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ABSTRACT

The rapid advancement of video-text-to-audio (VT2A) diffusion models has en-
abled unprecedented audio generation conditioned on video and text, yet two ma-
jor challenges remain: following complex semantic descriptions and achieving
robust audio–visual synchronization. In this work, we propose ReasonAudio,
an MLLM-empowered flow-matching generative model with stronger semantic
and robust temporal alignment. To enhance semantic understanding, we 1) ad-
dress the scarcity of semantically rich tri-modal (video–text–audio) annotations
by constructing VGGSound-Think, a dataset enriched with acoustic hints and
audio–visual relation descriptions, and 2) leverage MLLMs to understand mul-
timodal conditions (video and text) by introducing learnable queries that bridge
understanding and generation components. To tackle temporal alignment, we em-
ploy preference optimization (Flow-DPO, Flow-RWR) with synchronization feed-
back, aligning generative models with visual synchrony preferences. Extensive
experiments demonstrate that ReasonAudio achieves state-of-the-art performance
in VT2A generation, with substantial improvements in both semantic alignment
and temporal synchronization. Moreover, evaluations on VGGSound-Think show
that our model excels at reasoning over acoustic hints and following descriptions
of audio–visual relations (e.g., object interactions and on-/off-screen attribution).
The demo page is available at https://ReasonAudio.github.io.

1 INTRODUCTION

Deep video–text-to-audio (VT2A) generation aims to synthesize ambient sounds (e.g., rain, river
flow) with convincing details conditioned on video and text. Recent advances (Cheng et al., 2025;
Liu et al., 2025a) have made progress by adopting multimodal joint training paradigms that condition
audio generation on both video and text inputs. Despite these advances, VT2A systems still face
two persistent gaps: achieving 1) robust audio–visual temporal alignment; and 2) strong semantic
alignment, i.e., reasoning from acoustic hints and following audio-visual relation descriptions.

Effectively encoding conditions (i.e., video and text) for precise semantic alignment remains critical
challenges for two reasons: 1) Data scarcity. Text annotations in common audio–visual pairs (e.g.,
VGGSound (Chen et al., 2020)) are sparse and semantically shallow, limiting the ability to follow
descriptions on audio–visual relations—such as object interactions and on-/off-screen attribution.
2) Modeling. Contrastive pretrained encoders (Radford et al., 2021; Elizalde et al., 2023) provide
compact, informative features for diffusion models, while their maximum token limit becomes a sig-
nificant constraint to encode long structured descriptions. Recent approaches (Ge et al., 2024; Sun
et al., 2023; Team, 2024) leverage Multimodal Large Language Models (MLLMs) to produce se-
mantically and temporally aligned reasoning instructions for guiding audio diffusion models, while
these pipelines introduce substantial complexity due to multi-stage training for the need to bridge
LLMs with diffusion backbones.

A second challenge lies in achieving robust audio-visual synchronization (i.e., temporal alignment).
Prior works (Wang et al., 2024; Luo et al., 2023) rely on contrastive audio–visual pretraining rep-
resentations, and MMAudio (Cheng et al., 2025) introduces a conditional synchronization module
that leverages high-frame-rate visual features to model temporal relationships. However, automatic
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Snow

(a) Acoustic hint

WindStreet Noise

(b) Audio–visual relations

Human voice Human voiceSiren band

VGGSound-Think: <HINT>Someone calls 911 
and stays here until help arrives.</HINT>…

VGGSound-Think: …<TRACK name='wind' screen=off_screen> broadband 

turbulent rushing </TRACK> <TRACK name='distant_human_speech' 

screen=off_screen> distant muffled chatter </TRACK> <TRACK 

name='human_vocalization' screen=off_screen> close_mic grunt breathy…

BaselineBaseline

OursOurs

Figure 1: Video-text-to-audio generation by ReasonAudio (bottom) and baseline (top) in
VGGSound-Think, showcasing the strong capabilities to reason over acoustic hints (“someone calls
911 and stays here until help arrives”) and follow descriptions on audio–visual relations (off-screen
“human speech”). In contrast, Baseline fails to connect the text to an appropriate acoustic context,
and ignores the off-screen sound instructions.

evaluations (Cheng et al., 2025; Liu et al., 2025a) indicate that audio–visual synchrony remains a
significant bottleneck: temporal information in learned video representations is often weak, making
them difficult to capture robustly without human priors.

In this work, we propose ReasonAudio for video-text-to-audio (V2TA) generation, an MLLM-
empowered flow-matching generative model with improved semantic reasoning and robust tem-
poral alignment. To enhance semantic, we 1) construct VGGSound-Think, an audio–visual dataset
enriched with acoustic hint (Figure 1(a)) and audio–visual relation descriptions (Figure 1(b)); and
2) leverage the MLLMs to understand multimodal conditions (video and text), where we freeze the
MLLMs and utlize the learnable queries to bridge the understanding and generative components.
To tackle audio–visual temporal alignment, we leverage preference optimization (Flow-DPO, Flow-
RWR) with synchronization feedback, aligning generative models with visual synchrony.

Both subjective and objective evaluations demonstrate that the model achieves state-of-the-art results
in VT2A generation with substantial improvements in semantic alignment empowered by MLLMs,
and robust temporal synchronization from preference optimization. As shown in Figure 1, our model
excells at reasoning over acoustic hint and following descriptions on audio–visual relations (e.g.,
object and on-/off-screen attribution). Key contributions of the paper include:

• We create VGGSound-Think, which augments VGGSound with semantically rich textual descrip-
tions, including acoustic hints and audio–visual relations.

• We propose an MLLM-empowered flow-matching generative model to enhance semantic under-
standing, with learnable queries to bridge the understanding and generative components.

• We employ preference optimization (Flow-DPO, Flow-RWR) using synchronization feedback,
aligning generative models with visual-synchrony preferences.

• We achieve state-of-the-art VT2A performance and demonstrate the outperformed reasoning ca-
pabilities in qualitative case studies.
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2 RELATED WORKS

2.1 VIDEO-TEXT-TO-AUDIO GENERATION

Video-text-to-audio (VT2A) generation is a multi-modal audio generation task that requires 1) syn-
thesizing realistic high-fidelity audio signals and 2) bridging video/text and audio modalities to
ensure cross-modal alignment. Im2Wav (Sheffer & Adi, 2023) explores image-to-audio generation
with language models that operate over a hierarchical discrete audio representation obtained from a
VQ-VAE-based model. Diff-Foley (Luo et al., 2024) introduces the contrastive audio-video pretrain-
ing to align multi-modal features and trains a latent diffusion model for generation. Frieren (Wang
et al., 2024) leverages reflow and one-step distillation with guided vector field for audio generation.
Recently, MMAudio (Cheng et al., 2025) proposes the joint training paradigm for video-to-audio
data scaling and cross-modal understanding, and shows that joint training not only enhances cross-
modal performance but also preserves the effectiveness of single-modality generation.

