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Abstract

State-of-the-art deep learning models are becoming ever larger. However, many practical
applications are constrained by the cost of inference. Cascades of pretrained models with
conditional execution address these requirements based on the intuition that some inputs
are easy enough that they can be processed correctly by a smaller model allowing for an
early exit. If the smaller model is not sufficiently confident in its prediction, the input is
passed on to a larger model. The selection of the confidence threshold allows to trade off
computational cost against accuracy. In this work we explore the effective design of model
cascades, thoroughly evaluate the impact on the accuracy-efficiency trade-off, and provide
a reproducible state-of-the-art baseline for related research that is currently missing. We
demonstrate that model cascades dominate the ImageNet Pareto front already with 2-model
cascades, achieving an average reduction in compute effort at equal accuracy of almost
3.1× above 86% and more than 1.9× between 80% and 86% top-1 accuracy, while 3-model
cascades achieve 4.4× above 87% accuracy. We confirm wider applicability and effectiveness
of the method on the GLUE benchmark. We release the code to reproduce our experiments in
the supplementary material and use only publicly available pretrained models and datasets.

1 Introduction

The trade-off between accuracy and efficiency is fundamentally important to deep learning. While state-of-
the-art results are achieved by models of ever-growing size, practical applications are constrained by the cost
of inference. Reducing the energy consumption is critical for energy-limited systems like wearable and mobile
devices. For inference at large scale such as in data centers, minimizing the compute resource requirements
is important economically and environmentally, and enables wider adoption of beneficial new technology.

Early exit model cascades are a cheap, simple, and effective approach to improve the accuracy-efficiency
trade-off. The cost of training and inference is dominated by the largest model in the cascade, which means
that the cost added by smaller models is usually negligible. Pretrained models can be used as is or finetuned.
When the input is processed by at least 2 models in the cascade, the predictions can be ensembled. Gontijo-
Lopes et al. (2022) show that ensembles are more accurate when the models are more diverse due to the
lower error correlation, which can also be leveraged by cascades. Cascading is a complementary approach and
can be combined with many other approaches for increasing efficiency, particularly methods that improve
the individual models, such as better architecture and training or model compression. Importantly, model
cascades can be applied at any scale and tend to be more effective for larger models as can be seen from our
experiments.

Although early exit model cascades are effective, little prior work on them has been published. In Section 2
we identify a lack of comparison between different cascading methods, knowledge gaps about when cascades
perform well, and limited evaluation. Furthermore, different works use different datasets and metrics. Effi-
cacy is commonly measured by comparison with models trained for the experiments. Code and models are
usually not released, and specifics about model size are not always provided. This makes a comprehensive
comparison between different works infeasible.

We address these points by conducting a comprehensive evaluation and creating a solid foundation for future
work. The choice of baseline is critical to the empirical evaluation as it determines the measured efficacy.
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To ensure valid and relevant results, we compare with state-of-the-art Pareto fronts. We focus on average
inference cost measured in Multiply-Accumulate (MAC) operations because MAC count enables hardware
agnostic benchmarking and give an indication of energy consumption and to a lesser extent inference speed.
No training is done in our experiments. Instead, we use publicly available datasets and pretrained models,
and release our code. This makes our work easily reproducible. The code is designed so that the results can
be updated with new state-of-the-art models.

Most of our experiments are conducted on ImageNet (Russakovsky et al., 2015) due to its significance and
the large amount of pretrained models available from PyTorch Image Models (Wightman, 2019). We explore
how to build cascades effectively and compare many different cascading methods across continuous Pareto
fronts in multiple settings using a diverse selection of models for a thorough and reliable evaluation. We
then test their wider applicability on text classification tasks from the GLUE (Wang et al., 2019) benchmark
using models from Hugging Face (Wolf et al., 2020). Our contributions and findings are:

• We demonstrate that already 2-model cascades dominate the ImageNet Pareto front.

• We provide insight into how to construct the model cascades: We empirically demonstrate a rela-
tionship between the accuracy difference of cascaded models and the achievable early exit rate as
well as the desirable size difference.

