at a higher magnification level is
contained in another image cropped at a lower magnification level. We hypothesize that
this task induces the model to learn to distinguish different structures presented in WSIs,
and thus benefit the downstream classification where those structures are also present.
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Figure 1: (a) 5 LUAD histologic subtypes plus non-tumor tiles cropped at 20x magnifica-
tion. (b) Example image pair where the 20x tile is contained in the 10x tile. (c)
Input and output of the pretext task PProposed.

2. Methods

A total of 407 H&E-stained WSIs of 146 patients diagnosed with early-stage LUAD who
had computed tomography and pathology images were obtained from the National Lung
Screening Trial. PProposed takes a pair of 10x and 20x image tiles as input and predicts
whether one of the tiles is contained in the other one. Non-overlapping tiles were cropped
at 10x magnification. From each 10x tile, 16 non-overlapping tiles were generated at 20x.
All tiles regardless of magnification levels were sized 512 × 512. Figure 1b summarizes the
approach for generating 20x tiles from 10x WSIs (paired, class 1). For the unpaired (class
0), the 20x tile was randomly sampled from another 10x tile from the same patient. 241,640
(80%) pairs of tiles were used for training and 60,422 (20%) pairs for validation with equal
numbers of paired and unpaired tiles. The RGB image pair was concatenated channel-wise
such that the resulting image has 6 channels (Figure 1c). The concatenated images were
fed into an ImageNet-initialized ResNet18, where the adaptive average pooling layer was
followed by a dropout layer (p = 0.2), linear layer, and sigmoid activation. The network
was trained using an Adam optimizer with batch size 32, a learning rate and weight decay
of 0.0001, and binary cross-entropy loss. Early stopping was monitored by validation loss
with patience of 5 epochs. The learned weights were transferred to the downstream task
for finetuning.

We performed experiments to evaluate the impact of PProposed compared against: 1)Im-
ageNet pre-trained weights (PImageNet), 2) a common pretext task (PMagLevel) that predicts
the magnification level (5, 10, 20, or 40x) of a tile (Koohbanani et al., 2021), and 3) the
state-of-the-art contrastive learning method SimSiam (PSimSiam) (Chen and He, 2021). The
feature extractor for both PMagLevel and PSimSiam was ImageNet-initialized ResNet18. See
the code for their hyperparameters.

As for the downstream task (D), 316 20x tiles were annotated and data augmentation
was applied. Stratified five-fold cross validation was used. Within each fold, there were 60%
training, 20% validation, and 20% testing tiles. Performance was measured using F1-score.
The network and hyperparameters were the same as in PProposed except that the batch size
was 16.
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3. Results and Conclusions

Table 1: Average F1 score on test sets (n = 106) for downstream task D

Dpretrain Lepidic (n = 8) Acinar (n = 23) Papillary (n = 7) Solid (n = 14) Nontumor (n = 54)

DScratch 0.487 ± 0.153 0.701 ± 0.0764 0.756 ± 0.110 0.802 ± 0.0762 0.853 ± 0.0420
DImageNet 0.668 ± 0.0890 0.729 ± 0.0343 0.790 ± 0.108 0.843 ± 0.0510 0.886 ± 0.0225
DMagLevel 0.615 ± 0.0832 0.701 ± 0.0590 0.750 ± 0.141 0.814 ± 0.0629 0.860 ± 0.0330
DSimSiam 0.539 ± 0.173 0.724 ± 0.0805 0.833 ± 0.118 0.794 ± 0.0748 0.831 ± 0.0614
DProposed−NoImageNet 0.630 ± 0.0623 0.718 ± 0.103 0.835 ± 0.151 0.829 ± 0.104 0.863 ± 0.0311
DProposed 0.656 ± 0.100 0.789 ± 0.0980 0.844 ± 0.129 0.867 ± 0.0730 0.884 ± 0.0274

Table 1 summarizes the average F1 score and standard deviation for the downstream
task of classifying LUAD subtypes using different pre-training methods. Micropapillary
was excluded due to too few annotations. PProposed substantially improved the downstream
task DProposed compared to DScratch. DProposed achieved the highest F1 score for acinar,
papillary, and solid subtypes; pre-training with a large dataset such as ImageNet achieved
the best average F1 score for lepidic and non-tumor for DImageNet. While SSL effectively
leverages unlabeled data to improve model training, large labeled datasets such as ImageNet
for training is still preferred. Further, DProposed−NoImageNet outperformed DScratch, which
indicates PProposed learned useful embeddings when not initialized by ImageNet weights.
DMagLevel andDSimSiam improved upon DScratch but did not outperform DProposed, demon-
strating the informative value of our pretext learning task. We posit that DProposed may
be learning embeddings related to the macro- and micro- structures presented in various
histologic subtypes. It is also possible that ImageNet weights won’t have as much of a
prominent benefit to DImageNet once we increase the downstream sample size. Future work
includes optimizing hyperparameters using a grid search.

In summary, we proposed a SSL pretext task for LUAD subtype classification and
showed its effectiveness by comparing it with other pre-training methods. Our novel pretext
task, which forces the model to understand tissue structures and identify features across
different magnifications, can improve downstream task results. Our pre-text task can be
beneficial when learning salient features from multi-resolution images.

References

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
15750–15758, 2021.

Arkadiusz Gertych, Zaneta Swiderska-Chadaj, Zhaoxuan Ma, Tomasz Markiewicz, Szczepan
Cierniak, Hootan Salemi, Samuel Guzman, Ann E Walts, Beatrice S Knudsen, et al.
Convolutional neural networks can accurately distinguish four histologic growth patterns
of lung adenocarcinoma in digital slides. Scientific reports, 9(1):1–12, 2019.

Navid Alemi Koohbanani, Balagopal Unnikrishnan, Syed Ali Khurram, Pavitra Krish-
naswamy, and Nasir Rajpoot. Self-path: Self-supervision for classification of pathology
images with limited annotations. IEEE Transactions on Medical Imaging, 40(10):2845–
2856, 2021.

3


	Introduction
	Methods
	Results and Conclusions

