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Abstract

Current large vision-language models (VLMs) frequently face challenges
such as the limited capabilities of a single visual component and the ex-
cessive length of visual tokens. These issues can limit the model’s ability
to interpret complex visual information and over-lengthy contextual infor-
mation accurately. Tackling these challenges is crucial for enhancing the
performance and applicability of VLMs. This paper proposes leveraging
the ensemble experts technique to synergize the capabilities of individual
visual encoders, including those skilled in image-text matching, image
segmentation, OCR, etc. This method introduces a fusion network that con-
solidates the outputs from different visual experts while bridging the gap
between image encoders and pre-trained LLMs. In addition, we explore
different positional encoding schemes to mitigate the waste of positional
encoding caused by lengthy image feature sequences, effectively address-
ing the issue of position overflow and length limitations. For instance,
in our implementation, this technique significantly reduces the positional
occupancy in models like SAM, from a substantial 4096 to a more efficient
64 or even down to 1. Experimental results show that VLMs with multi-
ple experts consistently outperform isolated visual encoders, with notable
performance improvements as more experts are integrated. Our codes are
available on our project website.1

1 Introduction

Current large vision-language models (VLMs) demonstrate significant potential in tasks
requiring joint visual and linguistic perception, such as image captioning (Agrawal et al.,
2019), visual question answering (Antol et al., 2015), visual grounding (Yu et al., 2016), and
autonomous agents (Durante et al., 2024; Xi et al., 2023). VLMs harness large language
models (LLMs) as cognitive foundation models to empower various vision-related tasks,
while one vision component, such as CLIP (Radford et al., 2021), typically serves as aux-
iliary modules that provide additional visual perception (Liu et al., 2023b). However, the
perception abilities of the individual vision models still lag behind, even in simple tasks
like counting. (Yamada et al., 2022; Thrush et al., 2022; Yuksekgonul et al., 2022). This
gap highlights a significant limitation in these models’ capacity to process and understand
visual information as effectively as they handle linguistic data. According to the operation
of the vertebrate visual system, with each functional unit encoding different visual aspects
in parallel, retinal ganglion cells transmit distinct features to the brain (Baden et al., 2016).
This biological mechanism suggests a model structure where the varied visual information
should be parallelly encoded by diverse perception channels.

∗ Equal contributions.
† Corresponding author.
1 https://github.com/FudanNLPLAB/MouSi
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Figure 1: Left: Comparing InstructBLIP, Qwen-VL-Chat, and LLaVA-1.5-7B, our poly-visual-
expert achieves SoTA on a broad range of nine benchmarks. Right: Performances of the
best models with different numbers of experts on nine benchmark datasets. Overall, triple
experts are better than double experts, which are better than a single expert.

To this end, the community has verified that each model, with its unique vision processing
approach contributes differently to understanding visual content (Chen et al., 2023a). CLIP,
with its contrastive learning approach, excels in aligning images with textual descriptions,
providing a robust semantic understanding (Radford et al., 2021). DINOv2, through its
self-supervised learning at both the image level and patch level, offers significant advances
in robust and stabilized feature extraction without relying on labeled data (Oquab et al.,
2023). LayoutLMv3’s specialization in document AI tasks demonstrates the power of visual
text processing (Huang et al., 2022). (Wang et al., 2023a) empirically investigated different
visual tokenizers pre-trained with dominant methods (i.e., DeiT (Touvron et al., 2021), CLIP,
MAE (He et al., 2021), DINO (Caron et al., 2021)), and observed that CLIP could capture
more semantics, whereas the other models excelled at fine-grained perception. However, on
the multimodal leaderboard organized by OpenCompass2, the visual encoders of all open-
source VLMs are based on the pre-trained CLIP encoder family. Many researchers have
pointed out the shortcomings of the CLIP encoder, such as the inability to reliably capture
even basic spatial factors of images (Kamath et al., 2023), suffering from object hallucination
(Li et al., 2023c), and so on. In light of the distinct capabilities and limitations of these
diverse vision models, a key question emerges: How can we incorporate the strengths of
multiple visual experts so that they work in synergy to improve overall performance?

Drawing inspiration from biology, we take on the poly-visual-expert perspective and design
a novel model, similar to how the vertebrate visual system operates. Consequently, in the
process of developing VLMs with poly-visual experts, three problems are in major concern:
(1) whether the poly-visual experts are effective; (2) how to better integrate multiple experts;
and (3) how to avoid exceeding the LLM’s maximum length with multiple visual experts?

In order to verify whether multiple visual experts are effective for VLMs, we construct a
candidate pool consisting of six well-known experts, including CLIP, DINOv2, LayoutLMv3,
Convnext (Woo et al., 2023), SAM, and MAE. Using LLaVA-1.5 as the base setup, we
explored single-expert, double-expert combinations, and triple-expert combinations in nine
benchmarks. The results, as shown in Figure 1, indicate that as the number of visual experts
increases, the VLMs acquire richer visual information (due to more visual channels), and
the upper limit of the multimodal capability improves across the board.