• The maximum softmax confidence metric achieves the largest improvement overall while softmax
margin excels in low confidence scenarios and the commonly used entropy metric performs worst.

• Ensembling predictions, when inference is done for at least 2 models in a cascade, generally in-
creases the top accuracy achieved by the cascade but lowers Pareto improvement. Calibration with
temperature scaling is ineffective at alleviating this.

• While distribution shifts degrade cascade performance, cascades remain beneficial.

• For our evaluation we rely on an external baseline comprised of Pareto optimal public models to
ensure our results are credible and relevant. This means we provide a strong and reproducible
baseline for future related research that is currently missing.

2 Related Work

Accuracy-efficiency trade-off Improving the accuracy-efficiency trade-off is a central objective for a wide
breadth of research with many different approaches. MobileNetV3 (Howard et al., 2019) and EfficientNet
(Tan & Le, 2019) represent how architectures have become highly optimized. Model efficiency can be
improved further by applying compression techniques like quantization and pruning (Han et al., 2016). Once-
for-all (Cai et al., 2020) utilizes progressive shrinking of input resolution, kernel size, network width and depth
together with knowledge distillation to obtain more efficient models than conventional neural architecture
search. Training is very important with recent advances most notably through data augmentation (Shorten
& Khoshgoftaar, 2019) and pretraining on more data (Ridnik et al., 2021), which is enabled further by self-
supervised (Devlin et al., 2019) and semi-supervised (Pham et al., 2021) methods. Many other procedures
exist such as model soups (Wortsman et al., 2022), which fine-tunes a model with multiple hyperparameter
configurations and averages the weights. We focus on early exiting from a cascade of models, which is a
complementary approach that is comparatively simple yet effective.

Dynamic models More closely related to our work are dynamic neural networks (Han et al., 2021; Xu &
McAuley, 2023). An example of dynamic depth is SkipNet (Wang et al., 2018b), which adds gating modules
and a learned skipping policy to skip network layers based on the input. BranchyNet (Teerapittayanon et al.,
2016) adds branches to the original net for early evaluation and exits when prediction entropy is below a
threshold. Similarly, Shallow-Deep Networks (Kaya et al., 2019) insert early classifiers. Wołczyk et al. (2021)
improve early exiting from within a model by recycling predictions of earlier classifiers. However, Huang
et al. (2018) describe how early classifiers lack coarse features, and training the model for early classification
can lower the accuracy of later classifiers. Furthermore, modern convolutional neural networks are highly

2



Under review as submission to TMLR

optimized and their depth, width, and resolution are carefully scaled, gradually lowering the resolution and
increasing the number of channels as features become more complex (Tan & Le, 2019). For early classification
outputs, this optimization and scaling is disrupted, which results in a lower accuracy than a separate model
at equal compute effort can achieve. We demonstrate experimentally that a smaller accuracy difference
between classifiers allows for more frequent early exiting. This motivates using a separate model for early
classification, which enables us to increase the early exit rate at the cost of a small overhead when forwarding
to the larger model since features are no longer shared between classifiers. However, early exiting from within
a single model and between cascaded models are two separate and complementary approaches that can be
combined (Bolukbasi et al., 2017).

Early exit model cascades Cascades are commonly used in machine learning and have been popular-
ized by influential works such as Viola & Jones (2001). We focus on a specific type of cascade that uses
multiple models in sequence with the capability to exit early if confident enough in a prediction. Park et al.
(2015) propose the big/LITTLE architecture, which is a cascade of a small and large model with static or
dynamic softmax margin threshold as the exit condition to reduce energy consumption. Wang et al. (2018a)
demonstrate reduced computational cost by cascading up to 3 models. They compare different classifiers
for the objective of achieving the desired accuracy, which includes a trained decision network, cost-oblivious
grid search for both entropy and maximum softmax thresholds, and cost-aware learned entropy threshold.
They find that only the last three methods manage to satisfy the accuracy objective, that entropy is a better
confidence metric than maximum softmax, and that the cost-aware method performs better. Guan et al.
(2018) train an agent to exit between models to reduce the computational cost. Similarly, Bolukbasi et al.
(2017) present trained policies to exit early between as well as within models for a trade-off between accuracy
and inference time. Streeter (2018) proposes an algorithm to automatically construct efficient cascades from
a selection of available models. Inoue (2019) shows that exiting early from an ensemble of 10 or 20 models
can greatly reduce the computational cost while preserving most of the static ensemble’s accuracy. Inoue
averages the softmax to ensemble the predictions and exit based on a confidence interval condition. Wang
et al. (2022) cascade up to 4 models of the same architecture families such as EfficientNet, ensemble by
averaging the logits, use maximum softmax as confidence metric, and optimize for accuracy and computa-
tional cost with exhaustive search. They also demonstrate the efficacy of self-cascading by varying the input
resolution for the same model.

