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ABSTRACT

Large-scale pretrained models are widely leveraged as foundations for learning
new specialized tasks via fine-tuning, with the goal of maintaining the general
performance of the model while allowing it to gain new skills. A valuable goal for
all such models is robustness: the ability to perform well on out-of-distribution
(OOD) tasks. We assess whether fine-tuning preserves the overall robustness of the
pretrained model, and observed that models pretrained on large datasets exhibited
strong catastrophic forgetting and loss of OOD generalization. To systematically
assess robustness preservation in fine-tuned models, we propose the Robustness
Inheritance Benchmark (ImageNet-RIB). The benchmark, which can be applied to
any pretrained model, consists of a set of related but distinct OOD (downstream)
tasks and involves fine-tuning on one of the OOD tasks in the set then testing
on the rest. We find that though continual learning methods help, fine-tuning
reduces robustness across pretrained models. Surprisingly, models pretrained
on the largest and most diverse datasets (e.g., LAION-2B) exhibit both larger
robustness losses and lower absolute robustness after fine-tuning on small datasets,
relative to models pretrained on smaller datasets. These findings suggest that
starting with the strongest foundation model is not necessarily the best approach
for performance on specialist tasks.

1 INTRODUCTION

Deep learning has moved toward training large models with deeper architectures (Dosovitskiy et al.,
2021; He et al.,[2016; Jiang et al.,|2023)) on massive datasets (Lin et al., |2014; Russakovsky et al.,
20155 Schuhmann et al., [2022)). These models exhibit impressive performance and generalization
abilities; as a result, it has become common to leverage these models as a foundation for fine-tuning
on specific downstream datasets to achieve better performance than training from scratch. Fine-tuning
can be done with modest amounts of data, and thus is an attractive approach in applications where
not enough data is available.

While this approach capitalizes on the extensive knowledge embedded in pretrained models, it can
result in significant loss of that knowledge from catastrophic forgetting (French, |I999; Robins| |1995).
Methods to mitigate this problem involve training only a part of the pretrained model, by linear
probing, low-rank adaptation (Hu et al., [2021), and visual prompting (Bahng et al.,2022). However,
these methods typically underperform on downstream tasks compared to fine-tuning the entire model.

Fine-tuning also reduces a model’s robustness, which we take here to mean the ability to generalize to
out-of-distribution (OOD) samples, as the model is optimized for a narrower distribution (Figure [T)).
Model robustness has been extensively studied by using various OOD datasets, typically beginning
with an ImageNet pretrained model and evaluating it on OOD datasets that exhibit natural distribution
shifts (Taor1 et al.l [2020), such as changes in viewpoints (Barbu et al., 2019)), time (Recht et al.,
2019), styles (Hendrycks et al.,|2021aj [Wang et al., [2019), or synthetic data based on the original
dataset (Hendrycks & Dietterich, 2019} [Salvador & Oberman), 2022).

We observed that the ViT-B/16 CLIP (Radford et al., 2021) pretrained on LAION-2B suffers from
more severe catastrophic forgetting on OOD datasets after fine-tuning on ImageNet-R (Hendrycks
et al}|2021a) compared to the same model pretrained on ImageNet-21K (Ridnik et al.|[2021]) with
AugReg (Steiner et al.} 2022), despite their initially similar performance (Figure [2). Conversely, the
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Figure 1: Schematic: How fine-tuning changes the robustness of pretrained models. A model
pretrained on the dataset Dy (purple solid) has a measure of robustness, generalizing to some
out-of-distribution data (purple dashed, f,.). Dotted gray line: volume (ID) containing a number of
related OOD datasets (dark gray ellipsoids). Fine-tuning on one of these datasets (Dgr) shifts fpr. to
frr (blue dashed ellipsoid), increasing performance on Dy and some OOD tasks in ID but possibly
reducing performance on others (red), thus making the model less robust.

ImageNet-21K pretrained model exhibits improved performance on ImageNet-Sketch (Wang et al.,
2019).

To analyze why models pretrained on a smaller dataset have

better OOD generalizability after fine-tuning, and the effect of  eetraining pataset~ 1n-2K Condition
the relationship between fine-tuning dataset and OOD datasets, — [vonss T Aer praning
we introduce ImageNet-RIB (Robustness Inheritance Bench-

mark), a new benchmark designed to assess the robustness of
fine-tuned models across diverse downstream and evaluation =~ ObiNet
OQOD dataset pairs related to ImageNet. For each experiment,
we fine-tune a pretrained model on a downstream dataset sam-
pled from ImageNet OOD datasets and evaluate its performance
on the remaining OOD datasets. This process is repeated across
all available datasets to thoroughly assess how well the model
retains robustness after fine-tuning. We also employ a variety
of fine-tuning strategies, including vanilla fine-tuning, linear Fjgure 2: OOD accuracy (robust-
probing (fine-tuning the last layer only), LoRA (Hu etal., 2021), ness) of a ViT-B/16 model pre-
regularization-based continual learning methods (Li & Hoiem, trained on two different datasets
2017; Zenke et al.,|2017), and robust fine-tuning methods (Ku; (LAION-2B, IN-21K), before and
mar et al.,|2022; |Wortsman et al., 2022ajb)). after fine-tuning on ImageNet-R.
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Interestingly, pretraining on LAION-2B, despite its size and diversity, does not always yield the best
results when fine-tuned on downstream datasets, suggesting that starting with large, rich datasets may
not always be the optimal approach for preserving robustness, especially when the downstream dataset
size is small. This problem occurs in the LAION-400M pretrained model, but not in the LAION-100M
pretrained model. Our experimental results also show that the combination of regularization-based
continual learning methods with model soup (Wortsman et al., |2022a)) achieves the best performance
in the benchmark, while linear probing performs the best when using LAION-2B pretrained models.
Furthermore, our findings indicate that continual learning methods not only mitigate catastrophic
forgetting related to the pretraining dataset but also enhance robustness when compared to standard
fine-tuning. This improvement is attributed to leveraging the distributional properties of both
pretraining and fine-tuning datasets.

In summary, the contributions of this paper are four-fold:

* We show that models pretrained on richer and larger datasets can have worse robustness
after fine-tuning than models pretrained on smaller datasets if the fine-tuning dataset size is
small.

* We propose ImageNet-RIB, a new benchmark leveraging multiple ImageNet-based OOD
datasets to quantify the robustness of fine-tuned models in comparison to pretrained models.

* We demonstrate that regularization-based continual learning methods improve robustness by
leveraging both the pretraining and fine-tuning dataset distributions. This improvement is
amplified when combined with robust fine-tuning methods.
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2 RELATED WORK

2.1 ROBUSTNESS FINE-TUNING

Robust fine-tuning aims to preserve the pretrained model’s robustness to out-of-distribution (OOD)
datasets—such as variations in viewpoint (Barbu et al.;2019), style (Hendrycks et al., 2021a; [Wang
et al.} 2019), and temporal distribution shifts (Recht et al.| 2019)—during the fine-tuning. |Taori
et al.| (2020) proposed a benchmark to evaluate robustness changes on multiple existing ImageNet-
based OOD datasets in pretrained models that were fine-tuned on ImageNet-1K. Though widely
used (Kumar et al.| [2022; [Wortsman et al., 2022ab)), it only considers a single fine-tuning dataset
(ImageNet-1K), which limits the in-depth analysis of differences induced by various fine-tuning
datasets. Shi et al.|(2023) extend this to joint training on two dataset; ImageNet-1K with CIFAR-
10 Krizhevsky et al.| (2009) or YFCC (Thomee et al., |2016). To solve this problem, Wortsman
et al.| (2022a) demonstrate that averaging the parameters of multiple trained models improves both
in-distribution and OOD performance. WiSE-FT (Wortsman et al., |2022b) further shows that linearly
interpolating the weights of pretrained CLIP and ImageNet-1K fine-tuned CLIP improves robustness,
although it requires tuning the interpolation ratio for optimal performance. LP-FT (Kumar et al.,[2022)
fine-tunes the last layer (linear probing) first and then fine-tunes the entire network. |Goyal et al.| (2023)
show that contrastive learning using a text encoder in fine-tuning improves robustness. [Ramanujan
et al.[(2023)) analyze the effect of pretraining datasets on robust fine-tuning in the WILDS (Koh et al.}
2021) dataset, showing that having more data is beneficial, while greater diversity per class is not.
Unlike existing benchmarks (Shi et al.| 2023} Taori et al.,[2020), which only fine-tune on ImageNet
or two datasets simultaneously from unknown or uncurated pretraining datasets, our benchmark
provides diverse downstream datasets for a comprehensive understanding of robust fine-tuning.

2.2 CONTINUAL LEARNING

Continual learning aims to enable models to learn new tasks without forgetting previously learned
knowledge. Existing approaches can be broadly categorized into three types: regularization-based
methods, replay-based methods, and architecture-based methods. Regularization-based methods (Che-
ung et al., 2019; Kirkpatrick et al., 2017; L1 & Hoiem, 2017; Zenke et al.,[2017) use additional loss
terms to limit changes to the model’s parameters, ensuring that previously learned knowledge is
retained. For instance, EWC (Kirkpatrick et al.l [2017) employs the Fisher information matrix to
determine the importance of each parameter, helping to preserve critical weights from earlier tasks.
LwF (Li & Hoiem| |2017) uses knowledge distillation to transfer outputs from a model trained on past
tasks to guide learning new tasks. Replay-based methods (Robins} [1995) mitigate catastrophic forget-
ting by creating a replay buffer that contains a subset of previous task data or synthetic data (Van de
'Ven et al.| [2020) and a model is trained on the buffer along with a new task. Techniques such as reser-
voir sampling, reinforcement learning (Rebuffi et al., [2017)), and gradient-based selection (Aljundi
et al.| [2019) help efficiently manage memory and select important data. Architecture-based methods
modify the model’s structure to accommodate new tasks by dynamically growing networks (Rusu
et al., 2016} Wang et al., 2022} Yan et al.}|[2021). In our work, we focus on regularization-based
continual learning methods to ensure a fair comparison with other fine-tuning approaches.

3 IMAGENET ROBUSTNESS INHERITANCE BENCHMARKING (IMAGENET-RIB)

We propose the ImageNet-RIB (Robustness Inheritance Benchmark), a novel benchmark designed
to measure robustness changes using existing ImageNet-related out-of-distribution (OOD) datasets
as both fine-tuning and evaluation datasets. ImageNet-RIB fine-tunes pretrained models on various
datasets, then evaluates robustness to other OOD datasets in the benchmark (Figure E]), offering a
more comprehensive understanding of robustness fine-tuning.

3.1 BENCHMARK PROTOCOL AND ROBUSTNESS METRIC

Protocol Figure |3|illustrates the protocol of our benchmark. Given a set of out-of-distribution
(OOD) datasets D = {Dy, Do, ..., D}, we select one to use as a fine-tuning dataset Dy for a
pretrained model. We evaluate the model’s performance on D \ Dgr before and after fine-tuning on
Der, and compute the robustness change. This process is repeated by selecting each dataset in ID as
the fine-tuning dataset.
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Figure 3: ImageNet-RIB benchmarking process. (1) We define a set D of ImageNet OOD datasets.
We select one for fine-tuning, Dpr, then assess the performance of the pretrained model on D \ Dgr.
(2) After fine-tuning the pretrained model on Dgr, we (3) re-assess its performance on D \ Dgr and
compute the robustness change. (4) This process is repeated until each dataset in D has been chosen
once as the fine-tuning dataset, ensuring a detailed evaluation of fine-tuning’s impact on robustness.

Metric We define the robustness improvement score ([2]) as the average relative robustness (Taor1
et al.,2020). Specifically, RI measures the accuracy difference between fine-tuned and pretrained
models on OOD datasets. Formally, robustness improvement (RI) after fine-tuning on D;(= Degr) is
defined as:

n

1 ()
n—1 Z AJ

j=1.j#i

- AR,

RI; = M

where Af(,ﬁe) and AZ(] ) denote the average accuracies of pretrained and fine-tuned models on D,
respectively. In addition to relative robustness, effective robustness (Taori et al.,|2020) is an alternative
metric commonly used to evaluate OOD performance (see Appendix [F). Effective robustness measures
how much the accuracy of a model deviates from an expected baseline, typically using a reference
in-distribution dataset (e.g., ImageNet-1K). While effective robustness is insightful, we use relative
robustness in this benchmark to facilitate direct comparisons between different fine-tuning methods
and initial pretraining datasets. We summarize the overall robustness improvement across all datasets
as the mean robustness improvement (mR1).

3.2 DATASET SUITES

We leverage all existing ImageNet OOD datasets to construct ID: ImageNet-V2 (Recht et al.,[2019),
ImageNet-A (Hendrycks et al.|2021b), ImageNet-Drawing (Salvador & Oberman, [2022), ImageNet-
Cartoon (Salvador & Obermanl 2022), and ImageNet-Sketch (Wang et al.,|2019), ObjectNet (Barbu
et al., [2019), and ImageNet-C (Hendrycks & Dietterichl |2019). ObjectNet and ImageNet-C were
originally designed solely for evaluating the OOD performance of ImageNet pretrained models,
with restrictions on their use for training, however we extend their application in this benchmark by
fine-tuning models on these datasets and evaluating their robustness on other OOD datasets. For
detailed descriptions of each dataset, please refer to Appendile;ﬂ StanfordCars (Krause et al., [2013)
dataset is also used as a showcase of a dataset with different label sets in Appendix [G]

4 EXPERIMENTS

We use the ImageNet-RIB to assess the robustness of different pretrained models to fine-tune on a
set of downstream datasets. The goal is to assess which fine-tuning methods do best across multiple
pretraining datasets.

4.1 EXPERIMENTAL DETAILS

Pretrained Models We use several architectures of Vision Transformer (ViT) (Dosovitskiy et al.,
2021) and ResNet (He et al.} 2016). The models are pretrained on ImageNet-1K (Russakovsky et al.,



Under review as a conference paper at ICLR 2026

Table 1: Average robustness of the ViT-B/16 model pretrained on various datasets, assessed on the
datasets in ImageNet-RIB set D. LAION-2B pretraining exhibits the highest robustness.