2.2 MULTIMODAL LARGE LANGUAGE MODELS

Recently, the community has witnessed efforts to extend the success of multimodal large language
model (i.e., MLLM) (Chen et al., 2025b; Shi et al., 2024) to multimodal diffusion generation. Liu
et al. (2025a) fine-tunes MLLMs to generate reasoning chains that explicitly capture temporal de-
pendencies and the decomposition of audio editing events. It necessitate tuning LLMs on video un-
derstanding and subsequently training the audio generator, naturally posing challenges from LLM
overfitting and multi-stage training. MetaQuery (Pan et al., 2025) uses learnable queries to bridge
frozen pre-trained MLLMs with pre-trained diffusion models. BLIP-3o (Chen et al., 2025a) lever-
ages the frozen LLM to understand and train the diffusion model to generate semantically rich CLIP
image features. In this work, rather than fine-tuning MLLMs in multiple stages, we freeze the LLM
and employ learnable queries to bridge the understanding and generative components.

2.3 PREFERENCE OPTIMIZATION

There is often a gap between generative models’ training objectives and human preference, and thus
human feedback has been utilized to align model performance with user intent to improve perfor-
mance in downstream tasks. DiffusionDPO (Wallace et al., 2024) adapts the Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023) and aligns diffusion models to human preferences by directly
optimizing on human comparison data. In the class of flow-matching generative models (Lee et al.,
2023; Liu et al., 2022), which predict velocity rather than noise, Liu et al. (2025b) explores direct
preference optimization and reward-weighted regression to extend the diffusion-based preference
optimization to flow-based generative models. Recently, preference optimization has been applied
in audio generation to enhance semantic alignment between the input prompt and output audio. For
example, Tango 2 (Majumder et al., 2024) fine-tunes the text-to-audio model using DPO loss on the
constructed preference dataset, demonstrating improved audio quality and relevance. In contrast to
semantic feedback, we focus on temporal alignment in video-to-audio generation by incorporating
synchronization feedback, where the audio-visual synchrony preference has not yet been studied.

3 VIDEO-TEXT-TO-AUDIO REASONING DATASET

3.1 BACKGROUND

Joint video-text-to-audio (VT2A) generation training paradigm (Liu et al., 2025a; Cheng et al.,
2025) emerges and demonstrates the improved audio quality and semantic alignment through cross-
modal understanding. However, the text annotations in common audio–visual pairs (e.g., VG-
GSound (Chen et al., 2020)) are sparse and semantically shallow, which hinders learning from acous-
tic hint and following descriptions on audio–visual relation (such as multi-object interactions and
on/off-screen sound attribution). Although Liu et al. (2025a) introduce chain-of-thought captions
to enhance semantic understanding, their focus is primarily on temporal relations and interactive
editing conditions, without considering the acoustic hints or audio-visual relations.

To achieve strong semantic alignment between input conditions and generated audio, it is crucial to
provide semantically rich textual descriptions. As illustrated in Figure 2, we introduce VGGSound-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Think, a tri-modal (video–text–audio) dataset that augments VGGSound with 1) acoustic hints and
2) structured audio–visual relation annotations capturing multi-object interactions and on-/off-screen
sound attribution.

3.2 FOLEY REASONING CAPTION GENERATION

“fire truck siren”Vanilla Text

Semantic Text

…… ……

1. Coarse-grained acoustic gist
A mechanical siren winds up then rapidly falls; a faint farewell voice follows as a 

low, chugging engine rumble becomes prominent

2. Fine-grained sound grounding
The scene is an urban street or parking lot at dusk, featuring a vintage red fire 

truck. A mechanical siren begins, winding up and then rapidly down in pitch. As 
the siren fades, a faint voice and the low, chugging rumble of the truck's engine 

becomes prominent as the vehicle slowly begins to drive away. 

3. Structured audio-visual relations
<Object 'mechanical_siren' screen=on_screen> wailing rise_fall reverberant

< Object 'human_speech' screen=on_screen  faint brief reverberant 
< Object 'antique_fire_truck_engine' screen=on_screen> idling rumble chugging

Figure 2: A comparison between vanilla text and
semantic text in dataset construction pipeline.

We generate audio descriptions using GPT-
4o (Hurst et al., 2024) which excells in multi-
modal understanding and conversations. Each
sample is annotated through a structured, step-
by-step procedure:

• Coarse-grained acoustic gist. For each au-
dio clip, we first provide the high-level hint
that summarizes the dominant sound sources
suggested by the corresponding video, with-
out explicitly naming the acoustic objects.

• Fine-grained sound grounding. We then
align the sounds with specific visible objects
in the video, refining the gist into a more de-
tailed caption.

• Structured audio–visual relation annota-
tions. Finally, for each grounded object
we provide descriptive keywords and its au-
dio–visual relations, including on-/off-screen
attribution and interactions among objects.

Combined with the associated videos and output audio, these tri-modal (video–text–audio) triplets
support semantically rich training and evaluation for VT2A models.

3.3 DATASET VALIDATION

After constructing VGGSound-Think, we use metrics (mean pairwise cosine distance, VLM-as-
Judge) to evaluate caption diversity and alignment accuracy in Table A.

• Caption diversity. We randomly choose 10 video classes (e.g., baby, fireworks), and randomly
sample 20 captions and compute the mean pairwise cosine distance between their T5 embeddings
(higher indicates more diverse phrasing/semantics within the class).

• Alignment accuracy. We randomly sample 5% of the full dataset and ask a VLM-as-judge to
perform pairwise preference comparisons: given the same video/audio pair and two candidate
captions (from VGGSound vs. VGGSound-Think), the judge selects the caption with better audio-
visual alignment (“win”). To reduce potential bias from the caption construction process, we use
Gemini-3 as an external judge model, rather than the model used for data generation.

More detailed comparisons on MLLM usage and text format have been attached in Appendix D.

Data caption diversity (↑) alignment accuracy (↑)

VGGSound 0.51 37.4%
VGGSound-Think 0.87 62.6%

Table 1: VGGSound-Think Dataset caption diversity and alignment accuracy validation.

