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ABSTRACT

As datasets continue to grow, vector-based search becomes more storage and com-
pute intensive, requiring large-scale systems to support retrieval. Proposed solu-
tions range from quantization techniques that balance speed and accuracy, to hash-
ing methods that learn compact binary representations. This paper promotes the
use of hyperbolic space for its compact nature whilst overcoming its slow retrieval
via binarization. Specifically, we address hyperbolic space’s inherent slowness by
proving that its complex similarity calculations can be equated to a binary XOR
operation. Our approach allows for 90% less storage and at least 4.7 times faster
search while maintaining performance of full-precision Euclidean embeddings.

1 INTRODUCTION

Compressed representations benefit information retrieval, as they greatly reduce storage require-
ments for data embeddings. Therefore, this property is desirable in many practical scenarios, where
retrieval-by-embedding needs to be fast or performed on large collections. Prior work has shown
that considerable speed-ups can be obtained for Euclidean representations by binarizing (Cai et al.,
2020; Jacob et al., 2018; Kim et al., 2021), or by hashing (Wang et al., 2018; Shen et al., 2020;
Hoe et al., 2021) representations on top of a learned network. These approaches do so by splitting
the Euclidean representations into regular grids. In contrast, hyperbolic representations naturally
allow for lower-dimensional representations (Long et al., 2020) due to their compact nature. Un-
fortunately, this compactness comes with a trade-off: reduced computation speed due to complex
similarity calculations (Peng et al., 2021). In this work, we show that this trade-off can be overcome
through binarization, thereby unlocking the full potential of hyperbolic embeddings.

Hyperbolic deep learning has quickly gained traction in the field. Primarily, because it allows em-
bedding hierarchies with minimal distortion (Nickel & Kiela, 2017), vastly outperforming Euclidean
hierarchical embeddings (Ganea et al., 2018b; Sala et al., 2018). These benefits have been shown
for various research problems, from graph networks (Chami et al., 2019; Dai et al., 2021; Liu et al.,
2019) to reinforcement learning (Cetin et al., 2023). Specifically, for image and video representa-
tion learning, where search is often performed, hyperbolic geometry allows for fewer embedding
dimensionalities (Liu et al., 2020; Ermolov et al., 2022) and better hierarchical learning (Nickel &
Kiela, 2017; Ganea et al., 2018b; Sonthalia & Gilbert, 2020). Despite these advantages, hyperbolic
embeddings have not been a viable option for retrieval-by-embedding, as calculating the distance
between embeddings involves multiple slow vector operations.

This paper introduces binary hyperbolic embedding, a binarization approach that addresses the core
limitation of hyperbolic embeddings for retrieval. As contributions, we first prove how to approx-
imately binarize distances in the Poincaré model of hyperbolic space at high compression rates.
Second, we demonstrate how to use the binarized distance in a hyperbolic hierarchical embedding
network to get both fast binarized search and compact hyperbolic embeddings.

Our contributions are as follows:

• We prove that slow hyperbolic distance computation is equivalent to fast Hamming distance
computation with propose binary encoding.

• With our binary hyperbolic embedding, we are able to induce a large speed-up with minimal
loss in performance, thus obtaining at least 4.7 × faster speeds than full-precision euclidean
embeddings.

1



Under review as a conference paper at ICLR 2024

• We further show that these benefits hold across a variety of settings, including the ability
to incorporate hierarchical knowledge.

Our work makes it possible to perform fast search in binarized hyperbolic space, making hyperbolic
embeddings a viable alternative for large-scale search and retrieval.