From prior work, we notice a lack of comparison between different cascading methods, knowledge gaps about
when cascades perform well, and limited evaluation. We address this by comparing many different cascading
methods in multiple settings using a diverse selection of pretrained models for a thorough and reliable
evaluation. We investigate when cascades work well and unlike prior work we evaluate improvement across
continuous Pareto fronts. No training is done in our work. Instead, we use publicly available state-of-the-art
models and release the code to reproduce our results, thereby providing a strong baseline for future related
research that is currently missing.

3 Method

The idea behind early exit cascades is that inference can be done on a smaller model first and if confident in
its prediction we can save time and computation by exiting early and skipping the larger model. A cascade
contains at least 2 pretrained models. A condition is needed to decide whether to exit early. This condition
uses a confidence score computed from the model prediction and a threshold set in advance that needs to be
satisfied. Algorithm 1 shows the implementation of the cascading method we found to be most effective.

Cost Let Ci be the cost of a model Mi which represents metrics we want to improve, such as the number of
Multiply-Accumulate (MAC) operations or time of inference. We order the models within a cascade so that
Ci < Ci+1, meaning the cheaper model makes a prediction first. When there are n models in the cascade,
there are n possible costs when inferring a single input. In the case n = 2, when an early exit is made,
the cost is C1, otherwise, the cost is C1 + C2. They represent the lower and upper bound for the cascade.
Assuming we exit early after the first model at a rate ε1, the cost becomes C1 + (1 − ε1)C2 on average.
For cost reduction, we want to achieve C1 + (1 − ε1)C2 < C2. Therefore, our early exit rate must satisfy
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Algorithm 1 Early exit model cascade with maximum softmax confidence metric and no ensembling
Require: input tensor X, models {M1, ..., Mn}, thresholds {t1, ..., tn−1}, n ≥ 2, n ∈ N

for i = 1, ..., n do
zi = Mi(X)
pi = softmax(zi)
if i == n or max(pi) ≥ ti then

return arg max(pi) ▷ cascade returns predicted class

ε1 > C1/C2. Assume we want to maintain the second model’s accuracy A2. For a two-model cascade, the
improvement factor I by which we reduce the cost is I = C2/(C1 + (1 − ε)C2). Therefore, the improvement
we can achieve is limited by the early exit rate we can reach before the cascade’s accuracy declines and the
cost difference between the models, where larger is better for both.

Early exit condition We need a condition to decide when to exit early. Such a condition is typically
evaluated by obtaining a confidence score from the model prediction and comparing it to a threshold t. This
is done after each model in the cascade except the last, resulting in n − 1 thresholds. For classification tasks,
the model output for an input tensor X is usually a logits vector z and the predicted class is arg max(z).
We can use the softmax function

softmax(zi) = ezi∑K
j=1 ezj

= pi (1)

to transform the logits into pseudo-probabilities p for all K classes. One confidence metric is the maximum
softmax, which we can use as the probability that the prediction is correct. We exit early if max(p) ≥ t.
Various other conditions exist in related literature (Han et al., 2021; Xu & McAuley, 2023) and the entropy
threshold appears to be the most common. There, after applying the softmax function, we can compute the
Shannon entropy

H(p) = −
K∑

i=1
pi log(pi). (2)

A lower entropy represents higher confidence in the prediction and we exit early when H(p) ≤ t. Other
confidence metrics are the logits margin (Streeter, 2018) and the softmax margin (Park et al., 2015), which
are the largest logit or softmax minus the second largest respectively. They represent how much more
confident the model is in its first prediction and we exit if the margin is above or equal to a threshold.

