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ABSTRACT

We present Supervised Contrastive Learning with Guided Sample Selection
(SupCL-GSS), that leverages data maps to construct “hard” positives and “hard”
negatives for text classification on pre-trained language models. In our method, we
first measure training dynamics to identify the learning difficulty of each training
sample with respect to a model—whether samples are easy-to-learn or ambigu-
ous. We then construct positive and negative sets for supervised contrastive learn-
ing that allow guided sample selection based on both samples’ learning difficulty
and their class labels. We empirically validate our proposed method on various
NLP tasks including sentence-pair classification (e.g., natural language inference,
paraphrase detection, commonsense reasoning) and single-sentence classification
(e.g., sentiment analysis, opinion mining), both on in- and out-of-domain settings.
Our method achieves better performance and yields lower expected calibration
errors compared to competitive baselines.

1 INTRODUCTION

Contrastive learning is a variant of self-supervised learning which does not require any labeled data
(Wu et al., 2018; Tian et al., 2020); instead, it aims at optimizing the representations by minimizing
the distance between similar samples (i.e., positive pairs) and maximizing the distance between
dissimilar samples (i.e., negative pairs), to produce high-quality representations. A major focus in
self-supervised contrastive learning is on constructing more challenging negative sets, i.e., hard
negatives Robinson et al. (2021); Kalantidis et al. (2020).

Concomitantly, Khosla et al. (2020) extended self-supervised contrastive learning to supervised con-
trastive learning which constructs positive and negative sets guided by samples’ class labels. For
example, all samples from the same class as the anchor are considered as positives whereas samples
from different classes are considered as negatives. Gunel et al. (2020) showed that including a super-
vised contrastive learning term in the overall loss yields promising results on the GLUE benchmark
Wang et al. (2018). Furthermore, Sedghamiz et al. (2021) improved Gunel et al. (2020)’s perfor-
mance by leveraging built-in dropout masks of a pre-trained language model along with class labels.
However, these supervised contrastive learning works construct negative pairs by simply selecting
random samples that have different class labels. Thus, devising hard negatives for supervised con-
trastive learning remains under-explored—and in fact, we argue that not only hard negatives, but
also hard positives are equally important.
In this paper, we aim to construct hard positive and hard negative sets for supervised contrastive
learning to learn better representations for text classification tasks on pre-trained language mod-
els. For this, we first utilize data maps Swayamdipta et al. (2020) to categorize training samples
according to their learning difficulty with respect to a model as easy-to-learn or ambiguous, and
then construct positive and negative sets that allow guided sample selection based on both samples’
learning difficulty and their class labels. Data maps Swayamdipta et al. (2020) leverage the mean
and standard deviation of the gold label probabilities, predicted by a model for each training sam-
ple across training epochs (referred as confidence and variability, respectively); the samples that
the model predicts correctly and consistently (high confidence, low variability) across epochs are
identified as easy-to-learn samples, whereas those with high variability for which gold label proba-
bilities fluctuate frequently during training are identified as ambiguous for the model and are those
for which the model is uncertain about. To illustrate the intuition for using samples’ learning diffi-
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(a) (b) (c)
Figure 1: t-SNE visualization of 1,000 SNLI training samples as: (a) easy-to-learn and ambiguous
from the entailment class, (b) easy-to-learn from all classes, and (c) ambiguous from all classes,
with a BERT model.

culty in hard sets construction, we explore how samples align in the feature space along these two
categories.

Hence, we show t-SNE visualization of easy-to-learn and ambiguous samples from the Stanford
Natural Language Inference (SNLI) dataset Bowman et al. (2015) in Figure 1 as follows: (a) easy-
to-learn and ambiguous samples that belong to the ‘entailment’ class; (b) easy-to-learn samples of all
class labels (i.e., ‘entailment’, ‘contradiction’ and ‘neutral’), and (c) ambiguous samples of all class
labels. As shown in Figure 1a, we observe that samples that belong to the same class (‘entailment’)
are likely to be separable into easy-to-learn and ambiguous samples. This is because the ambiguous
samples are those that reside near the decision boundary and highly likely overlap with other classes
whereas the easy-to-learn samples cluster together tightly further away from the decision boundary.
In Figure 1b, we can see that easy-to-learn samples are fairly clustered along their classes. Last, we
can observe from Figure 1c that ambiguous samples from different classes are not clustered along
their classes and are those for which the model is uncertain about.

To this end, we propose Supervised Contrastive Learning with Guided Sample Selection (SupCL-
GSS), for constructing hard positive and hard negative sets guided not only by class labels but
also by samples’ learning difficulty (i.e., as easy-to-learn or ambiguous). Specifically, to construct
positive pairs for a given sample (anchor), we select samples that satisfy the following rules: (1)
samples that have the same class label as the anchor and share the same learning difficulty, and
(2) the k most dissimilar samples to the anchor that have the same class label as the anchor but
different learning difficulty. For example, in Figure 1(a), easy-to-learn samples should stay close
to each other since they share the same label ‘entailment’. Our method pulls these samples together
to encourage them to remain close in the feature space by satisfying rule (1). Furthermore, easy-to-
learn and ambiguous samples that are most dissimilar but from the same class are likely to be located
further apart in the feature space (see Figure 1(a)). Our method pulls these samples from the same
class together to ensure they come close in the feature space by satisfying rule (2). Consequently,
we encourage easy-to-learn and ambiguous samples to form a tighter cluster in the feature space.
Furthermore, to construct negative pairs for a given sample (anchor), we select samples that satisfy
the following rule: samples that have different class labels to the anchor but the same learning
difficulty, and whose cosine similarities with the anchor are higher than a pre-defined threshold
value. For example, in Figure 1(c), our method ensures that ambiguous samples that belong to the
‘contradiction’ and ‘neutral’ classes and that are similar to each other are pushed further apart. Thus,
similar to Robinson et al. (2021), our method constructs the hard negatives to prefer examples that
are (incorrectly) close to the anchor. However, when constructing both the hard positive and hard
negative sets, we account for the certainty / uncertainty of the model in the samples’ labels to provide
additional signal.

Since we explicitly infuse the certainty / uncertainty of the model through samples’ learning diffi-
culties (as easy-to-learn or ambiguous), we comprehensively investigate the impacts of our method
on both model performance and model calibration, i.e., the ability of the model to express its un-
certainty in predicting labels for unseen test data, which is essential for model trustworthiness Guo
et al. (2017).

Our contributions are as follows:
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• We introduce supervised contrastive learning with guided sample selection called SupCL-
GSS which constructs hard positive and negative sets guided by samples’ learning difficulty
and class labels, to enhance the generalization of representations learned for text classifi-
cation on pre-trained language models.

