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ABSTRACT

Large-scale pretrained models are widely leveraged as foundations for learning
new specialized tasks via fine-tuning, with the goal of maintaining the general
performance of the model while allowing it to gain new skills. A valuable goal for
all such models is robustness: the ability to perform well on out-of-distribution
(OOD) tasks. We assess whether fine-tuning preserves the overall robustness of the
pretrained model, and observed that models pretrained on large datasets exhibited
strong catastrophic forgetting and loss of OOD generalization. To systematically
assess robustness preservation in fine-tuned models, we propose the Robustness
Inheritance Benchmark (ImageNet-RIB). The benchmark, which can be applied to
any pretrained model, consists of a set of related but distinct OOD (downstream)
tasks and involves fine-tuning on one of the OOD tasks in the set then testing
on the rest. We find that though continual learning methods help, fine-tuning
reduces robustness across pretrained models. Surprisingly, models pretrained
on the largest and most diverse datasets (e.g., LAION-2B) exhibit both larger
robustness losses and lower absolute robustness after fine-tuning on small datasets,
relative to models pretrained on smaller datasets. These findings suggest that
starting with the strongest foundation model is not necessarily the best approach
for performance on specialist tasks.

1 INTRODUCTION

Deep learning has moved toward training large models with deeper architectures (Dosovitskiy et al.,
2021; He et al., 2016; Jiang et al., 2023) on massive datasets (Lin et al., 2014; Russakovsky et al.,
2015; Schuhmann et al., 2022). These models exhibit impressive performance and generalization
abilities; as a result, it has become common to leverage these models as a foundation for fine-tuning
on specific downstream datasets to achieve better performance than training from scratch. Fine-tuning
can be done with modest amounts of data, and thus is an attractive approach in applications where
not enough data is available.

While this approach capitalizes on the extensive knowledge embedded in pretrained models, it can
result in significant loss of that knowledge from catastrophic forgetting (French, 1999; Robins, 1995).
Methods to mitigate this problem involve training only a part of the pretrained model, by linear
probing, low-rank adaptation (Hu et al., 2021), and visual prompting (Bahng et al., 2022). However,
these methods typically underperform on downstream tasks compared to fine-tuning the entire model.

Fine-tuning also reduces a model’s robustness, which we take here to mean the ability to generalize to
out-of-distribution (OOD) samples, as the model is optimized for a narrower distribution (Figure 1).
Model robustness has been extensively studied by using various OOD datasets, typically beginning
with an ImageNet pretrained model and evaluating it on OOD datasets that exhibit natural distribution
shifts (Taori et al., 2020), such as changes in viewpoints (Barbu et al., 2019), time (Recht et al.,
2019), styles (Hendrycks et al., 2021a; Wang et al., 2019), or synthetic data based on the original
dataset (Hendrycks & Dietterich, 2019; Salvador & Oberman, 2022).

We observed that the ViT-B/16 CLIP (Radford et al., 2021) pretrained on LAION-2B suffers from
more severe catastrophic forgetting on OOD datasets after fine-tuning on ImageNet-R (Hendrycks
et al., 2021a) compared to the same model pretrained on ImageNet-21K (Ridnik et al., 2021) with
AugReg (Steiner et al., 2022), despite their initially similar performance (Figure 2). Conversely, the
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DFT → D

Figure 1: Schematic: How fine-tuning changes the robustness of pretrained models. A model
pretrained on the dataset Dpre (purple solid) has a measure of robustness, generalizing to some
out-of-distribution data (purple dashed, fpre). Dotted gray line: volume (D) containing a number of
related OOD datasets (dark gray ellipsoids). Fine-tuning on one of these datasets (DFT) shifts fpre to
fFT (blue dashed ellipsoid), increasing performance on DFT and some OOD tasks in D but possibly
reducing performance on others (red), thus making the model less robust.

ImageNet-21K pretrained model exhibits improved performance on ImageNet-Sketch (Wang et al.,
2019).
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Figure 2: OOD accuracy (robust-
ness) of a ViT-B/16 model pre-
trained on two different datasets
(LAION-2B, IN-21K), before and
after fine-tuning on ImageNet-R.

To analyze why models pretrained on a smaller dataset have
better OOD generalizability after fine-tuning, and the effect of
the relationship between fine-tuning dataset and OOD datasets,
we introduce ImageNet-RIB (Robustness Inheritance Bench-
mark), a new benchmark designed to assess the robustness of
fine-tuned models across diverse downstream and evaluation
OOD dataset pairs related to ImageNet. For each experiment,
we fine-tune a pretrained model on a downstream dataset sam-
pled from ImageNet OOD datasets and evaluate its performance
on the remaining OOD datasets. This process is repeated across
all available datasets to thoroughly assess how well the model
retains robustness after fine-tuning. We also employ a variety
of fine-tuning strategies, including vanilla fine-tuning, linear
probing (fine-tuning the last layer only), LoRA (Hu et al., 2021),
regularization-based continual learning methods (Li & Hoiem,
2017; Zenke et al., 2017), and robust fine-tuning methods (Ku-
mar et al., 2022; Wortsman et al., 2022a;b).

Interestingly, pretraining on LAION-2B, despite its size and diversity, does not always yield the best
results when fine-tuned on downstream datasets, suggesting that starting with large, rich datasets may
not always be the optimal approach for preserving robustness, especially when the downstream dataset
size is small. This problem occurs in the LAION-400M pretrained model, but not in the LAION-100M
pretrained model. Our experimental results also show that the combination of regularization-based
continual learning methods with model soup (Wortsman et al., 2022a) achieves the best performance
in the benchmark, while linear probing performs the best when using LAION-2B pretrained models.
Furthermore, our findings indicate that continual learning methods not only mitigate catastrophic
forgetting related to the pretraining dataset but also enhance robustness when compared to standard
fine-tuning. This improvement is attributed to leveraging the distributional properties of both
pretraining and fine-tuning datasets.

In summary, the contributions of this paper are four-fold:

• We show that models pretrained on richer and larger datasets can have worse robustness
after fine-tuning than models pretrained on smaller datasets if the fine-tuning dataset size is
small.

• We propose ImageNet-RIB, a new benchmark leveraging multiple ImageNet-based OOD
datasets to quantify the robustness of fine-tuned models in comparison to pretrained models.

• We demonstrate that regularization-based continual learning methods improve robustness by
leveraging both the pretraining and fine-tuning dataset distributions. This improvement is
amplified when combined with robust fine-tuning methods.
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2 RELATED WORK

2.1 ROBUSTNESS FINE-TUNING

Robust fine-tuning aims to preserve the pretrained model’s robustness to out-of-distribution (OOD)
datasets–such as variations in viewpoint (Barbu et al., 2019), style (Hendrycks et al., 2021a; Wang
et al., 2019), and temporal distribution shifts (Recht et al., 2019)–during the fine-tuning. Taori
et al. (2020) proposed a benchmark to evaluate robustness changes on multiple existing ImageNet-
based OOD datasets in pretrained models that were fine-tuned on ImageNet-1K. Though widely
used (Kumar et al., 2022; Wortsman et al., 2022a;b), it only considers a single fine-tuning dataset
(ImageNet-1K), which limits the in-depth analysis of differences induced by various fine-tuning
datasets. Shi et al. (2023) extend this to joint training on two dataset; ImageNet-1K with CIFAR-
10 Krizhevsky et al. (2009) or YFCC (Thomee et al., 2016). To solve this problem, Wortsman
et al. (2022a) demonstrate that averaging the parameters of multiple trained models improves both
in-distribution and OOD performance. WiSE-FT (Wortsman et al., 2022b) further shows that linearly
interpolating the weights of pretrained CLIP and ImageNet-1K fine-tuned CLIP improves robustness,
although it requires tuning the interpolation ratio for optimal performance. LP-FT (Kumar et al., 2022)
fine-tunes the last layer (linear probing) first and then fine-tunes the entire network. Goyal et al. (2023)
show that contrastive learning using a text encoder in fine-tuning improves robustness. Ramanujan
et al. (2023) analyze the effect of pretraining datasets on robust fine-tuning in the WILDS (Koh et al.,
2021) dataset, showing that having more data is beneficial, while greater diversity per class is not.
Unlike existing benchmarks (Shi et al., 2023; Taori et al., 2020), which only fine-tune on ImageNet
or two datasets simultaneously from unknown or uncurated pretraining datasets, our benchmark
provides diverse downstream datasets for a comprehensive understanding of robust fine-tuning.

2.2 CONTINUAL LEARNING

Continual learning aims to enable models to learn new tasks without forgetting previously learned
knowledge. Existing approaches can be broadly categorized into three types: regularization-based
methods, replay-based methods, and architecture-based methods. Regularization-based methods (Che-
ung et al., 2019; Kirkpatrick et al., 2017; Li & Hoiem, 2017; Zenke et al., 2017) use additional loss
terms to limit changes to the model’s parameters, ensuring that previously learned knowledge is
retained. For instance, EWC (Kirkpatrick et al., 2017) employs the Fisher information matrix to
determine the importance of each parameter, helping to preserve critical weights from earlier tasks.
LwF (Li & Hoiem, 2017) uses knowledge distillation to transfer outputs from a model trained on past
tasks to guide learning new tasks. Replay-based methods (Robins, 1995) mitigate catastrophic forget-
ting by creating a replay buffer that contains a subset of previous task data or synthetic data (Van de
Ven et al., 2020) and a model is trained on the buffer along with a new task. Techniques such as reser-
voir sampling, reinforcement learning (Rebuffi et al., 2017), and gradient-based selection (Aljundi
et al., 2019) help efficiently manage memory and select important data. Architecture-based methods
modify the model’s structure to accommodate new tasks by dynamically growing networks (Rusu
et al., 2016; Wang et al., 2022; Yan et al., 2021). In our work, we focus on regularization-based
continual learning methods to ensure a fair comparison with other fine-tuning approaches.

3 IMAGENET ROBUSTNESS INHERITANCE BENCHMARKING (IMAGENET-RIB)

We propose the ImageNet-RIB (Robustness Inheritance Benchmark), a novel benchmark designed
to measure robustness changes using existing ImageNet-related out-of-distribution (OOD) datasets
as both fine-tuning and evaluation datasets. ImageNet-RIB fine-tunes pretrained models on various
datasets, then evaluates robustness to other OOD datasets in the benchmark (Figure 3), offering a
more comprehensive understanding of robustness fine-tuning.

3.1 BENCHMARK PROTOCOL AND ROBUSTNESS METRIC

Protocol Figure 3 illustrates the protocol of our benchmark. Given a set of out-of-distribution
(OOD) datasets D = {D1, D2, ..., Dn}, we select one to use as a fine-tuning dataset DFT for a
pretrained model. We evaluate the model’s performance on D \DFT before and after fine-tuning on
DFT, and compute the robustness change. This process is repeated by selecting each dataset in D as
the fine-tuning dataset.
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Figure 3: ImageNet-RIB benchmarking process. (1) We define a set D of ImageNet OOD datasets.
We select one for fine-tuning, DFT, then assess the performance of the pretrained model on D \DFT.
(2) After fine-tuning the pretrained model on DFT, we (3) re-assess its performance on D \DFT and
compute the robustness change. (4) This process is repeated until each dataset in D has been chosen
once as the fine-tuning dataset, ensuring a detailed evaluation of fine-tuning’s impact on robustness.

Metric We define the robustness improvement score (RI) as the average relative robustness (Taori
et al., 2020). Specifically, RI measures the accuracy difference between fine-tuned and pretrained
models on OOD datasets. Formally, robustness improvement (RI) after fine-tuning on Di(= DFT) is
defined as:

RIi =
1

n− 1

n∑
j=1,j ̸=i

A
(j)
i −A(j)

pre , (1)

where A
(j)
pre and A

(j)
i denote the average accuracies of pretrained and fine-tuned models on Dj ,

respectively. In addition to relative robustness, effective robustness (Taori et al., 2020) is an alternative
metric commonly used to evaluate OOD performance (see Appendix F). Effective robustness measures
how much the accuracy of a model deviates from an expected baseline, typically using a reference
in-distribution dataset (e.g., ImageNet-1K). While effective robustness is insightful, we use relative
robustness in this benchmark to facilitate direct comparisons between different fine-tuning methods
and initial pretraining datasets. We summarize the overall robustness improvement across all datasets
as the mean robustness improvement (mRI).

3.2 DATASET SUITES

We leverage all existing ImageNet OOD datasets to construct D: ImageNet-V2 (Recht et al., 2019),
ImageNet-A (Hendrycks et al., 2021b), ImageNet-Drawing (Salvador & Oberman, 2022), ImageNet-
Cartoon (Salvador & Oberman, 2022), and ImageNet-Sketch (Wang et al., 2019), ObjectNet (Barbu
et al., 2019), and ImageNet-C (Hendrycks & Dietterich, 2019). ObjectNet and ImageNet-C were
originally designed solely for evaluating the OOD performance of ImageNet pretrained models,
with restrictions on their use for training, however we extend their application in this benchmark by
fine-tuning models on these datasets and evaluating their robustness on other OOD datasets. For
detailed descriptions of each dataset, please refer to Appendix H.1. StanfordCars (Krause et al., 2013)
dataset is also used as a showcase of a dataset with different label sets in Appendix G

4 EXPERIMENTS

We use the ImageNet-RIB to assess the robustness of different pretrained models to fine-tune on a
set of downstream datasets. The goal is to assess which fine-tuning methods do best across multiple
pretraining datasets.

4.1 EXPERIMENTAL DETAILS

Pretrained Models We use several architectures of Vision Transformer (ViT) (Dosovitskiy et al.,
2021) and ResNet (He et al., 2016). The models are pretrained on ImageNet-1K (Russakovsky et al.,

4
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Table 1: Average robustness of the ViT-B/16 model pretrained on various datasets, assessed on the
datasets in ImageNet-RIB set D. LAION-2B pretraining exhibits the highest robustness.

Pretraining Dataset ImageNet-1K IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

IN-1K + AugReg 79.2 66.4 15.0 38.0 28.0 25.7 66.2 39.1 56.0
IN-21K 81.8 71.4 32.0 47.3 35.8 33.1 69.4 44.1 58.3

IN-21K + AugReg 84.5 74.0 43.2 56.8 43.2 39.1 75.1 54.9 66.5
OpenAI 85.3 75.7 47.3 65.9 50.9 50.7 76.3 55.7 62.6

LAION-2B 85.5 75.6 41.5 68.8 55.4 42.3 78.2 58.4 63.0

2015), or ImageNet-21K (Ridnik et al., 2021) and then fine-tuned on ImageNet-1K. The standard
data augmentation and regularization technique for ViT, AugReg (Steiner et al., 2022) can be used
for training on ImageNet-1K or ImageNet-21K. We also use ImageNet-1K with Sharpness Aware
Minimization (SAM) (Chen et al., 2022), ImageNet-21K-P (Ridnik et al., 2021) pretrained models.
Alternatively, some models are pretrained on LAION-2B (Schuhmann et al., 2022) or OpenAI internal
dataset (400 million data) (Radford et al., 2021), followed by fine-tuning on ImageNet-1K. In other
words, all pretrained models are trained on ImageNet-1K before experiments to directly leverage its
classifier. For simplicity, we refer to them by the names of the first pretraining datasets (e.g., LAION-
2B). We also evaluate pretrained CLIP models with a zero-shot classifier that are not fine-tuned on
ImageNet-1K in Appendix C. In the main paper, we focus on ImageNet-1K with AugReg pretrained
ViT-B/16 and experiments using other pretrained models are reported in Appendix J.

Fine-tuning Methods We employ standard fine-tuning methods, regularization-based continual
learning methods for measuring performance on the proposed benchmark. The fine-tuning meth-
ods we evaluate include vanilla fine-tuning (FT), Linear Probing, LoRA (Hu et al., 2021), Visual
Prompt (Bahng et al., 2022), LwF (Li & Hoiem, 2017), and EWC (Kirkpatrick et al., 2017)1. Because
we are using ResNets, we do not use LoRA, which was designed for ViT. We also employ robust
fine-tuning methods: LP-FT (Kumar et al., 2022), WiSE-FT (Wortsman et al., 2022b), and uniform
model soup (Wortsman et al., 2022a), which averages the parameters of a pretrained model, a vanilla
fine-tuned model (FT), LwF, and EWC. We denote the uniform model soup, MS:PRE-FT-EWC-LwF
to reveal the source of parameters. In Appendix C, we also use FLYP (Goyal et al., 2023).