4 REASONAUDIO

In this section, we overview ReasonAudio and illustrate multimodal large language models
(MLLMs) for encoding multimodal conditions (video and text). The MLLM is kept frozen, and

4
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(b) Flow-matching transformer (c) MMDiT

Flow-Matching
Transformer

MLLM

Video latent Text latent Queries

Queries

🔥

❄

🔥🔥 🔥🔥

🔥🔥 🔥🔥

Temporal

“Tropical beach with 
turquoise water”

(a) Pipeline overview

Flow-matching
Transformer

Figure 3: ReasonAudio overview. It adopts a triple-stream MMDiT architecture. The temporal,
semantic, and audio representations are respectively provided by a frozen synchformer, learnable
queries and a VAE encoder. We use t to denote time embeddings.

learnable queries are introduced to bridge the understanding and generative components. Next,
we present the multimodal flow-matching transformer with MM-DiT blocks for effective condi-
tion injection. In the following, we employ preference optimization (Flow-DPO, Flow-RWR) using
synchronization feedback, aligning generative models with visual-synchrony preferences.

4.1 OVERVIEW

As illustrated in Figure 3, ReasonAudio consists of the following main components: 1) MLLMs
with learnable queries, which serves as the understanding module to reason over multimodal condi-
tions (video and text), 2) synchformer encoder (Iashin et al., 2024), which derives temporal latents
to capture audio-visual temporal alignment, 3) flow-matching transformer with multiple MM-DiT
blocks, which injects both semantic and temporal conditions into the generative process. and 4)
separately-trained neural vocoder and VAE, to convert continuous audio latents into raw waveforms
for high-fidelity audio synthesis.

4.2 MLLM SEMANTIC UNDERSTANDING

MLLMs are powerful reasoners with inherent strong reasoning and in-context learning capabilities
to produce semantic information that guides generative models. Recent approaches (Liu et al.,
2023; Chen et al., 2025a; Shi et al., 2024) demonstrate the effectiveness of MLLMs as backbones
for perceiving and reasoning scenes and dynamic environments, while these pipelines introduce
substantial complexity due to the multi-stage training to connect LLMs with diffusion backbones.

To avoid multi-stage and multi-task training, we freeze the MLLM backbone and include learnable
queries to bridge understanding (i.e., MLLMs) and generative models (i.e., flow-matching models).
Inspired by learnable prompts and queries (Pan et al., 2025; Gao et al., 2023), we prepend a set of
learnable tokens to the input sequence, allowing the frozen MLLMs to incorporate newly adapted
knowledge without fine-tuning. As illustrated in Figure 3(a), we randomly initialize and concat the
learnable queries after the video and text tokens and query out the conditions for generation. For
compatibility, we apply causal masking over the entire sequence instead of enabling full attention
only for specific tokens. In this work, we use Qwen-2.5-VL-7B (Bai et al., 2025) as a backbone,
which demonstrates strong video-text understanding capabilities in large-scale training.

4.3 GENERATIVE FLOW-MATCHING

Flow-matching generative models (Albergo & Vanden-Eijnden, 2022; Liu et al., 2022) are proba-
bilistic models that fit the data distribution p(x) by denoising in the data latent space. It encodes the
original high-dim data x into low-dim latent z = E(x), where the forward and reverse processes are
performed in minimizing the trajectory curvature and connecting data and noise on a straight line.
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As shown in Figure 3(c), we employ MM-DiT (Esser et al., 2024) as a triple-stream MMDiT archi-
tecture to showcase the multimodal joint training paradigm that jointly considers video, audio and
text modalities within a unified transformer framework. Tokens from MLLM outputs and modality
encoders (e.g., learnable queries and synchrony representations) are concatenated across modalities
and interact via joint scaled dot-product attention. To encode temporal dynamics, we apply relative
positional encoding via rotary positional embeddings (RoPE) (Su et al., 2024; Heo et al., 2024).
For classifier-free guidance (CFG), we apply random conditional feature dropping to text or video
conditions independently, enabling the model to jointly learn both conditional and unconditional
objectives.

4.4 TEMPORAL ALIGNMENT PERFERENCE POST-TRAINING

Beyond semantic understanding, another major challenge for VT2A generation is achieving robust
temporal alignment (Cheng et al., 2025; Luo et al., 2023) between input video and output audio.
Although prior works (Wang et al., 2024) explore contrastive audio–visual objectives and high-
frame-rate visual features to model temporal relations, audio–visual synchrony remains a persistent
bottleneck: temporal cues in learned video representations are often weak, making synchrony diffi-
cult to capture reliably without explicit human priors or preference signals.

To strengthen temporal alignment, we perform preference post-training using synchrony feedback,
aligning the generator with prior knowledge and preferences on visual–audio synchrony. We com-
pare several alignment strategies, including supervised fine-tuning (SFT), reward-weighted regres-
sion (RWR) (Peng et al., 2019), and direct preference optimization (DPO) (Rafailov et al., 2023;
Liu et al., 2025b). Models post-trained with preference optimization consistently improve temporal
synchrony and outperform strong baselines. More details are provided in Section 6.1.

Supervised fine-tuning (SFT) selects the highest-reward (winner) sample in each group and opti-
mizes toward desirable outputs, and the flow-matching regression loss is

LSFT(θ) = Ex0,y,t

[
∥ v⋆(xt, y, t)− vθ(xt, y, t)∥22

]
,

where v⋆(xt, y, t) is the supervision velocity, and vθ(xt, y, t) is the predicted velocity field under
parameters θ.

Reward-weighted regression (RWR) reweights samples by a softmax over rewards within each
group, thereby performing reward-weighted likelihood maximization. With reward-weighted re-
gression, the loss becomes:

LRWR(θ) = Ex0,y,t

[
exp

(
r(x0, y)

)
∥ v⋆(xt, y, t)− vθ(xt, y, t)∥22

]
,

where r(x0, y) is the reward associated with (x0, y). By weighting samples in this way, the flow-
matching model emphasizes high-reward examples, analogous to reward-weighted likelihood max-
imization in flow-matching training.

Direct performance optimization (DPO) aligns diffusion models with pairwise preferences. For
each condition y, we form a preference pair xw

0 , x
l
0 where xw

0 (winner) is preferred to xl
0 (loser) by

a synchrony reward. Concretely, letting xw
t , x

l
t denote their noised states and v⋆w := v⋆(xw

t , y, t),
v⋆l := v⋆(xl

t, y, t) the corresponding training targets, the loss contrasts the winner/loser errors rela-
tive to the reference model to amplify synchronized generations.