• We demonstrate that SupCL-GSS not only achieves improved accuracy on both in-domain
and out-of-domain settings compared to strong baselines on various NLP tasks, but also
yields lower expected calibration errors.

• We analyze the contribution of each component of SupCL-GSS, and visualize the feature
representations, showing the necessity of each component and the advantage of our method.

2 RELATED WORK

Contrastive Learning Self-supervised contrastive learning has achieved remarkable success on
many tasks and domains He et al. (2020); Chen et al. (2020); Kalantidis et al. (2020); Robinson
et al. (2021); Gao et al. (2021); Wang et al. (2021); Chai et al. (2021); Liang et al. (2022); Qin et al.
(2022); Park et al. (2023); Wan et al. (2023); Chen et al. (2024). Supervised contrastive learning
overcomes the main shortcoming of self-supervised contrastive learning by considering the class
labels of inputs Khosla et al. (2020); Gunel et al. (2020); Sedghamiz et al. (2021); Zeng et al. (2021);
Guo et al. (2023). Many prior works on supervised contrastive learning focus on generating altered
views for anchors to expand positive sets while simply generating negative views by leveraging
class label information Sedghamiz et al. (2021); Zeng et al. (2021); Park et al. (2023). However,
these works heavily rely on data augmentation to diversify positives, which may not effectively
generate hard positives. Furthermore, they simply use class labels to construct negatives, which
may not necessarily generate meaningful negatives. While Robinson et al. (2021) and Kalantidis
et al. (2020) prove the benefits of hard negatives in self-supervised contrastive learning, existing
research lacks methods specifically for constructing hard positives and hard negatives in supervised
contrastive learning. We address this gap by leveraging both the samples’ learning difficulty and
class labels for constructing hard positives and hard negatives. We chose Kalantidis et al. (2020) and
Robinson et al. (2021) as strong baselines for comparison due to their alignment with our work in
targeting hard negatives (alongside other supervised contrastive learning baselines).

Curriculum Learning Our method is reminiscent of curriculum learning Bengio et al. (2009);
Wang et al. (2022); Nagatsuka et al. (2023), which mimics the human learning process (from simpler
to more complex concepts). Curriculum learning designs a difficulty measure ahead, and an easy-
to-difficult curriculum is arranged accordingly for the learning procedure. Nagatsuka et al. (2023)
proposed to use the length of input text as the difficulty measure. Swayamdipta et al. (2020) ranked
samples according to their learning difficulty and used data regions for model training. We use
the methods by Nagatsuka et al. (2023) and Swayamdipta et al. (2020) as additional baselines in
experiments.

Model Calibration A well-calibrated model ensures that the model’s confidence in its predic-
tions reflects its actual accuracy Guo et al. (2017). Prior works show that applying either self- and
fully-supervised contrastive loss term as a regularizer enhances model calibration on image classi-
fication Liu & Abbeel (2020); Tack et al. (2020); Winkens et al. (2020); Khosla et al. (2020), and
on graph representation learning Ma et al. (2021); Zhang et al. (2023). However, there is a notable
gap in research as no prior works delve into the implications of model calibration in supervised
contrastive learning on text data using pre-trained language models. Most prior works on NLP fo-
cus on performance improvement using contrastive learning on various tasks such as out-of-domain
intent detection in a task-oriented dialogue system Zeng et al. (2021), relation extraction Wan et al.
(2023); Guo et al. (2023) and code search with question answering Park et al. (2023), rather than
model calibration. In contrast, we show that SupCL-GSS not only achieves better performance but
also yields lower expected calibration errors on both single sentence and sentence-pair classification
tasks.
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3 PROPOSED APPROACH

We now introduce Supervised Contrastive Learning with Guided Sample Selection named SupCL-
GSS. We first describe the process of identifying the learning difficulty of each sample by leveraging
training dynamics (i.e., confidence, variability) (§3.1). We then present our method of constructing
positive and negative sets in SupCL-GSS, guided by both the samples’ learning difficulty and class
label (§3.2).

3.1 IDENTIFYING THE LEVEL OF DIFFICULTY

We describe confidence and variability, two statistics that are used to identify the level of difficulty
of each sample Swayamdipta et al. (2020). To obtain these statistics, we fine-tune a pre-trained
language model in advance to calculate them for each sample (xi, yi) over E training epochs.

Confidence is the mean of the model probability of the true (gold) label yi across epochs:

µ̂i =
1

E

E∑
e=1

pθ(e)(yi|xi)

where pθ(e) denotes the model’s probability with parameter θ(e) at the end of the eth epoch.

Variability is the standard deviation of pθ(e) across epochs E:

σ̂i =

 ∑E
e=1(pθ(e)(yi|xi)− µ̂i)2

E

Given these statistics per sample, we identify the learning difficulty of each sample. If a model
predicts a sample correctly and consistently across epochs (high-confidence, low-variability), we
identify it as an easy-to-learn sample. Otherwise, if a sample whose true class probabilities have a
high variance during training (high-variability), we identify the sample as ambiguous. To leverage
the most representative easy-to-learn and ambiguous samples from a training set, we rank samples
based on confidence and variability, respectively, and select the top-ranked training samples. In
experiments, we rank all training samples by confidence in descending order and select the top
33% samples to construct the easy-to-learn set Deasy . Similarly, we rank all training examples by
variability in descending order and select the top 33% samples to obtain the ambiguous set Dambig .
Our choice of top 33% easy and 33% ambiguous samples was inspired from Swayamdipta et al.
(2020), but we explored other ratios (e.g., 25%, 50%) in experiments.

3.2 SUPERVISED CONTRASTIVE LEARNING WITH GUIDED SAMPLE SELECTION

We propose supervised contrastive learning that is guided by both the samples’ learning difficulty
and class labels. For a sample xi we obtain its sequence embedding xi (i.e., feature representation)
from the last layer of a pre-trained language model f .