2 RELATED WORK

Learning with binarized and quantized embeddings. Compressing representations is a common
task in retrieval and search. For a query, the goal is to find the nearest neighbors in a collection.
Since search typically needs to occur on-the-fly (Yuan et al., 2020; Wang et al., 2018) or on huge
collections (Jang & Cho, 2021; Chen et al., 2023), it is imperative to efficiently embed queries
and data collections. The efficiency of an embedding can be expressed in bits, where fewer bits
can ultimately only be obtained in two ways: using fewer embedding dimensions (Cao et al., 2020;
Hausler et al., 2021) and/or using fewer bits per dimension (Choukroun et al., 2019; Yao et al., 2022;
Bai et al., 2022). For the former, the focus is largely on obtaining highly discriminative descriptors
that are either optimised to be compact as in (Cao et al., 2020), or reduced to lower dimensionality
with PCA as in (Hausler et al., 2021), a more complete overview is given in (Chen et al., 2023).
A key difference with these works is that they rely on Euclidean embeddings, whereas hyperbolic
embeddings naturally offer a more compressed representation, which comes in handy when few
dimensions are desired.

For using fewer bits per embedding dimension, classical solutions are given by quantization tech-
niques (Jacob et al., 2018), where representations are converted from float to discrete values. Tradi-
tionally, methods such as Product Quantization (Jégou et al., 2011) have been used for this purpose,
but binarized networks (Lin et al., 2020; Zhu et al., 2020) have also gained attention in recent years.
In particular, the recent popularity of large-scale models (Radford et al., 2021a) has led to an in-
creasing demand for quantized networks, resulting in a series of quantization models specifically
designed for large models (Liu et al., 2021; Yao et al., 2022). Inspired by these developments, we
seek to bring these advantages of binarization to hyperbolic embeddings.

Another direction for compressing embeddings is given by hashing. Hashing focuses on efficiently
encoding high-dimensional data into compact binary codes (Shen et al., 2018; Hoe et al., 2021; Shen
et al., 2020). The goal for hashing is to learn a compact binary code that preserves the semantic
similarity or structure of the original data, thus reducing the storage and computational costs for
retrieval methods whilst preserving performance as much as possible. As this is a learning problem,
the majority of emphasis is placed on finding the right optimization targets (Hoe et al., 2021). Unlike
our proposed binarization approach, hashing requires optimization of binary codes for a specific set
of embeddings, thereby limiting its flexibility. In contrast, we only focus on methods which can be
efficiently applied to embeddings without further optimization.

Hyperbolic representation learning. Hyperbolic deep learning is centered around gradient-based
optimization in hyperbolic space, which differs from the Euclidean operators commonly used in
deep learning layers. Early success was obtained by successfully embedding the nodes of hierar-
chies as hyperbolic vectors, outperforming Euclidean embeddings. Nickel & Kiela (2017) introduce
Poincaré Embeddings, where hierarchical nodes are positioned by pulling and pushing nodes based
on parent-child relations. Ganea et al. (2018b) extend this idea through hyperbolic entailment cones,
where child nodes should strictly fall under the cone spanned by parent nodes. Other hyperbolic em-
beddings include Sala et al. (2018) and Balazevic et al. (2019), who further explore these ideas for
incomplete information and graphs, respectively.

To make the step towards deep learning in hyperbolic space, Ganea et al. (2018a) and Shimizu et al.
(2021) introduce hyperbolic linear, recurrent, convolutional, and self-attention layers in the most
commonly used model of hyperbolic space: the Poincaré ball model. These works have served
as foundation for hyperbolic deep learning on graphs (Pan & Wang, 2021), dimensionality reduc-
tion (Chami et al., 2021), complex networks (Muscoloni et al., 2017), social media (Sawhney et al.,
2021), etc. For more details on hyperbolic layers, we refer to the survey of Peng et al. (2021).

Hyperbolic learning has also been investigated in the image and video domain, as outlined by Mettes
et al. (2023). Broadly in the visual domain, hyperbolic geometry has been shown to aid in a variety
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of tasks, including image segmentation (Atigh et al., 2022), object detection (Lang et al., 2022), and
video action recognition (Long et al., 2020). These works have in common that they leverage hierar-
chical knowledge to maximize the benefits from the hyperbolic space, embedding related concepts
closer together, thereby allowing for more compact and powerful representations. These advances
in hyperbolic learning, especially when it comes to computer vision, have shown that hyperbolic
space is a strong, albeit computationally slow, alternative for learning representations. By binarizing
hyperbolic embeddings, we can now also achieve fast search.