LDPO(θ) = −E{xw
0 ,xl

0,y}∼D, t

[
log σ

(
− βt

2

(
∆w

t −∆l
t

))]
,

where ∆t = ∥v⋆(xt, y, t) − vθ(xt, y, t)∥22 − ∥v⋆(xt, y, t) − vref(xt, y, t)∥22, and σ(·) denotes the
logistic sigmoid, xt denotes the state at time t ∈ [0, 1] in an flow-matching process, vref(·, y, t)
is a frozen reference model, and v⋆(·, y, t) is the FM supervision computed from (x0, t). β is the
hyperparameter to control the trade-off between the strength of the policy update and distance to the
pretrained model.

5 TRAINING AND EVALUATION

5.1 DATASET

In training, we use VGGSound-Think as our primary video-text-to-audio (VT2A) training corpus.
For audio-text data, we aggregate pairs from AudioSet-SL (Gemmeke et al., 2017), Freesound, and
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AudioCaps (Kim et al., 2019), where the visual inputs are set to null tokens, resulting in a diverse
corpus for training multimodal models. For evaluation (Luo et al., 2024; Iashin & Rahtu, 2021), we
adopt the VGGSound and AudioCaps test set as the standard benchmark and further probe reasoning
on the VGGSound-Think test split. To assess generalization, we report results on the Movie Gen
Audio Bench dataset (Polyak et al., 2025) in Appendix I.

5.2 MODEL CONFIGURATIONS

For the MLLM understanding module, we build on the strong open-source Qwen2.5-VL-7B-Instruct
backbone (Bai et al., 2025) and train a set of learnable queries Q ∈ RN×D, where we use N = 77
query tokens and D equals the MLLM hidden dimension. For flow-matching models, the base
learning rate is set to 0.005. To sample from the flow transformer, we use torchdiffeq (Chen et al.,
2018) package to implement the ODE solvers with a step size of 0.04.

We train with a batch size of 512 for 200K optimization steps, followed by 100K steps of preference-
based post-training. With this large batch size, the full training run converges in approximately 36
hours. In post-training, we apply LoRA (Hu et al., 2022) with rank 64 to the linear layers of the
Transformer. Unless specified, we report results with our 160M-parameter post-trained model. Full
hyperparameter settings are provided in Appendix B.

For synchronization feedback, we leverage an audio–visual temporal alignment classifier from Luo
et al. (2024) as the reward model: given an audio–video pair (x0, y), the classifier predicts an align-
ment score (↑), and we define the reward as r(x0, y) = Align(x0, y). Using a different model/metric
among post-training and evaluation reduces the risk of reward hacking or overfitting to the reward
model’s distribution.

5.3 EVALUATION METRICS

We evaluate models using objective and subjective metrics over audio quality, semantic alignment
(text/video-audio), and audio-visual temporal synchrony. For fidelity, we report Frechet distance
(VGG) (↓), KL divergence (↓), and Inception Score (PANNs) (↑). For semantic alignment, we calcu-
late 1) ImageBind (Girdhar et al., 2023) score (IB) (↑) - measuring similarity between the input video
and the audio; 2) CLAP (Elizalde et al., 2023) score (↑) – measuring alignment between text and
audio. For temporal alignment, the synchronization score (DeSync) (↓) from Synchformer (Iashin
et al., 2024) quantifies the misalignment between the audio and video.

For subjective metrics, we conduct crowdsourced human evaluations on Amazon Mechanical Turk,
where raters are asked to rate MOS (mean opinion score) on a 20-100 Likert scale. We report
MOS-Q (perceived audio quality) and MOS-F (perceived video–audio fit/synchrony), each with
95% confidence intervals (CI). Additional details are provided in Appendix G.

6 RESULTS

6.1 MAIN RESULTS

Video-to-Audio Generation For video–text-to-audio (VT2A) generation, we adopt the VG-
GSound test set as the standard benchmark and compare ReasonAudio with state-of-the-art systems,
including Diff-Foley (Luo et al., 2024), Frieren (Wang et al., 2024), Im2Wav (Sheffer & Adi, 2023),
MMAudio (Cheng et al., 2025), Tell What You Hear From What You See (Liu et al., 2024), Foley-
Gen (Mei et al., 2024), and ThinkSound (Liu et al., 2025a). Table 2 summarizes the comparison and
yields three observations:

1) Semantic alignment. ReasonAudio achieves strong cross-modal coherence, with an ImageBind
score of 0.30 (video–audio) and a CLAP score of 0.23 (text–audio), indicating that the MLLM-
backed understanding module helps generate audio well aligned with both modalities. 2) Temporal
alignment. ReasonAudio attains state-of-the-art synchrony with DeSync = 0.29, demonstrating
the effectiveness of preference optimization which aligns generative models with visual synchrony
preferences. We discuss more details in Section 6.3. 3) Audio quality. ReasonAudio delivers per-
ceptual quality comparable to strong baselines, achieving FD = 1.89 and KL = 1.80, suggesting that

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Perceptual Quality Semantic Temporal Subjective Evaluation
Model FD (↓) KL (↓) IS (↑) CLAP (↑) IB (↑) DeSync (↓) MOS-Q (↑) MOS-F (↑)

Diff-foley 8.29 3.15 10.8 0.12 0.19 0.81 69.7±0.9 72.6±1.2
Frieren 1.34 2.53 12.3 0.19 0.22 0.89 82.3±1.3 76.2±0.8
V2A-Mapper 1.95 2.42 13.1 0.13 0.24 1.04 75.6±2.9 73.6±1.9
MMAudio 1.76 1.66 13.2 0.22 0.31 0.44 80.2±1.5 80.3±1.7
ThinkSound 2.43 2.46 12.5 0.19 0.26 0.63 77.5±2.1 79.4±1.5
VATT-Gemma-T 1.64 1.95 12.8 0.22 0.26 0.77 - -
Foleygen 2.83 2.13 11.7 0.17 0.23 0.86 - -

ReasonAudio-Small 1.89 1.80 16.9 0.23 0.30 0.29 80.5±1.3 83.3±1.6
ReasonAudio-Large 1.56 1.75 15.4 0.24 0.31 0.28 81.3±1.1 84.6±1.4

Table 2: Video-to-audio results on VGGSound testset. Following the common practice (Cheng et al.,
2025), Diff-Foley, Im2Wav, and Frieren are conditioned on video, whereas MMAudio, ThinkSound,
and ReasonAudio are conditioned on video and text. The best result is in bold and the second best
result is underlined.