Pretraining Dataset\lmageNet—lK\IN—V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

IN-1K + AugReg 79.2 664 15.0 38.0 28.0 25.7 66.2 39.1 56.0
IN-21K 81.8 714 32.0 473 35.8 33.1 69.4 44.1 583
IN-21K + AugReg 84.5 74.0 432 56.8 43.2 39.1 75.1 54.9 66.5
OpenAl 85.3 75.7 473 65.9 50.9 50.7 76.3 55.7 62.6
LAION-2B 85.5 75.6 415 6838 554 423 78.2 58.4 63.0

2015)), or ImageNet-21K (Ridnik et al., | 2021) and then fine-tuned on ImageNet-1K. The standard
data augmentation and regularization technique for ViT, AugReg (Steiner et al.,|2022) can be used
for training on ImageNet-1K or ImageNet-21K. We also use ImageNet-1K with Sharpness Aware
Minimization (SAM) (Chen et al., [2022), ImageNet-21K-P (Ridnik et al.,|2021) pretrained models.
Alternatively, some models are pretrained on LAION-2B (Schuhmann et al.| 2022)) or OpenAl internal
dataset (400 million data) (Radford et al.| [2021)), followed by fine-tuning on ImageNet-1K. In other
words, all pretrained models are trained on ImageNet-1K before experiments to directly leverage its
classifier. For simplicity, we refer to them by the names of the first pretraining datasets (e.g., LAION-
2B). We also evaluate pretrained CLIP models with a zero-shot classifier that are not fine-tuned on
ImageNet-1K in Appendix [C In the main paper, we focus on ImageNet-1K with AugReg pretrained
ViT-B/16 and experiments using other pretrained models are reported in Appendix [J}

Fine-tuning Methods We employ standard fine-tuning methods, regularization-based continual
learning methods for measuring performance on the proposed benchmark. The fine-tuning meth-
ods we evaluate include vanilla fine-tuning (FT), Linear Probing, LoRA (Hu et al., [2021)), Visual
Prompt (Bahng et al.,[2022), LwF (Li & Hoiem,|[2017), and EWC (Kirkpatrick et al., 2017ﬂ Because
we are using ResNets, we do not use LoRA, which was designed for ViT. We also employ robust
fine-tuning methods: LP-FT (Kumar et al.,[2022), WiSE-FT (Wortsman et al., 2022b), and uniform
model soup (Wortsman et al.,[2022a), which averages the parameters of a pretrained model, a vanilla
fine-tuned model (FT), LWF, and EWC. We denote the uniform model soup, MS:PRE-FT-EWC-LwF
to reveal the source of parameters. In Appendix [C} we also use FLYP (Goyal et al.| [2023).

Training Each pretrained model is fine-tuned on Dgy for 10 epochs with a batch size of 64. We use
stochastic gradient descent (SGD) with a learning rate of 0.001 and a momentum of 0.9 with cosine
annealing (Loshchilov & Hutter,2017). Visual Prompt is trained for 10 epochs with a learning rate of
40 without weight decay, following Bahng et al.| (2022). We also evaluate models on ImageNet-RIB
with a train-validation split of the fine-tuning dataset and select the best-performing models on the
validation set for evaluation in Appendix [E} Please refer to Appendix [H.3]and the code repository for
detailed implementation.

4.2 COMBINATION OF CONTINUAL LEARNING WITH ROBUST FINE-TUNING METHODS
PERFORM BEST

Baseline We start with the baseline of assessing model performance on the set of OOD datasets with-
out any fine-tuning. Models pretrained on larger and more diverse datasets have better performance on
both ImageNet-1K and downstream datasets as shown in Table |1} However, the ImageNet-21K with
AugReg pretrained model achieves better performance on ImageNet-C than LAION-2B pretrained
model since AugReg includes several corruptions in ImageNet-C (e.g., brightness and contrast).

Accuracy on OOD Datasets Table 30| presents the accuracy of an ImageNet-1K with AugReg
pretrained ViT-B/16 model on OOD datasets before and after fine-tuning with each method on the fine-
tuning dataset (see Table [31] for individual ImageNet-C corruption). Continual learning methods and
robust fine-tuning methods generally improve performance on most OOD datasets after fine-tuning
on the downstream datasets. Linear probing (LP) exhibits similar increase and decrease patterns
as vanilla fine-tuning (FT), with less magnitude as the backbone network is fixed. Visual Prompt
reduces performance even on ImageNet-1K after fine-tuning on synthetic datasets of the ImageNet

'We do not use other continual learning methods as the pretraining dataset is not accessible, and to ensure a
fair comparison with other methods.
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Table 2: RI and mRI of ViT-B/16 pretrained on ImageNet-1K and AugReg, fine-tuned on each of
the datasets in the ImageNet-RIB set .

RI on specific Dgr

Method mil ‘ IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C
FT 13 | 29 40 28 44 2.7 0.6 04 59
Linear Probing | 0.7 | 0.1 0.1 08 1.2 03 02 0.1 32
Visual Prompt | -45 | 23 9.1 -49 -1.6 -11.2 39 43 1.7
LoRA 09 | 02 04 11 26 03 0.1 13 1.1
EWC 28 | 29 02 52 44 1.4 1.6 28 43
LwF 3.1 28 00 62 46 0.7 19 2.1 6.5
LP-FT 23 | 30 09 52 45 -0.1 12 0.6 47
WiSE-FT 36 | 25 07 75 45 2.1 23 3.0 6.5
MS 39 | 27 07 18 5.0 2.2 24 33 6.7

Table 3: Mean Robustness Improvement (m RI) after fine-tuning with different fine-tuning methods.

Architecture — | ViT-B/16 ViT-B/32 VIT-S/16 | VIT-8/32 | ViT-L/16 | ResNet-18 | ResNet-50
IN-TK IN-2TK IN-TK IN-2TK IN-TK — IN2IK | IN-2IK 21K

Method ‘ +AugReg IN-21K +AugReg OpenAl LAION-2B ‘ +AugReg +AugReg OpenAl LAION-2B | + AugReg +AugReg | + AugReg | + AugReg | IN-1K ‘ IN-1K
FT 13 0.1 55 -38.0 38.1 0.0 0.1 287 316 32 23 29 2.1 52 52
Linear Probing 0.7 0.4 03 2.0 2.0 L1 03 13 14 03 02 0.1 -13 73 -11.2
Visual Prompt 4.5 9.4 8.8 8.4 8.2 54 8.4 8.0 8.4 74 9.2 9.6 -129 83 6.5
LoRA 09 0.3 2.1 3.6 3.6 0.9 0.9 -1.8 1.9 0.9 -15 0.4 10 - -
EWC 2.8 14 0.6 127 -125 13 16 7.0 -10.0 16 16 10 11 5.7 -89
LwF 31 16 1.0 -33.1 -33.9 18 17 23.9 267 0.6 05 03 02 1.9 58
LP-FT 23 05 26 -36.9 37.1 L5 12 217 -30.8 12 0.8 -L1 35 48 5.1
WiSE-FT 3.6 25 17 -18.1 216 25 3.0 9.7 -135 29 2.8 23 23 0.7 12
Ms 39 2.7 22 -16.0 -17.9 25 28 8.1 -10.9 3.0 23 2.8 25 0.1 0.5

validation set. This is inconsistent with Bahng et al.|(2022), which showed its robustness to OOD
datasets. A strong correlation exists between ImageNet-R, ImageNet-Sketch, and ImageNet-Drawing,
as they share drawing and sketch renditions, and ImageNet-R and ImageNet-Sketch share images.
Fine-tuning on ImageNet-C improves performance on other synthetic datasets, but not vice versa due
to its diverse corruptions and severities.

Robustness Improvement Individual robustness improvement scores (RI) after fine-tuning on
each OOD dataset with ImageNet-1K with AugReg pretrained ViT-B/16 also show that MS:PRE-FT-
EWC-LwF consistently performs the highest in most datasets, followed by WiSE-FT as demonstrated
in Table 2] This is because they directly use the weights of pretrained models, thus taking advantage
of their robustness.

Mean Robustness Improvement The combination of continual learning methods with weight
averaging (MS:PRE-FT-EWC-LwF) achieves the highest or second-highest mean robustness improve-
ment (mR1) across different backbones pretrained on ImageNet-based datasets as shown in Table 3]
Moreover, end-to-end continual learning methods show comparable performance to the multi-stage
method (Kumar et al., [2022) or the post-hoc robustness method (Wortsman et al., [2022b)). This
shows the potential of continual learning methods in the field of robust fine-tuning. The robustness
of linear probing and Visual Prompt remains relatively unchanged since they do not modify the
models’ weights significantly but their performance on the downstream dataset tends to be worse (see
Appendix [l.3). Consequently, they have much better performance with LAION-2B pretrained models
compared to other methods, which show a significant robustness decrease.

4.3 PARADOXICALLY, MODELS PRETRAINED ON THE LARGEST DATASETS DO WORST AFTER
FINE-TUNING

The extent of robustness degradation increases with the size and diversity of the pretraining dataset,
as illustrated in Table [3|and Figure[d] As a result, the robustness of fine-tuned models pretrained on
larger datasets (e.g., LAION-2B, OpenAl) exhibits worse robustness compared to those pretrained
on smaller datasets and their corresponding fine-tuned counterparts when using vanilla fine-tuning.
Similarly, the LAION-400M CLIP model has better robustness than the LAION-2B model with a
zero-shot classifier from a text encoder after fine-tuning (see Table [).

One possible explanation is that models pretrained on larger, more diverse datasets have more
room for performance degradation from catastrophic forgetting as they demonstrate higher initial
robustness (see Table[T). However, this does not fully explain the pronounced robustness loss observed
in OpenAl or LAION-2B pretrained models, particularly when compared to ImageNet-21K with
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Figure 4: Severe robustness loss from fine-tuning models pretrained on LAION-2B and OpenAl
relative to fine-tuning models pretrained only smaller datasets. The average accuracy on OOD
datasets before (blue) and after (red) vanilla fine-tuning (see Figure 8] for other methods). The red
bars are calculated by evaluating fine-tuned pretrained models on D. The blue bars are the pretrained
models’ mean accuracy on D. Fine-tuning models pretrained on LAION-2B and OpenAl causes
severe robustness loss, leading to worse absolute performance on I than after fine-tuning an AugReg
model pretrained on ImageNet-1K. Conversely, a model pretrained on ImageNet-1K with AugReg
actually exhibits improved robustness after fine-tuning. Note that the difference between red and blue
bars is mRI.

Table 4: Average Accuracy on OOD Datasets of  ypje 5: R of ViT-B/32 CLIP with zero-shot
each ViT-B/16 CLIP model with zero-shot clas- classifier after vanilla fine-tuning (FT). Only

sifier before and after' vanilla fine-tuning (FT). OpenAl pretrained model has huge negative
LAION-400M pretrained model outperforms  , p7 Please refer to Appendix [C]for other meth-

LAION-2B pretrained one after fine-tuning. ods
VIFB/IGCLIP | OpenAl LAION-400M LAION-2B ViT-B/32 | LAION-100M LAION-400M LAION-2B
Before Fine-Tuned 48.8 50.2 53.5
After Fine-Tuned | 163 19.0 16.1 mRI | 13 238 330

AugReg pretrained models, which exhibit similar initial robustness. Notably, ImageNet-21K and its
variants begin to exhibit robustness degradation, especially when using vanilla fine-tuning. This could
be an early indicator of performance decay in larger pretrained models. Although ImageNet-21K is
the second-largest dataset with 14 million images, it is much smaller than LAION-2B, which contains
two billion images. We hypothesize that this discrepancy in pretraining dataset size contributes to the
difference in robustness degradation.

4.4  ANALYSIS OF SEVERE CATASTROPHIC FORGETTING IN MODELS PRETRAINED ON LARGE
DATASETS

CLIP pretrained on Small Dataset Does Not Exhibit Severe Robustness Degradation. To
discern whether the robustness degradation arises from the CLIP pretraining method itself or from
the scale of the pretraining data, we evaluate CLIP models trained on smaller datasets. The ViT-B/32
CLIP model pretrained on LAION-100M shows much less degradation, whereas counterparts trained
on LAION-400M and LAION-2 B do (Table [3)) although they have similar performance before fine-
tuning as shown in Table[d] Similarly, ResNet-50 CLIP models pretrained on CC-12M (Changpinyo
et al.} 2021)) and YFCC-15M (Thomee et al.l |2016) remain robust, while the model pretrained on
OpenAT’s internal 400M-image dataset exhibits pronounced degradation (Appendix [C).

Overfitting Does Not Drive Robustness Collapse. A plausible explanation for the observed decline
in robustness during fine-tuning could be early overfitting in LAION-2B and OpenAl pretrained
ViT-B/16 models. We investigate this by tracking robustness performance and average accuracy on the
downstream datasets throughout standard fine-tuning (FT). Figure [5|reveals that the ImageNet-21K
model pretrained with AugReg learns the fine-tuning dataset faster than other methods, while OpenAl
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tuning on the downstream dataset using vanilla LAION-2B pretrained ViT-B/16 CLIP model with
fine-tuning method (FT) with ViT-B/16. Although zero-shot classifier on a small number of images
these models learn slower than other methods, per class of ImageNet-1K training set. The dashed
they suffer from a huge robustness drop even in line denotes the accuracy of the pretrained model
the early period of fine-tuning. on each dataset.

pretrained model shows the slowest learning progression. Despite this, only the LAION-2B and
OpenAl models experience significant OOD robustness degradation. This finding indicates that
overfitting is not the primary driver of catastrophic forgetting in these models. Moreover, Appendix [L.1]
shows that catastrophic forgetting occurs even with a much smaller learning rate.

Fine-Tuning Dataset Texture Does Not Account for Forgetting. Unlike traditional bench-
marks (Taori et al. [2020), which use natural images (e.g., ImageNet-1K), the ImageNet-RIB
benchmark incorporates a variety of styles, including cartoons, drawings, and sketches. One may
hypothesize that models pretrained on large datasets are susceptible to robustness degradation when
fine-tuned on downstream datasets featuring stylized or non-natural images. However, our findings
challenge this hypothesis; fine-tuning on the ImageNet-1K validation set also leads to similar robust-
ness collapse, even though all models are pretrained and then fine-tuned on ImageNet-1K training set
(see Table [6).

Fine-Tuning Dataset Size is a Major Determinant. The consistent robustness degradation seen in
OpenAl and LAION-2B pretrained models fine-tuned on the ImageNet-1K validation set leads us to
hypothesize that the size of the downstream dataset plays a significant role in catastrophic forgetting.
While Ramanujan et al.|(2023)) and [Fang et al.|(2022)) demonstrate that CLIP’s robustness is primarily
attributed to the pretraining dataset size and distribution—rather than contrastive learning—the
impact of downstream dataset size remains underexplored. To investigate, we fine-tune a LAION-2B
pretrained CLIP model (not previously fine-tuned on ImageNet-1K) on subsets of the ImageNet-
IK training set, using a zero-shot classifier similar to Appendix [C} As shown in Figure [6] both
ImageNet-1K validation accuracy and OOD performance degrade significantly when fine-tuned on
smaller subsets. This degradation persists across hyperparameter variations, including learning rate
and training epochs. These findings indicate that CLIP models require sufficiently large fine-tuning
datasets to maintain robustness against distribution shifts. Insufficient data in fine-tuning likely
exacerbates catastrophic forgetting, highlighting dataset size as a critical factor in mitigating OOD
performance decline.