In existing single visual channel VLMs, visual signals are transmitted using either the MLP
network (Liu et al., 2023a; Wang et al., 2023b) or the Q-Former network (Bai et al., 2023; Dai
et al., 2023b). To support multi-channel signal transmission from multiple experts, we modi-
fied both methods for poly-expert fusion networks separately. The proposed method also

2https://rank.opencompass.org.cn/home
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compresses the local visual information by multi-patch-one-token for better transmission
efficiency and reduces the quadratic computational cost of subsequent processing of VLMs.

In position-aware VLMs, vision tokens consume a staggering amount of positional embed-
dings. Taking a single-turn multimodal dialogue in VQA as an example, with the SAM
expert, the number of vision tokens (about 4096) is more than 500 times higher than the
number of text tokens (about 8.7). Inspired by the fact that visual experts already have
positional encodings, we believe it is redundant to again assign a VLM position embed-
ding to each visual token individually. Therefore, we explore different positional encoding
schemes to effectively address the issue of position encoding waste. The results show that
the two schemes: sharing one position for all patches and 2D positional encoding (rows
plus columns) are able to reduce the position consumption (in the case of CLIP, the PE used
drops from 576 to 24 or even 1), while the performance is still comparable.

Our contributions can be summarized as follows:

• We introduce a poly-visual-expert VLM that synergistically combines the strengths of
various visual encoders to improve the overall capabilities of VLMs.

• We tackle the challenge of vision token overflow in VLMs by proposing multi-patch-
single-token projection and efficient positional encoding solutions.

• By experimenting with different combinations of experts, our results demonstrate en-
hanced performance (+1.8 with fair comparison) in multimodal tasks.

2 Architecture

Embedding Poly-Expert Fusion Network

OCR ExpertSegmentation Expert Other Expert

LayoutLMv3

Image Encoder
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Image Encoder
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Encoder

Vision-Language Models 

Image Caption VQA OCR Others
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Figure 2: An overview of our model structure. The poly-vision-expert model supports the
integration of visual experts with various types and capabilities.

2.1 The Overview

When a user uploads an image of wind pollination in a conical inflorescence and asks
“Which cones make pollen?” the image is processed in sequence through the encodings of
the CLIP expert, the SAM expert, and the LayoutLM expert, yielding three sets of visual
representations. Subsequently, a poly-expert fusion network compresses the multi-channel
visual information and aligns it multimodally to the vision input tokens for our poly-vision-
expert model. The user’s question is processed into text tokens by the LLMs’ Embedding
layer. Finally, our model generates the correct answer “Male cones make pollen.” by
employing its VQA capabilities to understand the vision-language question, and its OCR
capabilities to recognize the answer text from the image.
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Expert Res. Param. d_hid #Patch Type Pre-training
Tasks Images

CLIP 336 300M 1024 576 ViT Image-Text Matching 400M
DINOv2 224 1.1B 1536 256 ViT DINO+iBOT+SwAV 142M
LayoutLMv3 224 368M 1024 196 ViT Document OCR 11M
ConvNeXt 384 200M 768 1024 CNN Image Classification 2B
SAM 1024 637M 1280 4096 ViT Image Segmentation 11M
MAE 224 630M 1280 256 ViT Patch-level Denoising 1.3M

Table 1: Comparison of six pre-trained visual experts. Res. indicates image resolution,
d_hid indicates hidden dimension and Param. indicates the number of parameters.

In order to accomplish the above task, we propose the poly-vision-expert model, which
consists of three fundamental components:

1. a multi-expert visual encoder, which combines the experts selected from a pool;
2. a poly-expert fusion network, which is implemented as a simple projection fusion method

or a Q-Former fusion method (Li et al., 2023b);
3. a pre-trained open-source LLM (e.g., Vicuna v1.5).

Figure 2 shows an overview of our poly-vision-expert model. The core of a Vision-Language
Model is typically an LLM which is pre-trained on large-scale textual corpus. To perceive
the visual signals, a vision encoder and vision-language connection layer are adopted to
separately extract the visual features and align them to the semantic space of LLM.

The VLM takes as input a sequence comprised of interleaved text and image segments,
denoted as X = (. . . , T1, I1, T2, I2, . . . ), where text fragments T are processed by the tokenizer
and embedding layer of the LLM, and image segments I are fed to the vision encoder. To
ensure the universality and generalizability of the vision encoder, it is common practice to
freeze its pre-trained parameters. In this paper, we rethink the design of the visual encoder
in VLMs and aim to improve its capability by ensembled experts.

2.2 Multi-Expert Vision Encoder

After extensive investigation, we choose six vision encoders skilled in different domains,
including CLIP (2021), DINOv2 (2023), LayoutLMv3 (2022), Convnext (2023), SAM (2023),
and MAE (2021). They differ significantly from each other in terms of input resolution,
hidden size, model type, model size, pre-training tasks, and training methods, as shown in
Table 1. Their detailed descriptions can be found in Appendix A.

Given a image I in the input sequence and a vision expert encoder ei(·), we can obtain the
representation vectors of n image patches:

vi
1, vi

2, . . . , vi
n = ei(I). (1)

Assuming we have three experts (ei(·) ∈ Rni×di , ej(·) ∈ Rnj×dj , ek(·) ∈ Rnk×dk ), the final
sequence of image representations VI is a concatenation of the three output sequences.