Relationship to other hyperbolic models. There are five isometric models for hyperbolic space
(Cannon et al., 1997). In this paper, we focus on the Poincaré disk model as we find that it is highly
suited for binarization as coordinates on the Poincaré ball are finite and each axis is symmetric,
which allows us to use a simple binarization strategy.

3 BINARY HYPERBOLIC EMBEDDING

As part of our contributions, we first prove that with codebook U, which encodes the representation
x into binary format xb such that x = Uxb, we are able to construct the approximate equivalence
between hyperbolic distance dD(·, ·) and hamming distance dH(·, ·). Then, using the Poincaré model
for simplicity, we show how to binarize distances in hyperbolic space.

3.1 HYPERBOLIC BINARY EQUIVALENCE

Figure 1: Approximated hyperbolic distance
d′D(·, ·) on Poincaré ball. d′D(·, ·) is monotonically
increasing to ∥x− y∥

.

To lay the groundwork for binarization in hy-
perbolic space we prove the approximate met-
ric equivalence between hyperbolic and eu-
clidean space, and show that we can obtain
nearest neighbour equivalence between ham-
ming and approximated hyperbolic distance.
Let x,y ∈ Dd denote a pair of vectors in hy-
perbolic space, where dD(·, ·) measures the hy-
perbolic distance, and let xb,yb ∈ {0, 1}nd de-
note the binary code of x and y by quantizing
each dimension of x and y into n bits such that
with codebook matrix U ∈ Rd×nd, we have
x ≈ Uxb. Given these vectors, we can prove
the following:

Proposition 1 Hyperbolic distance dD(x,y) is metric equivalent to Euclidean distance dR(x,y) by
linear approximation.

Proof: Hyperbolic distance in the unit Poincaré ball is defined as:

dD(x,y) = cosh−1

(
1 + 2

∥x− y∥2

(1− ∥x∥2) (1− ∥y∥2)

)
. (1)

Let rmin ≤ ∥x∥ ≤ rmax, rmin ≤ ∥y∥ ≤ rmax, we have :

cosh−1

(
1 + 2

∥x− y∥2

(1− r2min)
2

)
≤ dD(x,y) ≤ cosh−1

(
1 + 2

∥x− y∥2

(1− r2max)
2

)
. (2)

We can define the approximation of hyperbolic distance as:

d′D(x,y) =


K1∥x− y∥2, if ∥x− y∥2 ≤ d1,

cosh−1
(
1 + 2 ∥x−y∥2

(1−∥x∥2)(1−∥y∥2)

)
, if d1 < ∥x− y∥2 < d2

K2∥x− y∥2, if ∥x− y∥2 ≥ d2,

, (3)

where at ∥x − y∥2 ≤ d1 and ∥x − y∥2 ≥ d2, the distance is approximated by a linear function
of ∥x − y∥2. We set d1 empirically and set d2 to be the diameter of the Poincare ball so that this
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approximation will never be triggered in practice. The relationship between ∥x − y∥ and d′D(x,y)
is illustrated in Figure 1.

The approximation can be made monotonically increasing by setting the slope of the linear approx-
imation to:

K1 = cosh−1

(
1 +

2d21
(1− r2min)

2

)/
d1, K2 = cosh−1

(
1 +

2d22
(1− r2max)

2

)/
d2. (4)

From the approximation, it follows that:

K2dR(x,y) ≤ d′D(x,y) ≤ K1dR(x,y), (5)

where dR(x,y) = ∥x−y∥ is the euclidean metric. Hence, under the approximation, the hyperbolic
distance is metric equivalent to the Euclidean distance. □

Proposition 2 For a codebook U such that ⟨Uxb,Uyb⟩ ∝ ⟨xb,yb⟩, d′D(x,y) is equivalent to
hamming distance dH(x

b,yb) = nd− ∥xb ⊕ yb∥0 for nearest neighbor search.