4.5 ANALYSIS OF REPRESENTATION SHIFT VIA CENTERED KERNEL ALIGNMENT (CKA)

To analyze intermediate representations before and after fine-tuning, we use Centered Kernel Align-
ment (CKA) (Cortes et al.,[2012; [Kornblith et al.l 2019), the standard metrics to quantify similarity
between neural network representations (Kim & Hanl 2023 [Raghu et al., 2021). We fine-tune
ViT-B/16 models pretrained on various datasets on ImageNet-R and measure the CKA between the
pretrained and fine-tuned models on ImageNet-R (fine-tuning dataset), ImageNet-1K validation set,
and ImageNet-A (OOD dataset). Figure shows the CKA scores across transformer layers, broken
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Figure 7: Representational shifts from fine-tuning on ImageNet-R, analyzed by Centered Kernel
Alignment (CKA), in ViT-B/16 models pretrained on various datasets. Rows indicate datasets
where CKA is measured and column indicates different part of transformer demonstrated in Figure [0}
ImageNet-R (downstream), ImageNet-1K (pretraining), and ImageNet-A (OOD dataset) are used
as evaluation datasets. Models pretrained on OpenAl and LAION-2B show distinct CKA patterns
across layers compared to others.

down by component, as illustrated in Figure[9] Deeper layers exhibit greater discrepancy between
the pretrained and fine-tuned models. Models pretrained on LAION-2B and OpenAlI’s internal
dataset show especially large discrepancies, particularly in earlier layers, compared to other models.
In addition, we observe a pronounced change in the mlp.fc2 component of the sixth transformer
block, in which pattern was observed in [Li et al.| (2024). This change becomes more significant
in models pretrained on larger datasets, especially when evaluated on non-downstream datasets.
Considering the fact that this huge dissimilarity is not observed in the previous layer (mlp.fc1). We
expect that the sixth mlp.fc2 layer may be linked to severe catastrophic forgetting, warranting further
investigation. This trend is maintained across various combinations of downstream datasets as shown
in Figures S1-S8 in the supplementary materials.

5 DISCUSSION

We found that models pretrained on larger, more diverse datasets, such as LAION-2B, experienced
more severe robustness degradation after fine-tuning While these models exhibited high initial
robustness, the performance drop was more prominent compared to models pretrained on smaller
datasets like ImageNet-1K or LAION-100M, leading to even worse performance. To facilitate
these analyses, we introduced ImageNet-RIB (Robustness Inheritance Benchmark), a framework
that evaluates model robustness across multiple downstream and OOD dataset pairs. In contrast
to existing benchmarks that primarily consider a single downstream dataset (Taori et al.| [2020)),
ImageNet-RIB enables nuanced analyses of how varying fine-tuning contexts influence model
generalization. Moreover, we demonstrated that continual learning methods and robust fine-tuning
approaches, particularly in combination, are effective in preserving or even improving robustness.
Specifically, the combination of model soup with continual learning techniques consistently achieved
superior performance. This finding underscores the potential of integrating these strategies to mitigate
catastrophic forgetting and enhance the robustness to OOD datasets.

Despite these contributions, our study has limitations. Although we identify conditions under which
extensive pretraining negatively impacts robustness and analyze feature representation, the underlying
mechanisms remain unclear. Future research should investigate why extensive pretraining leads
to worse robustness compared to smaller-scale pretraining, potentially informing more effective
fine-tuning strategies. Extending our evaluation to additional architectures and dataset contexts would
further strengthen and generalize our conclusions. In summary, our findings challenge common
assumptions about pretraining dataset scale and robustness, emphasizing the importance of tailored
fine-tuning strategies. We hope these insights motivate further investigation into optimizing robust
fine-tuning practices, ultimately advancing the reliability and generalization capabilities of machine
learning models.
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APPENDIX

We summarize each section in the Appendix as follows:

Appendix [A] (Additional Related Works - Single Domain Generalization) We survey single
domain generalization

Appendix[B|(Relationship between Dataset Distance and Accuracy Drop on Pretraining Dataset).
We quantify how distributional distance from ImageNet-1K relates to post-tuning performance.

Appendix [C] (CLIP with Zero-Shot Classifier on ImageNet-RIB). We directly fine-tune pre-
trained model using zero-shot classifier without using ImageNet-1K classifier including Con-
vNeXt (Liu et al., [2022)), SigLip (Zhai et al., [2023)), and SigLip2 (Tschannen et al., [2025]).

Appendix D] (Fine-Tuning on Small Subset of Fine-Tuning Dataset). We show that the robustness
degradation happens when the dataset size is small.

Appendix [E| (ImageNet-RIB with Train-Validation Split). We split the fine-tuning dataset into a
train set and a validation set and find the best-performing model on each setting.

Appendix [F] (Effective Robustness). We demonstrate mRI with effective robustness from the
results in Appendix

Appendix G| (Stanford Car Dataset). We fine-tune pretrained models on the Stanford Cars dataset
and show that the LAION-2B pretrained model suffers more forgetting than the ImageNet-21K
pretrained model.

Appendix [H| (Experimental Details). We describe experimental details.

Appendix|[[|(Ablation Studies). We conduct various ablation studies including learning rate, weight
decay, multiple random seeds, and best ratio for WiSE-FT.

Appendix [J| (Additional Experiments with Various Pretrained Models). We include extensive
experimental results such as robustness of pretrained models, backward transfer, performance on
fine-tuning dataset, and full accuracies on experimental settings.

A ADDITIONAL RELATED WORKS - SINGLE DOMAIN GENERALIZATION

Single-domain generalization refers to the task where only one source domain is available during
training, and the model is evaluated on multiple unseen target domains (Qiao et al., 2020). While the
high-level concept is similar to the existing robust fine-tuning benchmark (Taori et al., [2020), the
objectives differ. Robust fine-tuning focuses on maintaining or improving a model’s robustness to
OOD datasets during fine-tuning, whereas single-domain generalization aims to achieve generalization
to unseen OOD datasets, often through meta-learning-based data augmentation (Chen et al.| 2023}
Qiao et al.| [2020) or adaptive batch normalization (Fan et al., 2021). Recently, |Fan et al.|(2021) apply
single-domain generalization to the PACS dataset (Li et al.}2017)), using one domain as the training
set and the remaining domains as test sets. This setup resembles our ImageNet-RIB benchmark in that
each dataset is used for training while the others are used for testing. However, the goals of the two
benchmarks differ: our robust fine-tuning benchmark aims to mitigate robustness degradation during
fine-tuning, while single-domain generalization benchmarks focus on improving generalizability
from a single source domain.
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Figure 8: The average accuracy on OOD datasets before (blue) and after (red) fine-tuning with
each method on fine-tuning datasets. The red bar is calculated directly by evaluating pretrained
models on OOD datasets while the blue bar is calculated by adding mRI of each method to the
pretrained models’ accuracy. Note that it is identical to the average accuracy on OOD datasets after

fine-tuning on each dataset (mRI+1 37 A5 = 1 5 T Yot A ). Fine-tuning LAION-2B
and OpenAl pretrained models on the fine-tuning datasets causes severe robustness loss leading to
worse performance than ImageNet-1K with AugReg pretrained model. Conversely, ImageNet-1K
with the AugReg pretrained model improves robustness after fine-tuning. Note that the difference

between red and blue bars is mRI.

Table 6: Accuracy on each dataset of ViT-B/16 pretrained models after fine-tuning on ImageNet-1K
validation set. The parenthesis denotes the difference with pretrained models.

Pretraining Dataset | IN-1K | IN-V2 IN-A IN-R IN-Sketch ObjNet | IN-Cartoon IN-Drawing IN-C

IN-1K + AugReg | 97.5 (+18.3) | 66.9 (+04) 23.3(+8.3) 409 (+2.9) 29.5(+1.5 372(+4.2) | 711 (+4.9) 41.0(+1.9) 59.5 (+3.5)
IN-IK+SAM | 873 (+7.1) | 694 (+12) 17.7(+87) 418(+1.7) 30.1(+24)  38(+3.8) | 72.1(+5.2) 42.9(+0.6) 569 (+2.3)

IN-21K 947 (+12.9) | 716 (+02) 38.5(+6.5) 49.9(+2.6) 36.7(+0.9) 452(+2.7) | 73.9(+4.5)  44.1(0.0) 59.8 (+1.5)
IN-21K-P 969 (+12.6) | 73.0(-1.0) 41.4(+7.3) 51.5(0.0) 39.8(-04) 458(-09) | 764 (+2.9) 443 (-08) 61.7 (+0.3)
IN-21K + AugReg | 99.9 (+15.4) | 70.6(-34) 422(-1.0) 54.1(-27) 39.4(-3.8) 47.9(-0.5) | 84.5(+9.4) 555(+0.6) 69.7(+3.2)
OpenAl 99.9 (+14.6) | 59.9 (-15.8) 13.9(-334) 34.9(:31.0) 19.7(-31.2) 305(-202) | 750 (-13) 33.4(-223) 457 (-16.9)
LAION-2B 99.9 (+14.4) | 594 (-162) 12.6(-28.9) 36.3(-32.5) 23.4(-32.0) 304(-20.7) | 73.0(-52) 30.6(-27.8) 41.8(-21.2)

B RELATIONSHIP BETWEEN DATASET DISTANCE AND ACCURACY DROP ON
PRETRAINING DATASET

B.1 OPTIMAL TRANSPORT DATASET DISTANCE ON FEATURE SPACE ALIGNS WITH DATASET
DESIGN PRINCIPLES

We measure the distance between datasets by using Optimal Transport Dataset Distance
(OTDD) (Alvarez-Melis & Fusi, [2020) and Normalized Compression Distance (NCD)
2005). The distance is measured in the image space and the feature space from ImageNet-1K
with AugReg pretrained ViT-B/16, class tokens before the classifier layer. Since ImageNet-C com-
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Figure 9: Transformer Architecture of ViT-B/16. We describe only the weighted layers, i.e., fully
connected layers and layer normalization layers.

Table 7: Pearson correlation coefficient between the accuracy on ImageNet-1K and the dataset
distance between ImageNet-1K and each fine-tuning dataset. There is a negative correlation between
accuracy and dataset distance. Notably, FT and Prompter consistently exhibit a strong negative
correlation across different pretrained models.

Method \ FT  LinearProbing Visual Prompt LoRA EWC LwF LP-FT WiSE-FT Model Soup
IN-1K + AugReg | -0.64 -0.22 -0.91 -0.63  -057 -049 -0.59 -0.46 -0.54
IN-21K -0.77 -0.36 -0.92 -025 -0.88 -0.56 -0.69 -0.92 -0.89
IN-21K + AugReg | -0.68 0.10 -0.86 -0.63  -091 -038 -0.39 -0.52 -0.51
LAION-2B -0.67 -0.19 -0.74 -031  -032 -044 -0.56 -0.31 -0.13

prises multiple corruptions with different severities, we do not measure the distance to ImageNet-C.
OTDD in the image space, ImageNet-Sketch is the farthest from other datasets as it is black and white
sketch images (Figure[T0a)). ImageNet-Drawing is the closest to the dataset and the ImageNet-R is
the second closest as they share the same styles and images, respectively.

OTDD in the feature space demonstrates a better alignment with the dataset design principles (Fig-
ure [TOb). For example, ImageNet-V2 is designed to replicate the distribution of the ImageNet
validation set. It leads ImageNet-V2 the closest to ImageNet-1K among realistic datasets. Moreover,
the distances between ImageNet-1K and ImageNet-V2 to other datasets are consistent across both
image and feature spaces. This is not true with ImageNet-Cartoon since it is a synthetic dataset based
on the ImageNet validation set. As shown in Table [30] ImageNet-Cartoon improves ImageNet-1K
accuracy more than ImageNet-Drawing, suggesting that the distribution shift in cartoon-style images
is less severe than that of drawing-style images. Similarly, ObjectNet is intentionally collected with
different viewpoints and backgrounds and it is the most distant from all other datasets in the feature
space.

We also measure Normalized Compression Distance (NCD) using both images and the features from
ImageNet-1K with AugReg pretrained ViT-B/16. However, the distance between each dataset pair is
too insignificant to compare with each dataset as shown in Figures and [10d]

B.2 OPTIMAL TRANSPORT DATASET DISTANCE ALIGNS WITH IMAGENET-1K ACCURACY
DROP DURING FINE-TUNING

We analyze how ImageNet-1K accuracy changes after fine-tuning on downstream datasets. Using the
Optimal Transport Dataset Distance (OTDD) (Alvarez-Melis & Fusi, [2020) in the ViT-B/16 feature
space, we find that accuracy generally decreases as OTDD from ImageNet-1K increases (Figure [IT).
Pearson correlations (Table[/) confirm a negative trend for all methods except linear probing, with
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Figure 10: Optimal Transport Dataset Distances (OTDD) in the feature space aligns with each
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datasets using images (left) and features extracted by ImageNet-1K with AugReg pretrained ViT-B/16
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Figure 11: Relationship between post fine-tuning ImageNet-1K accuracy and the distance
between ImageNet-1K and the fine-tuning dataset. As the distance increases, accuracy generally
decreases across fine-tuning methods. We exclude synthetic datasets made from ImageNet-1K
validation set to avoid interference.

FT and Visual Prompt showing strong correlations (< -0.5). However, OTDD does not consistently
correlate with out-of-distribution (OOD) accuracy post-fine-tuning.

C CLIP WITH ZERO-SHOT CLASSIFIER ON IMAGENET-RIB

In the main paper, we evaluated models pretrained on various datasets and subsequently fine-tuned on
ImageNet-1K for the ImageNet-RIB benchmark. Here, we extend this analysis to measure the mRI
of CLIP models that bypass ImageNet-1K fine-tuning and are directly fine-tuned on downstream
datasets. We utilize pretrained weights from the open_clip library (ITharco et al.| 2021]) and adopt
a zero-shot classifier, as proposed by [Radford et al.| (2021]), instead of a linear readout layer. This
choice is driven by the fact that each OOD dataset contains a distinct subset of ImageNet-1K labels,
making a unified linear probe impractical. For example, fine-tuning on ImageNet-A involves only
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Table 8: mRI of ViT-B/16, ViT-B/32, ConvNeXt-Base, and ResNet-50 CLIP models, and SigLip-
B/16, SigLip2-B/16 pretrained on various datasets using zero-shot classifier (Radford et al., 2021).

Method ViT-B/16 ViT-B/32 ConvNeXt ResNet-50 SigLip | SigLip2
LAION LAION | LAION LAION LAION CC YECC

400M  OpenAl 2B 100M 400M  OpenAl 2B LAION-2B | 12M  15M  OpenAl | WebLI | WebLI
FT -32.5 -31.2 -37.4 <13 -23.8 -27.0 -33.0 -16.9 -7.1 -2.6 -24.1 -21.3 -25.7
FYLP -26.0 -30.9 -36.6 -4.6 -24.5 -26.9 -32.8 -17.5 -4.4 -0.7 -26.1 -24.0 -28.7
Visual Prompt -7.6 -11.0 -10.2 -11.6 -9.6 -1.7 -10.4 -53.5 -8.9 -6.3 -10.9 -26.7 -25.6
LoRA -47.8 -49.2 -52.5 -352 -41.3 -41.1 -19.4 - - - - -47.4 -20.7
EWC -8.1 -8.8 -13.1 -1.5 -5.4 <13 -10.5 -5.5 -8.8 -5.8 -17.2 -1.9 -3.1
LwF -29.6 -24.9 -30.9 -2.1 -16.8 -22.5 -29.1 -11.8 -6.2 -1.7 -22.1 -12.9 -17.2
WiSE-FT -19.5 -14.4 -23.2 1.7 9.5 -11.9 -17.5 -4.3 -8.3 -3.4 -29.1 -4.3 <13
MS -20.4 -11.3 -18.9 2.3 -15.0 94 -15.0 -39 -103 -35 -35.1 22 -4.2

Table 9: Average zero-shot accuracy on ImageNet-1K validation set and each OOD dataset using pre-
trained ViT-B/16 and ResNet-50 CLIP models. All pretrained weights are acquired from open_clip
library.