Constructing Positive Sets We observe from Figure 1(a) that even when samples belong to the
same class (‘entailment’ in the figure), they still form clusters along easy-to-learn and ambiguous
sample sets. Thus, for each sample (anchor) that belongs to class c, we build its positive set with:
(1) all samples that belong to c and share the same learning difficulty as the anchor; and (2) the
k most dissimilar samples that belong to c but have opposite learning difficulty. For example, if
an anchor is easy-to-learn (xi, yi) ∈ Deasy and has class label c (i.e., yi = c), we then construct
the positive set P (i) by selecting the following two types of samples: (1) all easy-to-learn samples
(x′

i, y
′
i) ∈ Deasy that belong to c, and (2) k ambiguous samples (x′′

i , y
′′
i ) ∈ Dambig whose cosine

similarities on hidden representations are the k smallest compared with xi, and have the class label
c. Formally, our positive set construction P (i) is as follows:

P (i) = {(x′
i, y

′
i) ∈ DSameDiffic : y

′
i = c} ∪ {(x′′

i , y
′′
i ) ∈ DOpp′lDiffic : y

′′
i = c, argmin

〈
x′′i , xi

〉
}

(1)
where DSameDiffic denotes the same learning difficulty as the anchor, DOpp′lDiffic denotes the op-
posite learning difficulty to the anchor, and

〈
·, ·

〉
denotes cosine similarity. Accordingly, we ensure
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samples that have the same classes and the same level of difficulty to stay close in the feature space.
Moreover, while the anchor sample (xi, yi) and the k-most dissimilar samples from the opposite
level of difficulty (x′′i , y′′i ) are further apart because they are dissimilar in feature representations,
our method pulls these samples together to encourage them to stay close. Consequently, we allow
samples that have the same class to be tightly group together in the feature space. By our construc-
tion of positive sets, we enforce that the model is explicitly exposed to both easy and challenging
samples which can help the model to adjust its confidence. Thus, we prevent the model from being
biased toward some category, e.g., easy to learn, and in turn, we prevent the model from becoming
too certain on its prediction. Hence, we increase the robustness of the model, leading to improved
model calibration.

Constructing Negative Sets We observe from Figure 1(c) that ambiguous samples are not com-
pletely separable along their classes. In addition, from Figure 1(b) we observe that while easy-to-
learn samples are fairly clustered along class labels compared to ambiguous samples, there are still
overlapping samples between class clusters (e.g., ‘contradiction’ and ‘neutral’). In both cases, we
aim to push them apart. Thus, for a sample (anchor) that belongs to class c, we construct its negative
set with all samples that have different class than c but have the same level of difficulty to the anchor.
For example, if an anchor sample is ambiguous (xi, yi) ∈ Dambig and has class label c, we then con-
struct the negative set N(i) by selecting ambiguous samples (x′i, y′i) ∈ Dambig that have a different
class label than the anchor (i.e., y′i ̸= c), and whose cosine similarities with xi are higher than a
pre-defined threshold τ . By using a pre-defined threshold, we ensure that the selected ambiguous
samples (x′

i, y
′
i) and the ambiguous anchor (xi, yi) are pushed further apart. We set the threshold

value τ relatively high (τ = 0.8) to allow fairly similar samples to be selected. We formulate our
negative set construction as follows:

N(i) = {(x′i, y′i) ∈ DSameDiffic : y
′
i ̸= c,

〈
x′
i, xi

〉
> τ} (2)

where DSameDiffic denotes the same learning difficulty as the anchor,
〈
·, ·

〉
denotes cosine simi-

larity, and τ is a pre-defined threshold. Accordingly, we force the model to push samples that have
different class labels further apart, and hence, to learn to better separate them. By our negative set
construction, we specifically inform the model to push further apart samples that are similar in repre-
sentations and learning difficulty but have different class labels. This allows the model to encounter
hard negatives that are more challenging. Hence, we enhance the robustness of the model and its
calibration.

Supervised Contrastive Loss as a Regularizer After generating the positive and negative sets
for each anchor (ambiguous or easy-to-learn) sample, the supervised contrastive loss becomes:

LsupCL =

N∑
i=0

−1

|P (i)|
∑

xp∈P (i)

log
e

〈
xi,xp

〉
/T∑

xb∈N(i) e

〈
xi,xb

〉
/T

(3)

where T is a temperature scaling parameter,
〈
·, ·

〉
refers to cosine similarity, P (i) is the positive set,

and N(i) is the negative set for xi.

Our final training objective is calculated by a weighted sum of cross-entropy loss and supervised
contrastive loss on the top 33% easy-to-learn and top 33% ambiguous samples as follows:

L = Lce + λLsupCL

where λ is a hyper-parameter. Our supervised contrastive loss term performs as a regularizer, hence,
probabilities become smoother compared to only using cross-entropy loss which usually results in
overly confident predictions. We evaluate its effect on model calibration in addition to accuracy for
NLP tasks. We summarize our approach in Algorithm 1 in Appendix A.1.

4 EXPERIMENTS

4.1 TASKS AND DATASETS

Sentence-pair tasks We evaluate our method on natural language inference (NLI), paraphrase
identification, and commonsense reasoning. For NLI, we use Stanford Natural Language Inference
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(SNLI) dataset Bowman et al. (2015) for in-domain evaluation. We use Multi-Genre NLI (MNLI)
that captures NLI with diverse domains Williams et al. (2018) as SNLI’s out-of-distribution (OOD)
evaluation. For paraphrase identification, we use Quora Question Pairs (QQP) Iyer et al. (2017) as
in-domain evaluation and TwitterPPDB (TPPDB) which determines whether sentence pairs from
Twitter convey similar semantics when they share URLs Lan et al. (2017) as QQP’s OOD evalua-
tion. For commonsense reasoning, we test our method on Situations With Adversarial Generations
(SWAG) aiming to choose the most plausible continuation of a sentence among four candidates
Zellers et al. (2018), and use HellaSWAG, a dataset built using adversarial filtering Zellers et al.
(2019) as SWAG’s OOD evaluation.

Single-sentence tasks We evaluate our method on movie review sentiment analysis using MR
dataset Pang & Lee (2005) and opinion polarity classification using the MPQA dataset Wiebe et al.
(2005). For MR’s OOD evaluation, we use Customer Review (CR) test data Hu & Liu (2004). For
MPQA’s OOD evaluation, we use Pro-Con (PC) Ganapathibhotla & Liu (2008) test data.

4.2 EXPERIMENTAL SETUP

We use the BERT-base Devlin et al. (2019) classification model. Training details and hyper-
parameter settings can be found in Appendix A.3. We provide a detailed analysis of hyper-parameter
selection for positive set construction (i.e., k) and negative set construction (i.e., τ ) in Appendix A.4.
We evaluate the capability of our method to improve both predictive performance and model cal-
ibration. Hence, we use two metrics: (1) accuracy, and (2) expected calibration error (ECE) Guo
et al. (2017). We provide a detailed definition of ECE in the Appendix. For each task, we train the
model on the in-domain training set and evaluate its accuracy and ECE on in- and out-of-domain
test sets.

4.3 BASELINE METHODS

Supervised Learning We use the pre-trained BERT model Devlin et al. (2019) fine-tuned on each
downstream task.