For any binary representation x ≈ Uxb,y ≈ Uyb, we have squared euclidean distance dR is
proportional to hamming distance dH:

d2R(x,y) = ∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2⟨x,y⟩ (6)

= ∥Uxb∥2 + ∥Uyb∥2 − 2⟨Ux,Uy⟩ (7)

∝ ∥xb∥2 + ∥yb∥2 − 2⟨xb,yb⟩ (8)

= λdH(x
b,yb) (9)

Then we have nearest neighbour equivalence between hamming distance dH(·, ·) and approximated
hyperbolic distance d′D(·, ·):

argmin
v

dH(q,v) = argmin
v

d2R(q,v) = argmin
v

dR(q,v) = argmin
v

d′D(q,v) (10)

Intuitively, the propositions states that under a specific approximation, hyperbolic distance-based
search generates the same output as the Hamming distance-based search, which can be computed
quickly through binary operations.

3.2 BINARY QUANTIZATION

With Proposition 2, we are able to perform binary operation based search, while using hyperbolic
embeddings. Thus, we first generate full-precision hyperbolic embeddings on the poincaré ball and
then binarize them via quantization.

Hyperbolic embedding. Given a training set Dtrain = {(xi, yi)}Ni=1, optionally equipped with
label hierarchy H. If a hierarchy H is provided, using Hyperbolic Entailment Cones (Ganea et al.,
2018b), we have class prototypes P = [p1,p2, · · · ,p|H|]. Otherwise, we can simply set the class
prototypes as maximum separated prototypes (Kasarla et al., 2022).

Next, with ϕ(y) the hyperbolic embedding of label y ∈ Y , we train a network fθ(·) that projects
the data point v onto hyperbolic space x = fθ(x), where fθ(·) is an arbitrary backbone network
equipped with hyperbolic embedding layer. The likelihood of sample (x, y) is then given as:

p(y = y′|v) = exp (−dD(fθ(x),py′))∑|H|
y′′ exp (−dD(fθ(x),py′′))

, (11)

which is optimized through the negative log-likelihood loss akin to Long et al. (2020).

Binary quantization. After hyperbolic embedding x = fθ(x), we perform binary quantization
to obtain the binary representation of x, denoted as xb = g(x). In this section, we show that by
designing a quantization matrix U such that it block-wisely satisfy ⟨Uxb,Uyb⟩ ≈ λ⟨xb,yb⟩, we
can exploit Proposition 2 for a binary Hamming distance-based search with hyperbolic embeddings.

In the Poincaré ball model, all dimensions fall in the radius of the ball (−r, r). We shift each
dimension by r to make it in the range (0, 2r):

x+ = x+ r. (12)
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This shift simplifies the calculations without changing the Euclidean distance:

dR(x
+,y+) = ∥x+ − y+∥ = ∥x+ r1− (y + r1) ∥ = ∥x− y∥ = dR(x,y). (13)

In our proposed approach, the representation undergoes a dimension-wise quantization process. For
n bits used by each dimension, we partition each dimension into a distinct set of 2n− 1 quantization
levels under the same framework as (Jeon et al., 2020) with respect to the scale.

s =
sup(x)− inf(x)

2n − 1
=

sup(x+)− 0

2n − 1
=

2r

2n − 1
, (14)

where sup(·) is the supremum and inf(·) is the infimum. Then we can convert each dimension with
respect to the scale into integers:

xint = ⌊x
+

s
⌋, (15)

which can be converted into n-bits binary code:

xint =

n∑
i=1

2n−i · xb
i = 2n−1 · xb

1 + 2n−2xb
2 + · · ·+ 20xb

n, (16)

where xb
i ∈ {0, 1}d represent the binary code for i-th significant bits in each dimension of xint.