Ensemble When the cascade does not exit after the first model, we have multiple predictions that we
can ensemble in the hope of improving performance. Typical ways to ensemble models are plurality vote
(Hansen & Salamon, 1990) or averaging of the outputs (Bishop et al., 1995). To mean ensemble the outputs,
we compute the arithmetic mean of softmax or logits. An intuitive alternative is to compare the prediction
confidence of all models and choose the most confident, which we call comparison ensemble. Weighting
or calibration can be used when model confidences are mismatched so that the most overconfident model
does not dominate the ensemble. Guo et al. (2017) demonstrate that temperature scaling is an effective
calibration tool and Ashukha et al. (2020) recommend it for ensembles. Temperature scaling is achieved by
dividing the logits by a temperature factor T so that the calibrated probabilities become

p̂i = e
zi
T∑K

j=1 e
zj
T

(3)

where T is set to minimize the negative log-likelihood.

4 Experiments

In order to evaluate the impact of early exit model cascades, we verify whether they reliably outperform
state-of-the-art single models across entire Pareto fronts on different tasks. We rigorously compare many
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different cascading methods to determine the most effective. To understand when cascades work well, we
figure out how properties such as the size and accuracy of cascaded models affect performance. We begin by
conducting a set of experiments on ImageNet (Russakovsky et al., 2015) (Section 4.1) due to its relevance
and evaluate robustness to distribution shifts on ImageNetV2 (Recht et al., 2019). As a step to indicate
the general utility of model cascades, we demonstrate Pareto improvement on text classification tasks from
the GLUE (Wang et al., 2019) benchmark (Section 4.2). All pretrained models used for image and text
classification are publicly available from PyTorch Image Models (Wightman, 2019) and Hugging Face (Wolf
et al., 2020) respectively. The code to reproduce these experiments is available in the supplementary material.

4.1 Image classification on ImageNet

We select from 668 pretrained models with tabulated accuracy for the ImageNet validation set from PyTorch
Image Models (Wightman, 2019). For the computational cost of models, we obtain MAC count with the
fvcore library. To acquire the time cost we use benchmark numbers in inferred samples per second on an
RTX 3090 with NHWC data format and automatic mixed precision from Wightman (2019). From this, we
can establish baseline Pareto fronts for both MAC and time cost. We infer the ImageNet validation set
for models at the Pareto fronts to confirm their accuracy and obtain logits, from which we compute the
prediction correctness and confidence score for every image. From these, we can efficiently compute exact
accuracy, threshold, and average inference cost at all possible early exit rates for every cascade. Threshold
selection can then be made based on the desired trade-off. For example, we choose the threshold at the point
of maximal validation Pareto improvement for our ImageNet test server submissions.

As a strong and continuous baseline, we use the Pareto front established by linear interpolation between
pretrained model pairs, which represents the trade-off achieved when randomly selecting one of the two
models with varying probabilities. No linear interpolation is done between points at cascade Pareto fronts to
have a direct comparison between individual cascades and random model selection. We evaluate improvement
by cascade Pareto fronts as a factor by which average inference cost in MAC or time is reduced to achieve the
same accuracy. The average cost represents the total cost for the entire validation set at specific thresholds
divided by the number of images.
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Figure 1: The maximum softmax confidence metric without calibration and ensembling is one of the simplest
yet most effective for cascading and achieves Pareto improvement across most of the MAC range with 2-
model cascades. The pretrained models show that the accuracy benefit from increasing model size diminishes.
Cascade performance improves as the accuracy difference between models decreases compared to the MAC
difference. Three points at the cascade Pareto front with locally maximal improvement were evaluated on
the ImageNet test set. The results are summarized in Table 1 and confirm the validation results. Notable
are that cascading also increases the top accuracy by 0.306% to 88.90%, and that the improvement factor
drops to almost 1 at 77.92% accuracy due to the outlying MobileNetV3-Large pretrained on ImageNet-22K
(Ridnik et al., 2021).
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Table 1: Three points at the locally maximal improvement from the softmax 2-model cascade Pareto front
were evaluated on the ImageNet test set as shown in Figure 1. They were chosen as the strongest points at
the cascade Pareto front to test against validation set overfitting. Each point corresponds to a cascade with
a specific threshold. Values are rounded to 4 significant digits.