Supervised Curriculum Learning (CurricLearn) is a learning strategy for training a model from
easy samples to difficult ones. For this, we use the following difficulty measures: (1) the input
lengths of training samples Nagatsuka et al. (2023) and (2) the level of difficulty obtained by using
data maps (the top 33% easy and 33% ambiguous samples) Swayamdipta et al. (2020).

Unsupervised Contrastive Learning To compare with unsupervised contrastive learning meth-
ods, we follow the downstream evaluation protocol by Robinson et al. (2021), with using BERT
encoders and BERT classifiers. Our implementation details can be found in Appendix A.6. We
use the following methods: (1) MoCHi Kalantidis et al. (2020) generates negative sets through
MixUp Zhang et al. (2018) in the latent space. The positive sets are constructed using adjacent
sentences (before/after) of a given sentence in the BookCorpus; (2) Contrastive Learning with
Hard Negatives Robinson et al. (2021) constructs negative sets by up-weighting the negative points
that have a larger inner product and have different latent classes with the anchor. The positive pairs
are constructed using adjacent sentences (before/after) of a given sentence in the BookCorpus; (3)
SimCSEGao et al. (2021) generates positive sets by independently sampling dropout masks of a
given sample, and generates negative sets by selecting random samples in a given batch; and (4)
SimCSE++ Xu et al. (2023) extends SimCSE by generating negative sets without applying dropout
masks in addition to combining dimension-wise contrastive learning objective.

Supervised Contrastive Learning We compare SupCL-GSS with the following existing supervised
contrastive learning methods: (1) SupCL Gunel et al. (2020) combines supervised contrastive learn-
ing with the cross-entropy loss. Both positive and negative sets are constructed by only leveraging
class label information in a given batch; and (2) SupCL-Seq Sedghamiz et al. (2021) produces pos-
itive sets not only by selecting samples that have the same class label in a given batch, but also by
applying different dropout masks on samples that have the same class. Negative sets are constructed
by selecting random samples that have different class labels in a given batch.
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Acc ECE Acc ECE Acc ECE Acc ECE Acc ECE

SNLI QQP SWAG MR MPQA

BERT 90.04 2.54 90.27 2.71 79.40 2.49 86.34 4.69 88.25 8.56
CurricLearn w/ length Nagatsuka et al. (2023) 87.73 2.66 86.37 4.99 78.81 5.38 86.45 3.66 87.55 10.71
CurricLearn w/ data maps 89.07 6.29 88.45 6.78 78.45 5.68 86.55 5.14 87.15 8.46
MoCHi Kalantidis et al. (2020) 89.53 2.35 90.02 2.84 78.81 1.87 87.10 4.02 87.75 9.07
CL w/ HN Robinson et al. (2021) 90.06 6.07 90.54 6.64 79.37 2.14 86.75 4.47 88.17 8.23
SimCSE Gao et al. (2021) 90.07 3.54 89.93 5.27 79.58 1.96 86.60 3.45 87.60 9.62
SimCSE++ Xu et al. (2023) 89.65 2.48 89.64 4.32 79.16 2.03 86.88 2.46 87.70 9.85
SupCL Gunel et al. (2020) 89.78 2.50 90.32 2.39 78.82 6.81 86.95 3.06 87.34 6.39
SupCL-Seq Sedghamiz et al. (2021) 90.28 3.51 89.92 2.27 78.59 4.22 87.14 4.88 88.06 8.08

SupCL-GSS (Ours) 90.44† 1.31† 90.88 2.46† 79.69† 1.54† 87.25† 1.74† 88.93† 6.11†

MNLI TwitterPPDB HellaSWAG CR PC

BERT 73.52 7.09 87.63 8.51 34.48 12.62 85.49 3.46 85.02 10.74
CurricLearn w/ length Nagatsuka et al. (2023) 73.27 3.57 86.94 10.76 34.17 18.64 86.53 1.59 81.45 16.18
CurricLearn w/ data maps 71.75 16.09 87.43 10.22 34.65 13.35 82.65 4.71 83.66 10.55
MoCHi Kalantidis et al. (2020) 73.09 5.12 87.45 8.63 34.71 11.02 82.35 5.35 79.13 5.19
CL w/ HNRobinson et al. (2021) 73.32 10.76 86.59 9.48 34.49 10.01 85.39 2.48 82.03 5.45
SimCSE Gao et al. (2021) 72.41 4.54 86.71 9.59 33.88 14.54 85.46 1.88 84.82 4.76
SimCSE++ Xu et al. (2023) 73.26 3.52 86.92 8.88 34.16 13.38 85.59 1.93 84.14 8.72
SupCL Gunel et al. (2020) 73.55 9.09 87.19 9.43 34.27 19.20 86.63 3.55 85.63 6.46
SupCL-Seq Sedghamiz et al. (2021) 72.11 12.54 87.71 7.46 34.51 10.05 85.87 4.46 86.66 8.49

SupCL-GSS (Ours) 74.01† 2.76 † 87.52 6.24 35.12† 9.15† 87.25† 1.54 86.93 6.05

Table 1: Accuracy (Acc) and Expectated Calibration Error (ECE) in percentage on in-domain (top) and out-of-
domain (bottom) comparing SupCL-GSS with baseline methods. Lower ECE implies better-calibrated models.
Bold text shows the best Acc and ECE. †: SupCL-GSS improves the best baseline at p¡0.05 with paired t-test.

Acc ECE Acc ECE Acc ECE Acc ECE Acc ECE
SNLI QQP SWAG MR MPQA

SupCL-GSS (Ours) 90.44 1.31 90.88 2.46 79.69 1.54 87.25 1.74 88.93 6.11

SupCL-GSS on 25% Easy & 25% Ambig 89.04 2.84 89.56 3.11 78.56 3.55 86.07 2.44 87.60 7.84
SupCL-GSS on 50% Easy & 50% Ambig 89.76 2.31 89.88 3.42 79.51 3.28 86.75 2.87 87.23 8.69
SupCL-GSS on 33% Bottom Confidence & 33% Easy 90.24 2.05 89.86 2.87 79.10 4.45 86.23 2.31 87.73 5.22
SupCL-GSS on 33% Bottom Confidence & 33% Ambig 87.70 5.66 86.05 3.56 78.33 5.02 81.05 6.17 86.07 8.68

MNLI TwitterPPDB HellaSWAG CR PC

SupCL-GSS (Ours) 74.01 2.76 87.52 6.24 35.12 9.15 87.25 1.54 86.93 6.05

SupCL-GSS on 25% Easy & 25% Ambig 73.43 5.81 86.95 8.03 34.59 12.22 83.36 9.43 82.38 6.44
SupCL-GSS on 50% Easy & 50% Ambig 73.85 4.14 87.06 7.16 34.75 16.82 84.51 6.84 83.86 13.24
SupCL-GSS on 33% Bottom Confidence & 33% Easy 73.19 8.42 87.11 8.71 34.03 12.27 84.12 6.83 87.72 9.39
SupCL-GSS on 33% Bottom Confidence & 33% Ambig 70.28 11.19 85.93 8.63 33.26 10.75 73.63 8.06 81.77 11.49

Table 2: The results of SupCL-GSS using samples identified by different levels of difficulty on in-domain
(top) and out-of-domain (bottom) settings.