VI = ei(I)⊕ ej(I)⊕ ek(I) = [vi
1, . . . , vi

ni
, vj

1, . . . , vj
nj , vk

1, . . . , vk
nk
] (2)

It is worth noting that each expert outputs a different number (ni vs. nj vs. nk) and dimension
(di vs. dj vs. dk) of vectors, and we will handle these differences in the fusion network.

2.3 Poly-Expert Fusion Network

Since the dimension and number of output sequences are often different for different visual
experts, a fusion network needs to be designed to unify the processing. Following LLaVA
(Liu et al., 2023b) and BLIP (Li et al., 2022), we propose an MLP projection fusion network
and a Q-Former fusion network, respectively.
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Figure 3: Left: Examples of two poly-expert fusion methods. We show how the MLP
method compresses visual information with “2-patches-1-token”, and how the Q-Former
method compresses information with 3 trainable queries. The modules with color gradients
represent the sharing of parameters among multiple experts to transfer knowledge. Right:
Diagram of the four positional encoding schemes. The ⊕ operator indicates that the row
position embedding and column position embedding are summed.

MLP projection is a 2-layer (din →dhidden →dout) multilayer perceptron. To simplify the
processing and to share the knowledge among multiple experts, we set the hidden dimension
(dhidden) and the output dimension (dout) equal to the dimension (dmodel) of the LLM, and
the second layer network (MLP(2) : dhidden →dout) parameters are shared among all experts.
Given a specific expert ei(·), the first layer network is defined as MLP(1)

i : di →dhidden.

HI =MLP(1)
i (ei(I))⊕ MLP(1)

j
(
ej(I)

)
⊕ MLP(1)

k (ek(I))

VI =MLP(2)(HI) (3)

In practice, multiple experts output a large number of vision tokens, which not only increases
the computational cost and memory usage of the VLM but also tends to exceed the maximum
length limit during inference. Therefore, we propose multi-patches-one-token projection
to proportionally reduce the number of tokens output by each expert. Since image signals
have local or sparse properties, it is practical to use one token to represent neighboring
patches. Take m-patch-one-token for example, we make the input dimension of the first
layer of the network m times (MLP(1) : din × m → dhidden), and its hidden layer output
vectors hi

1, hi
2, . . . are defined as follows:

hi
1=MLP(1)

(
[vi

1 ⊕ · · · ⊕ vi
m]
)

, hi
2=MLP(1)

(
vi

m+1 ⊕ · · · ⊕ vi
2m

)
, . . .

where the [⊕ · · · ⊕] notation denotes concatenation over the vector dimension. The final
number of vision tokens is reduced to 1

m of the original. In practice, m is typically set from 2
to 8, which reduces cost while usually not losing performance on downstream tasks. If m is
set too large, the information of the image might be lost.

Q-Former network is a trainable Querying Transformer module and proposed to bridge
the gap between a frozen image encoder and a pre-trained LLM. It extracts a fixed number of
output features from the vision encoder, independent of input image resolution. We create a
set number of learnable query embeddings as input to the Q-Former. The queries interact
with each other through self-attention layers, and interact with frozen image features ei(I)
through cross-attention layers. The output queries of the last layer are projected to the input
layer of the LLM. We use the pre-trained parameters in BLIP-2 as initialization to accelerate
convergence and, similar to the second layer MLP network, share the parameters among all
experts. Since the dimension of query embeddings is equal to 768, we add an additional
linear transformation (Wi ∈ Rdi×768) for each expert.

VI = Q-Former
(
Wi (ei(I))⊕ Wj

(
ej(I)

)
⊕ Wk (ek(I))

)
The ablation study in Section 3.2.1 shows that the MLP fusion network fuses better than the
Q-Former despite having fewer parameters and not being pre-trained.
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2.4 Different Positional Encoding Schemes

Inspired by the fact that visual experts already have positional encodings (e.g., 2D position
encoding in ViT (Wang & Liu, 2019)), we believe it is redundant to assign a VLM position
embedding (PE) again to each visual token individually. Figure 3 illustrates our exploration
of three encoding schemes to optimize PE assignments:

1. all vision tokens of an image share a PE (share-all);
2. one PE shared by the same row of vision tokens (share-by-row);
3. one PE shared by the same row of vision tokens, plus a set of learnable columns PEs

(share-by-row&col).

Among the three methods, share-all can reduce the original O(N2) PE cost to O(1), while the
share-by-row and share-by-row&col can reduce the cost to O(N). All of them can significantly
alleviate the out-of-maximum-length problem, but the question is how much do they affect
the performance of VLM? We report ablation results in Section 3.2.2.

3 Experiments

3.1 Main Results

We conduct explorations of single-expert, double-expert, and triple-expert ensembles. Fol-
lowing LLaVA-1.5 (Liu et al., 2023a), our training pipeline consists of two stages. In the
pre-training stage, we freeze the text-only LLM and the multi-expert encoder, and train
the poly-visual fusion network from scratch to align the representation space of both. Af-
ter training on a large-scale weakly-supervised (with noise) dataset, the text-only LLM
is already capable of multimodal input and comprehension. In the fine-tuning stage, we
unfreeze the LLM and further train it together with the poly-visual fusion network on
diverse and high-quality supervised fine-tuning (SFT) datasets.