Cascade Models Validation Test Softmax
First Second Top-1 ↑ MAC ↓ Top-1 ↑ MAC ↓ Threshold
MN3-S 0.75 (Howard et al., 2019) MN3-L (Ridnik et al., 2021) 75.88% 136.2M 75.91% 135.9M 0.4551
MN3-L (Ridnik et al., 2021) EN B3 NS (Xie et al., 2020) 83.39% 732.4M 83.13% 735.2M 0.7112
EN B4 NS (Xie et al., 2020) BEiT224-L (Bao et al., 2022) 87.32% 14.39G 87.21% 14.38G 0.5658

For the trade-off between accuracy and MAC count, the baseline Pareto front consists of 27 models. For
2-model cascades, there are

(27
2

)
= 351 possible combinations. Figure 1 shows the Pareto front and im-

provement factor for the cascading method which uses maximum softmax confidence without calibration or
ensembling. The cascades achieve improvement along most of the Pareto front with a reduction in compu-
tational cost by a factor of up to 3.83 for the same accuracy. This is achieved by the cascade containing the
models EfficientNet B4 NS (Tan & Le, 2019), a convolutional neural network pretrained on 300M unlabeled
images from the JFT dataset (Hinton et al., 2015; Chollet, 2017), and BEiT224-L (Bao et al., 2022), a vision
transformer pretrained on ImageNet-22K, which shows the benefit of model diversity. Model families which
contribute to the cascade Pareto front in descending order of importance are EfficientNet NoisyStudent (Xie
et al., 2020), MobileNetV3 (Howard et al., 2019; Ridnik et al., 2021), BEiT (Bao et al., 2022), TinyNet (Han
et al., 2020b), GhostNet (Han et al., 2020a) and LeViT (Graham et al., 2021).

To test against validation set overfitting, points of the cascade Pareto front with locally maximal improvement
were evaluated on the ImageNet test set. As shown in Table 1, the test set performance is close enough to
confirm the validation set results. However, test accuracy is slightly lower on average. Possible explanations
are that the optimal points are shifted for the test set, that the cascade Pareto front envelops noise, and that
the pretrained models themselves are slightly overfitted to the validation set. To investigate the last point,
the pretrained EfficientNet B4 NoisyStudent was evaluated on the ImageNet test set and achieved a top-1
accuracy 0.04% lower than on the validation set, which accounts for almost half of the 0.09% difference for
the 3rd test point.
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Figure 2: Left: The cascades tend to maintain the accuracy of the better model for a plateau or even exceed
it before accuracy starts to break down. Middle: Each point represents the largest early exit rate before
cascade accuracy drops by 5% of the top-1 difference below the better model. Right: The average Pareto
improvement of all individual cascades. While a lower accuracy difference between cascaded models is always
desirable, there exists a sweet spot for the size difference. While the length of the plateau before accuracy
drops increases with smaller accuracy difference between models, for the baseline Pareto this plateau grows
with the size range as the accuracy benefit of increased model size diminishes.

Figure 2 shows the relationship between the accuracy difference of the models in the cascade and the early
exit rates achievable by cascades before accuracy starts to break down. The cascades perform better when
the accuracy difference between models is small while the MAC difference is large. Therefore, the Pareto
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improvement is minimal in the lowest MAC regime and becomes larger at higher MAC regimes because of
the diminishing accuracy benefit from increased model size, which can be observed in Figure 1.

Cascading method comparison We compare the 4 confidence metrics entropy, maximum softmax,
softmax margin, and logits margin both without ensembling and with comparison ensembling enabled by
calibration using temperature scaling. Furthermore, using the maximum softmax confidence metric we
evaluate mean ensembling for both logits and softmax, with and without temperature scaling. This results
in 12 different cascading methods compared in Figure 3.