Perceptual Quality Semantic Subjective Evaluation
Model FD (↓) KL (↓) IS (↑) CLAP (↑) MOS-Q(↑) MOS-F(↑)

Make-An-Audio 2 1.42 1.24 9.6 0.28 82.6±0.8 72.3±1.8
Tango 2 2.96 1.16 10.2 0.32 75.9±1.6 83.1±1.1
SoundCTM 3.31 1.61 9.7 0.31 74.2±0.9 80.3±1.4
MMAudio 2.53 1.47 11.0 0.33 78.2±1.5 82.1±1.2

ReasonAudio-Small 2.36 1.43 11.7 0.34 79.6±1.1 84.6±0.9
ReasonAudio-Large 1.88 1.42 11.5 0.35 80.8±1.3 85.2±1.0

Table 3: Text-to-audio evaluation results on Audiocaps testset. The best result is in bold and the
second best result is underlined.

improved semantic and temporal alignment does not come at the expense of audio fidelity. More de-
tailed comparisons on ReasonAudio’s video-to-audio generation have been attached in Appendix C.

Text-to-Audio Generation The video-text-to-audio framework is capable of text-to-audio syn-
thesis without additional fine-tuning. We adopt the AudioCaps test set (Kim et al., 2019) as the
standard benchmark and compare ReasonAudio with TANGO 2 (Majumder et al., 2024), Make-An-
Audio 2 (Huang et al., 2023), SoundCTM (Saito et al., 2024), and MMAudio (Cheng et al., 2025)
and present the comparison in Table 3. Consistent with our findings in video-to-audio generation,
we make two key observations: 1) In terms of audio quality, Make-An-Audio 2 presents a slightly
better FD of 1.42. We hypothesize this gap stems from resampling: ReasonAudio generates 44
kHz audio that is downsampled to 16 kHz for VGG-based feature extraction, whereas the baseline
natively outputs 16 kHz audio and thus avoids resampling-induced degradation. 2) On text-audio
semantic alignment. ReasonAudio attains state-of-the-art performance with a CLAP score of 0.34.
This highlights the effectiveness of MLLMs as understanding components, which strengthen se-
mantic reasoning and enable the model to generate faithful audio aligned with both text and video
descriptions.

6.2 VIDEO-TO-AUDIO REASONING RESULTS

Text annotations in existing audio–visual benchmarks (e.g., VGGSound-test) often carry weak se-
mantics and thus limit semantic reasoning. To provide an in-depth evaluation of semantic follow-
ing in video-and-text-to-audio generation, we additionally evaluate on VGGSound-Think test set,
which allows us to assess a model’s ability to capture acoustic hint and understand descriptions on
audio–visual relations. Further comparisons with Movie Gen Audio are included in the Appendix I.

Model FD (↓) CLAP (↑) IB(↑)

DeepSound-V1 2.55 0.23 0.27
ThinkSound 2.67 0.25 0.29
ReasonAudio 2.09 0.28 0.32
ThinkSound (Train) 2.49 0.24 0.30

Table 4: Video-to-audio reasoning results
on VGGSound-Think testset.

Quantitative results We compare ReasonAudio with
systems featuring advanced semantic understanding,
including DeepSound-V1 (Liang et al., 2025) and
ThinkSound (Liu et al., 2025a). As shown in Ta-
ble 4, ReasonAudio achieves strong text–audio seman-
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tic alignment with a CLAP score of 0.28 and robust
video–audio coherence with an ImageBind score of
0.32, indicating that it generates audio well aligned
with both text and video. We also train ThinkSound
using the VGGSound-Think annotations, ensuring that the text conditioning is consistent with the
ReasonAudio training procedure. As shown in Table, ReasonAudio achieves stronger text–audio
semantic alignment (CLAP: 0.28) and more robust video–audio coherence (ImageBind: 0.32), sug-
gesting the effectiveness of learnable prompts derived from strong MLLMs, which provide robust
multimodal understanding and serve as an effective bridge between understanding and generation.

Unlike baselines that rely on multi-stage pipelines where MLLMs explicitly predict captions before
connecting to diffusion models, our approach leverages learnable prompts, thereby avoiding the
complexity of multi-stage training/inference and the need to tightly couple LLMs with diffusion
backbones.

Case study Beyond quantitative evaluation, we provide case studies to qualitatively examine the
model’s ability to 1) reason over acoustic hints and 2) understand descriptions of audio–visual rela-
tions. We attach the full prompts in Appendix F, and we have the following findings:

• Hint reasoning (Figure 1(a)). Our model (bottom) successfully interprets the acoustic hint
“someone calls 911 and stays here until help arrives” and generates the siren sounds without
the sound source (i.e., police siren) being explicitly specified. In contrast, the baseline fails to
connect the text to the expected emergency context. The result highlights stronger semantic un-
derstanding empowerd by MLLMs: it maps the implicit “911” cue to an appropriate acoustic
without the object (siren) being explicitly named.

• Understanding descriptions on audio–visual relations (Figure 1(b)). The baseline (top) pri-
marily reproduces broadband snow/wind energy while ignoring the off-screen sound instructions
“human speech”. In contrast, our model introduces salient off-screen human elements: the spec-
trogram shows intermittent narrowband ridges and energy peaks aligned with human vocal bursts,
together with sustained turbulence consistent with wind. These results highlight the tri-modal
audio–visual–text alignment, where the model better matches the textual specification of multi-
object (snow/wind/human) and on/off-screen relationships.

6.3 ANALYSIS AND ABLATION STUDIES

To verify the effectiveness of several designs in ReasonAudio, including MLLMs, reward post-
training and scalability, we conduct ablation studies and discuss the key findings as follows.

Scalability. We report results for two model sizes: 160M (M) and 750M (L) parameters. As
shown in Table 2 and Table 3, scaling up improves most metrics. For example, in the video-to-audio
setting, increasing the model from 160M to 750M yields a clear improvement in perceptual quality
(FD from 1.89 to 1.56), while the gain in audio–visual alignment is minor (DeSync from 0.43 to
0.42). This suggests that larger capacity primarily boosts fidelity, with limited gains for temporal
synchrony.

Model FD (↓) CLAP (↑) IB (↑)

ReasonAudio 2.09 0.28 0.32
CLIP 1.92 0.24 0.25
LLM 2.11 0.27 —
CLIP+LLM 2.06 0.28 0.28
ReasonAudio-Omni 1.98 0.29 0.31

Table 5: Ablations of understanding compo-
nents.