Subsequently, we can concatenate these bits to a binary representation, denoted as:

xb =

xb
1

xb
2

· · ·
xb
n

 ∈ Rnd, (17)

which results in:

⟨x,y⟩ ∝ ⟨xint,yint⟩ = 2n−1 · ⟨xb
1,y

b
1⟩+ 2n−2 · ⟨xb

2,y
b
2⟩+ 20 · ⟨xb

n,y
b
n⟩, (18)

which is equivalent to ⟨Uxb
i ,Uyb

i ⟩ ∝ ⟨xb
i ,y

b
i ⟩, leading to a block-wise application of Proposition 2.

As such, we can apply the distance metric for binary hyperbolic embeddings as:

dR(x,y) ∝ dΣH(x
b,yb) = Σn

i=12
n−i · dH(xb

i ,y
b
i ) (19)

= 2n−1 · dH(xb
1,y

b
1) + 2n−2 · dH(xb

2,y
b
2) + ... · dH(xb

n,y
b
n), (20)

where dΣH(x
b,yb) is a summation of scaled hamming distance, hence we can use scaled binary

hamming distance as an approximation of real valued distance. The scaling only happens on each
of the n − 1 bits, resulting in n − 1 binary bit-shift operations with integer addition, which can
be efficiently carried out. Equipped with a hyperbolic embedding network f(·) and binarization
g(·), fast retrieval can be performed by embedding all elements in a collection with these functions.
Then for a query q and search collection S, both embedded to D and quantized, we can perform fast
nearest neighbor search:

argmin
v∈S

dΣH(q
b,vb)

△
= argmin

v∈S
dD(q,v). (21)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We focus on retrieval in both the image and video domain to measure the performance of various
embedding compression approaches across multiple levels of compression (i.e., number of bits) in
retrieval performance and speed. The performance is measured with mean average precision (mAP)
and speed as the relative difference in retrieval time in seconds measured over the test set.

Datasets. For our experiments, we use three well-studied and hierarchical datasets: CIFAR100,
ImageNet1K, and Moments in Time. CIFAR100 has 100 classes described by an officially defined
hierarchy Krizhevsky et al. (2009), while for ImageNet1K each of the 1,000 object classes is a node
in the WordNet hierarchy Fellbaum (1998). Similarly, for the Moments in Time dataset, each of
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the 339 classes is a node in the VerbNet hierarchy Schuler (2006). CIFAR100 and ImageNet1K are
image datasets, whereas Moments in Time is a video dataset.

Implementation details. For hyperbolic embedding learning, we use a curvature of c = 0.1 and
the Riemann Adam optimizer Becigneul & Ganea (2019), supported by the geoopt Kochurov et al.
(2020) library with a learning rate of 10−4. In practice, Riemannian Adam can be replaced by Adam
when using the Poincaré disk model, as the learnable parameters of the backbones are in Euclidean
space. All experiments were performed on a single Nvidia A6000 GPU. For the image experiments,
we use the ResNet He et al. (2016) for CIFAR-100 and CLIP model with a ViT backbone on 32×32
patches (Radford et al., 2021a) for ImageNet1K. For the video experiments, we use the pre-trained
3D-ResNet backbone ResNeXtC3D Hara et al. (2018).

For fair comparison to baselines, the same frozen backbone is used across all competing models.
Unless stated otherwise, we use two bits per dimension for binarization, following Hubara et al.
(2018). Using one bit per dimension empirically did not achieve satisfactory results.

To measure the speed-up differences between binarized and non-binarized embeddings at different
bit lengths, we perform stand-alone experiments solely for measuring the retrieval speed. Speed-up
heavily relies on the implementation in the mathematical library used. For example, a boolean vari-
able in Pytorch and Numpy is treated as an 8-bit unsigned int, which does not accurately reflect the
speed-up. Therefore, we use a C++ implementation which supports both vectorized float operations
and vectorized bitwise operations to evaluate the speed-up. All speed-ups are reported relative to
the 512-dimensional full-precision representation.