5 RESULTS AND ANALYSIS

5.1 MAIN RESULTS

In Table 1, we show the comparison of SupCL-GSS with baseline methods. We report the evaluation
method of unsupervised contrastive learning methods in Appendix A.6. Remarkably, SupCL-GSS
yields performance improvement and lower calibration errors compared to all baseline methods on
both sentence-pair tasks and single-sentence tasks, and on both in- and out-of-domain data in gen-
eral. SupCL-GSS surpasses all supervised curriculum learning baselines, highlighting the advan-
tage of its using different levels of difficulty samples in hard positive and hard negative constructions
over using them in the pre-defined order (i.e., from easy to difficult ones). Furthermore, SupCL-GSS
achieves better accuracy and lower ECEs compared with the existing unsupervised and supervised
contrastive learning because SupCL-GSS leverages both hard positives and hard negatives.

5.2 ANALYSIS

Here, we first explore different ratios of easy-to-learn and ambiguous samples (i.e., 25% and 50%
rather than 33%). We also analyze the impact of other samples from the training data on SupCL-
GSS. Second, we perform an ablation where we remove each component of SupCL-GSS one at a
time. Last, we study the impact of batch size Chen et al. (2020) to identify hard/challenging positive
and negative sets from larger and diverse batches.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Acc ECE Acc ECE Acc ECE Acc ECE Acc ECE
SNLI QQP SWAG MR MPQA

SupCL-GSS 90.44 1.31 90.88 2.46 79.69 1.54 87.25 1.54 88.93 6.11

w/o PosSet 89.34 1.46 90.43 3.29 78.87 1.74 86.55 2.54 87.81 6.84
w/o NegSet 90.10 2.01 90.72 2.51 78.34 1.96 85.49 2.62 88.36 6.27
w/o Learning Difficulty 89.94 1.54 90.05 1.96 79.14 2.58 84.60 3.47 87.78 4.72
w/o CosSim 89.91 1.38 90.14 2.22 78.17 2.06 86.50 3.21 87.75 6.02

MNLI TwitterPPDB HellaSWAG CR PC

SupCL-GSS 74.01 2.76 87.52 6.24 35.12 9.15 87.25 1.54 86.93 6.05

w/o PosSet 73.55 2.81 87.28 7.80 35.07 10.05 85.94 2.91 85.01 6.38
w/o NegSet 72.69 6.18 87.45 7.33 34.79 12.47 86.48 10.31 86.14 5.51
w/o Learning Difficulty 73.62 3.53 86.69 8.39 34.89 13.46 81.95 2.38 86.24 5.69
w/o CosSim 73.39 2.96 87.09 8.37 34.73 11.71 85.40 1.55 83.18 6.08

Table 3: The results of SupCL-GSS removing different parts on in-domain (top) and out-of-domain (bottom)
settings.

Acc ECE Acc ECE Acc ECE
SNLI QQP SWAG

SupCL-GSS 90.44 1.31 90.88 2.46 79.69 1.54
BS = 128 90.34 2.06 90.62 3.33 79.46 1.87

MNLI TwitterPPDB HellaSWAG

SupCL-GSS 74.01 2.76 87.52 6.24 35.12 9.15
BS = 128 73.36 2.81 87.09 7.35 34.59 10.02

Table 4: The results of SupCL-GSS with larger batch size on SNLI, QQP, and SWAG on in-domain (top) and
out-of-domain (bottom) settings.

Using Different Ratio of Easy and Ambiguous Samples To leverage the most representative
samples in training data, we choose the top 33% easy-to-learn and the top 33% ambiguous after
ranking samples according to training dynamics. Here, we explore different ratios, which are 25%
and 50%, and show results in Table 2 (25% Easy & 25% Ambig and 50% Easy & 50% Ambig).
We observe that using a 25% ratio degrades both accuracy and ECE, which implies that using only
25% easy and 25% ambiguous samples limits access to all the representative samples (i.e., does
not ensure enough diversity and challenging nature in the samples). Furthermore, we observe that
selecting more easy-to-learn and ambiguous samples than 33% degrades accuracy and worsens ECE,
in both in- and out-of-domain settings. We posit that this is because lowering the threshold too
much on easy-to-learn samples blurs the line between easy and ambiguous samples while lowering
the threshold too much on ambiguous samples introduces potentially erroneous samples from the
data which degrades performance. To this end, we conclude that selecting the top 33% easy-to-
learn and the top 33% ambiguous samples is a reasonable choice. We also analyze the impact of
selecting samples from the bottom 33% ranked by confidence and pairing them with either 33% easy
or 33% ambiguous samples (33% Bottom Confidence & 33% Easy and 33% Bottom Confidence
& 33% Ambig). We observe performance degradation and increase in calibration errors in both
cases. We hypothesize that this is because of potential erroneous labels that exist in the 33% Bottom
Confidence samples as discussed also in Swayamdipta et al. (2020). Accordingly, we conclude that
using 33% easy and 33% ambiguous samples is a reasonable design choice in SupCL-GSS.

Ablation Analysis for SupCL-GSS In Table 3, we report the results of SupCL-GSS after re-
moving each component one at a time: (a) removing positive set construction from Eq. (1) (w/o
PosSet). For this, we construct the positive set by using class label only; (b) removing negative set
construction from Eq. (2) (w/o NegSet). We construct the negative set by using class label only;
(c) without using the learning difficulty where easy-to-learn and ambiguous samples are combined
and randomly split into two sets for positive and negative sets constructions (w/o Learning Diffi-
culty); and (d) without using the cosine similarity in both positive and negative sets constructions
(w/o CosSim). We observe performance degradation and an increase in ECEs after removing each
component, suggesting that all components in SupCL-GSS contribute to the final performance and
calibration.