MLLMs For Understanding. We ablate the
model’s understanding module in VGGSound-Think
testing set by replacing the MLLM with (i) CLIP
features, (ii) a text-only LLM (same MLLM with the
visual stream removed), (iii) a hybrid of CLIP and
text-only LLM, and (iv) Qwen-Omni-7B (Xu et al.,
2025) as MLLM backbone. As can be seen in Ta-
ble 5, the CLIP-based variant yields lower semantic
scores (CLAP and IB), suggesting that contrastive
features hinder reasoning over dynamic, long-range
context. The text-only LLM also limits the performance as it reasons solely over text, making
it unable to capture audio-visual relations. The hybrid baseline achieves comparable text–audio
alignment (CLAP), indicating that an LLM can effectively reason over dynamic, long-range context
comparable to MLLMs. However, it yields lower audio–visual semantic alignment (IB), suggesting

9
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that replacing an MLLM with a CLIP-based visual encoder weakens cross-modal understanding.
Omni ReasonAudio presents improvement in fidelity (FD) and text-audio alignment (CLAP), while
witnessing a degradation in video alignment (IB). Omni MLLM is trained with video–audio super-
vision and is therefore stronger at tri-modal (text–video–audio) reasoning and alignment.

Figure 4: Reward post-training. As discussed in Section 5.2, we initialize from the flow-matching
pre-trained model and optimize the reward objective for 100K steps.

Reward Post-Training. We compare preference post-training among DPO, SFT, and RWR strate-
gies. As can be seen in Figure 4, the DPO models demonstrate the distinct temporal alignment
improvement and DPO with β = 5 yields the best temporal alignment scores, indicating that DPO
fine-tuning is more effective than SFT and RWR in leveraging preference feedback. We also note
that preference post-training introduces a slight degradation in audio quality measured by FD. Unlike
SFT, which only optimizes toward desirable (winner) outputs, both DPO and RWR also incorporate
undesirable (loser) outputs during training, enabling more effective preference learning and resulting
in superior alignment performance.

For DPO fine-tuning, β controls the trade-off between the strength of the policy update and fidelity
to the pretrained model. We ablate β∈{1, 2, 5, 50}. Increasing β accelerates reward improvement,
but beyond β = 5 we observe a noticeable drop in audio quality (higher FD), indicating overfitting
toward the reward model. Although the alignment–fidelity trade-off is observed, 1) ReasonAudio-
Large ranks the second-best performance model in audio quality (FD), and 2) ReasonAudio-Small
and ReasonAudio-Large attain state-of-the-art performance with an IS score of 11.7, 11.5. To bal-
ance adaptively during post-training, one alternative way is to dynamically calibrate β at data quality
considerations (Wu et al., 2024), where β is adaptively decreased for closely-matched pairwise data
(i.e., low gap data) to facilitate assertive updates, and increased for easily-discriminated pairs (i.e.,
high-gap data)

7 CONCLUSION

In this work, we proposed ReasonAudio, an MLLM-empowered flow-matching generative model
with stronger semantic understanding and robust temporal alignment. We addressed the scarcity
of semantically rich annotations by constructing VGGSound-Think, a tri-modal (video–text–audio)
dataset enriched with acoustic hints and descriptive annotations of audio–visual relations (objects,
on-/off-screen attribution). Empowered by MLLMs with learnable queries, ReasonAudio excelled
in understanding multimodal conditions (video and text) and following complex semantics. Further-
more, preference optimization (Flow-DPO, Flow-RWR) effectively aligned generative models with
visual synchrony preferences, leading to enhanced audio–visual temporal alignment. Extensive ex-
periments demonstrate state-of-the-art VT2A performance, with substantial gains in both semantic
alignment and temporal synchronization.
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Appendices
ReasonAudio: Semantic Reasoning and Temporal Synchrony in

Video–Text-to-Audio Generation

A DATA SETUP

We present the statistics for multimodal datasets as follows:

Conditions Dataset Hours

Video-Text VGGSound-Think 450

Text Audioset (Gemmeke et al., 2017) 262
Text Freesound ∼ 1200
Text AudioCaps (Kim et al., 2019) 128

Table 6: Statistics for datasets used for training.

B MODEL CONFIGURATIONS

We list the model hyper-parameters of ReasonAudio in Table 7.

Hyperparameter ReasonAudio

M

Transformer Layer 12
Transformer Embed Dim 448

Transformer Attention Headers 7
Number of Parameters 160 M

L

Transformer Layer 21
Transformer Embed Dim 896

Transformer Attention Headers 14
Number of Parameters 750 M

BigVGAN Vocoder

Upsample Rates [5, 4, 2, 2, 2, 2]
Hop Size 320

Upsample Kernel Sizes [9, 8, 4, 4, 4, 4]
Number of Parameters 121.6M

Table 7: Hyperparameters of ReasonAudio.

B.1 VAE

The audio encoder E takes mel-spectrogram xa as input and outputs compressed latent z = E(xa).
The audio decoder D reconstructs the mel-spectrogram signals x̃a = D(z) from the compressed rep-
resentation z. Different from other modalities, we use an audio VAE with 1D-convolution to improve
the model’s capacity for variable-length audio. VAE solves the problem of excessive smoothing in
mel-spectrogram reconstruction through adversarial training with a discriminator.

The training objective is to minimize the weighted sum of reconstruction loss, GAN loss, and KL
penalty loss. To this end, ReasonAudio takes advantage of the VAE to predict self-supervised rep-
resentations instead of waveforms. It largely alleviates the challenges of modeling long continuous
data and guarantees high-level semantic understanding.
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B.2 VOCODER

We train a BigVGAN (Lee et al., 2022) vocoder from scratch for the spectrogram to waveform
generation. The synthesizer includes the generator and multi-resolution discriminator (MRD). The
generator is built from a set of look-up tables (LUT) that embed the discrete representation and a
series of blocks composed of transposed convolution and a residual block with dilated layers. The
transposed convolutions upsample the encoded representation to match the input sample rate.

C VIDEO-TO-AUDIO (V2A) GENERATION

For video-to-audio (V2A) generation without text, we use the VGGSound test set as the standard
benchmark and evaluate ReasonAudio-Small in terms of perceptual quality, video–audio semantic
alignment, and audio–visual temporal synchrony. As shown in Table, ReasonAudio under pure V2A
conditioning achieves strong cross-modal coherence, with an ImageBind score of 0.24 and a DeSync
score of 0.29, and maintains comparable perceptual quality (FD) to competitive baselines.

In summary, while our structural prompts explicitly provide acoustic hints and structured au-
dio–visual relation descriptions (e.g., object grounding and on-/off-screen attribution), the model
remains robust even without text guidance for two reasons: 1) instead of directly relying on textual
representations, ReasonAudio conditions on learnable prompts derived from strong MLLMs, which
provides robust multimodal understanding and serves as an effective bridge between understand-
ing and generation; 2) Besides, we apply random conditional feature dropping during classifier-free
guidance (CFG) training, which improves cross-modal generalization while preserving the flexibil-
ity of using an text input.