4.2 BINARY VERSUS NON-BINARY RETRIEVAL

As a first experiment, we investigate the effect of manifold and binarization on retrieval performance
and speed on all three datasets. For binarized embeddings, we use 512 bits and report the results for
mAP@10. As our proof in Equation 21 shows that our binarization-based similarity is equivalent
to the similarity in R and D, we can use the same binarization strategy across all three manifolds:
Euclidean R, hyperspherical S, and hyperbolic D. For all manifolds, we use the same frozen back-
bone with a linear projection on top, supervised by the retrieval task, to get features with a desired
dimensionality. The Euclidean baseline follows conventional cross-entropy optimization, while the
hyperspherical baseline uses maximally separate prototypes Kasarla et al. (2022) optimized by re-
ducing the pairwise cosine similarity between all prototype pairs. The hyperbolic embedding is
trained without binarization, in correspondence with the prototypical hyperbolic learning approach
of Long et al. (2020).

Table 1: Comparing manifolds and binarization for retrieval on CIFAR100, ImageNet1K, and
Moments-in-Time. Underlined scores denote best full-precision embedding performance, bold
scores denote best binary embedding performance. With full precision, hyperbolic embeddings
already outperform Euclidean embeddings but are slow to evaluate. Our binary hyperbolic embed-
dings at 512 bits are able to maintain this performance while being much faster to evaluate, thereby
getting the best of both worlds.

CIFAR100 ImageNet1K Moments-in-Time
Manifold Binarized mAP@10 mAP@10 mAP@50 Speed

Rn Radford et al. (2021b) ✗ 0.674 0.576 0.140 1.00×
Sn Kasarla et al. (2022) ✗ 0.704 0.590 0.142 0.83×
Dn Long et al. (2020) ✗ 0.708 0.613 0.161 0.21×
Rn ✓ 0.665 0.556 0.119 4.71×
Sn ✓ 0.695 0.589 0.142 4.71×
Dn (ours) ✓ 0.706 0.608 0.158 4.71×

The results in Table 1 show that for full-precision embeddings, hyperbolic space shows great promise
when it comes to retrieval, outperforming its Euclidean and hyperspherical alternatives. However,
hyperbolic embedding retrieval is five times slower compared to Euclidean retrieval. With binary
hyperbolic embeddings, we are able to induce a large speed-up, at the same level of Euclidean
and hyperspherical binarization, while obtaining the highest retrieval scores. On ImageNet1K, we
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Figure 2: Retrieval performance (mAP@10) as a function of the number of bits on CIFAR100,
ImageNet1K, and Moments-in-Time. Across the datasets, we find that hyperbolic embeddings allow
for strong compression while maintaining performance, while Euclidean embeddings require more
bits to maintain retrieval performance.

obtain an mAP@10 of 60.8% compared to 55.6% and 58.9% for the Euclidean and hyperspherical
baselines. Across datasets, we find that hyperbolic embeddings retain more relative and absolute per-
formance when binarized, highlighting the strong match between binary encodings and hyperbolic
space. We conclude that binarization on top of hyperbolic embeddings is preferred for retrieval.

4.3 EFFECT OF BIT LENGTH AND QUANTIZATION LEVEL

Effect of bit length. A recurring theme in recent hyperbolic learning papers is the potential of
low-dimensional effectiveness (Long et al., 2020; Ermolov et al., 2022; Ghadimi Atigh et al., 2021).
To explore the strong impact of low-dimensional embeddings for fast retrieval, we have performed
an experiment where we compare Euclidean to hyperbolic embeddings as a function of the number
of used bits on all three datasets. For both baselines, we investigate using 512, 256, 128, and 64 bits,
which corresponds to using 256-, 128-, 64-, and 32-dimensional embedding dimensions.

Table 2: The effect of embedding dimen-
sions and quantization bits on ImageNet1K.
Underlined scores denote full-precision. We find
it is best to use more dimensions with strong com-
pression. With binary hyperbolic embeddings, we
can obtain > 8 times faster at roughly the same
performance. Our approach allows for larger
speed-ups at the cost of retrieval performance.