Training Each pretrained model is fine-tuned on DFT for 10 epochs with a batch size of 64. We use
stochastic gradient descent (SGD) with a learning rate of 0.001 and a momentum of 0.9 with cosine
annealing (Loshchilov & Hutter, 2017). Visual Prompt is trained for 10 epochs with a learning rate of
40 without weight decay, following Bahng et al. (2022). We also evaluate models on ImageNet-RIB
with a train-validation split of the fine-tuning dataset and select the best-performing models on the
validation set for evaluation in Appendix E. Please refer to Appendix H.3 and the code repository for
detailed implementation.

4.2 COMBINATION OF CONTINUAL LEARNING WITH ROBUST FINE-TUNING METHODS
PERFORM BEST

Baseline We start with the baseline of assessing model performance on the set of OOD datasets with-
out any fine-tuning. Models pretrained on larger and more diverse datasets have better performance on
both ImageNet-1K and downstream datasets as shown in Table 1. However, the ImageNet-21K with
AugReg pretrained model achieves better performance on ImageNet-C than LAION-2B pretrained
model since AugReg includes several corruptions in ImageNet-C (e.g., brightness and contrast).

Accuracy on OOD Datasets Table 30 presents the accuracy of an ImageNet-1K with AugReg
pretrained ViT-B/16 model on OOD datasets before and after fine-tuning with each method on the fine-
tuning dataset (see Table 31 for individual ImageNet-C corruption). Continual learning methods and
robust fine-tuning methods generally improve performance on most OOD datasets after fine-tuning
on the downstream datasets. Linear probing (LP) exhibits similar increase and decrease patterns
as vanilla fine-tuning (FT), with less magnitude as the backbone network is fixed. Visual Prompt
reduces performance even on ImageNet-1K after fine-tuning on synthetic datasets of the ImageNet

1We do not use other continual learning methods as the pretraining dataset is not accessible, and to ensure a
fair comparison with other methods.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: RI and mRI of ViT-B/16 pretrained on ImageNet-1K and AugReg, fine-tuned on each of
the datasets in the ImageNet-RIB set D.

Method mRI
RI on specific DFT

IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

FT 1.3 2.9 -4.0 2.8 4.4 -2.7 0.6 0.4 5.9
Linear Probing 0.7 0.1 -0.1 0.8 1.2 0.3 0.2 0.1 3.2
Visual Prompt -4.5 -2.3 -9.1 -4.9 -1.6 -11.2 -3.9 -4.3 1.7

LoRA 0.9 0.2 0.4 1.1 2.6 0.3 -0.1 1.3 1.1
EWC 2.8 2.9 -0.2 5.2 4.4 1.4 1.6 2.8 4.3
LwF 3.1 2.8 -0.0 6.2 4.6 0.7 1.9 2.1 6.5

LP-FT 2.3 3.0 -0.9 5.2 4.5 -0.1 1.2 0.6 4.7
WiSE-FT 3.6 2.5 0.7 7.5 4.5 2.1 2.3 3.0 6.5

MS 3.9 2.7 0.7 7.8 5.0 2.2 2.4 3.3 6.7

Table 3: Mean Robustness Improvement (mRI) after fine-tuning with different fine-tuning methods.

Architecture → ViT-B/16 ViT-B/32 ViT-S/16 ViT-S/32 ViT-L/16 ResNet-18 ResNet-50

Method
IN-1K

+ AugReg IN-21K
IN-21K

+ AugReg OpenAI LAION-2B
IN-1K

+ AugReg
IN-21K

+ AugReg OpenAI LAION-2B
IN-1K

+ AugReg
IN-21K

+ AugReg
IN-21K

+ AugReg
IN-21K

+ AugReg IN-1K IN-1K

FT 1.3 -0.1 -5.5 -38.0 -38.1 -0.0 -0.1 -28.7 -31.6 -3.2 -2.3 -2.9 -2.1 -5.2 -5.2
Linear Probing 0.7 0.4 -0.3 -2.0 -2.0 1.1 0.3 -1.3 -1.4 0.3 -0.2 -0.1 -1.3 -7.3 -11.2
Visual Prompt -4.5 -9.4 -8.8 -8.4 -8.2 -5.4 -8.4 -8.0 -8.4 -7.4 -9.2 -9.6 -12.9 -8.3 -6.5

LoRA 0.9 -0.3 -2.1 -3.6 -3.6 0.9 0.9 -1.8 -1.9 0.9 -1.5 0.4 1.0 - -
EWC 2.8 1.4 0.6 -12.7 -12.5 1.3 1.6 -7.0 -10.0 1.6 1.6 1.0 1.1 -5.7 -8.9
LwF 3.1 1.6 -1.0 -33.1 -33.9 1.8 1.7 -23.9 -26.7 0.6 0.5 0.3 -0.2 -1.9 -5.8

LP-FT 2.3 0.5 -2.6 -36.9 -37.1 1.5 1.2 -27.7 -30.8 -1.2 -0.8 -1.1 -3.5 -4.8 -5.1
WiSE-FT 3.6 2.5 1.7 -18.1 -21.6 2.5 3.0 -9.7 -13.5 2.9 2.8 2.3 2.3 0.7 1.2

MS 3.9 2.7 2.2 -16.0 -17.9 2.5 2.8 -8.1 -10.9 3.0 2.3 2.8 2.5 -0.1 -0.5

validation set. This is inconsistent with Bahng et al. (2022), which showed its robustness to OOD
datasets. A strong correlation exists between ImageNet-R, ImageNet-Sketch, and ImageNet-Drawing,
as they share drawing and sketch renditions, and ImageNet-R and ImageNet-Sketch share images.
Fine-tuning on ImageNet-C improves performance on other synthetic datasets, but not vice versa due
to its diverse corruptions and severities.

Robustness Improvement Individual robustness improvement scores (RI) after fine-tuning on
each OOD dataset with ImageNet-1K with AugReg pretrained ViT-B/16 also show that MS:PRE-FT-
EWC-LwF consistently performs the highest in most datasets, followed by WiSE-FT as demonstrated
in Table 2. This is because they directly use the weights of pretrained models, thus taking advantage
of their robustness.

Mean Robustness Improvement The combination of continual learning methods with weight
averaging (MS:PRE-FT-EWC-LwF) achieves the highest or second-highest mean robustness improve-
ment (mRI) across different backbones pretrained on ImageNet-based datasets as shown in Table 3.
Moreover, end-to-end continual learning methods show comparable performance to the multi-stage
method (Kumar et al., 2022) or the post-hoc robustness method (Wortsman et al., 2022b). This
shows the potential of continual learning methods in the field of robust fine-tuning. The robustness
of linear probing and Visual Prompt remains relatively unchanged since they do not modify the
models’ weights significantly but their performance on the downstream dataset tends to be worse (see
Appendix J.3). Consequently, they have much better performance with LAION-2B pretrained models
compared to other methods, which show a significant robustness decrease.

4.3 PARADOXICALLY, MODELS PRETRAINED ON THE LARGEST DATASETS DO WORST AFTER
FINE-TUNING

The extent of robustness degradation increases with the size and diversity of the pretraining dataset,
as illustrated in Table 3 and Figure 4. As a result, the robustness of fine-tuned models pretrained on
larger datasets (e.g., LAION-2B, OpenAI) exhibits worse robustness compared to those pretrained
on smaller datasets and their corresponding fine-tuned counterparts when using vanilla fine-tuning.
Similarly, the LAION-400M CLIP model has better robustness than the LAION-2B model with a
zero-shot classifier from a text encoder after fine-tuning (see Table 4).

One possible explanation is that models pretrained on larger, more diverse datasets have more
room for performance degradation from catastrophic forgetting as they demonstrate higher initial
robustness (see Table 1). However, this does not fully explain the pronounced robustness loss observed
in OpenAI or LAION-2B pretrained models, particularly when compared to ImageNet-21K with
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Figure 4: Severe robustness loss from fine-tuning models pretrained on LAION-2B and OpenAI
relative to fine-tuning models pretrained only smaller datasets. The average accuracy on OOD
datasets before (blue) and after (red) vanilla fine-tuning (see Figure 8 for other methods). The red
bars are calculated by evaluating fine-tuned pretrained models on D. The blue bars are the pretrained
models’ mean accuracy on D. Fine-tuning models pretrained on LAION-2B and OpenAI causes
severe robustness loss, leading to worse absolute performance on D than after fine-tuning an AugReg
model pretrained on ImageNet-1K. Conversely, a model pretrained on ImageNet-1K with AugReg
actually exhibits improved robustness after fine-tuning. Note that the difference between red and blue
bars is mRI .

Table 4: Average Accuracy on OOD Datasets of
each ViT-B/16 CLIP model with zero-shot clas-
sifier before and after vanilla fine-tuning (FT).
LAION-400M pretrained model outperforms
LAION-2B pretrained one after fine-tuning.

ViT-B/16 CLIP OpenAI LAION-400M LAION-2B

Before Fine-Tuned 48.8 50.2 53.5
After Fine-Tuned 16.3 19.0 16.1

Table 5: mRI of ViT-B/32 CLIP with zero-shot
classifier after vanilla fine-tuning (FT). Only
OpenAI pretrained model has huge negative
mRI . Please refer to Appendix C for other meth-
ods.

ViT-B/32 LAION-100M LAION-400M LAION-2B

mRI -7.3 -23.8 -33.0

AugReg pretrained models, which exhibit similar initial robustness. Notably, ImageNet-21K and its
variants begin to exhibit robustness degradation, especially when using vanilla fine-tuning. This could
be an early indicator of performance decay in larger pretrained models. Although ImageNet-21K is
the second-largest dataset with 14 million images, it is much smaller than LAION-2B, which contains
two billion images. We hypothesize that this discrepancy in pretraining dataset size contributes to the
difference in robustness degradation.

4.4 ANALYSIS OF SEVERE CATASTROPHIC FORGETTING IN MODELS PRETRAINED ON LARGE
DATASETS

CLIP pretrained on Small Dataset Does Not Exhibit Severe Robustness Degradation. To
discern whether the robustness degradation arises from the CLIP pretraining method itself or from
the scale of the pretraining data, we evaluate CLIP models trained on smaller datasets. The ViT-B/32
CLIP model pretrained on LAION-100M shows much less degradation, whereas counterparts trained
on LAION-400M and LAION-2 B do (Table 5) although they have similar performance before fine-
tuning as shown in Table 9. Similarly, ResNet-50 CLIP models pretrained on CC-12M (Changpinyo
et al., 2021) and YFCC-15M (Thomee et al., 2016) remain robust, while the model pretrained on
OpenAI’s internal 400M-image dataset exhibits pronounced degradation (Appendix C).

Overfitting Does Not Drive Robustness Collapse. A plausible explanation for the observed decline
in robustness during fine-tuning could be early overfitting in LAION-2B and OpenAI pretrained
ViT-B/16 models. We investigate this by tracking robustness performance and average accuracy on the
downstream datasets throughout standard fine-tuning (FT). Figure 5 reveals that the ImageNet-21K
model pretrained with AugReg learns the fine-tuning dataset faster than other methods, while OpenAI
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Figure 5: Fine-tuning LAION-2B and OpenAI
pretrained models causes severe robustness
loss while learning slower than ImageNet-21K
pretrained AugReg model. The average accu-
racy on fine-tuning datasets (left) and the aver-
age accuracy on OOD datasets (right) while fine-
tuning on the downstream dataset using vanilla
fine-tuning method (FT) with ViT-B/16. Although
these models learn slower than other methods,
they suffer from a huge robustness drop even in
the early period of fine-tuning.
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Figure 6: Fine-tuning on small dataset leads
to severe accuracy degradation both in- and
out-of distribution. Accuracy on ImageNet-1K
validation set and OOD datasets after fine-tuning
LAION-2B pretrained ViT-B/16 CLIP model with
zero-shot classifier on a small number of images
per class of ImageNet-1K training set. The dashed
line denotes the accuracy of the pretrained model
on each dataset.

pretrained model shows the slowest learning progression. Despite this, only the LAION-2B and
OpenAI models experience significant OOD robustness degradation. This finding indicates that
overfitting is not the primary driver of catastrophic forgetting in these models. Moreover, Appendix I.1
shows that catastrophic forgetting occurs even with a much smaller learning rate.

Fine-Tuning Dataset Texture Does Not Account for Forgetting. Unlike traditional bench-
marks (Taori et al., 2020), which use natural images (e.g., ImageNet-1K), the ImageNet-RIB
benchmark incorporates a variety of styles, including cartoons, drawings, and sketches. One may
hypothesize that models pretrained on large datasets are susceptible to robustness degradation when
fine-tuned on downstream datasets featuring stylized or non-natural images. However, our findings
challenge this hypothesis; fine-tuning on the ImageNet-1K validation set also leads to similar robust-
ness collapse, even though all models are pretrained and then fine-tuned on ImageNet-1K training set
(see Table 6).

Fine-Tuning Dataset Size is a Major Determinant. The consistent robustness degradation seen in
OpenAI and LAION-2B pretrained models fine-tuned on the ImageNet-1K validation set leads us to
hypothesize that the size of the downstream dataset plays a significant role in catastrophic forgetting.
While Ramanujan et al. (2023) and Fang et al. (2022) demonstrate that CLIP’s robustness is primarily
attributed to the pretraining dataset size and distribution—rather than contrastive learning—the
impact of downstream dataset size remains underexplored. To investigate, we fine-tune a LAION-2B
pretrained CLIP model (not previously fine-tuned on ImageNet-1K) on subsets of the ImageNet-
1K training set, using a zero-shot classifier similar to Appendix C. As shown in Figure 6, both
ImageNet-1K validation accuracy and OOD performance degrade significantly when fine-tuned on
smaller subsets. This degradation persists across hyperparameter variations, including learning rate
and training epochs. These findings indicate that CLIP models require sufficiently large fine-tuning
datasets to maintain robustness against distribution shifts. Insufficient data in fine-tuning likely
exacerbates catastrophic forgetting, highlighting dataset size as a critical factor in mitigating OOD
performance decline.

4.5 ANALYSIS OF REPRESENTATION SHIFT VIA CENTERED KERNEL ALIGNMENT (CKA)

To analyze intermediate representations before and after fine-tuning, we use Centered Kernel Align-
ment (CKA) (Cortes et al., 2012; Kornblith et al., 2019), the standard metrics to quantify similarity
between neural network representations (Kim & Han, 2023; Raghu et al., 2021). We fine-tune
ViT-B/16 models pretrained on various datasets on ImageNet-R and measure the CKA between the
pretrained and fine-tuned models on ImageNet-R (fine-tuning dataset), ImageNet-1K validation set,
and ImageNet-A (OOD dataset). Figure 7 shows the CKA scores across transformer layers, broken
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Figure 7: Representational shifts from fine-tuning on ImageNet-R, analyzed by Centered Kernel
Alignment (CKA), in ViT-B/16 models pretrained on various datasets. Rows indicate datasets
where CKA is measured and column indicates different part of transformer demonstrated in Figure 9.
ImageNet-R (downstream), ImageNet-1K (pretraining), and ImageNet-A (OOD dataset) are used
as evaluation datasets. Models pretrained on OpenAI and LAION-2B show distinct CKA patterns
across layers compared to others.

down by component, as illustrated in Figure 9. Deeper layers exhibit greater discrepancy between
the pretrained and fine-tuned models. Models pretrained on LAION-2B and OpenAI’s internal
dataset show especially large discrepancies, particularly in earlier layers, compared to other models.
In addition, we observe a pronounced change in the mlp.fc2 component of the sixth transformer
block, in which pattern was observed in Li et al. (2024). This change becomes more significant
in models pretrained on larger datasets, especially when evaluated on non-downstream datasets.
Considering the fact that this huge dissimilarity is not observed in the previous layer (mlp.fc1). We
expect that the sixth mlp.fc2 layer may be linked to severe catastrophic forgetting, warranting further
investigation. This trend is maintained across various combinations of downstream datasets as shown
in Figures S1-S8 in the supplementary materials.