Datasets & Evaluation & Hyperparameters We use the same datasets, evaluation, and
hyperparameters as in LLaVA-1.5 (Liu et al., 2023a). The details can be found in Appendix C.

Case Study We present case studies on seven tasks in Appendix D. Our model can
successfully follow multimodal instructions, enabling flexible human interaction.

3.1.1 Single Vision Expert

Model Param VQAv2 GQA SQAI VQAT POPE MMB MMBCN SEEDI MMVet Avg

Single Expert
CLIP 7.3B 78.5 62.0 66.8 58.2 85.9 63.0 57.4 66.2 30.5 63.2
DINOv2 8.1B 74.9 61.7 66.1 46.2 84.6 57.9 48.7 63.4 23.4 58.5
LayoutLMv3 7.4B 44.9 40.0 62.8 43.6 59.1 29.0 19.8 34.8 11.8 38.4
ConvNeXt 7.2B 75.1 60.5 65.0 56.3 85.6 63.3 55.0 61.5 26.0 60.9
SAM 7.6B 64.7 55.8 63.9 44.1 82.0 43.7 33.9 51.9 17.7 50.9
MAE 7.6B 62.0 53.2 63.3 44.5 79.7 41.6 33.0 49.4 16.5 49.2

Table 2: Comparison of six vision experts on 9 benchmarks.

Table 2 compares the performance of all six VLMs with a single vision expert. The CLIP
expert achieves the best performance in 8/9 benchmarks, fully explaining why it has become
the dominant choice of vision encoder for VLMs. Comparing the different attributes of
the experts, CLIP ranked 5th in terms of the number of parameters, 3rd in terms of image
resolution, and 2nd on the size of the pre-training data, none of which had an absolute lead.
Therefore, we guess that its main advantage lies in its image-text matching pre-training task,
which has multimodal alignment capability in advance. Overall, the performance ranking
of the six experts is roughly CLIP>ConvNeXt>DINOv2>SAM>MAE>LayoutLMv3. In
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addition, LayoutLMv3 is an undisputed expert in OCR and SAM in image segmentation but
performs poorly as a single visual encoder in VLM. A natural question is whether poly-expert
fusion can activate their capabilities in their specialized fields?

3.1.2 Double Vision Experts

Model Param VQAv2 GQA SQAI VQAT POPE MMB MMBCN SEEDI MMVet Avg

Double Experts
DINOv2+CLIP 8.4B 79.0 63.1 69.8 57.7 86.4 67.0 60.5 66.9 32.0 64.7

∆DINOv2 4.1 1.5 3.7 11.5 1.8 9.1 11.8 3.5 8.6
∆CLIP 0.5 1.1 3.0 0.5 0.5 4.0 3.1 0.7 1.5

LayoutLMv3+CLIP 7.7B 79.2 62.4 68.5 58.9 86.1 67.0 59.9 66.8 33.0 64.6
∆LayoutLMv3 34.3 22.4 5.7 15.3 27.0 38.0 40.1 32.0 21.2
∆CLIP 0.7 0.4 1.7 0.7 0.2 4.0 2.5 0.6 2.5

ConvNeXt+CLIP 7.5B 78.7 61.9 69.9 57.8 86.1 65.5 59.2 66.1 32.1 64.1
∆ConvNeXt 3.6 1.4 4.9 1.5 0.5 2.2 4.2 4.6 6.1
∆CLIP 0.2 0.1 3.1 0.4 0.2 2.5 1.8 0.1 1.6

SAM+CLIP 7.9B 78.9 63.5 70.3 57.9 86.3 66.3 58.8 66.7 32.7 64.5
∆SAM 14.2 7.7 6.4 13.8 4.3 22.6 24.9 14.8 15.0
∆CLIP 0.4 1.5 3.5 0.3 0.4 3.3 1.4 0.5 2.2

MAE+CLIP 7.9B 78.4 62.7 67.8 56.9 87.0 66.2 56.6 66.2 29.3 63.5
∆MAE 16.4 9.6 4.5 12.4 7.3 24.6 23.6 16.8 12.8
∆CLIP 0.1 0.7 1.0 1.3 1.1 3.2 0.8 0.0 1.2

Table 3: Comparison of different double-expert encoders. The ∆-marked rows are compared
to the single-expert methods. Where blue cells mean the double-expert model is better,
and red cells mean the single-expert model is better.

The current mainstream open-source VLMs have only one visual encoder, i.e., a single visual
channel. Among six evaluated vision experts, the CLIP expert achieves the best performance
in 8/9 benchmarks. However, multimodal tasks are diverse, and different tasks require
different visual signals. We investigate whether dual-channel, i.e., double visual experts
can outperform single experts on various tasks. We combine the strongest CLIP expert with
other experts to construct a total of five double-expert encoders.