Architecture | Pretraining Dataset | IN-1K | Avg. OOD | IN-V2 IN-A  IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

LAION-400M 67.1 50.2 59.6 331 719 524 46.1 56.1 36.4 40.2

ViT-B/16 OpenAl 64.4 48.8 578 444 735 44.3 50.5 48.2 333 382
LAION-2B 70.2 53.5 62.3 38.0 80.6 56.1 50.8 59.2 37.5 43.0

LAION-100M 52.5 38.6 44.5 146 64.5 39.8 30.0 439 44.5 273

VIT-B/32 LAION-400M 60.2 42.6 524 19.6 708 46.4 389 48.4 29.4 35.1
N OpenAl 59.6 414 529 283  67.1 40.4 31.6 46.1 29.1 359
LAION-2B 66.6 48.7 58.1 263 764 53.7 44.7 55.8 332 41.6

ConvNeXT | LAION-2B | 708 | 57.2 | 624 401 807 57.1 52.2 58.5 62.4 44.5
CC-12M 35.9 21.4 30.6 75 446 23.5 21.8 23.8 9.1 10.1

ResNet-50 YFCC-15M 323 153 28.0 13.7 222 7.3 16.7 17.4 6.8 10.0
OpenAl 57.9 36.8 50.9 233 60.1 34.6 36.9 40.2 224 25.6

SigLIP WebLlI 76.1 60.6 | 69.0 450 902 67.9 50.8 67.4 47.5 471
SigLip2 | WebLI | 69.7 | 59.3 | 634 541 839 61.8 53.8 63.3 47.0 472

200 classes, whereas ImageNet-Sketch covers 1,000 classes. Consequently, methods such as Linear
Probing and LP-FT are excluded, as zero-shot classifiers do not require additional training.

Table reports the mRI of various ViT-B/16, ViT-B/32, ConvNeXt-Base (Liu et al., [2022)) and
ResNet-50 CLIP models and SigLip-B/16 (Zhai et al.,|2023)), SigLip2-B/16 (Tschannen et al., 2025)
pretrained on different datasets without fine-tuned on ImageNet-1K. FLYP (Goyal et al.| 2023)) is
effective on ResNet-50 CLIP pretrained on a smaller dataset, while it does not solve a problem in
other models. Consistent with the results in Table[3] we observe that most fine-tuning approaches,
including vanilla fine-tuning, significantly degrade robustness when using models pretrained on the
large-scale dataset. However, ViT-B/32 CLIP model pretrained on LAION-100M (Lin et al.| 2024)
and ResNet-50 CLIP models pretrained on Conceptual-12M (CC-12M) (Changpinyo et al., [2021})
and YFCC-15M (Thomee et al., 2016) do not exhibit this robustness degradation. This suggests that
a CLIP model pretrained on comparatively smaller datasets experiences less catastrophic forgetting
in out-of-distribution generalization than a model pretrained on larger datasets. Additionally, Table[9]
presents the zero-shot accuracy of pretrained CLIP models on the ImageNet-1K validation set and
each OOD dataset. Taking into account both the average OOD accuracy and mRI, LAION-400M
outperforms LAION-2B, achieving a 2.9-point higher OOD accuracy after vanilla fine-tuning (19.0
vs. 16.1) as we mentioned in Section 4.4}

D FINE-TUNING ON SMALL SUBSET OF FINE-TUNING DATASET

Figure [12| shows that CLIP models pretrained on large-scale datasets are particularly vulnerable
when fine-tuned on small datasets. To investigate whether this degradation is specific to CLIP
or also affects classification models fine-tuned on ImageNet-1K, we compare an ImageNet-1K
with AugReg and ImageNet-21K with AugReg pretrained ViT-B/16 models (classification models)
with OpenAl and LAION-2B pretrained ViT-B/16 models, both in their original form and after
classification fine-tuning. We fine-tune these models on small subsets of each fine-tuning dataset
within ImageNet-RIB and evaluate their average accuracy on both in-distribution (ID) and out-of-
distribution (OOD) datasets. While ImageNet-21K with AugReg pretrained model also experiences a
performance drop on the fine-tuning dataset when the number of samples per class falls below 10, the
degradation is significantly less severe than that observed for LAION-2B models. On the other hand,

18



Under review as a conference paper at ICLR 2026

—8— IN-1K + AugReg —&— OpenAl —8— OpenAl (Zero-Shot Classifier) LAION-2B (Zero-Shot Classifier)
IN-21K + AugReg ~ —@— LAION-2B ~&— LAION-400M (Zero-Shot Classifier)

70 70

[

w
o

w
o

Downstream Accuracy

Average OOD Accuracy
IS
S
T

(
I
I
]
I
]
I
I
]
I
I
I
i
[
[
1
]
]
]
]
]
1
1
1
1
1
|

N
5

|

12 5 10 20 12 5 10 20
The Number of Samples per Class The Number of Samples per Class

Figure 12: Fine-tuning on a small dataset leads to severe accuracy degradation in both in- and
out-of-distribution. Average accuracy on fine-tuning datasets and OOD datasets after fine-tuning
pretrained ViT-B/16 models on a small number of images per class of fine-tuning datasets. The
dashed line denotes the average accuracy of the pretrained models.

Table 10: mRI values obtained using the best validation accuracy for each model on the fine-tuning
datasets. Parentheses indicate the accuracy difference compared to models fine-tuned for 10 epochs
without splitting the training and validation sets. The average number of epochs needed to achieve the
highest validation accuracy on each fine-tuning dataset. 1: WiSE-FT and Model Soup are post-hoc
weight interpolation methods and do not involve training.

Method IN-1K + AugReg IN-21K + AugReg LAION-2B
mRI Best Epoch mRI Best Epoch mRI Best Epoch

FT 2.8 (+1.5) 4.2 -5.6 (-0.1) 7.1 -40.4 (-2.3) 12.1
Linear Probing 1.6 (+0.9) 17.8 -0.7 (-0.4) 11.5 -2.3(-0.3) 14.1
Visual Prompt -4.1 (+0.4) 22.4 -9.1 (-0.3) 22.4 -8.9 (-0.7) 20.6
LoRA 2.6 (+1.7) 20.1 1.2 (+3.3) 16.5 -2.9 (+0.7) 15.6
EWC 3.6 (+0.8) 18.1 0.5 (-0.1) 19.8 -14.1 (-1.6) 24.5
LwF 4.0 (+0.9) 3.8 -1.4 (-0.4) 42 -34.6 (-0.7) 11.5
LP-FT 3.7(+1.4) 7.2 -2.4 (+0.2) 13.2 -36.7 (+0.4) 13.8

WiSE-FT 4.5 (+0.9) -t 1.6 (-0.1) - -23.0 (-1.4) -

MS:PRE-FT-EWC-LwWF | 4.8 (+0.9) - 2.0 (-0.2) - -19.2 (-1.3) -

ImageNet-1K with AugReg pretrained model’s performance increases. As the fine-tuning dataset size
increases, the OOD accuracy of classification models gradually declines, indicating a progressive
adaptation to the specific dataset. In contrast, the OOD accuracy of CLIP models and ones fine-tuned
on ImageNet-1K initially collapse but then increase with more fine-tuning, suggesting a different
adaptation mechanism.

E IMAGENET-RIB WITH TRAIN-VALIDATION SPLIT

In the original ImageNet-RIB benchmark, the entire fine-tuning dataset is used for fine-tuning. To
evaluate the robustness of the models under a different setup, we introduce a train-validation split
(4:1 ratio), where models are fine-tuned on the training set, validated on the validation set, and
then evaluated on the benchmark using the best-performing epoch from the validation set. We
divide the fine-tuning dataset into training and validation sets, extending the training duration to 25
epochs to identify the optimal model based on validation accuracy. Using the best-performing model,
we applied robust fine-tuning methods, including LP-FT, WiSE-FT, and Model Soup, to evaluate
out-of-distribution (OOD) performance.

For this variant of the benchmark, we showcase results using ViT-B/16 models pretrained on
ImageNet-1K with AugReg, ImageNet-21K with AugReg, and LAION-2B. Table [I0] reports the
mean Robustness Improvement (mRI) and the average number of epochs required for each model to
achieve its highest validation accuracy on the fine-tuning datasets. Notably, the performance under
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Table 11: mean effective robustness improvement across OOD datasets obtained using the best
validation accuracy for each model on the fine-tuning datasets. Parentheses indicate the accuracy
difference compared to models fine-tuned for 10 epochs without splitting the training and validation
sets. The average number of epochs needed to achieve the highest validation accuracy on each
fine-tuning dataset.

Method | IN-1K + AugReg | IN-21K + AugReg | LAION-2B
FT -17.6 -18.5 -31.7
linear Probing -11.4 -9.2 -9.7
Visual Prompt -13.6 -12.8 -10.6
LoRA -3.7 -5.4 -0.3
EWC -11.5 -11.2 -19.5
LwF -15.3 -13.4 -29.3
LP-FT -17.3 -16.4 -30.9
Wise-FT -11.6 -11.6 -21.9
MS:PRE-FT-EWC-LwF -12.7 -12.0 -21.4

Table 12: Average accuracy on ImageNet-1K validation set and each OOD dataset using ViT-B/32
CLIP with zero-shot classifier before and after fine-tuning on the StanfordCars Dataset. Bold and
denotes the best performance of pretrained and fine-tuned models, respectively.

Pretraining Dataset \ImageNet-lK \ AvgOOD IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

LAION-100M (Pretrained) 52.5 38.6 445 146 645 39.8 30 43.9 4.5 273
LAION-100M (Fine-tuned) 43.9 28.6 36.2 87 53.9 29.7 23.2 34.1 22.0 20.8
LAION-400M (Pretrained) 59.6 42.6 524 19.6 708 46.4 389 48.4 294 35.1
LAION-400M (Fine-tuned) 14.2 9.2 12.5 4.0 19.6 73 9.3 9.8 53 58
OpenAl (Pretrained) 60.2 41.4 52.9 283  67.1 40.4 31.6 46.1 29.1 359
OpenAl (Fine-tuned) 57 39 4.6 2.1 8.7 23 5.1 39 2.1 2.6
LAION-2B (Pretrained) 66.6 48.7 58.1 263 764 53.7 4.7 55.8 332 41.6
LAION-2B (Fine-tuned) 6.8 4.8 5.8 2.1 10.7 37 57 5.0 2.5 2.9

the train-validation split does not significantly differ from the results in Table 3] where the entire
fine-tuning dataset is used for fine-tuning with models trained for 10 epochs.

F EFFECTIVE ROBUSTNESS

As we mentioned in Section 3} our robust improvement metrics is based on relative robustness. In
this section, we employ effective robustness (Taori et al., [2020)) instead of direct accuracy difference
(relative robustness) to compute effective robustness improvement, e RI (mean effective robustness
while fine-tuning on dataset D;):

RS o W) (0
eRli=-——3 >, A7 =47, @
J=1,j#t

where (;(z) denotes a baseline accuracy on dataset D; when the accuracy on the dataset D; is x.
We calculate mean eRI in ImageNet-RIB with Train-Validation Split (Appendix [E)). Note that in
the original ImageNet-RIB setting, we use the entire dataset for training, not splitting the validation
set. Table|l I|demonstrates that all mean e RI become negative. This is because, unlike previous
benchmark (Shi et al.|[2023; [Taori et al.,[2020) where the downstream dataset (ImageNet-1K) contains
all labels in OOD datasets, our downstream dataset does not contain all labels (e.g., ImageNet-R has
200 classes while ImageNet-Sketch has 1000 classes). That is why the robustness can be negative.
Even under this condition, the LAION-2B retrained model with FT performs much worse than others.

G STANFORD CAR DATASET

We fine-tune various pretrained ViT-B/32 CLIPs on the StanfordCars dataset (Krause et al.,|2013)
with a zero-shot classifier (FT) and then evaluate their robustness on the full suite of OOD datasets
used in the paper. The dataset has 196 fine-grained car classes, unlike ImageNet variants. As shown
in Table[I2] the results align with our findings that a model pretrained on a larger dataset suffers more
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catastrophic forgetting. The LAION-100M pretrained model does not suffer from severe performance
degradation, whereas the other models do. This supports our hypothesis that pretraining on a large-
scale dataset (LAION-400M, OpenAl, LAION-2B) is more likely to lead to severe catastrophic
forgetting than pretraining on a smaller dataset (LAION-100M).

H EXPERIMENTAL DETAILS

In this section, we describe the details of the experimental setup. We use a single NVIDIA RTX 4090
GPU for the experiment.

H.1 OUT-OF-DISTRIBUTION DATASETS IN IMAGENET-RIB

We leverage all existing ImageNet variants designed to measure the robustness of the trained network
during distribution shifts. ImageNet-O (Hendrycks et al.,|2021b) is not used since it is an out-of-
distribution detection dataset.

ImageNet-V2 (Recht et al.,2019) ImageNet-V2 is designed to have a distribution as similar as
possible to the original ImageNet-1K. It has 50,000 images with 1,000 classes same as the original
validation set. The dataset is used under the MIT license.

ImageNet-A (Hendrycks et al.,[2021b) ImageNet-A is an adversarially filtered test image that
ImageNet-1K pretrained ResNet-50 (He et al., [2016) is difficult to predict correctly. It contains 7,500
images with 200 difficult subclasses from ImageNet-1K. The dataset is used under the MIT license.

ImageNet-R (Hendrycks et al.,[2021a) ImageNet-R (Renditions) contains 30,000 images from
200 ImageNet classes with various rendition styles such as painting, sculpture, embroidery, origami,
cartoon, toy, and so on. The drawing rendition overlaps with ImageNet-Sketch (Wang et al.,[2019).
The dataset is used under the MIT license.

ImageNet-Sketch (Wang et al.,2019) ImageNet-Sketch comprises black and white sketch draw-
ings of the ImageNet-1K classes and each class has 50 images. The dataset is used under the MIT
license.

ImageNet-Cartoon and ImageNet-Drawing (Salvador & Oberman, 2022) ImageNet-Cartoon
and ImageNet-Drawing are to be converted from ImageNet validation set images to cartoon, and
drawing styles based on generative adversarial network (Wang & Yu,2020) and image processing (Lu
et al.,[2012). These simplified representations test a model’s ability to identify objects from minimal-
istic and abstract visual information. The dataset is used under the Creative Commons Attribution 4.0
International license.

ObjectNet (Barbu et al.,2019) ObjectNet is designed for evaluating object recognition models
under more realistic conditions such as various poses, backgrounds, and viewpoints. There are 50,000
images with 313 object classes and 113 classes are overlapped with ImageNet. We only use ImageNet
class objects. The dataset is used under the MIT license.

ImageNet-C (Hendrycks & Dietterich,|2019) ImageNet-C is designed for measuring the robust-
ness of models to common perturbations such as noise, blur, weather, and digital distortions. In the
dataset, ImageNet validation set images are perturbed with various severity from 1 to 5. Unlike the
original metrics, corruption error compared with AlexNet, we use average accuracy for consistency
with other datasets. The dataset is used under the Apache-2.0 license.