5 DISCUSSION

We found that models pretrained on larger, more diverse datasets, such as LAION-2B, experienced
more severe robustness degradation after fine-tuning While these models exhibited high initial
robustness, the performance drop was more prominent compared to models pretrained on smaller
datasets like ImageNet-1K or LAION-100M, leading to even worse performance. To facilitate
these analyses, we introduced ImageNet-RIB (Robustness Inheritance Benchmark), a framework
that evaluates model robustness across multiple downstream and OOD dataset pairs. In contrast
to existing benchmarks that primarily consider a single downstream dataset (Taori et al., 2020),
ImageNet-RIB enables nuanced analyses of how varying fine-tuning contexts influence model
generalization. Moreover, we demonstrated that continual learning methods and robust fine-tuning
approaches, particularly in combination, are effective in preserving or even improving robustness.
Specifically, the combination of model soup with continual learning techniques consistently achieved
superior performance. This finding underscores the potential of integrating these strategies to mitigate
catastrophic forgetting and enhance the robustness to OOD datasets.

Despite these contributions, our study has limitations. Although we identify conditions under which
extensive pretraining negatively impacts robustness and analyze feature representation, the underlying
mechanisms remain unclear. Future research should investigate why extensive pretraining leads
to worse robustness compared to smaller-scale pretraining, potentially informing more effective
fine-tuning strategies. Extending our evaluation to additional architectures and dataset contexts would
further strengthen and generalize our conclusions. In summary, our findings challenge common
assumptions about pretraining dataset scale and robustness, emphasizing the importance of tailored
fine-tuning strategies. We hope these insights motivate further investigation into optimizing robust
fine-tuning practices, ultimately advancing the reliability and generalization capabilities of machine
learning models.
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APPENDIX

We summarize each section in the Appendix as follows:

Appendix A (Additional Related Works - Single Domain Generalization) We survey single
domain generalization

Appendix B (Relationship between Dataset Distance and Accuracy Drop on Pretraining Dataset).
We quantify how distributional distance from ImageNet-1K relates to post-tuning performance.

Appendix C (CLIP with Zero-Shot Classifier on ImageNet-RIB). We directly fine-tune pre-
trained model using zero-shot classifier without using ImageNet-1K classifier including Con-
vNeXt (Liu et al., 2022), SigLip (Zhai et al., 2023), and SigLip2 (Tschannen et al., 2025).

Appendix D (Fine-Tuning on Small Subset of Fine-Tuning Dataset). We show that the robustness
degradation happens when the dataset size is small.

Appendix E (ImageNet-RIB with Train-Validation Split). We split the fine-tuning dataset into a
train set and a validation set and find the best-performing model on each setting.

Appendix F (Effective Robustness). We demonstrate mRI with effective robustness from the
results in Appendix E.

Appendix G (Stanford Car Dataset). We fine-tune pretrained models on the Stanford Cars dataset
and show that the LAION-2B pretrained model suffers more forgetting than the ImageNet-21K
pretrained model.

Appendix H (Experimental Details). We describe experimental details.

Appendix I (Ablation Studies). We conduct various ablation studies including learning rate, weight
decay, multiple random seeds, and best ratio for WiSE-FT.

Appendix J (Additional Experiments with Various Pretrained Models). We include extensive
experimental results such as robustness of pretrained models, backward transfer, performance on
fine-tuning dataset, and full accuracies on experimental settings.

A ADDITIONAL RELATED WORKS - SINGLE DOMAIN GENERALIZATION

Single-domain generalization refers to the task where only one source domain is available during
training, and the model is evaluated on multiple unseen target domains (Qiao et al., 2020). While the
high-level concept is similar to the existing robust fine-tuning benchmark (Taori et al., 2020), the
objectives differ. Robust fine-tuning focuses on maintaining or improving a model’s robustness to
OOD datasets during fine-tuning, whereas single-domain generalization aims to achieve generalization
to unseen OOD datasets, often through meta-learning-based data augmentation (Chen et al., 2023;
Qiao et al., 2020) or adaptive batch normalization (Fan et al., 2021). Recently, Fan et al. (2021) apply
single-domain generalization to the PACS dataset (Li et al., 2017), using one domain as the training
set and the remaining domains as test sets. This setup resembles our ImageNet-RIB benchmark in that
each dataset is used for training while the others are used for testing. However, the goals of the two
benchmarks differ: our robust fine-tuning benchmark aims to mitigate robustness degradation during
fine-tuning, while single-domain generalization benchmarks focus on improving generalizability
from a single source domain.
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Figure 8: The average accuracy on OOD datasets before (blue) and after (red) fine-tuning with
each method on fine-tuning datasets. The red bar is calculated directly by evaluating pretrained
models on OOD datasets while the blue bar is calculated by adding mRI of each method to the
pretrained models’ accuracy. Note that it is identical to the average accuracy on OOD datasets after
fine-tuning on each dataset (mRI+ 1

n

∑n
i A

(i)
pre =

1
n

∑
j

1
n−1

∑n
i,i̸=j A

(i)
down). Fine-tuning LAION-2B

and OpenAI pretrained models on the fine-tuning datasets causes severe robustness loss leading to
worse performance than ImageNet-1K with AugReg pretrained model. Conversely, ImageNet-1K
with the AugReg pretrained model improves robustness after fine-tuning. Note that the difference
between red and blue bars is mRI .

Table 6: Accuracy on each dataset of ViT-B/16 pretrained models after fine-tuning on ImageNet-1K
validation set. The parenthesis denotes the difference with pretrained models.

Pretraining Dataset IN-1K IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

IN-1K + AugReg 97.5 (+18.3) 66.9 (+0.4) 23.3 (+8.3) 40.9 (+2.9) 29.5 (+1.5) 37.2 (+4.2) 71.1 (+4.9) 41.0 (+1.9) 59.5 (+3.5)
IN-1K + SAM 87.3 (+7.1) 69.4 (+1.2) 17.7 (+8.7) 41.8 (+1.7) 30.1 (+2.4) 38 (+3.8) 72.1 (+5.2) 42.9 (+0.6) 56.9 (+2.3)

IN-21K 94.7 (+12.9) 71.6 (+0.2) 38.5 (+6.5) 49.9 (+2.6) 36.7 (+0.9) 45.2 (+2.7) 73.9 (+4.5) 44.1 (0.0) 59.8 (+1.5)
IN-21K-P 96.9 (+12.6) 73.0 (-1.0) 41.4 (+7.3) 51.5 (0.0) 39.8 (-0.4) 45.8 (-0.9) 76.4 (+2.9) 44.3 (-0.8) 61.7 (+0.3)

IN-21K + AugReg 99.9 (+15.4) 70.6 (-3.4) 42.2 (-1.0) 54.1 (-2.7) 39.4 (-3.8) 47.9 (-0.5) 84.5 (+9.4) 55.5 (+0.6) 69.7 (+3.2)
OpenAI 99.9 (+14.6) 59.9 (-15.8) 13.9 (-33.4) 34.9 (-31.0) 19.7 (-31.2) 30.5 (-20.2) 75.0 (-1.3) 33.4 (-22.3) 45.7 (-16.9)

LAION-2B 99.9 (+14.4) 59.4 (-16.2) 12.6 (-28.9) 36.3 (-32.5) 23.4 (-32.0) 30.4 (-20.7) 73.0 (-5.2) 30.6 (-27.8) 41.8 (-21.2)

B RELATIONSHIP BETWEEN DATASET DISTANCE AND ACCURACY DROP ON
PRETRAINING DATASET

B.1 OPTIMAL TRANSPORT DATASET DISTANCE ON FEATURE SPACE ALIGNS WITH DATASET
DESIGN PRINCIPLES

We measure the distance between datasets by using Optimal Transport Dataset Distance
(OTDD) (Alvarez-Melis & Fusi, 2020) and Normalized Compression Distance (NCD) (Cilibrasi &
Vitányi, 2005). The distance is measured in the image space and the feature space from ImageNet-1K
with AugReg pretrained ViT-B/16, class tokens before the classifier layer. Since ImageNet-C com-
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Figure 9: Transformer Architecture of ViT-B/16. We describe only the weighted layers, i.e., fully
connected layers and layer normalization layers.

Table 7: Pearson correlation coefficient between the accuracy on ImageNet-1K and the dataset
distance between ImageNet-1K and each fine-tuning dataset. There is a negative correlation between
accuracy and dataset distance. Notably, FT and Prompter consistently exhibit a strong negative
correlation across different pretrained models.

Method FT LinearProbing Visual Prompt LoRA EWC LwF LP-FT WiSE-FT Model Soup

IN-1K + AugReg -0.64 -0.22 -0.91 -0.63 -0.57 -0.49 -0.59 -0.46 -0.54
IN-21K -0.77 -0.36 -0.92 -0.25 -0.88 -0.56 -0.69 -0.92 -0.89

IN-21K + AugReg -0.68 0.10 -0.86 -0.63 -0.91 -0.38 -0.39 -0.52 -0.51
LAION-2B -0.67 -0.19 -0.74 -0.31 -0.32 -0.44 -0.56 -0.31 -0.13

prises multiple corruptions with different severities, we do not measure the distance to ImageNet-C.
OTDD in the image space, ImageNet-Sketch is the farthest from other datasets as it is black and white
sketch images (Figure 10a). ImageNet-Drawing is the closest to the dataset and the ImageNet-R is
the second closest as they share the same styles and images, respectively.

OTDD in the feature space demonstrates a better alignment with the dataset design principles (Fig-
ure 10b). For example, ImageNet-V2 is designed to replicate the distribution of the ImageNet
validation set. It leads ImageNet-V2 the closest to ImageNet-1K among realistic datasets. Moreover,
the distances between ImageNet-1K and ImageNet-V2 to other datasets are consistent across both
image and feature spaces. This is not true with ImageNet-Cartoon since it is a synthetic dataset based
on the ImageNet validation set. As shown in Table 30, ImageNet-Cartoon improves ImageNet-1K
accuracy more than ImageNet-Drawing, suggesting that the distribution shift in cartoon-style images
is less severe than that of drawing-style images. Similarly, ObjectNet is intentionally collected with
different viewpoints and backgrounds and it is the most distant from all other datasets in the feature
space.

We also measure Normalized Compression Distance (NCD) using both images and the features from
ImageNet-1K with AugReg pretrained ViT-B/16. However, the distance between each dataset pair is
too insignificant to compare with each dataset as shown in Figures 10c and 10d.

B.2 OPTIMAL TRANSPORT DATASET DISTANCE ALIGNS WITH IMAGENET-1K ACCURACY
DROP DURING FINE-TUNING

We analyze how ImageNet-1K accuracy changes after fine-tuning on downstream datasets. Using the
Optimal Transport Dataset Distance (OTDD) (Alvarez-Melis & Fusi, 2020) in the ViT-B/16 feature
space, we find that accuracy generally decreases as OTDD from ImageNet-1K increases (Figure 11).
Pearson correlations (Table 7) confirm a negative trend for all methods except linear probing, with
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(b) OTDD in the Feature Space

IN
IN-V2

IN-A IN-R

IN-Sk
etc

h
ObjN

et

IN-Cart
oo

n

IN-Draw
ing

IN

IN-V2

IN-A

IN-R

IN-Sketch

ObjNet

IN-Cartoon

IN-Drawing

0.95904 0.95855 0.95984 0.95688 0.99974 0.95872 0.96326

0.95904 0.95801 0.95966 0.95668 0.99974 0.95895 0.96316

0.95855 0.95801 0.95862 0.95416 0.99974 0.95586 0.96320

0.95984 0.95966 0.95862 0.95741 0.99975 0.95916 0.96370

0.95688 0.95668 0.95416 0.95741 0.99974 0.95416 0.96240

0.99974 0.99974 0.99974 0.99975 0.99974 0.99978 0.99977

0.95872 0.95895 0.95586 0.95916 0.95416 0.99978 0.96408

0.96326 0.96316 0.96320 0.96370 0.96240 0.99977 0.96408

0.95

0.96

0.97

0.98

0.99

NC
D 

Di
st

an
ce

(c) NCD in the Image Space

IN
IN-V2

IN-A IN-R

IN-Sk
etc

h
ObjN

et

IN-Cart
oo

n

IN-Draw
ing

IN

IN-V2

IN-A

IN-R

IN-Sketch

ObjNet

IN-Cartoon

IN-Drawing

0.97656 0.97650 0.97655 0.97655 0.97657 0.97655 0.97655

0.97656 0.97660 0.97656 0.97655 0.97653 0.97664 0.97653

0.97650 0.97660 0.97659 0.97656 0.97656 0.97663 0.97659

0.97655 0.97656 0.97659 0.97658 0.97655 0.97659 0.97652

0.97655 0.97655 0.97656 0.97658 0.97661 0.97659 0.97652

0.97657 0.97653 0.97656 0.97655 0.97661 0.97663 0.97657

0.97655 0.97664 0.97663 0.97659 0.97659 0.97663 0.97660

0.97655 0.97653 0.97659 0.97652 0.97652 0.97657 0.97660

0.976425

0.976450

0.976475

0.976500

0.976525

0.976550

0.976575

0.976600

0.976625

NC
D 

Di
st

an
ce

(d) NCD in the Feature Space

Figure 10: Optimal Transport Dataset Distances (OTDD) in the feature space aligns with each
dataset design. Pairwise OTDD (up) and Normalized Compression Distance (NCD) (down) between
datasets using images (left) and features extracted by ImageNet-1K with AugReg pretrained ViT-B/16
on each dataset (right), respectively.
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Figure 11: Relationship between post fine-tuning ImageNet-1K accuracy and the distance
between ImageNet-1K and the fine-tuning dataset. As the distance increases, accuracy generally
decreases across fine-tuning methods. We exclude synthetic datasets made from ImageNet-1K
validation set to avoid interference.

FT and Visual Prompt showing strong correlations (< -0.5). However, OTDD does not consistently
correlate with out-of-distribution (OOD) accuracy post-fine-tuning.

C CLIP WITH ZERO-SHOT CLASSIFIER ON IMAGENET-RIB

In the main paper, we evaluated models pretrained on various datasets and subsequently fine-tuned on
ImageNet-1K for the ImageNet-RIB benchmark. Here, we extend this analysis to measure the mRI
of CLIP models that bypass ImageNet-1K fine-tuning and are directly fine-tuned on downstream
datasets. We utilize pretrained weights from the open_clip library (Ilharco et al., 2021) and adopt
a zero-shot classifier, as proposed by Radford et al. (2021), instead of a linear readout layer. This
choice is driven by the fact that each OOD dataset contains a distinct subset of ImageNet-1K labels,
making a unified linear probe impractical. For example, fine-tuning on ImageNet-A involves only
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Table 8: mRI of ViT-B/16, ViT-B/32, ConvNeXt-Base, and ResNet-50 CLIP models, and SigLip-
B/16, SigLip2-B/16 pretrained on various datasets using zero-shot classifier (Radford et al., 2021).

Method ViT-B/16 ViT-B/32 ConvNeXt ResNet-50 SigLip SigLip2
LAION
400M OpenAI

LAION
2B

LAION
100M

LAION
400M OpenAI

LAION
2B LAION-2B

CC
12M

YFCC
15M OpenAI WebLI WebLI

FT -32.5 -31.2 -37.4 -7.3 -23.8 -27.0 -33.0 -16.9 -7.1 -2.6 -24.1 -21.3 -25.7
FYLP -26.0 -30.9 -36.6 -4.6 -24.5 -26.9 -32.8 -17.5 -4.4 -0.7 -26.1 -24.0 -28.7

Visual Prompt -7.6 -11.0 -10.2 -11.6 -9.6 -7.7 -10.4 -53.5 -8.9 -6.3 -10.9 -26.7 -25.6
LoRA -47.8 -49.2 -52.5 -35.2 -41.3 -41.1 -19.4 - - - - -47.4 -20.7
EWC -8.1 -8.8 -13.1 -1.5 -5.4 -7.3 -10.5 -5.5 -8.8 -5.8 -17.2 -1.9 -3.1
LwF -29.6 -24.9 -30.9 -2.1 -16.8 -22.5 -29.1 -11.8 -6.2 -1.7 -22.1 -12.9 -17.2

WiSE-FT -19.5 -14.4 -23.2 1.7 -9.5 -11.9 -17.5 -4.3 -8.3 -3.4 -29.1 -4.3 -7.3
MS -20.4 -11.3 -18.9 2.3 -15.0 -9.4 -15.0 -3.9 -10.3 -3.5 -35.1 -2.2 -4.2

Table 9: Average zero-shot accuracy on ImageNet-1K validation set and each OOD dataset using pre-
trained ViT-B/16 and ResNet-50 CLIP models. All pretrained weights are acquired from open_clip
library.