Table 3 shows the performance of the double-expert encoders and their respective sin-
gle expert. The results show that the “DINOv2+CLIP”, “LayoutLMv3+CLIP”, and “Con-
vNeXt+CLIP” three double-expert encoders outperform the arbitrary single encoder in
almost all cases (23/27). This demonstrates that using two visual channels enhances multi-
modal capabilities, confirming the feasibility of multi-expert collaboration.

Comparing the performance between double-expert methods, we found that the best double-
expert is DINOv2+CLIP, rather than the ensemble of the best single expert CLIP and the
second-best ConvNeXt. It indicates that superior performance as a single expert does not
necessarily imply optimality when ensembled. Since ConvNeXt and CLIP have considerable
overlap in their training methods and training corpora, leading to the extraction of similar
visual information, whereas the self-supervised DINOv2 and the weakly-supervised CLIP
complement each other, resulting in a more effective ensemble. Furthermore, it is worth men-
tioning that LayoutLMv3, which performed the worst as a single expert, shows significant
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Model Param VQAv2 GQA SQAI VQAT POPE MMB MMBCN SEEDI MMVet Avg

Triple Experts
ConvNeXt+LayoutLMv3+CLIP 7.9B 78.5 63.3 70.2 58.0 87.3 66.8 58.9 66.0 32.2 64.6

∆ConvNeXt+CLIP 0.2 1.4 0.3 0.2 1.2 1.3 0.3 0.1 0.1
∆LayoutLMv3+CLIP 0.7 0.9 0.9 1.7 1.2 0.2 1.0 0.8 0.8

ConvNeXt+DINOv2+CLIP 8.6B 78.6 63.2 69.2 57.8 86.5 66.6 58.9 67.1 32.9 64.5
∆ConvNeXt+CLIP 0.1 1.3 0.7 0.0 0.4 1.1 0.3 1.0 0.8
∆DINOv2+CLIP 0.4 0.1 0.6 0.1 0.1 0.4 1.6 0.2 0.9

LayoutLMv3+DINOv2+CLIP 8.8B 79.1 63.6 69.0 58.4 86.5 67.4 60.0 67.5 33.6 65.0
∆LayoutLMv3+CLIP 0.1 1.2 0.5 0.5 0.4 0.4 0.1 0.7 0.6
∆DINOv2+CLIP 0.1 0.5 0.8 0.7 0.1 0.4 0.5 0.6 1.6

Table 4: Performance comparison of different triple-expert methods. The ∆-marked rows
are compared to the double-expert method. Where blue cells indicate the triple-expert
model is better, and red cells indicate the double-expert model is better.

improvement when collaborating with CLIP, performing the best on four benchmarks and
ranking overall just behind DINOv2+CLIP. For SAM or MAE, even if their pre-training tasks
are Image Segmentation, Patch-level Denoising, respectively, which are mainly optimization
objectives from the image perspective. “SAM+CLIP” and “MAE+CLIP” double-expert
encoders outperform the arbitrary single-encoder in almost all cases (13/18). Therefore, we
can conclude that when paired with the versatile visual expert CLIP, other experts can focus
on capturing supplemental visual information to further enhance performance.

3.1.3 Triple Vision Experts and More Vision Experts

As shown in Table 4, the triple-expert approach wins in 4/6 cases in comparison
with the two-expert at the data size of LLaVA-1.5. The best-performing three-expert
is LayoutLMv3+DINOv2+CLIP, followed by ConvNeXt+LayoutLMv3+CLIP, and finally
ConvNeXt+DINOv2+CLIP. Among them, model LayoutLMv3+DINOv2+CLIP has the largest
number of parameters, reaching 8.8 billion. Based on the triple-expert experiments, we
further conceptualize scenarios with more experts. The different types of vision encoders
we chose for the pre-training tasks contain Image-Text Matching, Image Classification, and
Patch-level Denoising, which fall into three categories: weakly-supervised, self-supervised,
and supervised. We have already achieved high performance in training triple-expert, and
continuing to increase the number of experts has limited performance improvement. Addi-
tionally, the integration of extra experts leads to an excessive total token count, causing the
length of the training process to be too long, increasing the cost of training and inferencing.

3.2 Ablation Study

3.2.1 Effect of Fusion Methods

Model Param VQAv2 GQA SQAI VQAT POPE MMB MMBCN SEEDI MMVet Avg

DINOv2+CLIP+MLP 8.4B 79.0 63.1 69.8 57.7 86.4 67.0 60.5 66.9 32.0 64.7
DINOv2+CLIP+Q-Former 8.5B 60.4 50.9 66.7 45.1 45.2 52.7 44.8 51.8 20.5 48.7

ConvNeXt+CLIP+MLP 7.5B 78.7 61.9 69.9 57.8 86.1 65.5 59.2 66.1 32.1 64.1
ConvNeXt+CLIP+Q-Former 7.6B 65.8 52.6 68.7 45.6 77.0 59.7 49.8 53.2 22.1 54.9

Table 5: Performance comparison of different poly-expert fusion methods.