From the methods without ensembling, the entropy confidence metric performs worst. Entropy is influenced
by probabilities assigned to false labels while we are only interested in whether the predicted label is correct
for early exiting. Softmax margin is the only cascading method that achieves an improvement >1 across
the entire Pareto front—except at the smallest model, whose computational cost cannot be reduced further
with cascading. It also reaches the largest average Pareto improvement of all 12 methods with 1.502× across
the entire accuracy range. This is because softmax margin dominates below 78% accuracy, which represents
almost 2/3 of the accuracy range but only about 1/4 of the log-scaled MAC range. The maximum softmax
metric has the second-largest average improvement at 1.497× but shows the most MAC range dominance of
all methods.

When ensembling, calibration may be required, because otherwise there is no guarantee that the uncalibrated
confidence scores of the different models are comparable. Temperature scaling was done on the validation set,
which means that the results for methods using temperature scaling represent an ideal scenario where the
calibration is optimally fitted to the data. Yet, calibration proves ineffective for mean ensemble cascades and
the comparison ensemble methods achieve the least improvement of all. Mean ensembling shows potential
at the upper end of the accuracy range. Therefore, we use the maximum softmax confidence metric, which
is worse overall but better at higher accuracies than the softmax margin (see Appendix C for details). While
the mean softmax method performs better overall, uncalibrated mean logits ensembling achieves the best
average improvement above 86% accuracy of all cascading methods, as well as the best top accuracy of
89.03%. A possible explanation for the poor performance of ensembling is that Pareto optimal cascade
settings rely on high early exit rates, where only the least certain predictions are forwarded. These are less
useful for or may even hurt ensembling.
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Figure 3: A comparison of Pareto improvement achieved for the 12 tested cascading methods. To improve
legibility, only the accuracy range above 75% is shown as improvement achieved below that point is small for
all methods. The maximum softmax method from the left is plotted again as a black line to have a baseline
for comparison. TS stands for temperature-scaled.
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3-model cascades Cascading more models increases the complexity since well-suited models are required
for improvement and multiple thresholds need to be selected, which increases the problem dimensionality.
The ImageNet validation set consists of 50000 images, which means that there are 50001 choices per threshold
ranging from always to never exiting early. For the 27 Pareto optimal models, there are

(27
3

)
= 2925 possible

combinations. Since computing cascade performance is cheap, an exhaustive search is still feasible for 3-
model cascades and has the advantages of simplicity and a guarantee that the optimum will be found. To
do so, for every model combination we set the first threshold and then compute the cascade performance for
all choices of the second threshold. We can speed up the process by only sampling every tenth sorted value
for the first threshold since neighboring values are almost identical.

Interestingly, ensembling performs slightly worse relative to no ensembling for 3 instead of 2 models, and
mean softmax is now superior to mean logits. The maximum softmax method achieves the largest average
Pareto improvement of all cascading methods both across the entire accuracy range and above 80% only.
Figure 4 shows that there is diminished benefit from adding a third model but clear improvement at higher
accuracies. 2-model cascades offer a strong and practical baseline, but for optimal performance adding more
models should be considered while keeping in mind the trade-off between diminishing returns and increased
complexity, which could also harm generalizability. To test this, we evaluated the point of the 3-model
maximum softmax Pareto front with the largest improvement on the ImageNet test set. This is the cascade
with models EfficientNet B4 NS (Tan & Le, 2019), BEiT224-L (Bao et al., 2022), and EfficientNet L2 NS
at the thresholds t1 = 0.6299 and t2 = 0.4905. While test accuracy at 87.86% is only 0.08% lower than
on the validation set, the average MAC count is also 1.1% larger at 26.32G. This indicates a slightly worse
generalization than the 3rd test result in Table 1 for a cascade with only the first 2 models.
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Figure 4: 3-model cascades start to outperform 2-model cascades at higher MAC regimes. Left: We compare
our results to Wang et al. (2022), who use the mean logits ensemble method. Right: The maximum softmax
method achieves the best performance of all cascading methods and outperforms the mean logits method
used by Wang et al. (2022) across most of the Pareto front.