Architecture Pretraining Dataset IN-1K Avg. OOD IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

ViT-B/16
LAION-400M 67.1 50.2 59.6 33.1 77.9 52.4 46.1 56.1 36.4 40.2

OpenAI 64.4 48.8 57.8 44.4 73.5 44.3 50.5 48.2 33.3 38.2
LAION-2B 70.2 53.5 62.3 38.0 80.6 56.1 50.8 59.2 37.5 43.0

ViT-B/32

LAION-100M 52.5 38.6 44.5 14.6 64.5 39.8 30.0 43.9 44.5 27.3
LAION-400M 60.2 42.6 52.4 19.6 70.8 46.4 38.9 48.4 29.4 35.1

OpenAI 59.6 41.4 52.9 28.3 67.1 40.4 31.6 46.1 29.1 35.9
LAION-2B 66.6 48.7 58.1 26.3 76.4 53.7 44.7 55.8 33.2 41.6

ConvNeXT LAION-2B 70.8 57.2 62.4 40.1 80.7 57.1 52.2 58.5 62.4 44.5

ResNet-50
CC-12M 35.9 21.4 30.6 7.5 44.6 23.5 21.8 23.8 9.1 10.1

YFCC-15M 32.3 15.3 28.0 13.7 22.2 7.3 16.7 17.4 6.8 10.0
OpenAI 57.9 36.8 50.9 23.3 60.1 34.6 36.9 40.2 22.4 25.6

SigLIP WebLI 76.1 60.6 69.0 45.0 90.2 67.9 50.8 67.4 47.5 47.1

SigLip2 WebLI 69.7 59.3 63.4 54.1 83.9 61.8 53.8 63.3 47.0 47.2

200 classes, whereas ImageNet-Sketch covers 1,000 classes. Consequently, methods such as Linear
Probing and LP-FT are excluded, as zero-shot classifiers do not require additional training.

Table 8 reports the mRI of various ViT-B/16, ViT-B/32, ConvNeXt-Base (Liu et al., 2022) and
ResNet-50 CLIP models and SigLip-B/16 (Zhai et al., 2023), SigLip2-B/16 (Tschannen et al., 2025)
pretrained on different datasets without fine-tuned on ImageNet-1K. FLYP (Goyal et al., 2023) is
effective on ResNet-50 CLIP pretrained on a smaller dataset, while it does not solve a problem in
other models. Consistent with the results in Table 3, we observe that most fine-tuning approaches,
including vanilla fine-tuning, significantly degrade robustness when using models pretrained on the
large-scale dataset. However, ViT-B/32 CLIP model pretrained on LAION-100M (Lin et al., 2024)
and ResNet-50 CLIP models pretrained on Conceptual-12M (CC-12M) (Changpinyo et al., 2021)
and YFCC-15M (Thomee et al., 2016) do not exhibit this robustness degradation. This suggests that
a CLIP model pretrained on comparatively smaller datasets experiences less catastrophic forgetting
in out-of-distribution generalization than a model pretrained on larger datasets. Additionally, Table 9
presents the zero-shot accuracy of pretrained CLIP models on the ImageNet-1K validation set and
each OOD dataset. Taking into account both the average OOD accuracy and mRI , LAION-400M
outperforms LAION-2B, achieving a 2.9-point higher OOD accuracy after vanilla fine-tuning (19.0
vs. 16.1) as we mentioned in Section 4.4.

D FINE-TUNING ON SMALL SUBSET OF FINE-TUNING DATASET

Figure 12 shows that CLIP models pretrained on large-scale datasets are particularly vulnerable
when fine-tuned on small datasets. To investigate whether this degradation is specific to CLIP
or also affects classification models fine-tuned on ImageNet-1K, we compare an ImageNet-1K
with AugReg and ImageNet-21K with AugReg pretrained ViT-B/16 models (classification models)
with OpenAI and LAION-2B pretrained ViT-B/16 models, both in their original form and after
classification fine-tuning. We fine-tune these models on small subsets of each fine-tuning dataset
within ImageNet-RIB and evaluate their average accuracy on both in-distribution (ID) and out-of-
distribution (OOD) datasets. While ImageNet-21K with AugReg pretrained model also experiences a
performance drop on the fine-tuning dataset when the number of samples per class falls below 10, the
degradation is significantly less severe than that observed for LAION-2B models. On the other hand,
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Figure 12: Fine-tuning on a small dataset leads to severe accuracy degradation in both in- and
out-of-distribution. Average accuracy on fine-tuning datasets and OOD datasets after fine-tuning
pretrained ViT-B/16 models on a small number of images per class of fine-tuning datasets. The
dashed line denotes the average accuracy of the pretrained models.

Table 10: mRI values obtained using the best validation accuracy for each model on the fine-tuning
datasets. Parentheses indicate the accuracy difference compared to models fine-tuned for 10 epochs
without splitting the training and validation sets. The average number of epochs needed to achieve the
highest validation accuracy on each fine-tuning dataset. †: WiSE-FT and Model Soup are post-hoc
weight interpolation methods and do not involve training.

Method IN-1K + AugReg IN-21K + AugReg LAION-2B
mRI Best Epoch mRI Best Epoch mRI Best Epoch

FT 2.8 (+1.5) 4.2 -5.6 (-0.1) 7.1 -40.4 (-2.3) 12.1
Linear Probing 1.6 (+0.9) 17.8 -0.7 (-0.4) 11.5 -2.3 (-0.3) 14.1
Visual Prompt -4.1 (+0.4) 22.4 -9.1 (-0.3) 22.4 -8.9 (-0.7) 20.6

LoRA 2.6 (+1.7) 20.1 1.2 (+3.3) 16.5 -2.9 (+0.7) 15.6
EWC 3.6 (+0.8) 18.1 0.5 (-0.1) 19.8 -14.1 (-1.6) 24.5
LwF 4.0 (+0.9) 3.8 -1.4 (-0.4) 4.2 -34.6 (-0.7) 11.5

LP-FT 3.7 (+1.4) 7.2 -2.4 (+0.2) 13.2 -36.7 (+0.4) 13.8
WiSE-FT 4.5 (+0.9) -† 1.6 (-0.1) - -23.0 (-1.4) -

MS:PRE-FT-EWC-LwF 4.8 (+0.9) - 2.0 (-0.2) - -19.2 (-1.3) -

ImageNet-1K with AugReg pretrained model’s performance increases. As the fine-tuning dataset size
increases, the OOD accuracy of classification models gradually declines, indicating a progressive
adaptation to the specific dataset. In contrast, the OOD accuracy of CLIP models and ones fine-tuned
on ImageNet-1K initially collapse but then increase with more fine-tuning, suggesting a different
adaptation mechanism.

E IMAGENET-RIB WITH TRAIN-VALIDATION SPLIT

In the original ImageNet-RIB benchmark, the entire fine-tuning dataset is used for fine-tuning. To
evaluate the robustness of the models under a different setup, we introduce a train-validation split
(4:1 ratio), where models are fine-tuned on the training set, validated on the validation set, and
then evaluated on the benchmark using the best-performing epoch from the validation set. We
divide the fine-tuning dataset into training and validation sets, extending the training duration to 25
epochs to identify the optimal model based on validation accuracy. Using the best-performing model,
we applied robust fine-tuning methods, including LP-FT, WiSE-FT, and Model Soup, to evaluate
out-of-distribution (OOD) performance.

For this variant of the benchmark, we showcase results using ViT-B/16 models pretrained on
ImageNet-1K with AugReg, ImageNet-21K with AugReg, and LAION-2B. Table 10 reports the
mean Robustness Improvement (mRI) and the average number of epochs required for each model to
achieve its highest validation accuracy on the fine-tuning datasets. Notably, the performance under
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Table 11: mean effective robustness improvement across OOD datasets obtained using the best
validation accuracy for each model on the fine-tuning datasets. Parentheses indicate the accuracy
difference compared to models fine-tuned for 10 epochs without splitting the training and validation
sets. The average number of epochs needed to achieve the highest validation accuracy on each
fine-tuning dataset.

Method IN-1K + AugReg IN-21K + AugReg LAION-2B

FT -17.6 -18.5 -31.7
linear Probing -11.4 -9.2 -9.7
Visual Prompt -13.6 -12.8 -10.6

LoRA -3.7 -5.4 -0.3
EWC -11.5 -11.2 -19.5
LwF -15.3 -13.4 -29.3

LP-FT -17.3 -16.4 -30.9
Wise-FT -11.6 -11.6 -21.9

MS:PRE-FT-EWC-LwF -12.7 -12.0 -21.4

Table 12: Average accuracy on ImageNet-1K validation set and each OOD dataset using ViT-B/32
CLIP with zero-shot classifier before and after fine-tuning on the StanfordCars Dataset. Bold and
denotes the best performance of pretrained and fine-tuned models, respectively.

Pretraining Dataset ImageNet-1K AvgOOD IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C
LAION-100M (Pretrained) 52.5 38.6 44.5 14.6 64.5 39.8 30 43.9 44.5 27.3
LAION-100M (Fine-tuned) 43.9 28.6 36.2 8.7 53.9 29.7 23.2 34.1 22.0 20.8

LAION-400M (Pretrained) 59.6 42.6 52.4 19.6 70.8 46.4 38.9 48.4 29.4 35.1
LAION-400M (Fine-tuned) 14.2 9.2 12.5 4.0 19.6 7.3 9.3 9.8 5.3 5.8

OpenAI (Pretrained) 60.2 41.4 52.9 28.3 67.1 40.4 31.6 46.1 29.1 35.9
OpenAI (Fine-tuned) 5.7 3.9 4.6 2.1 8.7 2.3 5.1 3.9 2.1 2.6

LAION-2B (Pretrained) 66.6 48.7 58.1 26.3 76.4 53.7 44.7 55.8 33.2 41.6
LAION-2B (Fine-tuned) 6.8 4.8 5.8 2.1 10.7 3.7 5.7 5.0 2.5 2.9

the train-validation split does not significantly differ from the results in Table 3, where the entire
fine-tuning dataset is used for fine-tuning with models trained for 10 epochs.

F EFFECTIVE ROBUSTNESS

As we mentioned in Section 3, our robust improvement metrics is based on relative robustness. In
this section, we employ effective robustness (Taori et al., 2020) instead of direct accuracy difference
(relative robustness) to compute effective robustness improvement, eRI (mean effective robustness
while fine-tuning on dataset Di):

eRIi =
1

n− 1

n∑
j=1,j ̸=i

A
(j)
i − βj(A

(i)
i ), (2)

where βj(x) denotes a baseline accuracy on dataset Dj when the accuracy on the dataset Di is x.
We calculate mean eRI in ImageNet-RIB with Train-Validation Split (Appendix E). Note that in
the original ImageNet-RIB setting, we use the entire dataset for training, not splitting the validation
set. Table 11 demonstrates that all mean eRI become negative. This is because, unlike previous
benchmark (Shi et al., 2023; Taori et al., 2020) where the downstream dataset (ImageNet-1K) contains
all labels in OOD datasets, our downstream dataset does not contain all labels (e.g., ImageNet-R has
200 classes while ImageNet-Sketch has 1000 classes). That is why the robustness can be negative.
Even under this condition, the LAION-2B retrained model with FT performs much worse than others.

G STANFORD CAR DATASET

We fine-tune various pretrained ViT-B/32 CLIPs on the StanfordCars dataset (Krause et al., 2013)
with a zero-shot classifier (FT) and then evaluate their robustness on the full suite of OOD datasets
used in the paper. The dataset has 196 fine-grained car classes, unlike ImageNet variants. As shown
in Table 12, the results align with our findings that a model pretrained on a larger dataset suffers more
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catastrophic forgetting. The LAION-100M pretrained model does not suffer from severe performance
degradation, whereas the other models do. This supports our hypothesis that pretraining on a large-
scale dataset (LAION-400M, OpenAI, LAION-2B) is more likely to lead to severe catastrophic
forgetting than pretraining on a smaller dataset (LAION-100M).

H EXPERIMENTAL DETAILS

In this section, we describe the details of the experimental setup. We use a single NVIDIA RTX 4090
GPU for the experiment.

H.1 OUT-OF-DISTRIBUTION DATASETS IN IMAGENET-RIB

We leverage all existing ImageNet variants designed to measure the robustness of the trained network
during distribution shifts. ImageNet-O (Hendrycks et al., 2021b) is not used since it is an out-of-
distribution detection dataset.

ImageNet-V2 (Recht et al., 2019) ImageNet-V2 is designed to have a distribution as similar as
possible to the original ImageNet-1K. It has 50,000 images with 1,000 classes same as the original
validation set. The dataset is used under the MIT license.

ImageNet-A (Hendrycks et al., 2021b) ImageNet-A is an adversarially filtered test image that
ImageNet-1K pretrained ResNet-50 (He et al., 2016) is difficult to predict correctly. It contains 7,500
images with 200 difficult subclasses from ImageNet-1K. The dataset is used under the MIT license.

ImageNet-R (Hendrycks et al., 2021a) ImageNet-R (Renditions) contains 30,000 images from
200 ImageNet classes with various rendition styles such as painting, sculpture, embroidery, origami,
cartoon, toy, and so on. The drawing rendition overlaps with ImageNet-Sketch (Wang et al., 2019).
The dataset is used under the MIT license.

ImageNet-Sketch (Wang et al., 2019) ImageNet-Sketch comprises black and white sketch draw-
ings of the ImageNet-1K classes and each class has 50 images. The dataset is used under the MIT
license.

ImageNet-Cartoon and ImageNet-Drawing (Salvador & Oberman, 2022) ImageNet-Cartoon
and ImageNet-Drawing are to be converted from ImageNet validation set images to cartoon, and
drawing styles based on generative adversarial network (Wang & Yu, 2020) and image processing (Lu
et al., 2012). These simplified representations test a model’s ability to identify objects from minimal-
istic and abstract visual information. The dataset is used under the Creative Commons Attribution 4.0
International license.

ObjectNet (Barbu et al., 2019) ObjectNet is designed for evaluating object recognition models
under more realistic conditions such as various poses, backgrounds, and viewpoints. There are 50,000
images with 313 object classes and 113 classes are overlapped with ImageNet. We only use ImageNet
class objects. The dataset is used under the MIT license.

ImageNet-C (Hendrycks & Dietterich, 2019) ImageNet-C is designed for measuring the robust-
ness of models to common perturbations such as noise, blur, weather, and digital distortions. In the
dataset, ImageNet validation set images are perturbed with various severity from 1 to 5. Unlike the
original metrics, corruption error compared with AlexNet, we use average accuracy for consistency
with other datasets. The dataset is used under the Apache-2.0 license.

H.2 PRETRAINED MODEL

Table 13 lists the libraries and corresponding network weight names for each model. We use the entire
models in timm and torchvision library, which are finally fine-tuned on ImageNet-1K, with patch
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Table 13: Python libraries and the names of network weights for each pretrained model.

Architecture Pretraining Dataset Library Weight Name

ViT-B/16

IN-1K + AugReg timm vit_base_patch16_224.augreg_in1k
IN-1K + SAM timm vit_base_patch16_224.sam_in1k

IN-21K timm vit_base_patch16_224.orig_in21k_ft_in1k
IN-21K + AugReg timm vit_base_patch16_224.augreg_in21k_ft_in1k

IN-21K-P timm vit_base_patch16_224_miil.in21k_ft_in1k
LAION-2B timm vit_base_patch16_clip_224.laion2b_ft_in1k

OpenAI timm vit_base_patch16_clip_224.openai_ft_in1k

ViT-B/32

IN-1K + AugReg timm vit_base_patch32_224.augreg_in1k
IN-21K + AugReg timm vit_base_patch32_224.augreg_in21k_ft_in1k

LAION-2B timm vit_base_patch32_clip_224.laion2b_ft_in1k
OpenAI timm vit_base_patch32_clip_224.openai_ft_in1k

ViT-S/16 IN-1K + AugReg timm vit_small_patch16_224.augreg_in1k
IN-21K + AugReg timm vit_small_patch16_224.augreg_in21k_ft_in1k

ViT-S/32 IN-21K + AugReg timm vit_small_patch32_224.augreg_in21k_ft_in1k

ViT-L/16 IN-21K + AugReg timm vit_large_patch16_224.augreg_in21k_ft_in1k

ResNet-18 IN-1K torchvision ResNet18_Weights.DEFAULT

ResNet-50 IN-1K torchvision ResNet50_Weights.DEFAULT

Table 14: mRI of ViT-B/16 pre-trained on LAION-2B with various weight decay used in fine-tuning.
We use vanilla fine-tuning (FT).