The MLP projection and Q-Former network are two mainstream methods for connecting
vision and language. Which of them can more effectively convey visual signals is a key issue,
especially in the context of poly-expert fusion. Table 5 presents the performance of using
MLP and Q-Former respectively on three double-expert encoders, including “DINOv2 &
CLIP” and “ConvNeXt & CLIP”. The results demonstrate that MLP significantly outper-
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forms Q-Former in all cases, despite having fewer parameters and not utilizing pre-trained
parameters like Q-Former, being instead directly initialized randomly.

3.2.2 Effect of Different Position Schemes

Model VQAv2 GQA SQAI VQAT POPE MMB MMBCN SEEDI MMVet Avg

Origin 78.5 62.0 66.8 58.2 85.9 64.3 58.3 66.2 30.5 63.4
Share-all 79.0 62.4 68.4 58.4 86.3 67.4 58.2 65.7 31.7 64.2
Share-by-row 75.0 57.2 63.4 51.7 86.1 46.4 43.4 55.6 31.9 56.7
Share-by-row&col 79.0 62.6 68.3 58.1 86.3 66.0 58.8 66.2 30.6 64.0

Table 6: Comparison of four positional encoding schemes on 9 benchmarks.

Table 6 shows the results of four positional encoding schemes introduced in Section 2.4.
The share-all method (used by CogVLM (Wang et al., 2023b)) not only saves the most
PE but also improves the average performance by 0.8 on top of CLIP. The 2D positional
coding (share-row&col) also improves the average performance by 0.6. However, share-
row impairs the performance of the model, probably because row-sharing corrupts the
position information of the visual encoder itself. The results support our conjecture that it
is redundant to re-assign LLM positional encoding to each vision token that already has
positional information.

3.3 Analysis

Among poly-visual encoders, an important question is the contribution of different experts
to the model’s output. Attention mechanisms are commonly used interpretive tools in
Transformer networks (Wiegreffe & Pinter, 2019). Here, we employ a triple-expert encoder
to assess the individual contributions of each expert within two multilingual benchmarks:
MMB-English and MMB-Chinese. A sample’s contribution is measured by the average
attention the output token directs toward each expert’s representations. By aggregating these
averages across the dataset, we determine each expert’s overall impact on the encoding
process. Table 7 shows the individual contributions of the text prompt, LayoutLMv3,
DINOv2, and CLIP to the output. The results indicate that the contribution of the text
prompt to the answer is significantly higher than that of the visual experts. This is as
expected. Firstly, the text prompt defines the format of the VLM’s response, necessitating
attention to the prompt during output, and secondly, the text has a higher information
density than images, hence the average attention is usually higher for text. Comparing the
three visual experts, we find that their contributions in descending order are CLIP, DINOv2,
and LayoutLMv3. CLIP still demonstrates the characteristics of being the dominant eye or
the primary visual channel. DINOv2’s contribution is approximately 20% of CLIP’s, while
LayoutLM’s contribution is minimal, at only 1% of CLIP’s.

An ensuing inquiry is the relevance of visual channels that exhibit minimal contributions
within the model’s architecture. The detailed description of this section is in Appendix B.

3.4 VLM Benchmark results

We selected 9 of the 12 evaluation benchmarks for LLaVA-1.54. Table 8 reports the
results for LLaVA-1.5 (i.e., single CLIP expert), and our poly-vision-expert model
(LayoutLMv3+ConvNeXt+CLIP / LayoutLMv3+DINOv2+CLIP) on above benchmarks. The
poly-vision-expert VLMs show improved performance over the single-expert VLM, with
average improvements of +1.3/+1.8, while the number of parameters only increased by
600M/1500M. In comparison with established VLMs, our poly-vision-expert model emerges
as the top-performing system in 7/8 benchmarks, and secures a close second in the remain-
ing one, thus affirming its robust multimodal assistant capabilities.

4Excluding LLaVA-Bench that rely on unstable GPT4 responses, as well as VisWiz (2018) and MME
(2023) for the website crashed.
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Prompt LayoutLMv3 DINOv2 CLIP

MMB 61.1% 0.14% 2.76% 11.1%
MMBCN 58.8% 0.16% 2.92% 10.7%

Table 7: Average attention prob-
ability (%) allocation of our
LayoutLMv3+DINOv2+CLIP triple-
expert model’s output on each input.

Model Param VQAv2 GQA SQAI VQAT POPE MMB MMBCN SEEDI MMVet Avg

BLIP-2 (2023b) 14.1B 41.0 41.0 61.0 42.5 85.3 – – 46.4 22.4
InstructBLIP (2023a) 8.2B – 49.2 60.5 50.1 – 36.0 23.7 53.4 26.2
VisualGLM (2022) 8.0B – – – – – 37.6† 35.5† 47.0‡ 14.8‡

Shikra (2023b) 7.3B 77.4 – – – – 58.8 – – –
PandaGPT-13B (2023) 13B – – – – – 45.4† 32.0† 47.6‡ 19.6‡

Qwen-VL-Chat (2023) 9.6B 78.2 57.5 68.2 61.5 – 60.6 56.7 58.2 –
mPLUG-Owl2 (2023) 8.2B 79.4 56.1 68.7 54.3 – 66.5† 59.5† 64.5‡ 35.7‡