Model FD (↓) KL (↓) IS (↑) IB (↑) DeSync (↓)
ReasonAudio-VT2A 1.89 1.80 16.9 0.23 0.29
ReasonAudio-V2A 1.91 1.83 16.7 0.24 0.29

D VGGSOUND-THINK DATASET VALIDATION

D.1 ANNOTATION COLLETCTION

Each sample is annotated through a structured, step-by-step procedure:

• Coarse-grained acoustic gist. For each audio clip, we prompt GPT-4o with:

You are given a video (frames) and its audio. Write a single-sentence coarse acoustic gist that
summarizes the dominant sound events and overall ambience without naming specific sound-
producing objects (e.g., avoid “car”, “dog”, “siren”). Instead, describe sound attributes such as
pitch, timbre, rhythm, intensity, continuity, and background/foreground. Output only the one
sentence.

to obtain a high-level hint that captures the main acoustic content while remaining object-agnostic.

• Fine-grained sound grounding. We prompt GPT-4o with:

You are given a video (frames) and its audio. Write one concise paragraph (2–4 sentences) that
grounds salient sounds to visible entities and describes how the sound evolves over time.
Requirements: (1) Mention only entities that are clearly supported by the video (do NOT invent
objects). (2) Explicitly connect each salient sound to its most likely on-screen source; if the
source is likely off-screen, say so. (3) Include temporal progression using natural phrasing (e.g.,
“begins”, “rises”, “fades”, “as X happens”). (4) Prefer concrete audio descriptors (e.g., “wailing
siren”, “engine chugging”, “faint speech”, “reverberant”) and visual evidence cues (e.g., “a truck
is shown”, “mouth movement”, “vehicle starts moving”).

to align sound events with specific visible objects, refining the gist into grounded descriptions.

• Structured audio–visual relation annotations. For each grounded object, we prompt GPT-4o
with:
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You are given a video (frames) and its audio. Produce a structured, line-based annotation of
the main sound-producing entities.
Step 1: Identify objects. List 2–6 entities that plausibly produce salient sounds. Name
each entity with a short snake case identifier (e.g., mechanical siren, human speech,
fire truck engine). Use only entities supported by the video.
Step 2: For each object, output exactly ONE line in the following format: <Object
’{object id}’ screen={on screen/off screen}> {audio keywords}
audio keywords requirements: - Provide 3–8 terse keywords/phrases separated by spaces. -
Focus on sound attributes and events, e.g., wailing, rise fall, reverberant, faint,
rumble, chugging, idling. - If helpful, include a single interaction cue such as
masked by X or overlaps with X (where X is another object id).

to generate descriptive keywords and explicit audio–visual relations, including on-/off-screen at-
tribution and interactions among objects.

• Filtering and validation. We conduct a strict manual check where 5% of the full dataset is
randomly sampled for human review as a quality control measure. This procedure serves as a
check on our filtering rules and helps ensure the dataset’s overall reliability. During inspection,
reviewers evaluate both technical alignment (e.g., audio–visual synchronization and consistency)
and perceptual correspondence between the sound and the visual content.

D.2 GPT-4O COMPARISON

We evaluate and compare with VideoLLaMA3 (Zhang et al., 2025), an open-source MLLM, to
extract temporal and semantic information from videos. Using the same example in Figure 2 (“fire
truck siren”), we provide a qualitative comparison in the table.

GPT-4o VideoLLaMA3

Fine-grained sound
grounding

The scene is an urban street or
parking lot at dusk, featuring a
vintage red fire truck.
A mechanical siren begins, winding
up and then rapidly down in pitch.
As the siren fades, a faint voice and
the low, chugging rumble of the
truck’s engine becomes prominent
as the vehicle slowly begins to drive
away.

A fire truck drives on a city street.
The siren is loud and varies in pitch,
with engine/road noise underneath.
After it passes, the siren weakens
and background/engine noise
remains.

Structured audio–visual
relations

<Object
‘mechanical siren’
screen=on screen> wailing
rise fall; reverberant
<Object ‘human speech’
screen=on screen> faint;
brief; reverberant
<Object
‘antique fire truck engine’
screen=on screen> idling
rumble; chugging

fire truck (red), flashing lights
siren: loud, up/down pitch, then
quieter
engine/road noise present

VideoLLaMA3 demonstrates strong high-level multimodal understanding and conversational ability.
However, it is less efficient at following our instruction format: (1) for fine-grained sound grounding,
it tends to produce shorter and less precise descriptions; and (2) for structured audio–visual relation
annotations, its outputs contain fewer explicit fields and are less consistently structured.

D.3 DIFFERENCES IN TEXT FORMAT BETWEEN VGGSOUND-THINK AND VGGSOUND

The VGGSound-Think reasoning captions are written in natural language and comprise three com-
ponents: (1) a coarse-grained acoustic gist, (2) fine-grained sound grounding, and (3) structured
audio–visual relation annotations. The key format differences relative to standard VGGSound cap-
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tions mainly lie in the additional acoustic hints and the explicit structured audio–visual relations
(e.g., object grounding and on-/off-screen attribution).

To test the text impacts on generation, we gather results from Table 1 and Table 2, respectively
generated in the VGGSound test and VGGSound-Think test set, to assess a model’s ability to
capture acoustic hints and understand structured audio–visual relation descriptions. We evaluate
ReasonAudio-Small in terms of perceptual quality (FD, KL) and video–audio semantic alignment
(IB). Since the ground-truth texts differ across the two settings, the CLAP is less informative and thus
omitted. As shown in the Table, ReasonAudio (VGGSound-Think) achieves stronger video–audio
semantic alignment and enhanced perceptual quality, showcasing the benefits of learning semanti-
cally rich textual descriptions and the generalization to different text descriptions.

Model FD (↓) KL (↓) IB(↑)
ReasonAudio (VGGSound-Think) 2.09 1.38 0.32
ReasonAudio (VGGSound) 2.36 1.43 0.31

Table 8: Ablations on text format.

ReasonAudio generalize well to different text formats (structured or plain text) for two main rea-
sons: 1) instead of directly relying on textual representations, ReasonAudio conditions on learnable
prompts derived from strong MLLMs, where the MLLMs provides robust multimodal understand-
ing across various text formats; 2) Besides, ReasonAudio is jointly trained on both structured texts
(VT2A) and plain texts (T2A) data, which improves cross-modal generalization and preserves the
flexibility of text format.

E ABLATION STUDIES ON THE NUMBER OF QUERIES

For the MLLM understanding module, we use N = 77 learnable queries intended to enable a
fair comparison between LLM and CLIP-based conditioning by matching the representation shape
Q ∈ RN×D, where we use D equals the MLLM hidden dimension.