Weight Decay 0 0.0001 0.0005 0.001 0.005 0.01 0.1

mRI -38.1 -39.1 -44.2 -39.4 -40.9 -49.4 -59.3

sizes of 16 and 32, and input image shape of 224 among ViT small, base, and large. For ResNets, we
use the default ImageNet-1K pretrained weights from the torchvision library.

H.3 TRAINING AND HYPERPARAMETERS

Each pretrained model is fine-tuned on the downstream dataset for 10 epochs where the average
accuracy on fine-tuning datasets for each pretrained ViT-B/16 model achieves more than 90% with
vanilla fine-tuning. We applied LoRA on query and value projection layers with rank 8 following the
original implementation (Hu et al., 2021). We use 2 as a temperature for calculating KL divergence for
LwF following Li & Hoiem (2017). For WiSE-FT, we use the interpolation ratio between pretrained
and fine-tuned models as 0.5 following the recommendation by Wortsman et al. (2022b) instead of
finding the best hyperparameters evaluated on the benchmark for the fair comparison. Appendix I.4
compares with results of the best-performing ratio.

I ABLATION STUDIES

I.1 CATASTROPHIC FORGETTING PERSISTS DESPITE SMALL LEARNING RATES

To test whether catastrophic forgetting stems solely from large learning rates, we fine-tune the LAION-
2B pretrained ViT-B/16 on fine-tuning datasets using reduced learning rates (0.0005, 0.0001, 0.00005).
We extend training to 25 epochs to account for slower learning rates and evaluate performance
throughout training (Figure 13). Although a smallr learning rate attenuates forgetting, the native
mRI remains substantially higher than that of the ImageNet-21K AugReg baseline (-5.5; Table 3).
This implies that smaller learning rate is not a solution for the severe robustness degradation.

I.2 WEIGHT DECAYS

Beyond the learning rate analysis mentioned in Appendix I.1, we also fine-tune LAION-2B pre-
trained VIT-B/16 with various weight decays in Table 14. Across all settings, mRI is substantially
lower than ViT-B/16 pretrained on smaller datasets in Table 3.
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Figure 13: mRI is much lower than ImageNet-21K with AugReg model, even with a small
learning rate. Average accuracy on the fine-tuning datasets and mRI while fine-tuning pretrained
ViT-B/16 models.

Table 15: mRI of ViT-B/16 pre-trained on three different datasets after fine-tuning with different
fine-tuning methods. We run with three random seeds and calculate the mean and standard error.

Method ImageNet 1K + AugReg ImageNet 21K + AugReg LAION-2B

FT 1.4 ± 0.0 -5.4 ± 0.1 -38.2 ± 0.0
Linear Probing 0.8 ± 0.0 -0.3 ± 0.0 -2.0 ± 0.1

EWC 2.9 ± 0.1 0.8 ± 0.1 -12.9 ± 0.4
LwF 3.2 ± 0.1 -0.8 ± 0.1 -33.5 ± 0.2

LP-FT 2.0 ± 0.2 -2.7 ± 0.2 -37.2 ± 0.1
Wise-FT 3.7 ± 0.1 1.9 ± 0.1 -21.5 ± 0.3

MS: PRE-FT-EWC-LwF 4.0 ± 0.1 2.3 ± 0.1 -18.0 ± 0.2

I.3 ROBUSTNESS TO MULTIPLE RANDOM SEEDS

We test whether the results vary depending on the random seeds. Table 15 illustrates mRI of three
different pretrained ViT-B/16. As the data clearly shows, the standard errors across all runs are very
small. This confirms that our findings are highly stable and not an artifact of a particular random
seed. Most importantly, the central conclusions of our paper are fully supported by this statistical
analysis. For the vanilla fine-tuning method, there remains a massive gap in post-tuning robustness
(mRI) between the LAION-2B model and the models pretrained on ImageNet.

I.4 THE BEST RATIO FOR WISE-FT

We conduct a grid search from 0.1 to 0.9 with an increment of 0.1 to find the best-performing ratio
(α) between the pretrained ViT-B/16’s weight and the fine-tuned model’s weight for WiSE-FT:

WWiSE-FT = α ·Wpre + (1− α) ·WFT, (3)

where WWiSE-FT, Wpre, and WFT represent the network weights of WiSE-FT, the pretrained model,
and the vanilla fine-tuned model, respectively.

It is important to note that this hyperparameter search, based on test results (mRI), constitutes an
unfair comparison with other methods. Table 16 compares the mRI achieved by WiSE-FT using
the default ratio of 0.5 from WiSE-FT (Wortsman et al., 2022b) and the best ratio. WiSE-FT using
OpenAI or LAION-2B pretrained models performs significantly better with the best ratio, as it relies
minimally on the fine-tuned model’s weights. Similarly, hyperparameter search for Model Soup,
which combines network weights from pretrained and fine-tuned models (e.g., FT, EWC, LwF), could
further improve performance. Notably, WiSE-FT is a special case of Model Soup when the ratios for
EWC and LwF are set to 0. However, exploring the optimal ratio for Model Soup weights is beyond
the scope of this study.
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Table 16: mRI of ViT-B/16 pretrained on various datasets using WiSE-FT with default ratio (0.5)
and the best ratio

Pretraining Dataset WiSE-FT (α = 0.5) WiSE-FT (best α) best α

IN-1K + AugReg 3.6 4.7 0.4
IN-1K + SAM 3.6 4.1 0.3

IN-21K 2.5 2.5 0.5
IN-21K-P 3.0 3.0 0.5

IN-21K + AugReg 1.7 2.3 0.7
OpenAI -18.1 -1.6 0.9

LAION-2B -21.6 -2.4 0.9

Table 17: The average accuracy of various pretrained models on ImageNet-1K validation set and
OOD datasets.

Arch. Pretraining Dataset ImageNet-1K IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

ViT-B/16

IN-1K + AugReg 79.2 66.4 15.0 38.0 28.0 33.0 66.2 39.1 56.0
IN-1K + SAM 80.2 68.2 9.0 40.1 27.7 34.2 66.9 42.3 54.6

IN-21K 81.8 71.4 32.0 47.3 35.8 42.5 69.4 44.1 58.3
IN-21K-P 84.3 74.0 34.1 51.5 40.2 46.7 73.5 45.1 61.4

IN-21K + AugReg 84.5 74.0 43.2 56.8 43.2 48.4 75.1 54.9 66.5
OpenAI 85.3 75.7 47.3 65.9 50.9 50.7 76.3 55.7 62.6

LAION-2B 85.5 75.6 41.5 68.8 55.4 51.1 78.2 58.4 63.0

ViT-B/32

IN-1K + SAM 73.7 59.9 4.3 36.6 23.0 25.2 63.2 40.6 48.8
IN-21K + AugReg 80.7 69.0 22.4 49.3 37.1 40.7 70.6 42.5 60.5

OpenAI 82.0 70.9 22.6 55.8 45.0 41.5 71.1 42.5 57.9
LAION-2B 82.6 71.6 22.8 59.2 49.1 43.5 73.0 42.3 57.5

ViT-S/16 IN-1K + AugReg 78.8 66.7 13.4 37.1 25.9 25.2 63.3 37.2 53.2
IN-21K + AugReg 81.4 70.3 27.0 46.0 32.9 32.2 67.8 37.7 58.0

ViT-S/32 IN-21K + AugReg 76.0 63.9 11.5 39.7 26.2 24.8 62.9 34.3 52.0

ViT-L/16 IN-21K + AugReg 85.8 76.2 55.5 64.4 51.8 52.8 79.5 64.6 72.2
ResNet-18 IN-1K 69.8 57.3 1.1 33.1 20.2 18.1 48.2 20.4 31.7

ResNet-50 IN-1K 80.3 69.5 16.7 41.6 28.4 33.0 61.1 31.1 46.6

Table 18: Average backward transfer on the ImageNet-1K validation set for each method, evaluated
across different architectures and pretraining datasets. Bold indicates the highest backward transfer
for each model.

Architecture ViT-B/16 ViT-B/32 ViT-S/16 ViT-S/32 ViT-L/16 ResNet-18 ResNet-50

Method
IN-1K

+ AugReg
IN-1K
+ SAM IN-21K IN-21K-P

IN-21K
+ AugReg OpenAI LAION-2B

IN-1K
+ AugReg

IN-1K
+ SAM

IN-21K
+ AugReg OpenAI LAION-2B

IN-1K
+ AugReg

IN-21K
+ AugReg

IN-21K
+ AugReg

IN-21K
+ AugReg IN-1K IN-1K

FT 0.6 1.3 0.6 0.8 -1.0 -28.0 -28.5 0.5 1.7 0.4 -27.5 -31.7 -1.3 -3.0 -2.2 1.5 -7.9 -7.3
Linear Probing 1.8 1.5 1.5 1.6 1.6 0.0 0.3 2.7 2.4 2.2 -0.4 -0.3 1.4 1.3 1.6 1.9 -13.6 -19.4
Visual Prompt -6.9 -7.6 -8.1 -7.3 -6.0 -4.5 -4.3 -9.2 -9.0 -9.3 -6.8 -6.7 -9.3 -9.0 -13.7 -8.2 -16.1 -6.4

LoRA -0.1 -0.1 -0.6 -0.1 -2.7 -2.7 -2.5 -0.4 -0.1 -0.2 -2.8 -2.5 -1.5 -0.3 -0.3 0.1 - -
EWC -0.7 0.0 -0.3 -0.6 -1.5 -7.5 -6.7 -1.3 -0.1 -0.9 -7.1 -9.2 -1.2 -2.0 -2.0 -0.6 -12.4 -16.6
LwF 3.2 2.1 2.3 2.3 3.2 -21.0 -21.8 3.2 2.9 3.1 -18.9 -22.0 2.8 2.6 2.9 3.6 -1.3 -10.3

LP-FT 2.0 0.8 1.3 1.8 1.1 -25.6 -25.9 2.9 2.2 2.5 -25.1 -29.2 0.9 0.1 0.9 -2.1 -6.8 -6.6
WiSE-FT 2.7 1.7 1.7 1.8 2.2 -7.1 -9.6 3.0 2.4 2.6 -5.5 -8.3 2.1 2.5 2.6 2.4 0.9 0.9

MS 2.6 1.7 1.9 1.7 2.4 -6.7 -7.3 2.7 2.4 2.3 -4.8 -6.9 2.1 2.2 2.3 2.6 -0.8 -2.0

J ADDITIONAL EXPERIMENTS WITH VARIOUS PRETRAINED MODELS

J.1 ROBUSTNESS OF PRETRAINED MODELS

We evaluate pretrained models mentioned in Appendix H.2 on OOD datasets as shown in Table 17.
Larger networks with smaller patch sizes achieve higher accuracy on both ImageNet-1K and OOD
datasets. Similarly, models pretrained on larger, more diverse datasets demonstrate better perfor-
mance.

J.2 BACKWARD TRANSFER

We measure the backward transfer, accuracy change on the pretraining dataset, ImageNet-1K valida-
tion set after fine-tuning. Table 18 presents the average backward transfer across different fine-tuning
methods on downstream datasets. While LwF achieves the best backward transfer in most models,
linear probing outperforms it on OpenAI and LAION-2B pretrained models.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

J.3 PERFORMANCE ON FINE-TUNING DATASET

Tables 19 20, and 21 demonstrate the accuracy on fine-tuning datasets (i.e., training accuracy) with
ViT base, ViT large and ViT small, and ResNet, respectively. FT, LwF, and LP-FT can overfit to the
fine-tuning dataset but WiSE-FT and Model Soup (PRE-FT-LwF-EWC) have worse performance
which might be due to using pretrained model weights. Visual Prompt and LoRA rarely learn from a
fine-tuning dataset.

Table 19: Accuracy on downstream datasets after fine-tuning with each method using ViT-B/16. FT
and LP-FT generally achieve the highest performance, while Visual Prompt and LoRA show the
lowest.

Arch. Pretraining Dataset Method IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

ViT-B/16

IN-1K
+ AugReg

FT 96.3 97.5 98.4 96.0 97.7 97.5 97.6 100.0
Linear Probing 71.5 42.4 60.4 58.8 57.8 76.1 61.2 89.7
Visual Prompt 66.6 28.8 58.9 45.8 46.3 72.7 64.8 64.4

LoRA 66.5 18.7 41.8 39.0 36.7 69.7 62.4 58.6
EWC 72.0 54.3 65.3 50.3 50.8 76.2 70.3 67.7
LwF 95.8 95.5 97.3 95.1 95.1 96.7 96.5 100.0

LP-FT 96.7 97.2 98.5 96.1 97.9 97.5 97.6 94.6
WiSE-FT 81.2 56.6 71.2 61.4 63.7 84.0 74.0 88.8

MS:PRE-FT-EWC-LwF 82.4 67.4 75.5 66.8 66.8 85.5 78.7 88.0

IN-1K
+ SAM

FT 77.9 67.2 87.2 84.3 75.1 87.1 85.7 100.0
Linear Probing 68.7 14.3 50.5 38.8 41.4 71.3 53.6 80.7
Visual Prompt 64.4 17.0 50.6 37.2 40.1 69.7 56.2 57.7

LoRA 68.2 10.0 44.9 32.7 36.7 69.6 49.6 67.5
EWC 69.0 23.9 50.4 43.8 41.3 72.6 62.3 59.6
LwF 77.6 62.5 84.2 81.7 69.7 85.9 84.0 99.9

LP-FT 78.3 64.9 86.6 83.5 74.6 87.2 86.1 84.4
WiSE-FT 72.7 31.4 64.7 52.6 52.4 78.9 68.1 78.8

MS:PRE-FT-EWC-LwF 72.8 36.5 66.7 55.6 53.0 79.3 70.7 80.3

IN-21K

FT 92.2 94.9 96.3 92.8 94.3 94.7 94.1 100.0
Linear Probing 75.0 51.8 66.4 59.0 63.2 77.7 59.6 86.4
Visual Prompt 66.8 37.4 58.2 43.9 51.0 68.9 57.9 58.6

LoRA 71.5 38.2 52.9 39.8 47.1 73.5 53.8 49.4
EWC 74.5 59.7 65.6 50.1 56.1 77.3 67.6 66.5
LwF 91.9 92.8 94.3 90.9 91.2 93.7 92.1 99.9

LP-FT 93.4 95.1 96.2 93.1 94.7 95.1 94.3 97.3
WiSE-FT 81.8 67.7 75.1 63.5 68.7 83.2 72.8 84.7

MS:PRE-FT-EWC-LwF 82.6 73.7 78.3 67.0 70.6 84.5 76.0 88.7

IN-21K-P

FT 95.4 98.7 99.3 96.7 99.2 97.3 97.6 100.0
Linear Probing 78.0 57.0 70.5 67.3 68.5 81.0 64.5 88.8
Visual Prompt 70.2 43.1 63.3 49.9 56.1 74.6 63.6 63.2

LoRA 74.2 37.5 53.1 47.4 48.9 75.6 67.4 63.1
EWC 76.8 66.7 73.0 57.8 61.0 80.7 73.9 69.7
LwF 94.2 97.2 98.5 95.7 97.0 96.1 96.2 100.0

LP-FT 96.2 98.8 99.4 96.9 99.3 97.7 98.1 100.0
WiSE-FT 84.2 74.3 80.1 70.2 73.4 87.0 78.0 88.7

MS:PRE-FT-EWC-LwF 84.7 80.8 82.8 73.5 75.9 87.8 80.9 89.0

IN-21K
+ AugReg

FT 100.0 100.0 99.8 98.0 100.0 99.9 99.9 100.0
Linear Probing 98.3 97.3 91.7 93.2 92.0 96.5 91.1 98.6
Visual Prompt 74.2 52.0 71.7 56.6 61.1 78.7 73.2 70.2

LoRA 75.1 53.1 66.5 56.5 56.4 78.6 74.4 19.2
EWC 91.1 97.8 91.2 73.4 93.8 86.2 84.1 76.8
LwF 100.0 100.0 99.8 98.0 100.0 99.9 99.9 100.0

LP-FT 100.0 100.0 99.8 98.1 100.0 99.9 99.9 100.0
WiSE-FT 95.9 97.0 94.7 88.1 91.0 95.3 92.7 96.2

MS:PRE-FT-EWC-LwF 96.8 98.6 96.5 89.9 95.9 95.3 93.9 96.8

OpenAI

FT 100.0 100.0 99.8 98.0 100.0 99.9 99.9 100.0
Linear Probing 82.3 78.0 86.1 74.1 79.3 86.0 79.5 92.2
Visual Prompt 77.7 54.4 76.9 58.1 60.4 80.3 71.2 66.5

LoRA 79.1 65.1 79.2 60.1 62.0 83.0 76.9 41.7
EWC 88.7 90.0 90.9 73.8 86.2 87.0 85.4 77.8
LwF 100.0 100.0 99.8 98.0 99.9 99.9 99.9 100.0

LP-FT 100.0 100.0 99.8 98.0 100.0 99.9 99.9 100.0
WiSE-FT 88.0 76.8 89.9 78.6 81.5 91.5 91.0 94.7

MS:PRE-FT-EWC-LwF 88.9 81.7 91.3 79.4 83.3 91.0 91.1 93.0

LAION-2B

FT 100.0 100.0 99.8 98.0 100.0 99.9 99.9 100.0
Linear Probing 82.8 77.2 88.4 79.3 80.9 87.6 80.0 93.3
Visual Prompt 77.2 49.9 79.6 62.1 63.6 81.3 72.4 68.1

LoRA 78.1 58.6 79.8 62.3 61.5 83.9 76.4 39.8
EWC 83.8 68.7 89.3 71.8 79.9 86.3 83.5 74.2
LwF 100.0 99.9 99.8 98.0 99.9 99.9 99.9 100.0

LP-FT 100.0 100.0 99.8 98.0 100.0 99.9 99.9 100.0
WiSE-FT 85.8 46.5 87.6 77.9 77.6 91.0 89.9 93.3

MS:PRE-FT-EWC-LwF 87.3 64.6 89.5 79.2 80.3 90.6 90.1 94.3
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Table 20: Accuracy on downstream datasets after fine-tuning with each method using various ViTs.
FT and LP-FT generally achieve the highest performance, while Visual Prompt and LoRA show the
lowest.