Batch Size Analysis To explore the effect of increasing the batch size on SupCL-GSS, we quadru-
ple the batch size (original batch size of 32) for SNLI/SWAG, and double the batch size (original

8
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(a) (b) (c) (d)
Figure 2: t-SNE visualization of 1,000 samples of (a) easy-to-learn and ambiguous SNLI entailment
label train data on SupCL-GSS, and (b) SupCL-GSS without using the level of difficulty. We also
visualize (c) the top 33% easy-to-learn and (d) ambiguous all class labels of SNLI train data.

batch size of 64) for QQP. We show these results in Table 4. Interestingly, we observe similar (or
worse) performance. We conclude that SupCL-GSS enables informative selection when construct-
ing positive and negative sets even when using a smaller batch size, and enlarging the batch size has
a limited impact.

6 T-SNE VISUALIZATION

When designing the construction of the positive and negative sets, we hypothesize the following:

1. Our generated positive sets allow samples that have different level of difficulty but belong
to the same class to stay close together in the feature space.

2. Our generated negative sets allow samples that have the same level of difficulty but belong
to different classes to stay further apart in the feature space.

Specifically, according to hypothesis (1), we encourage easy-to-learn and ambiguous samples that
share the same class to be uniformly distributed in the feature space regardless of their difficulty
level. According to hypothesis (2), we ensure ambiguous or easy-to-learn samples that have different
class labels to be separable along their classes.

To validate our hypotheses, we plot the hidden representations of samples in the feature space us-
ing t-SNE, which are obtained by SupCL-GSS. Specifically, in Figure 2 we plot the same 1,000
easy-to-learn and ambiguous SNLI train data (as in Figure 1). Figure 2a shows the 1,000 samples
from the top 33% easy-to-learn and top 33% ambiguous SNLI ‘entailment’ class train data. We
observe that samples are no longer separable into easy-to-learn and ambiguous, but form a tighter
cluster (compared with Figure 1a). In Figure 2b, we plot the samples used in Figure 2a, but without
specifying (or leveraging) the level of difficulty where we combine easy-to-learn and ambiguous
samples and randomly split them into two sets to apply our method of constructing positive and
negative sets. Consequently, we allow positive and negative sets to have pairs of: (1) easy-to-learn
and easy-to-learn, (2) easy-to-learn and ambiguous, and (3) ambiguous and ambiguous samples.
We observe SupCL-GSS without specifying the level of difficulty separates easy-to-learn and am-
biguous samples even more clearly. This implies our way of specifying the level of difficulty of
samples is a required component in SupCL-GSS. These results support hypothesis (1). Moreover,
in Figures 2c and 2d, we plot 1,000 samples from the top 33% easy-to-learn (2c) and ambiguous
(2d) of SNLI train data belonging to all classes (i.e., ‘contradiction’, ‘entailment’, and ‘neutral’),
respectively. We observe that samples are better separable along their classes in each category (as
desirable) compared to Figures 1b and 1c, which supports hypothesis (2).

7 CONCLUSION

We proposed SupCL-GSS, supervised contrastive learning with enhancing selection for construct-
ing hard positive and negative sets guided by both samples’ learning difficulty and class labels, to
improve the generalization of learned representations within pre-trained language models for text
classification, achieving better accuracy and mitigating error in calibration. We empirically validate
that SupCL-GSS achieves statistically significant improvements over the best baseline on various
text classification tasks, with better accuracy and lower calibration errors on various NLP tasks on
in- and out-of-domain settings compared to a wide range of competitive baselines.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ALGORITHM

We summarize our approach in Algorithm 1.

Algorithm 1 : Proposed Approach

Require: Top 33% Easy-to-learn set,
Deasy = {(xi, yi)}i=1,··· ,n
Top 33% Ambiguous set,
Dambig = {(xi, yi)}i=1,···n
Pre-trained Language Model f

0: for k := 0 to T do
0: Total Loss = 0
0: for ∀i, (xi, yi) ∈ Deasy ∪ Dambig do
0: P (i), N(i)← ∅
0: while |P (i)|! = BatchSize− k do
0: Select samples from DSameDifficulty that have the same label as xi and add them to P (i)
0: end while
0: Find the k most dissimilar instances (x′′

i , y
′′
i ) from DOppositeDifficulty and add them to P (i)

0: while |N(i)|! = BatchSize do
0: Randomly select sample (xj , yj) from DSameDifficulty

0: if CosSim(f(xj), f(xi)) > τ and yj ̸= yi
0: then N(i)← (xj , yj) ∪N(i)
0: end while
0: Calculate Supervised Contrastive Loss LsupCL using Eq. (3)
0: Calculate Cross Entropy Loss Lce

0: Loss = Lce + λLsupCL

0: end for
0: Total Loss← Total Loss+ Loss
0: Update the model weights
0: end for=0

A.2 SUPCL-GSS ON ROBERTA-LARGE

To facilitate future research and replication of results, we used the relatively lightweight BERT-base-
uncased as our backbone model. However, our method is flexible and can be used with any pre-
trained language model such as RoBERTa-large. Hence, we perform experiments of SupCL-GSS
using RoBERTa-large and compare these results with vanilla RoBERTa-large on SNLI (in-domain)
and MNLI (out-of-domain) in Table 5. we observe our method achieves not only higher accuracy
but also lower calibration error (ECE) compared to the baseline vanilla BERT, which proves the
effectiveness of the proposed method.

Acc ECE Acc ECE
SNLI MNLI

RoBERTa-large 91.04 2.01 78.86 4.62
SupCL-GSS on RoBERTa-large 92.18† 1.88† 79.83† 3.07†

Table 5: The results of SupCL-GSS on RoBERTa-large on SNLI (in-domain) and MNLI (out-of-domain). †:
our method improves the the best baseline at p < 0.05 with paired t-test.

A.3 TRAINING DETAILS

In our experiments, we use the bert-base-uncased model with a task-specific fully-connected clas-
sification layer on top All hyper-parameters are estimated on the validation set of each task. Specif-
ically, we estimate hyper-parameters via a grid search over combinations. We use the follow-
ing range of values to determine the best hyper-parameters: batch size 1,4,8,16,32,64,128, learn-
ing rate (1e-3, 2e-3, 1e-4, 2e-4, 1e-5, 2e-5), temperature scaling T on supervised contrastive
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Dataset Train Test

SNLI 549,368 4,923
MNLI 392,702 4,907
QQP 363,871 20,217
TwitterPPDB 46,667 5,060
SWAG 73,547 10,004
HellaSWAG 39,905 5,021
MR 8,662 2,000
CR 1,775 2,000
MPQA 8,606 2,000
Pro-Con (PC) 41,877 4,000

Table 6: The statistics of in-domain and out-of-domain datasets.