Inference time Radosavovic et al. (2020) show that the number of MAC operations is an imperfect
predictor for GPU inference speed. Therefore, we also evaluate cascade performance for the trade-off between
accuracy and speed measured in average time per inference. Figure 5 shows that 2-model cascades already
achieve improvement everywhere except near the outlying LeViT-128S (Graham et al., 2021). As can be seen
in greater detail in Appendix A, maximum softmax again performs best of all tested cascading methods,
which demonstrates its reliability and consistency. Notably, it outperforms mean ensemble methods even
above 86% accuracy for inference speed, achieving an average improvement of 2.618× compared to 2.203×
by the mean logits cascading method. The baseline Pareto front consists of 25 models. There is a large
model overlap between MAC and speed Pareto fronts. The main difference is that EfficientNet (Tan & Le,
2019; Xie et al., 2020) and the related TinyNet (Han et al., 2020b) architecture families perform worse for
inference speed while LeViT (Graham et al., 2021) and ConvNeXt (Liu et al., 2022) perform better.
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Figure 5: Inference speed is measured in average time per image on an RTX 3090 GPU. The images are
batched with a batch size of 1024 or smaller when necessary to fit the GPU memory. Therefore, the actual
latency is larger. Less Pareto improvement is achieved than for MAC count because the time cost Pareto
front spans 3 orders of magnitude instead of 4. The 2-model cascades perform particularly well at concave
points of the baseline Pareto front.

Robustness to distribution shifts Training data may not align with real-world inputs. A concern is
that model cascades are vulnerable to distribution shifts, particularly when the data used to determine the
threshold differs from the deployment data. We test robustness by evaluating Pareto improvement on the
ImageNetV2 MatchedFrequency dataset (Recht et al., 2019) for identical cascades and threshold ranges that
make up the original ImageNet cascade Pareto front for the maximum softmax confidence metric. Figure
6 shows that while the distribution shift harms cascade performance, they remain beneficial and achieve
improvement across most of the Pareto front. Two contributing factors that decrease cascade performance
are that model accuracies on ImageNetV2 are 7.2−13.8% lower and accuracy differences between the models
are larger with the overall accuracy range increasing by 5.7%. Furthermore, model accuracy is no longer
monotonically increasing with size. Additional analysis, which shows that the distribution shifted ImageNet
cascade Pareto front resembles the new ImageNetV2 cascade Pareto front, can be seen in Appendix D.
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Figure 6: Robustness to distribution shifts is evaluated by comparing the Pareto improvement achieved for
identical cascades and threshold ranges on ImageNet and ImageNetV2.

4.2 Text classification on GLUE benchmark

Early exit model cascades are effective for image classification with both convolutional neural networks and
vision transformers. We expect that the cascades also work in other domains where prediction confidence
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or quality can be quantified. Indeed, beneficial early exiting has been demonstrated for image segmentation
(Wang et al., 2022) and reinforcement learning (Wołczyk et al., 2021). As a first step to test that the identical
cascade structure can be used in a different domain, we experiment on the text classification tasks SST-2
(Socher et al., 2013), MRPC (Dolan & Brockett, 2005), QNLI (Rajpurkar et al., 2016) and QQP (Chen
et al., 2018) from the GLUE (Wang et al., 2019) benchmark. The results are shown in Figure 7 and confirm
the efficacy of early exit cascades. Since the tasks are binary classification, the 4 confidence metrics entropy,
maximum softmax, softmax margin, and logits margin result in identical order when sorting the confidence
scores of all predictions, and the resulting cascades are equivalent. We searched for fine-tuned models on
Hugging Face (Wolf et al., 2020). Models used include BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), DeBERTa (He et al., 2021), ELECTRA (Clark et al., 2020), ALBERT (Lan et al., 2020), DynaBERT
(Hou et al., 2020), DistilBERT (Sanh et al., 2019), M-FAC (Frantar et al., 2021), MiniLM (Wang et al.,
2020) and XLNet (Yang et al., 2019).
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Figure 7: Early exit cascades achieve Pareto improvement for text classification tasks from the GLUE
benchmark despite the large accuracy differences between models. The results for the MRPC and QQP
tasks are similar for both accuracy and F1 score.