Arch. Pretraining Dataset Method IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

ViT-B/32

IN-1K
+ AugReg

FT 94.6 94.0 97.3 95.3 95.9 96.3 96.3 100.0
Linear Probing 68.7 34.9 63.4 62.1 54.7 75.1 62.6 90.9
Visual Prompt 59.6 15.1 54.0 41.4 38.3 68.3 60.1 59.3

LoRA 61.1 10.1 42.1 31.9 31.0 67.3 53.1 66.3
EWC 65.9 33.4 59.3 45.6 42.1 71.3 64.3 62.7
LwF 94.0 91.2 95.7 94.2 92.6 95.5 95.0 99.9

LP-FT 96.1 94.5 97.7 95.7 96.7 96.9 96.9 100.0
WiSE-FT 77.7 39.3 67.4 58.7 56.4 81.6 71.7 87.7

MS:PRE-FT-EWC-LwF 79.0 49.1 71.0 63.0 60.6 82.7 75.4 86.8

IN-1K
+ SAM

FT 73.5 46.8 82.5 83.8 66.4 84.3 82.5 100.0
Linear Probing 60.7 8.9 48.3 35.5 33.4 67.2 51.2 83.4
Visual Prompt 57.2 8.5 44.6 31.8 29.9 63.9 50.1 52.8

LoRA 59.9 5.2 41.6 28.1 28.6 65.3 46.9 62.2
EWC 60.9 10.2 45.1 37.7 31.1 67.0 52.3 53.7
LwF 73.2 43.1 79.2 81.3 61.2 83.0 80.4 99.9

LP-FT 74.2 44.8 81.8 82.4 66.1 84.8 82.7 100.0
WiSE-FT 66.0 17.6 59.3 46.9 42.6 74.5 64.0 76.0

MS:PRE-FT-EWC-LwF 66.1 20.1 60.8 51.1 43.3 74.8 65.5 76.5

IN-21K
+ AugReg

FT 99.5 100.0 99.8 97.7 99.9 99.5 99.6 100.0
Linear Probing 83.5 65.6 77.5 78.2 73.5 86.0 72.9 94.4
Visual Prompt 68.2 32.0 66.3 51.4 52.4 74.0 67.3 65.2

LoRA 69.1 25.0 51.5 43.0 43.4 71.9 63.2 66.1
EWC 76.3 69.5 72.1 56.3 70.0 78.0 72.5 68.0
LwF 99.2 99.8 99.5 97.3 99.7 99.2 99.1 100.0

LP-FT 99.8 100.0 99.8 97.9 100.0 99.8 99.8 100.0
WiSE-FT 87.9 72.0 80.4 72.3 73.8 88.9 79.1 92.5

MS:PRE-FT-EWC-LwF 89.0 82.8 85.0 76.8 82.1 89.6 83.2 90.6

OpenAI

FT 100.0 100.0 99.8 98.0 100.0 99.9 99.9 100.0
Linear Probing 74.8 47.1 75.9 64.3 63.6 80.1 71.2 89.0
Visual Prompt 71.6 29.3 65.6 50.7 47.5 75.5 64.9 62.3

LoRA 72.5 34.7 67.7 53.3 48.4 77.9 69.6 71.5
EWC 88.4 86.9 88.4 70.8 79.8 85.1 83.4 72.6
LwF 99.9 99.8 99.8 97.9 99.8 99.8 99.9 100.0

LP-FT 100.0 100.0 99.8 98.0 100.0 99.9 99.9 100.0
WiSE-FT 85.9 71.4 88.6 78.1 75.5 89.3 89.9 93.4

MS:PRE-FT-EWC-LwF 87.0 76.0 89.1 77.7 76.6 88.1 89.5 91.1

LAION-2B

FT 100.0 100.0 99.8 98.0 100.0 99.9 99.9 100.0
Linear Probing 75.5 47.8 78.7 67.3 66.7 81.4 71.5 88.7
Visual Prompt 72.2 30.0 69.2 54.6 51.2 76.1 65.1 62.1

LoRA 72.9 35.7 70.4 56.4 51.4 79.3 69.5 73.4
EWC 85.6 80.7 87.3 71.6 77.2 84.8 83.4 69.7
LwF 99.9 99.8 99.8 97.9 99.8 99.8 99.8 100.0

LP-FT 100.0 100.0 99.8 98.0 100.0 99.9 99.9 100.0
WiSE-FT 85.3 68.0 87.9 77.8 76.1 87.5 88.6 92.9

MS:PRE-FT-EWC-LwF 85.9 73.9 88.8 77.8 77.1 86.4 88.5 91.9

ViT-S/16

IN-1K + AugReg

FT 99.8 100.0 99.8 97.8 100.0 99.7 99.7 100.0
Linear Probing 75.3 46.2 63.2 64.0 62.4 77.7 63.8 83.5
Visual Prompt 66.2 30.7 58.6 43.6 49.2 71.8 63.9 60.0

LoRA 67.0 17.4 42.4 41.1 38.6 70.1 64.2 55.4
EWC 78.1 75.5 69.8 53.1 62.6 77.6 72.0 66.3
LwF 99.6 99.8 99.6 97.6 99.8 99.3 99.4 100.0

LP-FT 99.8 100.0 99.8 97.9 100.0 99.8 99.8 100.0
WiSE-FT 88.6 72.2 78.1 70.3 73.4 88.2 80.6 91.7

MS:PRE-FT-EWC-LwF 90.4 86.6 84.6 76.6 79.7 89.8 85.9 90.5

IN-21K
+ AugReg

FT 99.9 100.0 99.8 97.9 100.0 99.7 99.7 100.0
Linear Probing 84.0 67.6 73.9 75.0 73.2 84.0 69.5 88.8
Visual Prompt 69.3 40.6 63.8 49.4 56.5 74.5 65.3 62.8

LoRA 70.7 29.4 49.8 45.9 45.1 71.5 65.6 16.2
EWC 79.5 84.9 75.2 57.1 68.8 79.4 73.6 68.9
LwF 99.7 99.9 99.7 97.6 99.9 99.4 99.3 100.0

LP-FT 99.9 100.0 99.8 98.0 100.0 99.9 99.9 100.0
WiSE-FT 90.2 82.7 82.9 74.9 78.3 89.6 81.2 90.4

MS:PRE-FT-EWC-LwF 91.0 91.8 87.4 79.1 85.3 90.7 85.6 92.7

ViT-S/32 IN-21K
+ AugReg

FT 99.9 100.0 99.8 97.8 100.0 99.6 99.7 100.0
Linear Probing 78.3 50.0 68.0 68.0 63.9 79.7 64.1 83.4
Visual Prompt 60.7 21.4 54.1 40.4 43.8 66.6 57.0 54.7

LoRA 64.0 12.5 42.4 39.9 35.6 65.5 57.3 36.2
EWC 73.7 67.9 67.1 50.4 57.3 73.5 66.7 61.5
LwF 99.6 99.9 99.6 97.5 99.9 99.3 99.4 100.0

LP-FT 100.0 100.0 99.8 97.9 100.0 99.8 99.9 100.0
WiSE-FT 87.4 67.1 77.9 69.7 71.2 87.8 77.0 90.9

MS:PRE-FT-EWC-LwF 88.7 81.7 83.1 75.8 78.6 88.7 82.4 88.6

ViT-L/16 IN-21K
+ AugReg

FT 99.9 100.0 99.8 98.0 100.0 99.9 99.9 100.0
Linear Probing 98.3 98.1 94.0 93.1 92.9 96.9 91.7 99.1
Visual Prompt 71.3 48.0 69.4 50.8 59.6 76.0 66.7 67.1

LoRA 76.5 59.9 66.4 54.7 56.8 80.0 68.6 72.7
EWC 82.9 91.2 87.9 70.9 87.0 85.1 82.8 80.5
LwF 99.9 100.0 99.8 97.8 100.0 99.8 99.8 100.0

LP-FT 100.0 100.0 99.8 98.1 100.0 99.9 99.9 99.8
WiSE-FT 93.1 77.7 93.5 85.7 88.3 93.8 90.3 96.1

MS:PRE-FT-EWC-LwF 93.3 90.5 92.9 87.8 93.0 93.9 90.9 97.1

Table 21: Accuracy on downstream datasets after fine-tuning with each method. FT and LP-FT
generally achieve the highest performance, while EWC shows the lowest.

Arch. Pretraining Dataset Method IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

ResNet-18 IN-1K

FT 98.3 98.7 99.1 95.7 97.6 97.4 97.1 100.0
Linear Probing 59.9 6.5 47.0 33.3 34.2 65.1 48.3 50.8
Visual Prompt 52.4 5.8 35.9 22.9 29.1 46.8 28.2 28.1

EWC 63.0 17.5 50.8 37.9 38.0 66.0 54.0 42.6
LwF 97.0 97.6 98.3 94.7 96.7 96.2 95.8 99.9

LP-FT 98.5 98.5 98.9 95.8 97.4 97.7 97.3 100.0
WiSE-FT 80.2 30.7 69.4 53.5 58.7 75.9 58.6 75.6

MS:PRE-FT-EWC-LwF 80.8 41.8 72.9 59.9 62.4 80.3 70.3 74.9

ResNet-50 IN-1K

FT 95.3 94.5 98.6 96.2 96.9 97.4 97.8 100.0
Linear Probing 69.8 19.8 52.3 32.9 46.2 75.0 57.0 55.5
Visual Prompt 66.0 22.4 47.3 33.3 45.6 59.3 39.3 42.1

EWC 72.0 43.1 58.4 44.5 49.5 76.3 63.6 52.4
LwF 94.6 94.0 97.9 95.4 95.6 96.4 96.8 100.0

LP-FT 95.7 94.8 98.6 96.2 97.0 97.5 97.9 100.0
WiSE-FT 82.7 56.6 73.7 56.7 68.6 82.5 65.9 83.8

MS:PRE-FT-EWC-LwF 84.1 66.7 78.9 62.4 71.6 86.4 76.0 84.8
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J.4 ROBUSTNESS IMPROVEMENT RESULTS OF DIFFERENT MODELS

Across the ImageNet pretrained models, WiSE-FT and Model Soup consistently have better robustness
improvement compared to other methods fine-tuning on realistic OOD datasets (Tables 22-26).
Linear Probing consistently achieves the best robustness improvement using LAION-2B pretrained
models (Table 27) and OpenAI CLIP models (Table 28).

Table 22: RI and mRI of ImageNet-1K with AugReg pretrained models with different fine-tuning
methods and downstream datasets on each dataset in ImageNet-RIB.

Architecture Method mRI
RI

IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

ViT-B/16

FT 1.3 2.9 -4.0 2.8 4.4 -2.7 0.6 0.4 5.9
Linear Probing 0.7 0.1 -0.1 0.8 1.2 0.3 0.2 0.1 3.2
Visual Prompt -4.5 -2.3 -9.1 -4.9 -1.6 -11.2 -3.9 -4.3 1.7

LoRA 0.9 0.2 0.4 1.1 2.6 0.3 -0.1 1.3 1.1
EWC 2.8 2.9 -0.2 5.2 4.4 1.4 1.6 2.8 4.3
LwF 3.1 2.8 -0.0 6.2 4.6 0.7 1.9 2.1 6.5

LP-FT 2.3 3.0 -0.9 5.2 4.5 -0.1 1.2 0.6 4.7
WiSE-FT 3.6 2.5 0.7 7.5 4.5 2.1 2.3 3.0 6.5

MS:PRE-FT-EWC-LwF 3.9 2.7 0.7 7.8 5.0 2.2 2.4 3.3 6.7

ViT-B/32

FT -0.0 1.6 -5.5 0.2 2.6 -5.4 0.3 -0.3 6.4
Linear Probing 1.1 0.1 -0.1 0.9 1.3 0.4 1.0 1.1 3.8
Visual Prompt -5.4 -2.7 -13.3 -4.7 -2.0 -12.7 -2.4 -5.0 -0.1

LoRA 0.9 0.3 0.3 0.5 1.0 0.7 0.7 0.5 3.1
EWC 1.3 1.9 -2.9 3.2 2.6 0.1 1.2 2.0 2.6
LwF 1.8 1.5 -2.0 3.9 3.2 -1.9 1.4 1.2 6.9

LP-FT 1.5 1.5 -1.7 3.4 2.9 -1.9 1.0 0.3 6.4
WiSE-FT 2.5 1.5 0.2 5.0 3.3 0.3 1.6 2.2 6.1

MS:PRE-FT-EWC-LwF 2.5 1.7 -0.5 5.1 3.5 0.2 1.8 2.4 6.0

ViT-S/16

FT -3.2 -0.0 -8.2 -2.9 0.3 -9.7 -2.4 -5.3 2.9
Linear Probing 0.3 0.1 -0.5 0.9 1.4 -0.2 -0.1 0.6 -0.1
Visual Prompt -7.4 -4.6 -13.3 -6.1 -3.5 -18.1 -6.3 -6.0 -1.4

LoRA 0.9 0.2 0.1 1.6 3.6 -0.1 -0.3 1.5 0.8
EWC 1.6 2.6 -2.2 4.2 5.5 -1.9 0.6 0.9 2.7
LwF 0.6 0.9 -1.5 3.5 1.5 -2.7 0.3 -2.4 5.4

LP-FT -1.2 0.9 -4.0 0.1 1.8 -5.8 -1.2 -4.2 2.8
WiSE-FT 2.9 2.2 0.7 6.5 4.7 0.1 1.9 1.4 5.8

MS:PRE-FT-EWC-LwF 3.0 2.2 0.3 6.7 5.3 0.1 1.9 1.3 6.0

ResNet-18

FT -5.2 -2.1 -11.7 -0.6 -5.0 -8.8 -5.7 -13.6 5.7
Linear Probing -7.3 -1.4 -2.5 -1.2 -26.9 -3.9 -4.7 -15.5 -2.1
Visual Prompt -8.3 -4.3 -18.3 -7.5 -6.9 -12.9 -6.1 -7.8 -2.8

EWC -5.7 -0.6 -9.6 2.0 -11.7 -4.3 -4.6 -15.1 -1.5
LwF -1.9 -0.9 -5.5 2.6 -2.7 -4.7 -1.4 -9.0 6.7

LP-FT -4.8 -2.2 -10.0 1.0 -6.2 -7.1 -5.7 -13.9 6.1
WiSE-FT 0.7 -0.1 -1.5 4.3 2.4 -1.5 -0.7 -2.8 5.3

MS:PRE-FT-EWC-LwF -0.1 -0.2 -2.7 4.2 1.9 -1.9 -1.2 -5.7 4.9

ResNet-50

FT -5.2 -0.1 -2.9 2.8 -10.7 -4.3 -6.5 -22.4 2.4
Linear Probing -11.2 -1.5 -1.2 -1.2 -37.0 -4.2 -5.6 -35.2 -3.9
Visual Prompt -6.5 -5.9 -7.8 -6.0 -5.9 -9.1 -6.2 -6.0 -5.1

EWC -8.9 -1.1 -0.5 2.2 -21.7 -3.2 -7.2 -36.2 -3.3
LwF -5.8 0.5 -2.2 3.6 -12.3 -3.0 -4.9 -31.5 3.2

LP-FT -5.1 -0.2 -2.6 3.2 -10.3 -4.1 -6.4 -22.1 1.9
WiSE-FT 1.2 0.7 0.9 6.1 1.2 -0.0 -0.6 -3.0 4.3

MS:PRE-FT-EWC-LwF -0.5 0.5 0.6 6.1 0.2 -0.6 -2.1 -13.1 4.6
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Table 23: RI and mRI of ImageNet-1K with SAM pretrained models with different fine-tuning
methods and downstream datasets on each dataset in ImageNet-RIB.