H.2 PRETRAINED MODEL

Table[T3]lists the libraries and corresponding network weight names for each model. We use the entire
models in timm and torchvision library, which are finally fine-tuned on ImageNet-1K, with patch
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Table 13: Python libraries and the names of network weights for each pretrained model.

Architecture | Pretraining Dataset |  Library | Weight Name
IN-1K + AugReg timm vit_base_patch16_224.augreg_in1k
IN-1K + SAM timm vit_base_patch16_224.sam_in1k
IN-21K timm vit_base_patch16_224.orig_in21k_ft_in1k
ViT-B/16 IN-21K + AugReg timm vit_base_patch16_224.augreg_in21k_ft_in1k
IN-21K-P timm vit_base_patch16_224_miil.in21k_ft_in1k
LAION-2B timm vit_base_patch16_clip_224.laion2b_ft_in1k
OpenAl timm vit_base_patch16_clip_224.openai_ft_in1k
IN-1K + AugReg timm vit_base_patch32_224.augreg_in1k
VIT-B/32 IN-21K + AugReg timm vit_base_patch32_224.augreg_in21k_ft_in1k
1 LAION-2B timm vit_base_patch32_clip_224.laion2b_ft_in1k
OpenAl timm vit_base_patch32_clip_224.openai_ft_in1k
VIT-S/16 IN-1K + AugReg timm vit_small_patch16_224.augreg_in1k
IN-21K + AugReg timm vit_small_patch16_224.augreg_in21k_ft_in1k
ViT-S/32 | IN-21K + AugReg | timm | vit_small_patch32_224.augreg_in21k_ft_in1k
ViT-L/16 | IN-21K + AugReg | timm | vit_large_patch16_224.augreg_in21k_ft_in1k
ResNet-18 | IN-1K | torchvision | ResNet18_Weights. DEFAULT
ResNet-50 | IN-1K | torchvision | ResNet50_Weights. DEFAULT

Table 14: mRI of ViT-B/16 pre-trained on LAION-2B with various weight decay used in fine-tuning.
We use vanilla fine-tuning (FT).

Weight Decay | 0 0.0001 0.0005 0.001 0.005 0.01 0.1
mRI -38.1  -39.1 -442 -394 409 -494 -593

sizes of 16 and 32, and input image shape of 224 among ViT small, base, and large. For ResNets, we
use the default ImageNet-1K pretrained weights from the torchvision library.

H.3 TRAINING AND HYPERPARAMETERS

Each pretrained model is fine-tuned on the downstream dataset for 10 epochs where the average
accuracy on fine-tuning datasets for each pretrained ViT-B/16 model achieves more than 90% with
vanilla fine-tuning. We applied LoRA on query and value projection layers with rank 8 following the
original implementation (Hu et al.,|2021). We use 2 as a temperature for calculating KL divergence for
LwF following [Li & Hoiem| (2017). For WiSE-FT, we use the interpolation ratio between pretrained
and fine-tuned models as 0.5 following the recommendation by Wortsman et al.| (2022b)) instead of
finding the best hyperparameters evaluated on the benchmark for the fair comparison. Appendix [[.4]
compares with results of the best-performing ratio.

I ABLATION STUDIES

I.1 CATASTROPHIC FORGETTING PERSISTS DESPITE SMALL LEARNING RATES

To test whether catastrophic forgetting stems solely from large learning rates, we fine-tune the LAION-
2B pretrained ViT-B/16 on fine-tuning datasets using reduced learning rates (0.0005, 0.0001, 0.00005).
We extend training to 25 epochs to account for slower learning rates and evaluate performance
throughout training (Figure [T3). Although a smallr learning rate attenuates forgetting, the native
mRI remains substantially higher than that of the ImageNet-21K AugReg baseline (-5.5; Table[3).
This implies that smaller learning rate is not a solution for the severe robustness degradation.

I.2 WEIGHT DECAYS
Beyond the learning rate analysis mentioned in Appendix we also fine-tune LAION-2B pre-

trained VIT-B/16 with various weight decays in Table[T4] Across all settings, mRI is substantially
lower than ViT-B/16 pretrained on smaller datasets in Table
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Figure 13: mRI is much lower than ImageNet-21K with AugReg model, even with a small
learning rate. Average accuracy on the fine-tuning datasets and m RI while fine-tuning pretrained
ViT-B/16 models.

Table 15: mRI of ViT-B/16 pre-trained on three different datasets after fine-tuning with different
fine-tuning methods. We run with three random seeds and calculate the mean and standard error.

Method \ ImageNet 1K + AugReg ImageNet 21K + AugReg LAION-2B

FT 14+0.0 -54£0.1 -382+0.0

Linear Probing 0.8 +0.0 -0.3+£0.0 -20+£0.1
EWC 29+0.1 0.8 £0.1 -129+ 0.4

LwF 32+0.1 -0.8 £0.1 -33.5+£0.2

LP-FT 20£0.2 -27+0.2 -37.2+0.1
Wise-FT 37+0.1 1.9£0.1 -21.5+0.3

MS: PRE-FT-EWC-LwF 4.0+0.1 23+0.1 -18.0+£0.2

1.3 ROBUSTNESS TO MULTIPLE RANDOM SEEDS

We test whether the results vary depending on the random seeds. Table|15|illustrates m R of three
different pretrained ViT-B/16. As the data clearly shows, the standard errors across all runs are very
small. This confirms that our findings are highly stable and not an artifact of a particular random
seed. Most importantly, the central conclusions of our paper are fully supported by this statistical
analysis. For the vanilla fine-tuning method, there remains a massive gap in post-tuning robustness
(mRI) between the LAION-2B model and the models pretrained on ImageNet.

1.4 THE BEST RATIO FOR WISE-FT

We conduct a grid search from 0.1 to 0.9 with an increment of 0.1 to find the best-performing ratio
(«) between the pretrained ViT-B/16’s weight and the fine-tuned model’s weight for WiSE-FT:

Wwiserr = @ Wpee + (1 — @) - Wer, 3)

where Wyyise-rr, Wre, and Wer represent the network weights of WiSE-FT, the pretrained model,
and the vanilla fine-tuned model, respectively.

It is important to note that this hyperparameter search, based on test results (mRI), constitutes an
unfair comparison with other methods. Table[I6]compares the mRI achieved by WiSE-FT using
the default ratio of 0.5 from WiSE-FT (Wortsman et al., 2022b) and the best ratio. WiSE-FT using
OpenAl or LAION-2B pretrained models performs significantly better with the best ratio, as it relies
minimally on the fine-tuned model’s weights. Similarly, hyperparameter search for Model Soup,
which combines network weights from pretrained and fine-tuned models (e.g., FT, EWC, LwF), could
further improve performance. Notably, WiSE-FT is a special case of Model Soup when the ratios for
EWC and LwF are set to 0. However, exploring the optimal ratio for Model Soup weights is beyond
the scope of this study.
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Table 16: mRI of ViT-B/16 pretrained on various datasets using WiSE-FT with default ratio (0.5)
and the best ratio

Pretraining Dataset \ WISE-FT (o« = 0.5) WIiSE-FT (best &) best «

IN-1K + AugReg 3.6 4.7 0.4
IN-1K + SAM 3.6 4.1 0.3
IN-21K 2.5 2.5 0.5
IN-21K-P 3.0 3.0 0.5
IN-21K + AugReg 1.7 2.3 0.7
OpenAl -18.1 -1.6 0.9
LAION-2B -21.6 2.4 0.9

Table 17: The average accuracy of various pretrained models on ImageNet-1K validation set and
OOD datasets.

Arch. \Prelraining Dataset \ ImageNet-1K \ IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

IN-1K + AugReg 79.2 664 150 380 28.0 33.0 66.2 39.1 56.0

IN-1K + SAM 80.2 682 9.0 40.1 27.7 34.2 66.9 423 54.6

IN-21K 81.8 714 320 473 35.8 42.5 69.4 44.1 58.3

ViT-B/16 IN-21K-P 843 740 341 515 40.2 46.7 735 45.1 61.4
IN-21K + AugReg 84.5 740 432 568 432 484 75.1 54.9 66.5

OpenAl 85.3 757 413 659 50.9 50.7 76.3 55.7 62.6

LAION-2B 85.5 756 415 688 55.4 51.1 78.2 58.4 63.0

IN-1K + SAM 73.7 599 43 366 23.0 25.2 63.2 40.6 48.8

Vit | IN-21K + AugReg 80.7 69.0 224 493 37.1 40.7 70.6 425 60.5
OpenAl 82.0 709 226 558 45.0 41.5 71.1 425 57.9

LAION-2B 82.6 716 228 592 49.1 435 73.0 423 575

vits/ie | IN-IK + AugReg 78.8 66.7 134 371 25.9 252 63.3 372 53.2
! IN-21K + AugReg 81.4 703 270  46.0 329 322 67.8 37.7 58.0
ViT-S/32 | IN-21K + AugReg | 76.0 | 639 115 397 262 24.8 62.9 34.3 52.0
ViT-L/16 | IN-21K + AugReg | 85.8 | 762 555 644 51.8 52.8 79.5 64.6 72.2
ResNet-18 | IN-1K | 69.8 | 573 11 331 20.2 18.1 482 20.4 317
ResNet-50 | IN-1K | 80.3 | 695 167 416 28.4 33.0 61.1 31.1 46.6

Table 18: Average backward transfer on the ImageNet-1K validation set for each method, evaluated
across different architectures and pretraining datasets. Bold indicates the highest backward transfer
for each model.

Architecture_| VIT-B/16 VIT-B/32 | VIT-S/16 ViT-8/32 | ViT-L/16 | ResNet-18 | ResNet-50
IN-TK IN-TK TN-2TK IN-TK IN-TK IN-2TK IN-TK TN-2TK TN-2TK IN-2TK
Method ‘+AugReg +SAM IN-21K IN-21K-P + AugReg OpenAl LAION—ZB‘+AugReg +SAM + AugReg OpenAl LAION-2B |+ AugReg + AugReg |+ AugReg |+ AugReg| IN-1K ‘ IN-1K
FT 0.6 1.3 0.6 0.8 -1.0 -28.0 -28.5 0.5 1.7 0.4 -27.5 -31.7 -1.3 -3.0 22 1.5 <19 <13
Linear Probing | 1.8 15 15 16 16 0.0 03 2.7 24 22 0.4 03 14 13 16 L9 -13.6 -19.4
Visual Prompt | -6.9 76 81 73 6.0 45 43 92 90 93 6.8 6.7 93 9.0 137 8.2 -16.1 64
LoRA -0.1 -0.1 -0.6 -0.1 -2.7 -2.7 25 -0.4 -0.1 -0.2 2.8 -2.5 -1.5 -0.3 -0.3 0.1 - -
EWC 0.7 00 03 0.6 -15 75 6.7 -13 0.1 0.9 71 92 12 20 20 0.6 124 -16.6
LwF 32 21 23 23 32 210 218 32 29 31 -89 220 2.8 2.6 29 36 -13 -103
LP-FT 2.0 0.8 1.3 1.8 1.1 -25.6 -25.9 29 22 25 -25.1 -29.2 0.9 0.1 0.9 2.1 -6.8 -6.6
WiSE-FT 27 17 17 18 22 7.1 9.6 30 24 26 55 -83 21 25 26 24 0.9 0.9
Ms 26 1719 17 24 6.7 73 2.7 24 23 4.8 6.9 2.1 22 23 26 08 2.0

J ADDITIONAL EXPERIMENTS WITH VARIOUS PRETRAINED MODELS

J.1 ROBUSTNESS OF PRETRAINED MODELS

We evaluate pretrained models mentioned in Appendix on OOD datasets as shown in Table
Larger networks with smaller patch sizes achieve higher accuracy on both ImageNet-1K and OOD
datasets. Similarly, models pretrained on larger, more diverse datasets demonstrate better perfor-
mance.

J.2 BACKWARD TRANSFER

We measure the backward transfer, accuracy change on the pretraining dataset, ImageNet-1K valida-
tion set after fine-tuning. Table [I8]presents the average backward transfer across different fine-tuning
methods on downstream datasets. While LwF achieves the best backward transfer in most models,
linear probing outperforms it on OpenAl and LAION-2B pretrained models.
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J.3 PERFORMANCE ON FINE-TUNING DATASET

Tables[T9] [20] and [2T]demonstrate the accuracy on fine-tuning datasets (i.e., training accuracy) with
ViT base, ViT large and ViT small, and ResNet, respectively. FT, LwF, and LP-FT can overfit to the
fine-tuning dataset but WiSE-FT and Model Soup (PRE-FT-LwF-EWC) have worse performance
which might be due to using pretrained model weights. Visual Prompt and LoRA rarely learn from a

fine-tuning dataset.

Table 19: Accuracy on downstream datasets after fine-tuning with each method using ViT-B/16. FT
and LP-FT generally achieve the highest performance, while Visual Prompt and LoRA show the