Monkey (2024) 9.8B – – 69.4 – – 59.6† 54.7† 64.3‡ 38.1‡

CLIP / LLaVA-1.5 (2023a) 7.3B 78.5 62.0 66.8 58.2 85.9 63.0 57.4 66.2 30.5 63.2
OursLayoutLMv3+ConvNeXt+CLIP 7.9B 78.5 62.9 69.8 57.6 86.6 66.6 59.8 66.2 32.5 64.5
OursLayoutLMv3+DINOv2+CLIP 8.8B 79.1 63.6 69.0 58.4 86.5 67.4 60.0 67.5 33.6 65.0

Table 8: The effect of default data on nine benchmarks. Param. indicates the number of pa-
rameters. The †/‡ marks denote the results from MMB/OpenCompass official, respectively.

4 Related Work

Vision-Language Models (VLMs) integrate linguistic and visual processing, showing
promising results in various applications. VisualGPT (Chen et al., 2022) provided founda-
tional work in image captioning, BLIP series (Li et al., 2022; 2023b) extended capabilities to
include visual question answering. Flamingo (Alayrac et al., 2022) and Kosmos-1 (Huang
et al., 2023) demonstrated effective multi-modal understanding. LLaVA (Liu et al., 2023b)
and MiniGPT-4 (Zhu et al., 2023) utilize projection for connecting vision and language.
CogVLM (Wang et al., 2023b) replicated close to double the parameters to build visual
experts specializing in visual tokens, while similar to our exploration of positional encoding,
they used share-by-one rather than the original approach. Qwen-VL and BLIP series (Bai
et al., 2023; Dai et al., 2023b) use the Q-Former network to bridge text and image.

Multi-Modal Large Language Models (MLLMs) have been evolving rapidly, with models
like ImageBind-LLM (Han et al., 2023) and PandaGPT (Su et al., 2023) incorporating richer
modality inputs, including audio and video. There is also a growing focus on region-
level parsing (Chen et al., 2023b), text-to-image generation (Wen et al., 2023), and 3D
understanding (Xu et al., 2023). These models show that MLLMs can achieve meaningful
performance across a range of tasks.

5 Conclusion

In this paper, we push the boundaries of VLMs by proposing a novel polyvisual system
that closely mirrors the complex and multi-dimensional nature of biological visual pro-
cessing. Leveraging the unique attributes of diverse visual encoders, our system unifies
their strengths to enrich the multimodal understanding of VLMs. Furthermore, we address
the challenge of efficiently integrating visual information into language models by intro-
ducing techniques such as multi-patch-single-token projection and optimizing positional
embeddings. This not only allows us to manage the overflow of vision tokens that typically
burdens VLMs but also retains the models’ semantic and spatial reasoning capabilities.
Through rigorous experiments across a suite of benchmarks, we demonstrate that our
polyvisual approach significantly enhances the VLMs’ performance, outpacing existing
models in accuracy and depth of understanding. These results support our hypothesis that
a well-integrated assembly of expert encoders can lead to a substantial improvement in
handling complex multimodal inputs.
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A Vision Experts

CLIP learns the image-text alignment through contrastive learning. It is pre-trained on
a large-scale dataset consisting of 400M noisy image-text pairs sourced from the internet.
The vision encoder of CLIP is a Vision Transformer (ViT) with 300M parameters. The input
resolution is fixed to 336×336, and the feature dimension is 1024.3

DINOv2 trains a student network to mimic the behavior of a more powerful teacher
network, without the need for any training labels. Two objective functions are utilized for
self-supervised pretraining: an image-level object that constrains the CLS tokens from the
student network and teacher network, and a patch-level object that is applied to the extracted
representations of masked input. The DINOv2 vision encoder is a Vision Transformer (ViT)
with 1.1B parameters. The input image is preprocessed to 224×224 resolution and the
hidden dimension is 15364.

LayoutLMv3 pre-trains multimodal Transformers for Document AI with unified text and
image masking. The simple unified architecture and training objectives make LayoutLMv3

a general-purpose model for both text-centric and image-centric Document AI tasks. The
LayoutLMv3 vision encoder is a ViT architecture with 368M parameters. The input image is
first preprocessed to the resolution of 224×224 and then encoded to 1024-dimension patch
embeddings.5

ConvNeXt is a purely convolutional network (ConvNet) that introduces a fully convolu-
tional masked autoencoder framework (FCMAE) and a new global response normalization
(GRN) layer to ConvNeXt. ConvNeXt underwent pretraining on the ImageNet-22K dataset,
significantly enhancing the performance of the pure ConvNet across various recognition
benchmarks. The ConvNeXt vision encoder we used has 200M parameters. The input
resolution is 384×384 and the feature dimension is 768.6

SAM is trained on a large-scale segmentation dataset, comprising 11 million images and
over 1 billion masks, and achieves impressive zero-shot generalization. It is designed to
efficiently predict object masks from images with different types of prompts, e.g., text or
point. SAM also adopts ViT as a vision encoder with 637M parameters. The input resolution
and hidden dimension are both larger, i.e., 1024×1024 and 1280, respectively.7