Bits n× d mAP Speed

8 ×2 = 16 0.167 64.03×
8 ×4 = 32 0.242 62.03×

16 ×2 = 32 0.357 62.03×
16 ×4 = 64 0.405 61.08×
32 ×2 = 64 0.462 61.08×

32 ×4 = 128 0.547 30.54×
64 ×2 = 128 0.559 30.54×
64 ×4 = 256 0.607 15.88×

128×2 = 256 0.608 8.25×
128×4 = 512 0.608 8.25×

512×32 = 16384 0.613 1.00×

We show the bit length comparison in Figure 2.
When using 512 bits, both embeddings main-
tain nearly all their performance compared to
full-precision. When using fewer bits however,
Euclidean embeddings drop in performance.
Hyperbolic embeddings on the other hand are
much less affected by the reduction in bits. At
64 bit embeddings, we obtain an mAP@10 of
62.7% on CIFAR100, a small drop compared
to 70.6% at 512 bits. On the other hand, 64-
bit Euclidean embeddings obtain an mAP@10
of 40.3%. This result indicates that with strong
quantization and fewer bits, hyperbolic space is
favored over the default Euclidean space.

Effect of quantization level. By quantizing
each dimension into levels we can choose the
bits per dimension. The total number of bits
can therefore be determined by using more em-
bedding dimensions with few bits or vice versa.
For example, a 128-bit embedding can be ob-
tained from a 64-dimensional embedding with
2 bits per dimension, or a 32-dimensional em-
bedding with 4 bits per dimension. In Table 2,
we show the impact across multiple choices of
bits sizes. Overall, we find that it is beneficial to use more embedding dimensions with stronger com-
pression than the other way around. This indicates that there is more information in any additional
dimension compared to the additional precision within a dimension.
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How many bits do we need compared to full-precision Euclidean embeddings? The ablations
above, result in a natural question: how much can we speed up retrieval with binary hyperbolic
embeddings with good performance? The speed-up results in Table 2 paint a clear picture: the first
8-fold speed-up can be obtained without hampering retrieval performance. Our approach allows for
much bigger speed-up, but high compression then comes at the price of lower retrieval performance,
making it a design choice how to balance both.

4.4 EFFECT OF HIERARCHICAL KNOWLEDGE

A key benefit of hyperbolic space is the potential to embed hierarchical knowledge with minimal dis-
tortion at much greater performance than Euclidean hierarchical embeddings Ganea et al. (2018b);
Sala et al. (2018). This potential is reflected in the ability of a hyperbolic network to retrieve se-
mantically similar items of adjacent classes. To measure this potential we follow Long et al. (2020);
Ghadimi Atigh et al. (2021) in using the Sibling mAP (SmAP) performance metric. Building upon
the mAP metric, SmAP takes into account the proximity in the class hierarchy for retrieved items.
Specifically, when an item retrieved is just one hop away (i.e., same parent class) from the ground
truth it is considered a true positive.

Table 3: The effect of using hierarchical knowledge and different manifolds on CIFAR100. At
full-precision Spherical and hyperbolic embeddings outperform Euclidean embeddings, at the cost
of a large number of bits and/or slow distance calculations. By binarizing we can maintain the
performance benefits of hierarchy and hyperbolic embeddings but at a highly compressed bit length.
⋆ denotes that the method has been modified to be using hyperbolic distance metric.

Hierarchical Manifold Bit length Binary mAP SmAP

Radford et al. Radford et al. (2021b) ✗ R 16,384 ✗ 0.674 0.806
Kasarla et al. Kasarla et al. (2022) ✗ S 3,168 ✗ 0.706 0.824
Kasarla et al. Kasarla et al. (2022)⋆ ✗ D 3,168 ✗ 0.708 0.821
Barz et al. Barz & Denzler (2020) ✓ S 3,200 ✗ 0.697 0.836
Long et al. Long et al. (2020) ✓ D 1,600 ✗ 0.708 0.840