Architecture Method mRI
RI

IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

ViT-B/16

FT 2.5 3.4 -3.2 5.8 5.7 -2.3 1.7 1.8 7.3
Linear Probing 0.8 0.1 0.3 0.5 1.1 0.0 0.0 0.4 4.0
Visual Prompt -6.1 -4.1 -12.4 -6.4 -6.3 -10.6 -3.4 -4.9 -0.2

LoRA 0.9 0.1 0.4 0.8 1.1 0.3 0.1 0.5 3.6
EWC 1.6 0.7 0.3 3.7 2.4 1.2 1.0 2.0 1.3
LwF 3.5 3.2 -1.3 6.9 5.7 0.2 2.3 2.2 8.7

LP-FT 2.4 3.3 -2.3 6.4 5.6 -1.5 1.7 1.5 4.8
WiSE-FT 3.6 2.0 1.9 7.1 4.3 1.5 2.4 2.8 6.5

MS:PRE-FT-EWC-LwF 3.7 2.0 1.7 7.3 4.6 1.6 2.4 3.0 6.7

ViT-B/32

FT 1.4 2.4 -4.6 4.2 3.8 -4.0 0.9 0.8 7.6
Linear Probing 0.9 0.1 0.4 0.8 1.1 0.2 0.3 0.2 4.2
Visual Prompt -5.9 -2.5 -17.1 -5.3 -5.0 -12.6 -1.9 -2.6 -0.1

LoRA 0.8 0.1 0.6 1.0 1.0 0.5 0.3 0.3 2.9
EWC 1.0 0.6 -0.3 2.5 2.1 0.6 0.6 1.1 1.0
LwF 2.4 2.3 -2.3 5.5 4.0 -1.3 1.5 1.4 8.3

LP-FT 1.9 2.3 -3.0 5.1 3.7 -2.8 1.0 0.4 8.3
WiSE-FT 2.6 1.5 1.1 5.2 3.1 0.7 1.7 2.0 5.6

MS:PRE-FT-EWC-LwF 2.6 1.5 0.8 5.4 3.4 0.7 1.7 2.1 5.5

Table 24: RI and mRI of ImageNet-21K pretrained models with different fine-tuning methods and
downstream datasets on each dataset in ImageNet-RIB.

Architecture Method mRI
RI

IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

ViT-B/16

FT -0.1 1.5 -2.8 0.3 2.7 -4.0 -1.2 -1.8 4.2
Linear Probing 0.4 0.3 0.4 0.2 0.0 0.8 -0.0 1.0 0.5
Visual Prompt -9.4 -7.7 -12.7 -11.1 -7.7 -14.8 -8.4 -10.0 -3.3

LoRA -0.3 0.2 0.5 -1.6 -0.5 0.9 -0.4 0.6 -1.9
EWC 1.4 1.5 0.2 2.4 2.9 0.1 0.5 1.2 2.6
LwF 1.6 1.5 -0.5 2.9 3.5 -0.8 0.9 0.0 5.3

LP-FT 0.5 1.6 -1.2 2.2 2.7 -1.8 -0.5 -1.3 2.1
WiSE-FT 2.5 1.7 0.8 4.9 3.8 0.6 1.3 1.7 5.5

MS:PRE-FT-EWC-LwF 2.7 1.7 0.7 4.7 4.2 0.6 1.4 1.8 6.0
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Table 25: RI and mRI of ImageNet-21K with AugReg pretrained models with different fine-tuning
methods and downstream datasets on each dataset in ImageNet-RIB.

Architecture Method mRI
RI

IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

ViT-B/16

FT -5.5 -1.4 -9.1 -5.4 -5.3 -11.1 -3.6 -5.7 -2.5
Linear Probing -0.3 -0.4 -0.4 -0.9 -1.3 -0.5 0.4 0.6 0.2
Visual Prompt -8.0 -6.1 -9.2 -9.3 -6.1 -16.6 -7.1 -7.0 -3.0

LoRA -2.1 0.7 0.8 2.6 2.9 0.8 0.8 1.6 -27.4
EWC 0.6 2.0 -2.0 2.3 3.5 -3.5 0.4 0.5 1.7
LwF -1.0 -1.0 -2.3 0.5 -1.5 -4.2 0.3 -1.3 1.7

LP-FT -2.6 0.3 -3.5 -4.7 -3.0 -6.2 -0.6 -2.5 -0.5
WiSE-FT 1.7 1.8 -0.2 4.0 2.4 -0.9 2.0 1.5 3.2

MS:PRE-FT-EWC-LwF 2.2 1.9 0.3 4.6 2.8 -0.7 2.1 1.7 5.0

ViT-B/32

FT -0.1 0.7 -3.9 0.8 2.7 -4.9 -0.1 -0.6 4.4
Linear Probing 0.3 -0.1 -0.8 0.1 0.7 -0.0 0.7 1.2 0.7
Visual Prompt -8.4 -4.9 -13.1 -7.8 -5.0 -20.7 -6.2 -7.3 -2.4

LoRA 0.9 0.0 0.5 1.0 1.2 0.7 0.1 1.5 2.0
EWC 1.6 1.9 -0.7 4.0 3.9 -1.0 1.0 1.7 2.3
LwF 1.7 1.0 -0.5 3.9 2.8 -1.3 1.7 1.2 5.0

LP-FT 1.2 1.1 -1.3 3.3 2.1 -0.9 1.5 0.8 3.0
WiSE-FT 3.0 1.7 0.9 5.6 4.0 1.0 2.0 2.5 6.0

MS:PRE-FT-EWC-LwF 2.8 1.7 0.6 5.6 4.1 0.6 2.0 2.4 5.6

ViT-S/16

FT -2.3 -0.2 -5.4 -0.8 0.4 -8.5 -1.8 -4.1 1.8
Linear Probing -0.2 -0.1 -0.8 -0.1 0.3 -0.3 0.3 0.6 -1.2
Visual Prompt -9.2 -5.7 -12.1 -8.9 -5.0 -21.3 -8.3 -9.6 -2.8

LoRA -1.5 0.1 0.4 1.5 2.8 0.5 0.3 1.6 -19.5
EWC 1.6 2.0 -0.8 4.2 4.8 -1.7 0.8 1.0 2.7
LwF 0.5 0.5 -0.8 3.2 1.4 -3.1 0.9 -1.3 3.4

LP-FT -0.8 0.5 -2.9 1.6 1.1 -4.6 -0.5 -2.3 0.7
WiSE-FT 2.8 1.8 0.8 6.1 4.4 -0.1 1.9 2.0 5.1

MS:PRE-FT-EWC-LwF 2.8 1.7 0.6 6.3 4.6 -0.2 2.0 1.8 5.9

ViT-S/32

FT -2.9 -1.2 -8.1 -1.3 0.1 -9.3 -2.5 -4.9 4.2
Linear Probing -0.1 -0.1 -1.5 0.1 0.6 -0.2 0.5 0.1 -0.2
Visual Prompt -9.6 -4.7 -21.6 -8.5 -5.6 -19.1 -5.7 -8.6 -2.7

LoRA 0.4 0.1 0.5 1.1 2.7 0.5 0.3 1.1 -3.0
EWC 1.0 1.5 -3.1 3.6 4.2 -1.5 0.2 0.7 2.2
LwF 0.3 -0.1 -2.1 3.2 1.6 -4.0 0.5 -1.5 4.8

LP-FT -1.1 -0.5 -4.5 1.5 0.8 -5.1 -0.9 -3.0 3.0
WiSE-FT 2.3 1.1 0.1 5.5 3.8 -0.6 1.2 1.2 6.2

MS:PRE-FT-EWC-LwF 2.3 1.1 -0.5 5.6 4.1 -0.6 1.2 1.2 6.0

ViT-L/16

FT -2.1 0.3 -8.7 -3.5 -0.6 -3.1 -0.8 -0.9 0.1
Linear Probing -1.3 -0.5 -4.1 -6.1 -1.2 -0.5 0.7 0.7 0.7
Visual Prompt -12.9 -10.7 -13.6 -13.5 -15.0 -17.0 -10.4 -14.2 -9.0

LoRA 1.0 0.2 0.7 1.1 1.2 0.9 0.7 1.1 1.7
EWC 1.1 -0.6 0.3 2.5 2.3 -0.7 1.2 1.5 1.9
LwF -0.2 -0.6 0.4 -1.9 0.5 -0.2 -0.6 -1.8 2.6

LP-FT -3.5 0.5 -14.0 -16.4 -0.5 -0.8 1.3 0.8 0.8
WiSE-FT 2.3 2.1 0.1 3.3 2.6 1.1 2.4 2.7 4.4

MS:PRE-FT-EWC-LwF 2.5 1.8 1.1 3.4 2.5 1.1 2.0 2.7 5.1

Table 26: RI and mRI of ImageNet-21K-P pretrained models with different fine-tuning methods
and downstream datasets on each dataset in ImageNet-RIB.

Architecture Method mRI
RI

IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

ViT-B/16

FT -0.5 0.7 -3.5 1.6 3.0 -4.4 -1.4 -2.2 2.3
Linear Probing 0.2 0.2 0.4 0.5 1.1 0.3 0.2 0.3 -1.0
Visual Prompt -10.1 -8.0 -11.5 -9.9 -7.8 -19.9 -8.8 -11.1 -3.6

LoRA 0.4 0.1 0.3 0.5 1.2 0.5 -0.2 0.9 -0.1
EWC 1.3 1.3 0.6 1.1 3.0 0.8 0.6 0.6 2.1
LwF 1.7 1.6 -0.1 4.5 3.5 -0.3 1.0 -0.2 3.7

LP-FT 0.4 0.8 -1.1 3.8 3.3 -1.2 -0.4 -1.8 0.1
WiSE-FT 3.0 2.0 1.3 6.3 4.1 1.3 1.8 2.0 5.3

MS:PRE-FT-EWC-LwF 3.0 2.0 1.1 6.3 4.3 1.3 1.7 2.0 5.3
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Table 27: RI and mRI of LAION-2B pretrained models with different fine-tuning methods and
downstream datasets on each dataset in ImageNet-RIB.

Architecture Method mRI
RI

IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

ViT-B/16

FT -38.1 -39.4 -53.7 -36.9 -46.9 -49.2 -29.0 -36.6 -12.9
Linear Probing -2.0 -0.6 -0.9 -1.5 -0.8 -1.9 -2.4 -5.5 -2.0
Visual Prompt -8.2 -6.4 -8.1 -8.1 -6.7 -16.7 -8.3 -8.0 -2.9

LoRA -3.6 -0.8 -1.3 -1.6 -1.2 -3.0 -2.8 -5.8 -12.3
EWC -12.5 -16.1 -27.2 -2.4 -17.3 -19.0 -6.4 -9.9 -1.7
LwF -33.9 -37.3 -49.3 -31.7 -45.2 -44.7 -22.3 -31.0 -9.9

LP-FT -37.1 -39.3 -51.0 -35.9 -46.1 -47.7 -28.3 -33.7 -14.6
WiSE-FT -21.6 -25.3 -39.1 -17.6 -31.9 -25.4 -11.3 -16.3 -5.5

MS:PRE-FT-EWC-LwF -17.9 -21.1 -31.3 -12.9 -29.7 -22.1 -8.6 -14.6 -2.7

ViT-B/32

FT -31.6 -31.1 -47.0 -28.9 -37.5 -41.3 -24.5 -32.8 -9.6
Linear Probing -1.4 -0.1 -1.5 0.2 0.5 -2.1 -2.3 -6.0 0.5
Visual Prompt -8.4 -6.4 -12.1 -6.9 -6.0 -21.9 -6.1 -6.7 -1.5

LoRA -1.9 -0.2 -2.0 -0.4 -0.9 -4.0 -2.6 -6.1 1.1
EWC -10.0 -10.6 -25.6 -1.2 -11.5 -15.1 -3.5 -11.0 -1.1
LwF -26.7 -28.5 -40.5 -22.8 -33.7 -34.4 -18.5 -26.8 -8.6

LP-FT -30.8 -31.3 -45.7 -27.9 -35.9 -39.7 -24.4 -30.8 -10.3
WiSE-FT -13.5 -15.5 -22.8 -8.6 -17.8 -17.9 -8.4 -14.4 -2.2

MS:PRE-FT-EWC-LwF -10.9 -12.4 -19.0 -5.7 -16.4 -14.3 -5.7 -12.5 -1.3

Table 28: RI and mRI of OpenAI CLIP models with different fine-tuning methods and downstream
datasets on each dataset in ImageNet-RIB.

Architecture Method mRI
RI

IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

ViT-B/16

FT -38.0 -38.3 -51.6 -35.4 -48.5 -50.3 -28.9 -35.8 -15.3
Linear Probing -2.0 -0.5 -0.8 -1.3 -1.3 -1.2 -3.4 -5.6 -1.8
Visual Prompt -8.4 -7.4 -8.1 -7.6 -6.3 -16.3 -9.4 -9.9 -2.7

LoRA -3.6 -0.6 -1.0 -1.9 -1.0 -2.8 -4.0 -6.4 -11.3
EWC -12.7 -14.4 -20.9 -2.4 -24.8 -19.9 -7.5 -10.8 -0.8
LwF -33.1 -35.5 -46.4 -30.6 -47.1 -44.3 -22.7 -30.2 -7.9

LP-FT -36.9 -38.3 -50.0 -34.4 -48.5 -49.0 -29.8 -31.7 -13.3
WiSE-FT -18.1 -19.5 -26.7 -11.7 -31.0 -23.7 -11.1 -15.8 -5.5

MS:PRE-FT-EWC-LwF -16.0 -17.1 -24.3 -9.4 -30.3 -20.9 -9.1 -14.4 -2.7

ViT-B/32

FT -28.7 -28.1 -43.8 -26.4 -35.0 -39.1 -20.8 -28.2 -8.4
Linear Probing -1.3 0.2 -0.9 -0.8 -0.1 -1.8 -2.1 -5.6 0.9
Visual Prompt -8.0 -5.4 -12.5 -6.2 -4.6 -20.8 -5.9 -7.0 -1.4

LoRA -1.8 0.1 -1.6 -0.8 -0.6 -3.7 -2.3 -5.4 -0.2
EWC -7.0 -5.6 -17.0 -1.1 -11.4 -13.0 -3.1 -6.5 1.7
LwF -23.9 -24.8 -37.0 -21.1 -31.3 -31.7 -16.5 -24.3 -4.4

LP-FT -27.7 -27.4 -42.2 -24.3 -33.7 -37.7 -20.2 -26.9 -9.0
WiSE-FT -9.7 -10.3 -16.5 -5.3 -14.2 -12.5 -5.7 -11.3 -1.5

MS:PRE-FT-EWC-LwF -8.1 -8.5 -14.7 -3.2 -13.4 -10.6 -4.4 -9.9 0.5
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J.5 ACCURACY OF USING VARIOUS PRETRAINED MODELS ON EACH OOD DATASETS AND
EACH CORRUPTION IN IMAGENET-C

Table 29 summarizes the Table indices for the accuracy on each OOD (out-of-distribution) dataset
(Table S1 and Tables S17 and ImageNet-C (Table S18-Table S35) after fine-tuning on various datasets
in the Supplementary Materials. Each pretrained and fine-tuned model is evaluated on ImageNet-C
with 15 corruptions at severity levels ranging from 1 to 5. Following the original ImageNet-C
benchmark (Hendrycks & Dietterich, 2019), we average the performance over the different severity
levels. However, for consistency with other datasets, we report the results as accuracy rather than
error.