MAE aims to reconstruct the original image given only partial observations (25% of the
patches). The ViT-Huge encoder paired with MAE achieved a new record at the time on the
ImageNet-1K dataset with an accuracy of 87.8% and generalized very well. The MAE vision
encoder has 630M parameters, while input resolution and hidden dimension are 1024×1024
and 1280.8

3https://huggingface.co/openai/clip-vit-large-patch14-336
4https://huggingface.co/facebook/dinov2-giant
5https://huggingface.co/microsoft/layoutlmv3-large
6https://huggingface.co/laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup
7https://huggingface.co/facebook/sam-vit-huge
8https://huggingface.co/facebook/vit-mae-huge
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B Analysis

A2: There are four dogs in the picture, and they are respectively 
golden yellow, white, brown, and black.

The dog is sitting on top of a wooden table ...

Q1: Where is the dog 
in the picture?

The dog is sitting on top of a table.

The dog is sitting on top of a wooden table...

A1: The dog is sitting on top of a wooden table in the picture.

Q2: How many dogs are 
there in the picture? 
What color are they?

There are three dogs... They are brown and white.

There are three dogs... They are black and white.

mask DINOv2 🙈
mask CLIP

mask LayoutLMv3

🙈
🙈

There are three dogs..., and they are all brown.

mask DINOv2 🙈
mask CLIP

mask LayoutLMv3

🙈
🙈

Figure 4: The perturbation experiments on the triple-expert LayoutLMv3+DINOv2+CLIP
model, the specific perturbation is to mask all output of the corresponding vision expert.

Figure 4 presents perturbation experiments conducted on the same triple-expert. The
outputs of each expert were individually masked to assess their influence on the model’s
response. In Case 1, our model is queried with a straightforward question: “Where is
the dog in the picture?” The experiment demonstrates that, irrespective of which visual
expert is masked, the two unmasked channels sufficiently identify the location as “on top
of”. However, the presence of CLIP experts enriches the details by specifying “wooden
table” over a generic “table”. Case 2 poses a more complex question to our model: “How
many dogs are there in the picture? What colors are they?” Here, the perturbation tests
reveal that the collective operation of all three experts is necessary for an accurate response.
The omission of any single expert leads to erroneous answers, underlining the diverse
informational scope captured by each visual channel within the poly-visual-expert VLM.
This underscores the importance of channel integration in multimodal tasks, as certain
nuances can be missed when relying on a solitary channel or single-expert VLM.
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C Datasets & Evaluation & Hyperparameters

Datasets During the pre-training stage, we utilized the LCS-558K dataset9, which com-
prises ∼558K image-text pairs from the LAION-CC-SBU, annotated with BLIP-generated
captions. During the SFT stage, We use the default SFT data from LLaVA-1.5, which is
∼665k10, containing VQA, OCR, region-level VQA, visual conversation, and language
conversation data.

Evaluation Including VQAv2 (2017); GQA (2019); SQAI : ScienceQA-IMG (2022); VQAT:
TextVQA (2019); POPE (2023c); MMB & MMBCN: MMBench & MMBench-Chinese dev
results (2023c); SEEDI : SEED-Bench-IMG (2023a); MM-Vet (2023).

Hyperparameters For main results, we keep all training hyperparameters roughly the
same as the LLaVA series (Liu et al., 2023b;a). We present a detailed description of the
hyperparameters in Table 9. For the MLP fusion network, we set m in m-patches-one-token
from 1 to 16 to avoid exceeding the maximum length for training and inference. For the
Q-Former fusion network, we set the number of queries per expert to match the number of
outputs from the MLP fusion network. The parameters of the Q-Former fusion network are
initialized using the pre-training parameters of BLIP-2 (Li et al., 2023b).

Hyperparameter Pretrain Finetune

batch size 256 128
lr 1e-3 2e-5
lr schedule cosine decay
lr warmup ratio 0.03
weight decay 0
epoch 1
optimizer AdamW
DeepSpeed stage 2 3

Table 9: Hyperparameters of our model’s pretrain and finetune.

9https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain
10https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K
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D Case Study

Figure 5: Qualitative examples generated by our poly-vision-expert model.

Figure 5 shows the case study of our model on seven tasks, including Complex Image
Captioning, Visual Text Generating, OCR Interpreting Reasoning with World Knowledge,
Visual Math Problem Solving, Complex Counting, and Visual Grounding. Our model is able
to successfully follow a variety of multimodal instructions, allowing for flexible interaction
with humans.

18


	Introduction
	Architecture
	The Overview
	Multi-Expert Vision Encoder
	Poly-Expert Fusion Network
	Different Positional Encoding Schemes

	Experiments
	Main Results
	Single Vision Expert
	Double Vision Experts
	Triple Vision Experts and More Vision Experts

	Ablation Study
	Effect of Fusion Methods
	Effect of Different Position Schemes

	Analysis
	VLM Benchmark results

	Related Work
	Conclusion
	Acknowledgements
	Vision Experts
	Analysis
	Datasets & Evaluation & Hyperparameters
	Case Study