lowest.
Arch. ‘ Pretraining Dataset ‘ Method ‘ IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C
FT 96.3 97.5 98.4 96.0 97.7 97.5 97.6 100.0
Linear Probing 71.5 424 60.4 58.8 57.8 76.1 61.2 89.7
Visual Prompt 66.6 28.8 589 458 46.3 72.7 64.8 64.4
IN-1K LoRA 66.5 18.7 41.8 39.0 36.7 69.7 62.4 58.6
+ AugReg EWC 72.0 54.3 65.3 50.3 50.8 76.2 70.3 67.7
LwF 95.8 95.5 97.3 95.1 95.1 96.7 96.5 100.0
LP-FT 96.7 97.2 98.5 96.1 97.9 97.5 97.6 94.6
WiSE-FT 81.2 56.6 71.2 61.4 63.7 84.0 74.0 88.8
MS:PRE-FT-EWC-LwF 82.4 67.4 75.5 66.8 66.8 85.5 78.7 88.0
FT 779 67.2 87.2 843 75.1 87.1 85.7 100.0
Linear Probing 68.7 14.3 50.5 38.8 414 713 53.6 80.7
Visual Prompt 64.4 17.0 50.6 37.2 40.1 69.7 56.2 57.7
IN-1K LoRA 68.2 10.0 449 327 36.7 69.6 49.6 67.5
+SAM EWC 69.0 239 50.4 438 413 72.6 62.3 59.6
LwF 77.6 62.5 84.2 81.7 69.7 85.9 84.0 99.9
LP-FT 78.3 64.9 86.6 83.5 74.6 87.2 86.1 84.4
‘WiSE-FT 72.7 314 64.7 52.6 524 789 68.1 78.8
MS:PRE-FT-EWC-LwF 72.8 36.5 66.7 55.6 53.0 79.3 70.7 80.3
FT 922 949 96.3 928 943 947 94.1 100.0
Linear Probing 75.0 51.8 66.4 59.0 63.2 71.7 59.6 86.4
Visual Prompt 66.8 374 582 439 51.0 68.9 579 58.6
LoRA 71.5 38.2 529 39.8 47.1 735 53.8 494
IN-21K EWC 74.5 59.7 65.6 50.1 56.1 77.3 67.6 66.5
LwF 91.9 92.8 94.3 90.9 91.2 93.7 92.1 99.9
LP-FT 934 95.1 96.2 93.1 94.7 95.1 94.3 97.3
WiSE-FT 81.8 67.7 75.1 63.5 68.7 83.2 72.8 84.7
MS:PRE-FT-EWC-LwF 82.6 73.7 78.3 67.0 70.6 84.5 76.0 88.7
FT 95.4 98.7 99.3 96.7 99.2 973 97.6 100.0
Linear Probing 78.0 57.0 70.5 67.3 68.5 81.0 64.5 88.8
Visual Prompt 70.2 43.1 63.3 499 56.1 74.6 63.6 63.2
LoRA 74.2 375 53.1 474 489 75.6 67.4 63.1
ViT-B/16 IN-21K-P EWC 76.8 66.7 73.0 578 61.0 80.7 73.9 69.7
LwF 94.2 97.2 98.5 95.7 97.0 96.1 96.2 100.0
LP-FT 96.2 98.8 99.4 9.9 99.3 977 98.1 100.0
‘WiSE-FT 84.2 74.3 80.1 70.2 734 87.0 78.0 88.7
MS:PRE-FT-EWC-LwF 84.7 80.8 82.8 73.5 75.9 87.8 80.9 89.0
FT 100.0 100.0 99.8 98.0 100.0 99.9 99.9 100.0
Linear Probing 98.3 97.3 91.7 932 92.0 96.5 91.1 98.6
Visual Prompt 74.2 52.0 7.7 56.6 61.1 78.7 73.2 70.2
IN221K LoRA 75.1 53.1 66.5 56.5 56.4 78.6 744 19.2
+ AugReg EWC 91.1 97.8 91.2 734 93.8 86.2 84.1 76.8
LwF 100.0 100.0 99.8 98.0 100.0 99.9 99.9 100.0
LP-FT 100.0 100.0 99.8 98.1 100.0 99.9 99.9 100.0
WiSE-FT 95.9 97.0 94.7 88.1 91.0 953 92.7 96.2
MS:PRE-FT-EWC-LwF 96.8 98.6 96.5 89.9 95.9 95.3 93.9 96.8
FT 100.0 100.0 99.8 98.0 100.0 99.9 99.9 100.0
Linear Probing 82.3 78.0 86.1 74.1 79.3 86.0 79.5 92.2
Visual Prompt 71.7 544 76.9 58.1 60.4 80.3 71.2 66.5
LoRA 79.1 65.1 79.2 60.1 62.0 83.0 76.9 41.7
OpenAl EWC 88.7 90.0 90.9 73.8 86.2 87.0 85.4 77.8
LwF 100.0 100.0 99.8 98.0 99.9 99.9 99.9 100.0
LP-FT 100.0 100.0 99.8 98.0 100.0 99.9 99.9 100.0
WiSE-FT 88.0 76.8 89.9 78.6 81.5 91.5 91.0 94.7
MS:PRE-FT-EWC-LwF 88.9 81.7 91.3 79.4 83.3 91.0 91.1 93.0
FT 100.0 100.0 99.8 98.0 100.0 99.9 99.9 100.0
Linear Probing 82.8 77.2 88.4 79.3 80.9 87.6 80.0 93.3
Visual Prompt 77.2 499 79.6 62.1 63.6 81.3 724 68.1
LoRA 78.1 58.6 79.8 62.3 61.5 83.9 76.4 39.8
LAION-2B EWC 83.8 68.7 89.3 71.8 79.9 86.3 83.5 74.2
LwF 100.0 99.9 99.8 98.0 99.9 99.9 99.9 100.0
LP-FT 100.0 100.0 99.8 98.0 100.0 99.9 99.9 100.0
WiSE-FT 85.8 46.5 87.6 719 77.6 91.0 89.9 93.3
MS:PRE-FT-EWC-LwF 87.3 64.6 89.5 79.2 80.3 90.6 90.1 94.3
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Table 20: Accuracy on downstream datasets after fine-tuning with each method using various ViTs.
FT and LP-FT generally achieve the highest performance, while Visual Prompt and LoRA show the
lowest.

Arch. | Pretraining Dataset Method | IN-V2 IN-A INR IN-Sketch  ObjNet  IN-Cartoon  IN-Drawing  IN-C
FT 94.6 94.0 97.3 95.3 95.9 96.3 96.3 100.0

Linear Probing 68.7 349 63.4 62.1 547 75.1 62.6 90.9

Visual Prompt 59.6 15.1 540 414 383 683 60.1 59.3

INJK LoRA 611 01 41 319 31.0 613 3.1 66.3

+ AugReg EWC 659 34 593 456 4.1 713 643 627

€ LwF 94.0 912 957 942 926 955 95.0 99.9

LP-FT 96.1 95 917 95.7 96.7 96.9 96.9 100.0

WiSE-FT 777 393 674 587 564 81.6 717 87.7

MS:PRE-FT-EWC-LwF 79.0 49.1 71.0 63.0 60.6 82.7 75.4 86.8

FT 733 %8 825 838 664 843 825 00.0

Linear Probing 60.7 8.9 483 355 334 67.2 512 834

Visual Prompt 57.2 8.5 44.6 318 29.9 63.9 50.1 528

INAK LoRA 59.9 52 416 28.1 286 653 469 622
+SAM EWC 60.9 102 451 37.7 311 67.0 523 537
LwF 732 a1 792 813 612 83.0 804 99.9

LP-FT 742 48 818 824 66.1 8438 82.7 1000

WiSE-FT 66.0 176 593 469 426 745 64.0 76.0

MS:PRE-FT-EWC-LwWF 66.1 20.1 60.8 SL1 43.3 74.8 65.5 76.5

FT 99.5 100.0 99.8 97.7 99.9 99.5 99.6 100.0

Linear Probing 83.5 65.6 77.5 78.2 735 86.0 729 94.4

Visual Prompt 68.2 320 663 514 524 740 67.3 652

) IN2IK LoRA 69.1 250 515 430 434 719 632 66.1
ViT-B/32 + AugReg EWC 76.3 695 721 563 70.0 78.0 7.5 68.0
€ LwF 99.2 98 995 973 99.7 992 99.1 100.0

LP-FT 9938 1000 998 97.9 100.0 9.8 9.8 100.0

WiSE-FT 879 720 804 723 738 88.9 79.1 925

MS:PRE-FLEWC-LwE |  89.0 828 850 76.8 82.1 89.6 832 90.6

FT 1000 1000 998 980 1000 999 9.9 00.0

Linear Probing 74.8 47.1 759 64.3 63.6 80.1 712 89.0

Visual Prompt 716 293 656 50.7 475 75.5 64.9 623

LoRA 7.5 347 677 533 434 719 69.6 715

OpenAl EWC 83.4 869 884 708 79.8 85.1 834 72.6
LwF 99.9 9.8 9.8 97.9 99.8 99.8 99.9 1000

LP-FT 1000 1000 998 98.0 100.0 9.9 99.9 100.0

WiSE-FT 859 714 886 78.1 755 89.3 89.9 934

MS:PRE-FT-EWC-LwF 87.0 76.0 89.1 717 76.6 88.1 89.5 911

FT 000 1000 998 95.0 00.0 999 9.9 00.0

Linear Probing 755 47.8 78.7 67.3 66.7 81.4 715 88.7

Visual Prompt 722 30.0 69.2 54.6 51.2 76.1 65.1 62.1

LoRA 729 357 704 564 514 79.3 69.5 734

LAION-2B EWC 85.6 807 873 716 772 84.8 834 69.7
LwF 99.9 9.8 9.8 97.9 99.8 99.8 99.8 1000

LP-FT 1000 1000 99.8 98.0 1000 99.9 99.9 100.0

WISE-FT 853 680 879 778 76.1 87.5 88.6 929

MS:PRE-FT-EWC-LwF 85.9 73.9 88.8 71.8 77.1 86.4 88.5 91.9

FT 98 1000 998 978 1000 997 997 00.0

Linear Probing 753 462 632 64.0 624 777 638 83.5

Visual Prompt 6.2 307 586 436 492 718 63.9 60.0

LoRA 67.0 17.4 424 41.1 38.6 70.1 64.2 554

IN-IK + AugReg EWC 78.1 755 698 53.1 62.6 77.6 72.0 66.3
LwF 99.6 998 9.6 97.6 99.8 99.3 99.4 1000

LP-FT 9938 1000 998 97.9 100.0 9.8 99.8 100.0

WISE-FT 88.6 722 781 703 734 88.2 80.6 91.7

VITS/16 MS:PRE-FI-EWC-LwE | 904 866 846 76.6 79.7 89.8 85.9 90.5
FT 999 1000 998 979 1000 997 997 1000

: 84.0 676 739 75.0 732 84.0 69.5 88.8

Visual Prompt 693 406 638 494 56.5 745 653 628

IN-21K LoRA 70.7 294 49.8 459 45.1 715 65.6 16.2

+ AugReg EWC 79.5 849 752 57.1 68.8 794 73.6 68.9
LwF 99.7 999 997 97.6 99.9 99.4 99.3 1000

LP-FT 999 1000 998 98.0 100.0 99.9 99.9 100.0

WISE-FT 90.2 827 829 749 783 89.6 812 904

MS:PRE-FT-EWC-LwE | 91.0 918 874 79.1 85.3 90.7 85.6 927

FT 999 1000 998 9738 1000 96 99.7 1000

Linear Probing 783 500 680 68.0 639 797 64.1 834

Visual Prompt 60.7 204 54 404 438 66.6 57.0 547

] IN2IK LoRA 64.0 25 44 399 356 655 513 36.2
ViT-$/32 + AugReg EWC 73.7 67.9 67.1 50.4 573 73.5 66.7 61.5
LwF 99.6 99.9 99.6 97.5 99.9 99.3 99.4 100.0

LP-FT 1000 1000 998 97.9 100.0 99.8 99.9 100.0

WISEFT 87.4 67.1 779 69.7 712 87.8 77.0 90.9

MS:PRE-FT-EWC-LwF | 88.7 817 831 75.8 78.6 88.7 824 88.6

FT 999 1000 9938 98.0 100.0 9.9 9.9 00.0

Linear Probing 98.3 981 940 93.1 929 96.9 91.7 99.1

Visual Prompt 713 480 694 508 596 76.0 66.7 67.1

) IN2IK LoRA 76.5 599 664 547 56.8 80.0 68.6 727
VIT-L/I6 + AugReg EWC 829 912 879 709 87.0 85.1 828 80.5
LwF 999 1000 9938 978 1000 99.8 99.8 100.0

LP-FT 1000 1000 998 98.1 100.0 9.9 99.9 99.8

WiSE-FT 93.1 717 93.5 85.7 88.3 93.8 90.3 96.1

MS:PRE-FTLEWC-LwE | 933 905 929 87.8 93.0 93.9 9.9 97.1

Table 21: Accuracy on downstream datasets after fine-tuning with each method. FT and LP-FT
generally achieve the highest performance, while EWC shows the lowest.

Arch. | Pretraining Dataset | Method | INV2  INA  INR  IN-Sketch  ObjNet  IN-Caoon  IN-Drawing  IN-C
FT 98.3 98.7 99.1 95.7 97.6 97.4 97.1 100.0

Linear Probing 59.9 6.5 47.0 333 342 65.1 483 50.8

Visual Prompt 524 538 359 29 29.1 46.8 282 28.1

EWC 63.0 175 50.8 379 380 66.0 54.0 426

ResNet-18 IN-IK LwF 97.0 97.6 983 94.7 96.7 96.2 95.8 99.9
LP-FT 98.5 98.5 98.9 95.8 97.4 97.7 97.3 100.0

WiSE-FT 80.2 30.7 69.4 53.5 58.7 75.9 58.6 75.6

MS:PRE-FT-EWC-LwF 80.8 418 729 59.9 624 803 70.3 74.9

FT 95.3 94.5 98.6 96.2 96.9 97.4 97.8 100.0

Linear Probing 69.8 19.8 523 329 46.2 75.0 57.0 55.5

Visual Prompt 66.0 24 473 333 45.6 59.3 39.3 42.1

EWC 720 43.1 58.4 445 49.5 76.3 63.6 524

ResNet-50 IN-IK LwF 94.6 94.0 97.9 95.4 95.6 96.4 96.8 100.0
LP-FT 95.7 94.8 98.6 96.2 97.0 97.5 97.9 100.0

WiSE-FT 82.7 56.6 73.7 56.7 68.6 825 65.9 83.8

MS:PRE-FT-EWC-LwF 84.1 66.7 78.9 624 716 86.4 76.0 84.8
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J.4 ROBUSTNESS IMPROVEMENT RESULTS OF DIFFERENT MODELS

Across the ImageNet pretrained models, WiSE-FT and Model Soup consistently have better robustness
improvement compared to other methods fine-tuning on realistic OOD datasets (Tables 22}{26).
Linear Probing consistently achieves the best robustness improvement using LAION-2B pretrained
models (Table[27) and OpenAI CLIP models (Table [28).

Table 22: RI and mRI of ImageNet-1K with AugReg pretrained models with different fine-tuning
methods and downstream datasets on each dataset in ImageNet-RIB.