5 Conclusion

Early exit model cascades can be used to trade off inference cost against quality, to optimize for maximum
Pareto improvement, or to maintain and even exceed the performance of the largest model while lowering cost.
We demonstrate the efficacy of early exit cascades on a wide selection of publicly available pretrained models
for image classification on ImageNet and text classification tasks from the GLUE benchmark. We cascade
Pareto optimal models independent of their architecture or training and provide a strong and reproducible
baseline for related research that is currently missing. We compare various early exit conditions, ensembling
strategies, and temperature-scaled calibration. Notably, we find that the commonly used entropy threshold
performs worst, that ensembling can increase the maximum accuracy the cascade achieves but fails to
improve the Pareto front, and that temperature scaling is ineffective at alleviating this. Which method
performs best varies based on the cascaded models. Since comparing the cascade performance of different
methods is computationally cheap and fast, the best situational method can be determined. Otherwise, our
recommendation is to use the maximum softmax threshold condition without ensembling and calibration,
which is not just simple and reliable but also the most effective of all methods we evaluated.
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A Additional Pareto improvement comparison data
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Figure 8: 3-model cascade Pareto improvement for the accuracy-MAC trade-off. Maximum softmax confi-
dence without ensembling is the best cascading method overall and is plotted again in the middle and right
as black line to have a baseline for comparison. The softmax margin cascading method performs best in the
lower accuracy range and mean ensembling shines at the upper end of the accuracy range.
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Figure 9: 2-model cascade Pareto improvement for the accuracy-time trade-off. Again, maximum softmax
confidence without ensembling is the best cascading method of all and is plotted again in the middle and right
as black line to have a baseline for comparison. Notable is that mean ensembling shows worse performance
for inference speed relative to the maximum softmax method. Furthermore, the mean softmax method now
outperforms the mean logits method. This indicates that cascading methods which use ensembling are less
reliable.
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B Top-5 accuracy
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Figure 10: For some applications, such as content or autocomplete recommendation, it is less important that
the top-1 prediction is correct and instead it matters more that the correct prediction is among the top.
To investigate this scenario, we evaluate the trade-off between top-5 accuracy and MAC count. 2-model
cascades perform better at the lower range but worse at the higher range for top-5 accuracy despite the
smaller accuracy differences. Here, the entropy confidence metric beats maximum softmax since it takes
into account more than the top-1 prediction. However, the top-5 softmax sum, which takes into account all
relevant probabilities, outperforms entropy across most of the Pareto front. In an attempt to improve the
cascading further, we try mean ensembling. However, neither the mean logits nor the mean softmax (not
pictured) method perform well outside of narrow points at the upper limit of the accuracy range.

C Confidence metric for mean ensembles
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Figure 11: A comparison of confidence metrics for mean ensembled 2-model cascades in the high accuracy
regime, where they perform best. While the difference is very small, the softmax margin confidence metric
is better overall than the maximum softmax for mean ensembled cascades. However, maximum softmax
confidence leads to better improvement in the high accuracy regime, where mean ensembles perform best,
and is therefore the metric we selected.
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D Robustness to distribution shifts
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Figure 12: To get a fine-grained view of the impact distribution shifts have on fixed thresholds, we compare
the distribution-shifted ImageNet cascade Pareto front with the new ImageNetV2 cascade Pareto front for
the maximum softmax confidence metric. The distribution shifted Pareto front is obtained by using the
same cascades at identical confidence threshold ranges that make up the original ImageNet Pareto front and
evaluating them on ImageNetV2. On the left, we show the individual distribution shifted segments, which
represent separate cascades and threshold ranges that make up the original Pareto front. The distribution
shift causes these segments to no longer be connected as identical thresholds lead to changed early exit rates
for different data and cascades are affected to a different degree. The new ImageNetV2 cascade Pareto front
is obtained with the same algorithm that has been used to get the original Pareto front, which obtains the
Pareto front across all possible 2-model cascades. The distribution shifted front remains close to Pareto
optimal across much of the range.
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