Table 29: Reference for the tables showing accuracy of pretrained models on OOD datasets (left) and
ImageNet-C corruptions (right).

Architecture Dpre Accuracy on OOD datasets Accuracy on ImageNet-C

ViT-B/16

IN-1K + AugReg Table 30 (Table S1) Table 31 (Table S2)
IN-1K + SAM Table S2 Table S20

IN-21K Table S3 Table S21
IN-21K-P Table S4 Table S22

IN-21K + AugReg Table S5 Table S23
LAION-2B Table S6 Table S24

OpenAI Table S7 Table S25

ViT-B/32

IN-1K + AugReg Table S8 Table S26
IN-21K + AugReg Table S9 Table S27

LAION-2B Table S10 Table S28
OpenAI Table S11 Table S29

ViT-S/16 IN-1K + AugReg Table S12 Table S30
IN-21K + AugReg Table S13 Table S31

ViT-S/32 IN-21K + AugReg Table S14 Table S32

ViT-L/16 IN-21K + AugReg Table S15 Table S33

ResNet-18 IN-1K Table S16 Table S34

ResNet-50 IN-1K Table S17 Table S35
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Table 30: The accuracy on each OOD dataset after fine-tuning on ImageNet-1K with AugReg
pretrained ViT-B/16 on the downstream datasets with various methods. Note that ImageNet-Drawing,
ImageNet-Cartoon, and ImageNet-C are generated from the ImageNet validation set. Green and red
indicate relative performance increases and decreases, respectively, compared to the pretrained model.
Bold indicates the best performance on each evaluation dataset.

Method Fine-Tuning Dataset IN-1K IN-V2 IN-A IN-R IN-Sketch ObjNet IN-Cartoon IN-Drawing IN-C

Pretrained 79.2 66.4 15.0 38.0 28.0 25.7 66.2 39.1 56.0

FT

IN-V2 78.4 - 25.2 41.9 29.2 37.1 64.7 40.4 57.4
IN-A 72.9 60.6 - 36.7 24.9 35.0 55.3 32.6 53.5
IN-R 69.8 59.2 20.9 - 46.7 32.0 61.3 51.4 52.0

IN-Sketch 75.7 63.9 17.3 59.1 - 33.0 66.3 50.8 53.8
ObjNet 74.4 62.2 24.9 36.3 25.1 - 55.6 33.6 52.3

IN-Cartoon 85.2 63.5 19.9 40.5 29.5 33.5 - 41.2 51.3
IN-Drawing 81.5 62.9 16.5 41.1 32.7 32.4 64.2 - 56.0

IN-C 99.8 61.1 13.9 37.0 25.1 27.7 92.2 70.2 -

Linear Probing

IN-V2 79.1 - 15.6 38.2 28.1 33.1 66.2 39.0 55.9
IN-A 78.6 65.9 - 38.5 27.4 34.1 65.6 38.6 55.8
IN-R 78.7 66.6 17.1 - 30.2 33.4 66.1 39.8 56.2

IN-Sketch 77.2 64.8 16.6 46.3 - 33.5 65.6 40.5 54.5
ObjNet 78.6 65.9 18.1 38.6 27.9 - 65.1 39.3 56.1

IN-Cartoon 80.5 65.4 15.1 39.2 28.1 32.2 - 40.9 55.6
IN-Drawing 78.1 65.2 14.9 41.3 28.5 33.3 65.6 - 54.3

IN-C 97.1 61.9 15.1 36.8 25.2 28.3 83.3 57.4 -

Visual Prompt
(Bahng et al., 2022)

IN-V2 75.7 - 12.7 39.6 27.4 34.4 60.5 36.7 47.9
IN-A 69.1 57.1 - 36.3 21.9 32.7 50.6 26.1 38.0
IN-R 68.1 55.9 9.6 - 36.2 30.0 55.7 41.8 40.1

IN-Sketch 72.2 59.5 9.4 51.6 - 32.3 60.6 44.9 44.3
ObjNet 68.6 56.2 13.0 33.7 22.2 - 46.8 23.0 35.3

IN-Cartoon 74.5 61.2 10.2 41.2 27.0 31.5 - 35.2 41.8
IN-Drawing 72.1 59.4 8.4 42.2 28.8 30.6 59.3 - 44.2

IN-C 77.9 65.2 14.8 40.1 28.3 35.7 63.5 49.8 -

LoRA
(Hu et al., 2021)

IN-V2 79.2 - 15.3 38.2 28.1 33.2 66.4 39.3 56.1
IN-A 79.0 66.4 - 38.9 27.8 35.5 65.2 39.3 56.5
IN-R 79.2 66.8 16.7 - 29.7 34.8 66.9 40.0 56.7

IN-Sketch 79.2 66.8 16.5 45.9 - 34.6 67.7 44.1 56.6
ObjNet 78.9 66.3 18.3 39.3 27.8 - 65.1 39.2 55.0

IN-Cartoon 78.7 65.8 14.8 39.3 28.3 32.1 - 39.8 54.6
IN-Drawing 77.9 66.3 15.0 43.7 32.1 33.5 66.4 - 55.1

IN-C 79.9 67.4 16.3 39.2 28.1 34.1 67.5 40.8 -

EWC
(Kirkpatrick et al., 2017)

IN-V2 80.0 - 19.7 41.8 29.4 36.8 67.1 42.8 58.2
IN-A 76.9 64.9 - 40.4 27.8 38.2 61.1 36.5 56.6
IN-R 75.2 63.9 19.0 - 43.9 33.3 66.4 57.5 56.1

IN-Sketch 78.9 66.6 16.6 52.2 - 34.2 68.3 49.6 57.2
ObjNet 78.1 66.2 23.1 40.9 29.0 - 62.4 39.8 56.9

IN-Cartoon 79.2 66.0 16.5 42.7 29.9 33.8 - 42.6 54.7
IN-Drawing 79.3 66.7 16.3 44.5 34.0 34.7 67.9 - 58.3

IN-C 80.1 67.8 20.0 42.5 31.2 37.5 66.8 50.0 -

LwF
(Li & Hoiem, 2017)

IN-V2 79.2 - 22.9 41.3 29.4 36.4 65.8 41.0 57.9
IN-A 77.4 65.5 - 39.4 27.5 36.7 61.8 38.3 57.2
IN-R 76.1 64.7 21.7 - 47.8 34.1 66.8 54.9 57.2

IN-Sketch 77.3 65.2 17.3 57.8 - 33.5 67.8 49.6 55.2
ObjNet 78.2 66.2 24.1 38.4 27.3 - 62.3 38.8 56.3

IN-Cartoon 87.2 65.9 19.4 41.2 29.9 34.2 - 42.7 55.6
IN-Drawing 84.0 65.4 17.7 41.9 33.2 33.4 67.7 - 58.2

IN-C 99.2 65.8 13.5 40.7 27.8 31.4 90.6 61.7 -

LP-FT
(Kumar et al., 2022)

IN-V2 78.8 - 24.7 41.6 29.3 36.8 65.3 41.3 57.6
IN-A 76.5 64.6 - 38.2 27.4 37.1 60.5 36.7 56.2
IN-R 74.7 63.4 21.1 - 46.9 34.7 65.4 53.1 55.3

IN-Sketch 76.2 64.5 18.0 58.8 - 33.9 67.0 48.9 54.4
ObjNet 77.1 64.9 24.9 38.2 26.8 - 60.7 37.7 54.9

IN-Cartoon 86.3 64.2 19.5 41.0 29.9 33.5 - 43.1 52.8
IN-Drawing 82.1 63.2 16.5 41.7 32.9 32.0 64.8 - 56.0

IN-C 98.0 61.0 13.7 37.5 25.7 27.3 87.1 66.0 -

WiSE-FT
(Wortsman et al., 2022b)

IN-V2 79.7 - 21.3 40.5 29.5 36.0 66.5 40.9 58.0
IN-A 78.6 66.4 - 39.3 28.5 37.1 64.4 38.6 57.8
IN-R 79.1 67.1 23.0 - 44.7 37.4 69.5 54.7 59.6

IN-Sketch 78.9 66.4 17.6 52.1 - 34.7 68.7 48.7 57.3
ObjNet 79.3 67.3 23.5 40.0 29.0 - 65.2 40.5 57.6

IN-Cartoon 83.8 66.5 19.3 41.0 30.4 34.9 - 43.2 56.3
IN-Drawing 82.5 66.9 18.5 42.2 33.5 35.0 68.2 - 59.5

IN-C 93.4 66.9 18.7 41.3 29.9 34.7 82.4 57.6 -

Model Soup
PRE-FT-EWC-LwF

(Wortsman et al., 2022a)

IN-V2 79.8 - 21.0 41.0 29.7 36.0 66.9 41.7 58.0
IN-A 78.3 66.4 - 39.7 28.5 37.5 63.7 38.4 57.8
IN-R 78.9 67.1 23.1 - 45.9 37.2 69.6 55.8 59.6

IN-Sketch 78.9 66.6 17.5 54.0 - 34.6 69.1 49.8 57.5
ObjNet 79.3 67.4 24.1 40.3 29.1 - 64.9 40.6 57.7

IN-Cartoon 83.7 66.4 18.9 41.8 30.6 34.7 - 43.6 56.2
IN-Drawing 82.6 66.9 18.4 43.0 34.0 35.2 68.7 - 59.7

IN-C 92.6 67.5 18.6 42.3 30.6 35.3 81.3 57.3 -
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Table 31: Accuracy of ImageNet-1K with AugReg pretrained ViT-B/16 with different fine-tuning
methods and downstream datasets on each ImageNet-C corruption. For each corruption, accuracy is
averaged across 5 levels of severity.

Method
Fine-Tuning

Dataset Avg.
Noise Blur Weather Digital

Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Pretrained 56.0 57 54 54 49 42 53 46 48 55 61 74 56 59 67 66

FT

IN-V2 57.4 56 54 53 51 40 55 46 53 59 65 74 59 58 68 67
IN-A 53.5 53 51 50 50 38 52 39 50 56 57 70 56 51 65 64
IN-R 52.0 52 50 49 46 44 49 37 49 55 57 66 53 51 62 61
IN-Sketch 53.8 55 53 52 46 39 49 43 51 56 58 70 55 55 63 62
ObjNet 52.3 52 48 48 46 37 51 38 50 55 58 70 51 52 64 63
IN-Cartoon 51.3 53 50 50 44 35 48 35 48 50 54 74 53 53 65 58
IN-Drawing 56.0 58 56 55 46 43 52 40 55 62 61 74 53 57 66 62

Linear Probing

IN-V2 55.9 56 54 54 49 42 53 46 48 55 61 73 56 59 66 65
IN-A 55.8 56 53 53 49 42 54 46 48 55 61 73 57 59 66 65
IN-R 56.2 56 54 54 49 44 54 47 49 55 61 73 56 60 66 66
IN-Sketch 54.5 54 52 52 48 41 51 45 48 54 59 72 55 58 65 64
ObjNet 56.1 56 54 54 49 43 54 48 48 56 62 73 53 60 66 65
IN-Cartoon 55.6 56 54 53 48 42 52 46 48 55 59 75 54 59 67 67
IN-Drawing 54.3 57 55 55 43 43 50 44 51 61 49 74 39 59 66 67

Visual Prompt
(Bahng et al., 2022)

IN-V2 47.9 44 42 41 41 35 46 42 42 46 51 69 48 55 59 57
IN-A 38.0 33 31 29 31 24 36 31 35 38 43 60 37 46 48 49
IN-R 40.1 39 38 36 33 28 36 30 36 41 41 61 38 45 50 50
IN-Sketch 44.3 43 41 40 37 29 40 36 39 45 46 65 47 49 54 55
ObjNet 35.3 28 26 24 28 22 33 29 32 35 41 61 37 44 45 44
IN-Cartoon 41.8 39 37 36 34 27 38 33 36 38 42 66 43 50 55 53
IN-Drawing 44.2 45 43 43 33 32 38 32 41 51 42 65 39 50 56 52

LoRA
(Hu et al., 2021)

IN-V2 56.1 57 54 54 49 43 53 46 48 55 61 74 57 59 67 66
IN-A 56.5 57 54 54 49 44 55 48 49 57 61 74 52 60 67 66
IN-R 56.7 57 54 54 50 44 54 48 49 56 62 74 56 60 67 66
IN-Sketch 56.6 56 54 54 51 43 53 47 50 56 62 74 57 59 67 66
ObjNet 55.0 57 54 54 48 43 54 47 48 55 55 74 44 60 67 66
IN-Cartoon 54.6 56 53 53 48 43 50 45 48 54 56 73 50 58 66 65
IN-Drawing 55.1 58 56 56 44 45 51 43 51 63 54 74 43 59 66 66

EWC
(Kirkpatrick et al., 2017)

IN-V2 58.2 58 55 55 52 44 56 49 52 58 64 75 59 61 68 67
IN-A 56.6 55 53 52 52 42 56 46 52 58 62 73 59 57 67 66
IN-R 56.1 55 54 53 50 44 53 43 53 59 62 72 58 56 64 65
IN-Sketch 57.2 57 56 55 50 44 54 47 52 57 61 74 57 59 67 67
ObjNet 56.9 56 53 53 51 43 56 47 52 58 62 74 58 59 67 66
IN-Cartoon 54.7 55 52 52 48 40 52 43 48 54 60 73 56 58 66 64
IN-Drawing 58.3 59 57 57 50 44 55 45 54 63 65 74 59 60 68 66

LwF
(Li & Hoiem, 2017)

IN-V2 57.9 57 55 54 51 42 55 47 53 59 65 75 60 59 69 68
IN-A 57.2 56 54 54 52 42 55 45 53 60 62 73 59 57 68 66
IN-R 57.2 57 56 55 50 48 54 43 54 59 62 72 57 57 67 66
IN-Sketch 55.2 56 54 53 48 40 51 45 52 57 60 72 56 57 65 64
ObjNet 56.3 56 53 53 51 41 55 44 52 57 63 73 57 57 67 66
IN-Cartoon 55.6 56 53 53 49 40 52 41 51 55 59 77 57 58 68 65
IN-Drawing 58.2 59 56 56 50 45 55 43 55 63 64 77 56 59 69 65

LP-FT
(Kumar et al., 2022)

IN-V2 57.6 57 54 54 51 41 55 46 53 59 65 74 60 59 68 67
IN-A 56.2 55 52 52 51 41 55 43 53 59 62 73 59 56 67 65
IN-R 55.3 55 54 52 48 47 52 41 52 58 60 70 56 56 65 64
IN-Sketch 54.4 54 53 52 48 40 50 44 51 55 59 70 56 56 64 63
ObjNet 54.9 54 51 51 48 40 54 43 51 57 61 72 54 56 66 64
IN-Cartoon 52.8 53 50 50 46 37 49 38 49 52 55 75 54 55 66 61
IN-Drawing 56.0 59 56 56 44 44 52 40 56 63 57 76 49 58 67 64

WiSE-FT
(Wortsman et al., 2022b)

IN-V2 58.0 58 55 55 51 42 55 47 52 58 65 75 60 60 69 68
IN-A 57.8 57 55 55 52 43 56 46 53 59 64 74 60 59 68 66
IN-R 59.6 59 58 57 53 49 57 48 55 61 65 75 60 61 69 68
IN-Sketch 57.3 58 56 56 50 42 53 47 53 59 63 74 59 59 67 66
ObjNet 57.6 57 54 54 51 43 56 46 53 58 64 74 59 59 68 67
IN-Cartoon 56.3 57 54 55 50 41 53 43 51 55 61 76 58 59 68 65
IN-Drawing 59.5 61 59 59 51 45 56 46 55 63 65 77 59 61 69 67

Model Soup
PRE-FT-EWC-LwF

(Wortsman et al., 2022a)

IN-V2 58.0 58 55 55 51 43 55 47 52 59 64 75 60 60 69 68
IN-A 57.8 57 55 54 52 43 56 46 53 59 64 74 60 58 68 67
IN-R 59.6 59 58 57 53 49 57 47 55 61 65 74 60 61 69 68
IN-Sketch 57.5 58 56 56 50 42 53 47 53 59 63 74 59 59 67 66
ObjNet 57.7 57 54 54 52 43 56 47 53 58 64 74 59 59 68 67
IN-Cartoon 56.2 57 54 54 50 41 53 43 51 55 61 76 58 59 68 65
IN-Drawing 59.7 61 59 59 51 45 56 46 55 63 66 77 59 61 69 67
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