. RI
Architecture Method ‘ mil ‘ IN-V2 IN-A IN-R  IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C
FT 1.3 29 -4.0 2.8 44 -2.7 0.6 0.4 59
Linear Probing 0.7 0.1 -0.1 0.8 1.2 0.3 0.2 0.1 32
Visual Prompt -4.5 -2.3 -9.1 -4.9 -1.6 -11.2 -3.9 -4.3 1.7
LoRA 0.9 0.2 0.4 1.1 2.6 0.3 -0.1 1.3 1.1
ViT-B/16 EWC 2.8 29 -0.2 52 44 1.4 1.6 2.8 4.3
LwF 3.1 2.8 -0.0 6.2 4.6 0.7 1.9 2.1 6.5
LP-FT 23 3.0 -0.9 52 4.5 -0.1 1.2 0.6 4.7
WiSE-FT 3.6 25 0.7 7.5 45 2.1 23 3.0 6.5
MS:PRE-FT-EWC-LwF | 3.9 2.7 0.7 7.8 5.0 2.2 24 3.3 6.7
FT -0.0 1.6 -5.5 0.2 2.6 -5.4 0.3 -0.3 6.4
Linear Probing 1.1 0.1 -0.1 0.9 1.3 0.4 1.0 1.1 3.8
Visual Prompt -5.4 2.7 -13.3 47 -2.0 -12.7 24 -5.0 -0.1
LoRA 0.9 0.3 0.3 0.5 1.0 0.7 0.7 0.5 3.1
ViT-B/32 EWC 1.3 1.9 -2.9 32 2.6 0.1 1.2 2.0 2.6
LwF 1.8 1.5 -2.0 39 32 -1.9 1.4 1.2 6.9
LP-FT 1.5 1.5 -1.7 3.4 2.9 -1.9 1.0 0.3 6.4
WiSE-FT 2.5 1.5 0.2 5.0 33 0.3 1.6 22 6.1
MS:PRE-FT-EWC-LwF | 2.5 1.7 -0.5 5.1 35 0.2 1.8 24 6.0
FT -3.2 -0.0 82 29 0.3 -9.7 24 -5.3 2.9
Linear Probing 0.3 0.1 -0.5 0.9 1.4 -0.2 -0.1 0.6 -0.1
Visual Prompt -7.4 -4.6 -13.3  -6.1 -3.5 -18.1 -6.3 -6.0 -1.4
LoRA 0.9 0.2 0.1 1.6 3.6 -0.1 -0.3 1.5 0.8
ViT-S/16 EWC 1.6 2.6 2.2 42 5.5 -1.9 0.6 0.9 2.7
LwF 0.6 0.9 -1.5 3.5 1.5 -2.7 0.3 -2.4 5.4
LP-FT -1.2 0.9 -4.0 0.1 1.8 -5.8 -1.2 -4.2 2.8
WiSE-FT 29 22 0.7 6.5 4.7 0.1 1.9 1.4 5.8
MS:PRE-FT-EWC-LwF | 3.0 22 0.3 6.7 53 0.1 1.9 1.3 6.0
FT -5.2 -2.1 -11.7  -0.6 -5.0 -8.8 -5.7 -13.6 5.7
Linear Probing -1.3 -1.4 -2.5 -1.2 -26.9 -39 -4.7 -15.5 -2.1
Visual Prompt -8.3 -4.3 -183  -75 -6.9 -12.9 -6.1 -7.8 -2.8
ResNet-18 EWC -5.7 -0.6 -9.6 2.0 -11.7 -4.3 -4.6 -15.1 -1.5
LwF -1.9 -0.9 -5.5 2.6 -2.7 -4.7 -1.4 -9.0 6.7
LP-FT -4.8 2.2 -100 1.0 -6.2 -7.1 -5.7 -13.9 6.1
WiSE-FT 0.7 -0.1 -1.5 43 24 -1.5 -0.7 -2.8 53
MS:PRE-FT-EWC-LwF | -0.1 -0.2 -2.7 42 1.9 -1.9 -1.2 -5.7 4.9
FT 52| -01 29 28 107 -4.3 -6.5 224 2.4
Linear Probing -11.2 -1.5 -2 -12 -37.0 -4.2 -5.6 -35.2 -39
Visual Prompt -6.5 -5.9 -1.8 -6.0 -5.9 -9.1 -6.2 -6.0 -5.1
ResNet-50 EWC -8.9 -1.1 -0.5 22 -21.7 -3.2 212 -36.2 -33
) LwF -5.8 0.5 2.2 3.6 -12.3 -3.0 -4.9 -31.5 32
LP-FT -5.1 -0.2 -2.6 32 -10.3 -4.1 -6.4 -22.1 1.9
WiSE-FT 1.2 0.7 0.9 6.1 1.2 -0.0 -0.6 -3.0 43
MS:PRE-FT-EWC-LwF | -0.5 0.5 0.6 6.1 0.2 -0.6 -2.1 -13.1 4.6
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Table 23: RI and mRI of ImageNet-1K with SAM pretrained models with different fine-tuning
methods and downstream datasets on each dataset in ImageNet-RIB.

. RI
Architecture Method ‘ mhtl ‘ IN-V2 IN-A IN-R  IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C
FT 25 | 34 32 58 57 23 1.7 18 73
Linear Probing 0.8 0.1 0.3 0.5 1.1 0.0 0.0 0.4 4.0
Visual Prompt 61 | 41 124 64 63 -106 3.4 49 02
LoRA 09 | 01 04 08 11 03 0.1 05 36
VIT-B/16 EWC 16| 07 03 37 24 12 1.0 20 13
LwF 35 | 32 -3 69 57 02 23 22 87
LP-FT 24 | 33 23 64 56 15 17 15 48
WiSE-FT 36 | 20 19 71 43 1.5 24 238 65
MS:PRE-FLEWC-LwF | 37 | 20 17 73 46 16 24 30 6.7
FT 14 | 24 46 42 38 40 0.9 038 76
Linear Probing 0.9 0.1 0.4 0.8 1.1 0.2 0.3 0.2 4.2
Visual Prompt 59 | 25 171 53 50 -126 19 26 -0l
LoRA 08 | 01 06 10 1.0 05 03 03 29
VIT-B/32 EWC 10| 06 03 25 21 0.6 0.6 11 10
LwF 24 | 23 23 55 40 13 15 1.4 83
LP-FT 19 | 23 30 51 37 238 1.0 0.4 8.3
WiSE-FT 26 | 15 11 52 3l 07 17 20 56
MS:PRE-FLEWC-LwF | 26 | 15 08 54 34 07 17 21 55

Table 24: RI and mRI of ImageNet-21K pretrained models with different fine-tuning methods and
downstream datasets on each dataset in ImageNet-RIB.

: RI
Architecture Method ‘ mhl ‘ IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C
FT 01 [ 15 28 03 27 40 12 18 42
Linear Probing 0.4 0.3 0.4 0.2 0.0 0.8 -0.0 1.0 0.5
Visual Prompt 04 | 77 127 L1 77 2148 84 100 33
LoRA 03| 02 05 -6 05 0.9 0.4 06 19
VIT-B/16 EWC 14 | 1s 02 24 29 0.1 05 1.2 26
LwF 16 | 15 05 29 35 038 0.9 0.0 53
LP-FT 05 | 16 -2 22 27 -8 05 13 21
WiSE-FT 25 | 17 08 49 33 06 1.3 1.7 55
MS:PREFTEWC-LWF | 27 | 17 07 47 42 06 14 18 60
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Table 25: RI and mRI of ImageNet-21K with AugReg pretrained models with different fine-tuning
methods and downstream datasets on each dataset in ImageNet-RIB.

. RI
Architecture Method ‘ mil ‘ IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C
FT 5.5 -4 91 54 -5.3 -11.1 -3.6 -5.7 25
Linear Probing -0.3 -0.4 -04 09 -1.3 -0.5 0.4 0.6 0.2
Visual Prompt -8.0 -6.1 92 93 -6.1 -16.6 -7.1 -7.0 -3.0
LoRA -2.1 0.7 0.8 2.6 2.9 0.8 0.8 1.6 -27.4
ViT-B/16 EWC 0.6 2.0 20 23 35 -3.5 0.4 0.5 1.7
LwF -1.0 -1.0 -2.3 0.5 -1.5 -4.2 0.3 -1.3 1.7
LP-FT 2.6 0.3 350 47 -3.0 -6.2 -0.6 25 -0.5
WiSE-FT 1.7 1.8 -0.2 4.0 2.4 -0.9 2.0 1.5 32
MS:PRE-FT-EWC-LwF | 2.2 1.9 0.3 4.6 2.8 -0.7 2.1 1.7 5.0
FT 01 | 07 -39 08 2.7 49 -0.1 -0.6 44
Linear Probing 0.3 -0.1 -0.8 0.1 0.7 -0.0 0.7 12 0.7
Visual Prompt -8.4 -4.9 -13.1 -7.8 -5.0 -20.7 -6.2 =13 24
LoRA 0.9 0.0 0.5 1.0 12 0.7 0.1 1.5 2.0
ViT-B/32 EwWC 1.6 1.9 -0.7 4.0 3.9 -1.0 1.0 1.7 2.3
LwF 1.7 1.0 -0.5 39 2.8 -1.3 1.7 1.2 5.0
LP-FT 12 1.1 -1.3 33 2.1 -0.9 1.5 0.8 3.0
WiSE-FT 3.0 1.7 0.9 5.6 4.0 1.0 2.0 2.5 6.0
MS:PRE-FT-EWC-LwF | 2.8 1.7 0.6 5.6 4.1 0.6 2.0 2.4 5.6
FT -2.3 -0.2 54 -0.8 0.4 -8.5 -1.8 -4.1 1.8
Linear Probing -0.2 -0.1 -0.8  -0.1 0.3 -0.3 0.3 0.6 -1.2
Visual Prompt -9.2 -5.7 -12.1 -89 -5.0 -21.3 -8.3 -9.6 -2.8
LoRA -1.5 0.1 0.4 1.5 2.8 0.5 0.3 1.6 -19.5
ViT-S/16 EwWC 1.6 2.0 -0.8 4.2 4.8 -1.7 0.8 1.0 2.7
LwF 0.5 0.5 -0.8 32 1.4 -3.1 0.9 -1.3 3.4
LP-FT -0.8 0.5 -2.9 1.6 1.1 -4.6 -0.5 -2.3 0.7
WiSE-FT 2.8 1.8 0.8 6.1 44 -0.1 1.9 2.0 5.1
MS:PRE-FT-EWC-LwF | 2.8 1.7 0.6 6.3 4.6 -0.2 2.0 1.8 5.9
FT -2.9 -1.2 -8.1 -1.3 0.1 -9.3 -2.5 -4.9 42
Linear Probing -0.1 -0.1 -1.5 0.1 0.6 -0.2 0.5 0.1 -0.2
Visual Prompt -9.6 -47 216 -85 -5.6 -19.1 -5.7 -8.6 -2.7
LoRA 0.4 0.1 0.5 1.1 2.7 0.5 0.3 1.1 -3.0
ViT-S/32 EWC 1.0 1.5 -3.1 3.6 4.2 -1.5 0.2 0.7 22
LwF 0.3 -0.1 -2.1 32 1.6 -4.0 0.5 -1.5 4.8
LP-FT -1.1 05 45 15 0.8 -5.1 -0.9 -3.0 3.0
WiSE-FT 2.3 1.1 0.1 55 3.8 -0.6 1.2 1.2 6.2
MS:PRE-FT-EWC-LwF 2.3 1.1 -0.5 5.6 4.1 -0.6 1.2 1.2 6.0
FT 2.1 0.3 -87 35 -0.6 3.1 -0.8 -0.9 0.1
Linear Probing -1.3 -0.5 -4.1 -6.1 -1.2 -0.5 0.7 0.7 0.7
Visual Prompt -129 | -10.7 -13.6 -13.5 -15.0 -17.0 -10.4 -14.2 -9.0
LoRA 1.0 0.2 0.7 1.1 1.2 0.9 0.7 1.1 1.7
ViT-L/16 EWC 1.1 -0.6 0.3 2.5 2.3 -0.7 1.2 1.5 1.9
LwF -0.2 -0.6 0.4 -1.9 0.5 -0.2 -0.6 -1.8 2.6
LP-FT -3.5 0.5 -140 -16.4 -0.5 -0.8 1.3 0.8 0.8
WiSE-FT 23 2.1 0.1 33 2.6 1.1 24 2.7 44
MS:PRE-FT-EWC-LwF | 2.5 1.8 1.1 34 2.5 1.1 2.0 2.7 51

Table 26: RI and mRI of ImageNet-21K-P pretrained models with different fine-tuning methods
and downstream datasets on each dataset in ImageNet-RIB.

: RI
Architecture Method ‘ mil ‘ IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C
FT 05 [ 07 35 16 30 44 14 22 23
Linear Probing 02 | 02 04 05 11 03 02 03 10
Visual Prompt 01| 80 115 99 78  -199 88 AL 36
LoRA 04 | 01 03 05 12 05 02 09 01
VIT-B/16 EWC 13| 13 06 11 30 038 0.6 06 21
LwF 17 | 16 00 45 35 03 10 02 37
LP-FT 04 | 08 -1 38 33 12 04 18 01
WiSE-FT 30 | 20 13 63 41 13 18 20 53
MS:PREFTEWCLWF | 30 | 20 11 63 43 13 17 20 53
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Table 27: RI and mRI of LAION-2B pretrained models with different fine-tuning methods and
downstream datasets on each dataset in ImageNet-RIB.

. RI
Architecture Method ‘ mhtl ‘ IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C
FT 381 | 394 537 369 469 492 290 366 129
Linear Probing -2.0 -0.6 09 -15 -0.8 -1.9 -24 -5.5 -2.0
Visual Prompt 82 | -64 81 81 67  -167 83 80 29
LoRA 36 | 08 13 -6 12 30 238 58 123
VIT-B/16 EWC 25| -l61 272 24 <173 190 6.4 9.9 17
LwF 339 | 373 493 317 452 447 223 310 99
LP-FT 370 | 393 510 359 461 477 283 337 -146
WiSE-FT 216 | 253 391 -176 319 254 -113 163 55
MS:PRE-FLEWC-LWF | -17.9 | 211 313 -129 297 221 86 146 27
FT 316 | 311 470 289 375 413 245 328 96
Linear Probing -14 -0.1 -1.5 0.2 0.5 -2.1 -2.3 -6.0 0.5
Visual Prompt 84 | -64 121 -69 60 219 6.1 67 15
LoRA 49| 02 20 04 09 40 26 6.1 11
VIT-B/32 EWC 100 | 106 256 -12  -115  -151 35 410 -
LwF 267 | 285 405 228 337 344 -185 268 86
LP-FT 308 | 313 -457 279 359 3907 244 308 -103
WiSE-FT 35| 4155 228 86 -178  -179 8.4 144 22
MS:PRE-FLEWC-LWF | -109 | -124 -190 -57  -164  -143 57 25 13

Table 28: RI and mRI of OpenAl CLIP models with different fine-tuning methods and downstream
datasets on each dataset in ImageNet-RIB.

: RI
Architecture Method ‘ mhRl ‘ IN-V2 IN-A INR IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C
FT 380 | 383 516 354 485 503 289 358 -153
Linear Probing 20 | 05 08 13 13 12 3.4 56 -18
Visual Prompt -8.4 -1.4 -8.1 -7.6 -6.3 -16.3 -9.4 -9.9 -2.7
LoRA 36| 06 -0 -9 10 238 40 64 -113
VIT-B/16 EWC 27| 144 209 24 248 199 75 108 08
LwF 331 | 355 464 306 470 443 227 302 79
LP-FT 369 | 383 500 -344 485 490 298 317 -133
WiSE-FT A81 | 4195 267 117 310 237 111 158 55
MS:PRE-FT.EWC-LWF | -160 | -17.1 243 94 303  -209 9.1 144 27
FT 287 | 281 438 264 350 390 208 282 84
Linear Probing -1.3 0.2 09 -08 -0.1 -1.8 -2.1 -5.6 0.9
Visual Prompt 80 | -54 125 -62 46 208 5.9 70 14
LoRA A8 | 01 -6 -08 06 37 23 s4 02
VIT-B/32 EWC 70 | 56 170 -1 -114 130 31 65 17
LwF 239 | 248 370 211 313 317 -165 243 44
LP-FT 277 | 274 422 243 337 377 202 269 90
WiSE-FT 97 | 1103 -165 -53 142 -125 57 13 15
MS:PRE-FLEWC-LwF | 8.1 | -85 -147 32 -134  -106 44 99 05
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J.5 ACCURACY OF USING VARIOUS PRETRAINED MODELS ON EACH OOD DATASETS AND
EACH CORRUPTION IN IMAGENET-C

Table 29| summarizes the Table indices for the accuracy on each OOD (out-of-distribution) dataset
(Table S1 and Tables S17 and ImageNet-C (Table S18-Table S35) after fine-tuning on various datasets
in the Supplementary Materials. Each pretrained and fine-tuned model is evaluated on ImageNet-C
with 15 corruptions at severity levels ranging from 1 to 5. Following the original ImageNet-C
benchmark (Hendrycks & Dietterich, [2019), we average the performance over the different severity
levels. However, for consistency with other datasets, we report the results as accuracy rather than

€ITor.

Table 29: Reference for the tables showing accuracy of pretrained models on OOD datasets (left) and

ImageNet-C corruptions (right).