SNLI QQP SWAG MR MPQA
Acc ECE Acc ECE Acc ECE Acc ECE Acc ECE

k = 1 (SupCL-GSS, Ours) 90.63 1.65 89.97 3.14 79.59 2.03 87.64 3.23 98.37 0.83
k = 2 90.42 1.94 88.71 5.41 78.77 1.77 87.46 3.31 98.05 1.61
k = 5 90.14 1.83 88.65 3.88 79.06 3.48 87.43 4.19 98.02 1.39
k = 16 90.43 2.01 89.64 3.68 78.29 2.15 87.15 3.91 98.37 1.21

Table 7: Acc and ECE in percentage on in-domain validation data for selecting the hyper-parameter
k in positive set construction for SupCL-GSS.

loss [1e-2, 5e-1]. The model is fine-tuned with a maximum of 3 epochs, batch size of 32 for
SNLI/SWAG/MR/MPQA and 64 for QQP, a learning rate of 2e-5, gradient clip of 1.0, and no weight
decay. We set temperature scaling T on supervised contrastive loss as 0.05/0.1/0.01/0.01/0.01 for
SNLI/QQP/SWAG/MR/MPQA. We set a weight λ = 0.1 on the final training loss. In generating
positive sets, we select the most dissimilar sample from the other level of difficulty set (i.e., k = 1)
for all tasks. Finally, all experiments are conducted on a single NVIDIA RTX A6000 48G GPU with
the total time for fine-tuning all models being under 24 hours. Note that our implementation utilizes
easy-to-learn and ambiguous data loaders separately and does selection using mini-batch for com-
putational efficiency. For sentence-pair task datasets, we follow the published train/validation/test
split by Desai & Durrett (2020). For single-sentence task datasets, we used the publicly released
train/test split where we randomly selected 2,000 samples as a testing set on MR/MPQA and left
them out from training. We show the statistics of the datasets in Table 6.

A.4 HYPER-PARAMETER SELECTION ON τ AND k

Hyper-parameter k We estimate the positive set construction hyper-parameter k via a search
in k = {1, 2, 5, 16} on the in-domain validation data for each task and selected the value of k
that maximizes accuracy. We then used the best hyper-parameter value on the test set. We show
the accuracy and Expected Calibration Error (ECE) on all in-domain validation datasets for k =
1, 2, 5, 16 in Table 7. We observe from these results that using k = 1 achieves the best performance
in general whereas other values of k either perform the same or yield a slight drop in performance.
Thus, based on these results, we set k = 1 to report the test data results.

Hyper-parameter τ We estimate the negative set construction hyperparameter τ via a search in
τ = {0.5, 0.7, 0.8, 0.9} on the in-domain validation data for each task and select the value of τ
that maximizes accuracy. We aim to set τ to a relatively high value (i.e., no smaller than 0.5) to
ensure we select fairly similar feature representations to generate hard negatives. We then use the
best hyper-parameter τ value on the test set. We show the accuracy and Expected Calibration Error
(ECE) on all in-domain validation datasets for τ = {0.5, 0.7, 0.8, 0.9} in Table 8. We observe from
these results that using τ = 0.8 achieves the best performance in general whereas other values of τ
either perform similarly or yield a slight drop in performance. Thus, based on these results, we set
τ = 0.8 to report the test data results.
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SNLI QQP SWAG MR MPQA
Acc ECE Acc ECE Acc ECE Acc ECE Acc ECE

τ = 0.5 90.39 1.91 88.72 3.23 79.07 3.67 87.25 3.49 97.56 1.63
τ = 0.7 90.04 2.17 89.66 3.65 79.12 4.85 87.06 3.68 98.13 0.98
τ = 0.8 (SupCL-GSS, ours) 90.63 1.65 89.97 3.14 79.59 2.03 87.64 3.23 98.37 0.83
τ = 0.9 90.26 1.78 88.61 3.11 79.21 4.03 87.29 2.27 98.14 1.01

Table 8: Acc and ECE in percentage on in-domain validation data for selecting the hyper-parameter
τ in negative set construction for SupCL-GSS.

A.5 CALIBRATION METRIC: EXPECTED CALIBRATION ERROR (ECE)

A model is perfectly calibrated when its confidence estimate p̂ matches the true probability (accu-
racy), such that P(ŷ = y|p̂) = p̂ Naeini et al. (2015); Guo et al. (2017); Desai & Durrett (2020).
To approximate this empirically, the probability range is divided into a set number of bins where
each bin bm contains predicted probabilities within a specific interval. The expected calibration
error (ECE) is then computed by taking a weighted average of the differences between each bin’s
accuracy and confidence, as follows:

acc(bm) =
1

|bm|
∑
i∈bm

1(ŷi = yi)

conf(bm) =
1

|bm|
∑
i∈bm

p̂i

ECE =

M∑
m=1

|bm|
N

|acc(bm)− conf(bm)|

where N is the total number of predictions.

A.6 UNSUPERIVSED CONTRASTIVE LEARNING BASELINE IMPLEMENTATION

The main purpose of unsupervised contrastive learning baseline methods is to pre-train representa-
tions (i.e., features) that can be transferred to downstream tasks by fine-tuning. We test unsuper-
vised contrastive learning baseline methods on learning representations of sentences using the quick
thoughts (QT) vectors framework introduced by Logeswaran & Lee (2018). Specifically, for each
baseline, we first train BERT encoders following their proposed methods using BookCorpus Kiros
et al. (2015). Afterward, we obtain feature representations of sentences from the trained BERT en-
coders. We then train BERT classifiers on top of the generated feature representations for each task.
We use the same hyperparameter when further fine-tuning BERT classifier as our proposed method.
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Yannis Kalantidis, Mert Bülent Sariyildiz, Noé Pion, Philippe Weinzaepfel, and Diane Larlus. Hard
negative mixing for contrastive learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Had-
sell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/f7cade80b7cc92b991cf4d2806d6bd78-Abstract.html.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola,
Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 18661–18673. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Skip-thought vectors. Advances in neural information processing systems, 28,
2015.

Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. A continuously growing dataset of sentential para-
phrases. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 1224–1234, Copenhagen, Denmark, September 2017. Association for Computational
Linguistics. doi: 10.18653/v1/D17-1126. URL https://www.aclweb.org/anthology/
D17-1126.

Bin Liang, Qinglin Zhu, Xiang Li, Min Yang, Lin Gui, Yulan He, and Ruifeng Xu. JointCL: A joint
contrastive learning framework for zero-shot stance detection. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 81–91,
Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.7. URL https://aclanthology.org/2022.acl-long.7.

Hao Liu and Pieter Abbeel. Hybrid discriminative-generative training via contrastive learning.
CoRR, abs/2007.09070, 2020. URL https://arxiv.org/abs/2007.09070.

Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sentence representa-
tions. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL
https://openreview.net/forum?id=rJvJXZb0W.

Kaili Ma, Haochen Yang, Han Yang, Tatiana Jin, Pengfei Chen, Yongqiang Chen, Barakeel Fanseu
Kamhoua, and James Cheng. Improving graph representation learning by contrastive regulariza-
tion. CoRR, abs/2101.11525, 2021. URL https://arxiv.org/abs/2101.11525.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated proba-
bilities using bayesian binning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015. URL https://dl.acm.org/doi/10.5555/2888116.2888120.

Koichi Nagatsuka, Clifford Broni-Bediako, and Masayasu Atsumi. Length-based curriculum learn-
ing for efficient pre-training of language models. New Generation Computing, 41(1):109–134,
2023.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Associa-
tion for Computational Linguistics (ACL’05), pp. 115–124, Ann Arbor, Michigan, June 2005.
Association for Computational Linguistics. doi: 10.3115/1219840.1219855. URL https:
//aclanthology.org/P05-1015.

Shinwoo Park, Youngwook Kim, and Yo-Sub Han. Contrastive learning with keyword-based data
augmentation for code search and code question answering. In Andreas Vlachos and Isabelle
Augenstein (eds.), Proceedings of the 17th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pp. 3609–3619, Dubrovnik, Croatia, May 2023. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.262. URL https:
//aclanthology.org/2023.eacl-main.262.

14

https://proceedings.neurips.cc/paper/2020/hash/f7cade80b7cc92b991cf4d2806d6bd78-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f7cade80b7cc92b991cf4d2806d6bd78-Abstract.html
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://www.aclweb.org/anthology/D17-1126
https://www.aclweb.org/anthology/D17-1126
https://aclanthology.org/2022.acl-long.7
https://arxiv.org/abs/2007.09070
https://openreview.net/forum?id=rJvJXZb0W
https://arxiv.org/abs/2101.11525
https://dl.acm.org/doi/10.5555/2888116.2888120
https://aclanthology.org/P05-1015
https://aclanthology.org/P05-1015
https://aclanthology.org/2023.eacl-main.262
https://aclanthology.org/2023.eacl-main.262


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Libo Qin, Qiguang Chen, Tianbao Xie, Qixin Li, Jian-Guang Lou, Wanxiang Che, and Min-
Yen Kan. GL-CLeF: A global–local contrastive learning framework for cross-lingual spoken
language understanding. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 2677–2686, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.191. URL
https://aclanthology.org/2022.acl-long.191.

Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning
with hard negative samples. In International Conference on Learning Representations, 2021.

Hooman Sedghamiz, Shivam Raval, Enrico Santus, Tuka Alhanai, and Mohammad Ghassemi.
SupCL-Seq: Supervised Contrastive Learning for downstream optimized sequence representa-
tions. In Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 3398–
3403, Punta Cana, Dominican Republic, November 2021. Association for Computational Lin-
guistics. doi: 10.18653/v1/2021.findings-emnlp.289. URL https://aclanthology.org/
2021.findings-emnlp.289.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi,
Noah A. Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with
training dynamics. In Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pp. 9275–9293, Online, November 2020. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2020.emnlp-main.746. URL https://aclanthology.
org/2020.emnlp-main.746.

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via contrastive
learning on distributionally shifted instances. Advances in neural information processing systems,
33:11839–11852, 2020.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In ECCV, 2020.

Zhen Wan, Fei Cheng, Qianying Liu, Zhuoyuan Mao, Haiyue Song, and Sadao Kurohashi. Rela-
tion extraction with weighted contrastive pre-training on distant supervision. In Andreas Vla-
chos and Isabelle Augenstein (eds.), Findings of the Association for Computational Linguistics:
EACL 2023, pp. 2580–2585, Dubrovnik, Croatia, May 2023. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.findings-eacl.195. URL https://aclanthology.org/
2023.findings-eacl.195.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pp. 353–355, Brussels, Belgium, November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/W18-5446. URL https://aclanthology.org/W18-5446.

Dong Wang, Ning Ding, Piji Li, and Haitao Zheng. CLINE: Contrastive learning with semantic
negative examples for natural language understanding. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 2332–2342, Online, August 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.181. URL https:
//aclanthology.org/2021.acl-long.181.

Xiaoqiang Wang, Bang Liu, Fangli Xu, Bo Long, Siliang Tang, and Lingfei Wu. Feeding what
you need by understanding what you learned. In Smaranda Muresan, Preslav Nakov, and Aline
Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 5858–5874, Dublin, Ireland, May 2022. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.403. URL https:
//aclanthology.org/2022.acl-long.403.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. Annotating expressions of opinions and emotions
in language. Language resources and evaluation, 39:165–210, 2005.

15

https://aclanthology.org/2022.acl-long.191
https://aclanthology.org/2021.findings-emnlp.289
https://aclanthology.org/2021.findings-emnlp.289
https://aclanthology.org/2020.emnlp-main.746
https://aclanthology.org/2020.emnlp-main.746
https://aclanthology.org/2023.findings-eacl.195
https://aclanthology.org/2023.findings-eacl.195
https://aclanthology.org/W18-5446
https://aclanthology.org/2021.acl-long.181
https://aclanthology.org/2021.acl-long.181
https://aclanthology.org/2022.acl-long.403
https://aclanthology.org/2022.acl-long.403


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 1112–1122. Association for Computational Linguistics, 2018. URL
http://aclweb.org/anthology/N18-1101.

Jim Winkens, Rudy Bunel, Abhijit Guha Roy, Robert Stanforth, Vivek Natarajan, Joseph R Ledsam,
Patricia MacWilliams, Pushmeet Kohli, Alan Karthikesalingam, Simon Kohl, et al. Contrastive
training for improved out-of-distribution detection. arXiv preprint arXiv:2007.05566, 2020.

Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3733–3742, 2018.

Jiahao Xu, Wei Shao, Lihui Chen, and Lemao Liu. SimCSE++: Improving contrastive learning
for sentence embeddings from two perspectives. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 12028–12040, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.737. URL https://aclanthology.org/2023.
emnlp-main.737.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. Swag: A large-scale adversarial
dataset for grounded commonsense inference. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing, pp. 93–104, 2018. URL https://arxiv.
org/abs/1808.05326.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

Zhiyuan Zeng, Keqing He, Yuanmeng Yan, Zijun Liu, Yanan Wu, Hong Xu, Huixing Jiang, and
Weiran Xu. Modeling discriminative representations for out-of-domain detection with supervised
contrastive learning. In Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pp. 870–878, 2021.
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