Binary (ours) ✓ D 512 ✓ 0.706 0.838

In Table 3 we perform a comparison to gain insight into the effect of using hierarchy and hyperbolic
embeddings. We show that prior full-precision approaches perform comparable in terms of mAP
when using a hyperbolic or Spherical manifold, and that adding hierarchy is especially beneficial
to the SmAP performance. However, despite being more compressed than full-precision Euclidean
manifolds these approaches still require a large number of bits and/or slow hyperbolic distance
calculations. By binarizing, we are able to compress hierarchical hyperbolic embeddings to a small
bit length whilst maintaining good performance on both standard and hierarchical metrics.

Qualitative analysis. In Figure 3 we compare a non-hierarchical spherical space with our hierar-
chical hyperbolic space. All classes are connected to classes with pairwise cosine similarity greater
than 0.5. To measure the similarity between classes we average the embeddings for all instances of
a class, reducing it to pair-wise relationships. From this visualization we can see that we are better
at organizing concepts hierarchically, which as a consequence means that inputs with hierarchically
similar concepts are more likely to fall in the same quantization bin. This enables better hierarchical
performance even at low bit length. We suspect this is because spherical embeddings are learned
by forcing classes to be equally dissimilar, whereas in hyperbolic space we can enforce a margin
between classes while keeping track of siblings due to its infinite boundary nature.

4.5 EFFECT OF CURVATURE

The curvature and radius of the Poincaré disk model are determined by c, where higher values
shrink the embedding space. Empricically, we found that a different c1 value can be used when
constructing (optionally with the hierarchy H) the class prototypes P than when optimizing f(·)
to map the input samples to the class prototypes where we use c2. Meanwhile, c2 is the curvature
when we actually use the prototypes to generate hyperbolic embeddings for images and videos, it
can be regarded as adjusting the hyperbolic metric, resulting in a different distance calculation with
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Figure 3: Visualization of pair-wise class similarities for (Left) non-hierarchical embeddings
quantized from spherical space and (right) our hierarchical binary embeddings. Our embeddings are
organized more hierarchically enabling stronger quantization with better hierarchical performance.

Table 4: The effect of curvature on CIFAR100. Parameter c1 is the curvature used when construct-
ing the hierarchy H to train class prototypes P, whereas c2 is the curvature used when optimizing
f(·) to map data samples to class prototypes. Low curvature indicates almost uncurved, euclidean-
like space, whereas high curvature causes numerical instability. Thus, a medium value of curvature
during both class prototype embedding and sample embedding will be preferred.

c1 = 0.001 c1 = 0.01 c1 = 0.1 c1 = 1 c1 = 10

c2 = 0.001 0.613 0.635 0.695 0.702 0.694
c2 = 0.01 undef 0.691 0.666 0.705 0.698
c2 = 0.1 undef undef 0.688 0.706 0.704
c2 = 1 undef undef undef 0.671 0.693
c2 = 10 undef undef undef undef 0.507

the same prototypes. In Table 4 we compare different settings for c1 and c2 and find an interaction
between the two parameters, but that for the settings compared, the performance is fairly stable, with
the highest performance obtained with a high c1 and a low c2. Overall, it seems that training the
class prototypes with a higher curvature is preferred, we suspect that this may be because the class
prototypes are not pushed to the disk boundary, thereby leaving some room for embedding class
instances in the later stage.

5 CONCLUSION

Hyperbolic deep learning has gained traction for a wide range of applications, from graphs to videos.
However, its application in large-scale search has been hampered by slow distance calculations. In
this work, we overcome this limitation by proving the equivalence between hyperbolic and Hamming
distances, which allows us to binarize the hyperbolic space and significantly speed-up distance cal-
culations. We experimentally verify this acceleration, across the video and image domain, obtaining
at least 4.7× faster at roughly equal performance. Our hyperbolic binary embeddings demonstrate
the viability of hyperbolic space for large-scale retrieval and search, as well as opening the door to
broader incorporation of hierarchical knowledge.
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