We also ablate the understanding module on the VGGSound-Think test set by varying the number
of learnable queries. As can be seen in Table, reducing the number of queries consistently de-
grades semantic scores (CLAP and IB). Increasing N accelerates improvement, but gains saturate at
N = 128, where we observe only marginal improvements, indicating that learnable queries effec-
tively compress conditioning information into a fixed-length token set, providing both compact and
semantically rich latent embeddings.

Queries FD (↓) CLAP (↑) IB (↑)
128 2.04 0.29 0.33
77 2.09 0.28 0.32
64 2.17 0.26 0.31
32 2.32 0.24 0.29

Table 9: Evaluation varying the number of learnable queries

F VGGSOUND-THINK EXAMPLES

Here we provide the prompt examples of VGGSound-Think, showcasing the strong capabilities to
reason over acoustic hints:

<HINT>Someone calls 911 and stays here until help arrives.</HINT> <TRACK
name=’caller waiting’ screen=on screen> <KEYWORDS> quiet room, anxious
pacing, soft rustle, handset handling </KEYWORDS> </TRACK> <TRACK
name=’approaching emergency vehicle’ screen=off screen> <KEYWORDS> cycling
tonal pattern, rising loudness, approach-pass, outdoor </KEYWORDS> </TRACK>
<TRACK name=’dispatch handset exchange’ screen=off screen> <KEYWORDS> clipped

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

phrases, short bursts, handheld device, intermittent </KEYWORDS> </TRACK> <TRACK
name=’intersection yield dynamics’ screen=off screen> <KEYWORDS> brake rub, tire scrub,
indicator ticks, staggered movement </KEYWORDS> </TRACK>

<HINT>Crisp, granular crunching under pressure is followed by a series of brief, energetic, high-
pitched tonal bursts and indistinct murmurs. A powerful and sustained rush of air builds, suggesting
rapid movement through an open, cold environment. </HINT> This video captures a first-person
perspective of someone standing on and then tumbling down a snowy mountain slope. The audio
begins with faint, distant shouts and wind, which are abruptly replaced by a loud, chaotic scrap-
ing and rushing sound as the person slides down the hill. This intense sound of friction and tur-
bulence continues until the person comes to a stop, followed by a close-up, heavy exhale. The
overall acoustics are dominated by the near-field, high-energy turbulent noise of the slide, contrast-
ing with the initially distant environmental sounds. <TRACK name=’wind’ screen=off screen>
<KEYWORDS> broadband noise turbulent rushing </KEYWORDS> </TRACK> <TRACK
name=’distant human speech’ screen=off screen> <KEYWORDS> distant muffled indistinct
chatter </KEYWORDS> </TRACK> <TRACK name=’human vocalization’ screen=off screen>
<KEYWORDS> close mic effort grunt breathy exhale </KEYWORDS> </TRACK> <TRACK
name=’sliding on snow’ screen=on screen> <KEYWORDS> friction scraping turbulent rush
granular </KEYWORDS> </TRACK>

G EVALUATION

To probe audio quality, we conduct the MOS-Q (mean opinion score) tests and explicitly instruct
the raters to “focus on examining the audio quality and naturalness.”. The testers present and rate
the samples, and each tester is asked to evaluate the subjective naturalness on a 20-100 Likert scale.

To probe video-audio alignment, human raters are shown an audio and a video and asked “Does the
audio align with video faithfully?”. They must respond with “completely”, “mostly”, or “somewhat”
on a 20-100 Likert scale to score MOS-F.

Our subjective evaluation tests are crowd-sourced and conducted via Amazon Mechanical Turk.
These ratings are obtained independently for model samples and reference audio. The screenshots
of instructions for testers have been shown in Figure. We paid $8 to participants hourly and totally
spent about $600 on participant compensation. A small subset of audio samples used in the test is
available at https://ReasonAudio.github.io/.

Ratings are collected independently for model-generated samples and reference audio, and we re-
cruit 20 raters with normal hearing. All samples (50 video-audio pairs per subject score) are pre-
sented in randomized order to mitigate ordering effects. We report each subjective metric as mean
± standard deviation (SD) in the main paper to reduce randomness, where SD reflects the variability
of ratings across samples and raters.

H MOVIEGEN AUDIO GENERALIZATION

To assess generalization, we include additional qualitative visualizations of video-to-audio genera-
tion on the MovieGen Audio benchmark and report objective metrics (IS, IB, CLAP, and DeSync
score) to quantify fidelity and alignment.

Method IS ↑ IB ↑ CLAP ↑ DeSync ↓
MMAudio 8.40 27.0 0.43 0.77
ThinkSound 8.64 29.6 0.45 0.76
ReasonAudio 8.96 32.8 0.46 0.59

Table 10: Automatic metrics for MovieGen Audio Generalization.

Compared to MMAudio and ThinkSound as baselines, ReasonAudio achieves strong text–audio se-
mantic alignment with a CLAP score of 0.46 and robust video–audio coherence with an ImageBind
score of 32.8, indicating better generalization to the MovieGen Audio benchmark and improved
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adherence to semantic conditioning. The results highlight the advantage of using MLLMs as an un-
derstanding module directly bridge multimodal understanding and audio generation, strengthening
end-to-end multimodal reasoning.

I MORE VISUALIZATION

In this section, we put more visualizations of video-to-audio generation results.

J LIMITATIONS

ReasonAudio adopts flow generative models for high-quality synthesis, and thus, multiple ODE
refinements are required for better results. Besides, MLLMs typically require more GPU memory
in training and inference. One of our future directions is to develop a lightweight and fast MLLM
empowered flow-based transformer for accelerating sampling.

K USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, MLLMs have the following usage:

• MLLMs are powerful reasoners with inherent strong reasoning and in-context learning
capabilities to produce semantic information that guides generative models. We use Qwen-
2.5-VL-8B (Bai et al., 2025) as backbone which demonstrates strong video-text under-
standing capabilities for perceiving and reasoning scenes and dynamic environments.

• To construct VGGSound-Think, we generate audio descriptions using GPT-4o (Hurst et al.,
2024) which excells in multimodal understanding and conversations. Each sample is anno-
tated through a structured, step-by-step procedure.

L REPRODUCIBILITY STATEMENT

We will release our code in the future. The ReasonAudio model that we build upon is publicly
available through the SiT repository (Ma et al., 2024). To aid reproducibility, we have included an
overview of the hyperparameters in Table 7.
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footsteps on a cobblestone road

(a) Sample 1

Piano keystroke and key-release sounds

(b) Sample 2

Train–rail friction noise

(c) Sample 3

Figure 5: Visualizations of video-to-audio generation in MovieGen Audio Bench.
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