Architecture | Dyyre | Accuracy on OOD datasets | Accuracy on ImageNet-C

IN-1K + AugReg Table [30|(Table S1) Table[31|(Table S2)
IN-1K + SAM able S2 able S20
IN-21K Table S3 Table S21
ViT-B/16 IN-21K-P Table S4 Table S22
IN-21K + AugReg Table S5 Table S23
LAION-2B Table S6 Table S24
OpenAl Table S7 Table S25
IN-1K + AugReg Table S8 Table 26
. IN-21K + AugReg Table S9 Table S27
VIT-B/32 LAION-2B Table S10 Table S28
OpenAl Table S11 Table S29
VIT-S/16 IN-1K + AugReg Table S12 Table S30
IN-21K + AugReg Table S13 Table S31
ViT-S/32 | IN-21K + AugReg | Table S14 | Table S32
ViT-L/16 ‘ IN-21K + AugReg ‘ Table S15 ‘ Table S33
ResNet-18 ‘ IN-1K ‘ Table S16 ‘ Table S34
ResNet-50 | IN-1K | Table S17 | Table S35
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Table 30: The accuracy on each OOD dataset after fine-tuning on ImageNet-1K with AugReg
pretrained ViT-B/16 on the downstream datasets with various methods. Note that ImageNet-Drawing,
ImageNet-Cartoon, and ImageNet-C are generated from the ImageNet validation set. Green and red
indicate relative performance increases and decreases, respectively, compared to the pretrained model.
Bold indicates the best performance on each evaluation dataset.

Method | Fine-Tuning Dataset | IN-IK | IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C
Pretrained | 792 | 664 15.0 38.0 28.0 257 66.2 39.1 56.0
IN-V2 784 - 252 419 29.2 37.1 64.7 404 57.4
IN-A 72.9 60.6 - 36.7 24.9 35.0 553 326 535
IN-R 69.8 59.2 20.9 - 46.7 320 613 514 52.0
T IN-Sketch 757 63.9 173 59.1 - 33.0 663 50.8 53.8
ObjNet 74.4 622 249 363 25.1 - 55.6 336 523
IN-Cartoon 852 63.5 19.9 40.5 295 335 - 412 513
IN-Drawing 81.5 62.9 16.5 411 327 324 64.2 - 56.0
IN-C 99.8 61.1 139 37.0 25.1 217 922 70.2 -
IN-V2 79.1 - 15.6 382 28.1 33.1 66.2 39.0 55.9
IN-A 78.6 65.9 - 385 274 34.1 65.6 38.6 55.8
IN-R 78.7 66.6 17.1 - 302 334 66.1 39.8 56.2
Linear Probing IN-Sketch 712 64.8 16.6 46.3 - 335 65.6 40.5 54.5
ObjNet 78.6 65.9 18.1 38.6 279 - 65.1 39.3 56.1
IN-Cartoon 805 65.4 15.1 392 28.1 322 - 409 55.6
IN-Drawing 78.1 65.2 14.9 413 28.5 333 65.6 - 543
IN-C 97.1 61.9 15.1 36.8 252 283 833 57.4 -
IN-V2 75.7 - 12.7 39.6 27.4 34.4 60.5 36.7 479
IN-A 69.1 57.1 - 363 219 327 50.6 26.1 38.0
IN-R 68.1 55.9 9.6 - 36.2 55.7 418 40.1
Visual Prompt IN-Sketch 722 59.5 9.4 51.6 - 60.6 449 443
(Bahng et al[J[2027] ObjNet 68.6 56.2 13.0 337 222 - 46.8 23.0 353
IN-Cartoon 74.5 612 102 412 27.0 315 - 352 418
IN-Drawing 72.1 59.4 8.4 422 28.8 30.6 59.3 - 442
IN-C 779 652 14.8 40.1 283 357 63.5 498 -
IN-V2 79.2 - 153 38.2 28.1 332 66.4 39.3 56.1
IN-A 79.0 66.4 - 389 27.8 355 652 393 56.5
IN-R 79.2 66.8 16.7 - 29.7 34.8 66.9 40.0 56.7
LoRA IN-Sketch 792 66.8 16.5 459 - 34.6 67.7 4.1 56.6
(Hu et al.[2021) ObjNet 78.9 66.3 18.3 39.3 27.8 - 65.1 39.2 55.0
IN-Cartoon 787 65.8 14.8 393 283 321 - 39.8 54.6
IN-Drawing 779 66.3 15.0 437 32.1 335 66.4 - 55.1
IN-C 79.9 67.4 163 39.2 28.1 34.1 67.5 408 -
IN-V2 80.0 - 19.7 418 29.4 36.8 67.1 4238 58.2
IN-A 76.9 64.9 - 404 27.8 382 61.1 365 56.6
IN-R 752 63.9 19.0 - 439 333 66.4 575 56.1
EWC IN-Sketch 789 66.6 16.6 522 - 342 68.3 49.6 57.2
(Kirkpatrick et al. }2017 ObjNet 78.1 66.2 23.1 40.9 29.0 - 62.4 39.8 56.9
IN-Cartoon 79.2 66.0 16.5 427 29.9 338 - 26 54.7
IN-Drawing 793 66.7 163 4.5 34.0 34.7 67.9 - 583
IN-C 80.1 67.8 20.0 25 312 3715 66.8 50.0 -
IN-V2 79.2 - 229 413 29.4 36.4 65.8 41.0 57.9
IN-A 774 65.5 - 39.4 27.5 36.7 61.8 383 57.2
IN-R 76.1 64.7 217 - 7.8 34.1 66.8 54.9 572
LwF IN-Sketch 713 65.2 17.3 57.8 - 335 67.8 49.6 55.2
(Li & Hoiem[[2017] ObjNet 782 66.2 24.1 38.4 27.3 - 62.3 38.8 56.3
IN-Cartoon 872 65.9 19.4 412 29.9 342 - 427 55.6
IN-Drawing 84.0 65.4 17.7 419 332 334 67.7 - 582
IN-C 99.2 65.8 135 40.7 27.8 314 90.6 61.7 -
IN-V2 78.8 - 247 416 293 36.8 653 413 57.6
IN-A 76.5 64.6 - 38.2 27.4 37.1 60.5 36.7 56.2
IN-R 74.7 63.4 21.1 - 46.9 34.7 65.4 53.1 553
LP-FT IN-Sketch 762 64.5 18.0 58.8 - 33.9 67.0 489 54.4
(Kumar et al. 2022 ObjNet 77.1 64.9 249 38.2 26.8 - 60.7 37.7 54.9
IN-Cartoon 863 64.2 195 41.0 29.9 335 - 43.1 52.8
IN-Drawing 82.1 632 16.5 417 329 32,0 64.8 - 56.0
IN-C 98.0 61.0 137 375 25.7 27.3 87.1 66.0 -
IN-V2 79.7 - 213 40.5 295 36.0 665 409 58.0
IN-A 78.6 66.4 - 393 285 37.1 64.4 38.6 57.8
IN-R 79.1 67.1 23.0 - 447 37.4 69.5 54.7 59.6
WiSE-FT IN-Sketch 789 66.4 17.6 52.1 - 34.7 68.7 48.7 57.3
(Wortsman et al. [2022b) ObjNet 79.3 67.3 235 40.0 29.0 - 65.2 40.5 57.6
IN-Cartoon 83.8 66.5 193 41.0 30.4 34.9 - 432 563
IN-Drawing 82.5 66.9 18.5 422 335 35.0 68.2 - 59.5
IN-C 93.4 66.9 187 413 29.9 34.7 82.4 57.6 -
IN-V2 79.8 - 21.0 41.0 29.7 36.0 66.9 417 58.0
IN-A 783 66.4 - 39.7 28.5 315 63.7 38.4 57.8
IN-R 789 67.1 23.1 - 459 37.2 69.6 55.8 59.6
PRE e o IN-Sketch 789 666 175 540 - 346 9.1 4938 575
[Wortoman ot al120073] ObjNet 79.3 67.4 24.1 403 29.1 - 64.9 40.6 57.7
IN-Cartoon 83.7 66.4 189 418 30.6 34.7 - 36 56.2
IN-Drawing 82.6 66.9 18.4 43.0 34.0 352 68.7 - 59.7
IN-C 92.6 67.5 18.6 423 30.6 353 813 57.3 -

32



Under review as a conference paper at ICLR 2026

Table 31: Accuracy of ImageNet-1K with AugReg pretrained ViT-B/16 with different fine-tuning
methods and downstream datasets on each ImageNet-C corruption. For each corruption, accuracy is
averaged across 5 levels of severity.

Method ‘ Fine-Tuning ‘ Avg. ‘ Noise Blur Weather Digital

Dataset © | Gauss. Shot Impulse | Defocus Glass ~Motion Zoom | Snow Frost Fog  Bright | Contrast Elasic Pixel JPEG

Pretrained | 560 | 57 54 54 49 42 53 46 48 55 61 T4 | 56 59 67 66

IN-V2 574 56 54 53 51 40 55 46 53 59 65 4 59 58 68 67

IN-A 535 53 51 50 50 38 52 39 50 56 57 70 56 51 65 64

IN-R 520 52 50 49 46 44 49 37 49 55 57 66 53 51 62 61

FT IN-Sketch 538 55 53 52 46 39 49 43 51 56 58 70 55 55 63 62

ObjNet 523 52 48 a8 46 37 51 38 50 55 58 70 51 52 64 63

IN-Cartoon | 513 53 50 50 44 35 48 35 48 50 54 74 53 53 65 58

IN-Drawing | 560 58 56 55 46 43 52 40 55 62 6l 74 53 57 66 62

IN-V2 559 56 54 54 49 42 53 46 48 55 6l 73 56 59 66 65

IN-A 558 56 53 53 49 42 54 46 48 55 6l 73 57 59 66 65

IN-R 562 56 54 54 49 44 54 47 49 55 6l 73 56 60 66 66

Linear Probing IN-Sketch 545 54 2 52 48 41 51 45 48 54 59 M2 55 58 65 64

ObjNet 561 56 54 54 49 43 54 48 48 56 62 T3 53 60 66 65

IN-Cartoon | 556 56 54 53 48 42 52 46 48 55 59 75 54 59 67 67

IN-Drawing | 543 57 5555 43 43 50 44 51 61 49 74 39 59 66 67

IN-V2 49 44 2 4 41 35 46 42 42 46 51 6 48 55 59 57

IN-A 380 33 3129 31 24 36 31 35 38 43 60 37 46 48 49

Visual Prompt IN-R 401 39 38 36 33 28 36 30 3 41 41 6l 38 45 50 50

{afing eCaL ]P0 IN-Sketch 43 4 40 37 29 40 36 39 45 46 65 47 49 54 55

ObjNet 353 28 26 24 28 22 33 29 2 35 41 el 37 44 45 44

IN-Cartoon | 41.8 = 39 37 36 34 27 38 33 36 38 42 66 43 50 55 53

IN-Drawing | 442 45 PEIE] 33 32 38 32 41 51 4 6 39 50 56 52

IN-V2 561 57 54 54 49 43 53 46 48 55 6l 74 57 59 67 66

IN-A 565 57 54 54 49 44 55 48 49 57 el 74 52 60 67 66

IN-R 567 57 54 54 50 44 54 48 49 56 6 T4 56 60 67 66

Pem c%‘;‘ffAml IN-Sketch 566 56 54 54 51 43 53 47 50 56 6 74 57 59 67 66

ObjNet 550 57 54 54 48 43 54 47 48 55 55 T4 44 60 67 66

IN-Cartoon | 546 56 53 53 48 43 50 45 48 54 56 73 50 58 66 65

IN-Drawing | 551 58 56 56 44 45 51 43 51 63 54 T4 43 59 66 66

IN-V2 582 58 55 55 52 44 56 49 52 58 64 75 59 61 68 67

IN-A 566 55 53 5 52 42 56 46 52 58 6 73 59 57 67 66

IN-R 561 55 54 53 50 44 53 43 53 59 6 72 58 56 64 65

‘Kirkpmfﬁfu,_ 5677 | IN-Sketch 572 57 56 55 50 44 54 47 52 57 6l 74 57 59 67 67

ObjNet 569 56 53 53 51 43 56 47 52 8 6 T4 58 59 67 66

IN-Cartoon | 547 55 2 52 48 40 52 43 48 54 60 73 56 58 66 64

IN-Drawing | 583 59 57 57 50 44 55 45 54 63 65 T4 59 60 68 66

IN-V2 579 57 55 54 51 42 55 47 5359 6 75 60 59 69 68

IN-A 572 56 54 54 52 42 55 45 53 60 62 73 59 57 68 66

IN-R 572 57 56 55 50 48 54 43 54059 62 72 57 57 67 66

0T HE}“UFH T IN-Sketch 552 56 54 53 48 40 51 45 52 57 60 72 56 57 65 64

ObjNet 563 56 53 53 51 41 55 44 52 57 6 73 57 57 67 66

IN-Cartoon | 556 56 53 53 49 40 52 41 51055 59 77 57 58 68 65

IN-Drawing | 582 59 56 56 50 45 55 43 55 63 64 77 56 59 69 65

IN-V2 576 57 54 54 51 41 55 46 53059 65 T4 60 59 68 67

IN-A 562 55 52 52 51 41 55 43 53 59 6 73 59 56 67 65

IN-R 553 55 54 52 48 47 52 41 52 58 60 70 56 56 65 64

i Kum;‘;’ Fle SR IN-Sketch 544 54 53 52 48 40 50 44 51 5 5 70 56 56 64 63

ObjNet 549 54 51 51 48 40 54 43 51 57 6l 72 54 56 66 64

IN-Cartoon | 528 53 50 50 46 37 49 38 49 2 55 75 54 55 66 61

IN-Drawing | 560 59 56 56 44 44 52 40 56 63 57 76 49 58 67 64

IN-V2 580 58 55 55 51 42 55 47 52 8 65 75 60 60 69 68

IN-A 578 57 5555 52 43 56 46 53 59 64 74 60 59 68 66

WISEFT IN-R 596 59 58 57 53 49 57 48 55 6l 65 75 60 61 69 68

(Worsman ot alJp0755) | IN-Sketch 573 58 56 56 50 42 53 47 53 59 63 74 59 59 67 66

ObjNet 516 57 54 54 51 43 56 46 53 58 64 T4 59 59 68 67

IN-Cartoon | 563 57 5455 50 41 53 43 5155 6l 76 58 59 68 65

IN-Drawing | 595 61 59 59 51 45 56 46 55 63 65 77 59 61 69 67

IN-V2 580 S8 5555 51 43 55 47 52 59 64 75 60 60 69 68

IN-A 578 57 55 54 52 43 56 46 5359 64 T4 60 58 68 67

Model Soup IN-R 596 59 58 57 53 49 57 47 55 6l 65 74 60 61 69 68

PRE-FT-EWC-LWF IN-Sketch 57.5 58 56 56 50 42 53 47 53 59 63 74 59 59 67 66

(Wortsman et al.f2022a] | ObjNet 577 57 54 54 52 43 56 47 53 58 64 74 59 59 68 67

IN-Cartoon | 562 57 54 54 50 41 53 43 51 55 6l 76 58 59 68 65

IN-Drawing | 59.7 61 59 59 51 45 56 46 55 6 66 77 59 61 69 67
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