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ABSTRACT

Motor imagery classification from Electroencephalogram (EEG) signals involves
decoding information during the imagination of specific movements. However,
learning representations for EEG-based motor imagery classification is challeng-
ing due to inter-subject variability and differences in mental imagery, resulting in
poor generalization of deep learning models to new subjects. While pre-trained
deep learning models achieve high accuracy on subjects with similar domains,
they fail on subjects with dissimilar domains. Optimization-based meta-learning
algorithms can address this limitation by learning a good initialization for the
model, enabling quick adaptation to new subjects with limited fine-tuning ex-
amples. We demonstrate that our Meta Learning approach consistently outper-
forms Transfer Learning on the BCI Competition IV 2a dataset. Although accu-
racy varies depending on domain similarity, meta-learning demonstrates efficient
adaption to unseen subjects with limited data. By improving generalization across
subjects with different domains under low-data environments, we can enhance
the reliability and practicality of brain-computer interfaces for real-world applica-
tions.

1 INTRODUCTION

Deep learning models have shown great success in many fields, including image and speech recog-
nition. However, applying these models to new domains or tasks can be challenging, as they of-
ten require large amounts of labeled data for training. One approach to address this challenge is
to use transfer learning, where a model pre-trained on a large dataset is fine-tuned on a smaller,
task-specific dataset. Learning representations for EEG-based motor imagery classification (Gura-
gai et al. (2020)) is a challenging task due to the differences in mental imagery and inter-subject
variability (Saha Simanto|(2020)). In this paper, we investigate the effectiveness of meta-learning
in improving generalization to new subjects with limited data, in the context of EEG-based motor
imagery classification. We compare the performance of our Meta-Learning approach with basic
transfer learning on the BCI Competition IV 2a dataset and show that our approach outperforms the
baseline on subjects with dissimilar domains.

Previous studies (Zhang| (2020)) have used transfer learning to address the problem of inter-subject
variability in EEG-based motor imagery classification. However, these approaches are limited by
the similarity of the domains between the training and testing subjects. Optimization-based meta-
learning algorithms (Hospedales et al.| (2022)) like Reptile (Nichol et al.| (2018))) can be used to
learn a good initialization for the model to adapt quickly to new subjects with few fine-tuning exam-
ples, which can improve the learning of representations. In recent research, several attempts have
been made to address similar challenges using meta-learning-based approaches. For instance, |L1
et al.| (2021) demonstrated the superiority of meta-learning; however, their work employed Model-
Agnostic Meta-Learning and did not conduct subject-specific or shot-wise analysis. In another study,
'Wu & Chan| (2022) utilized a Reptile-based approach for motor imagery (MI) classification but re-
ported its ineffectiveness without providing detailed explanations for the observed outcomes. Our
contribution lies in demonstrating the superiority of our meta-learning approach compared to basic
transfer learning. Through subject-specific and shot-wise analyses, we effectively address subject
variability with limited data. By applying meta-learning to EEG-based motor imagery classifica-
tion, our work contributes to the expanding research on improving generalization across subjects in
diverse domains, even with limited data availability.

2 METHODOLOGY

To evaluate our approach, we focus on the ability to generalize to an unseen subject. We use the
data from all other subjects in the dataset as our training dataset, while the data from the unseen test
subject is divided into fine-tuning and testing datasets.
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Our approach involves three stages. First, we train the model on the training dataset using a pre-
training algorithm (Transfer Learning / Meta Learning). Then, we fine-tune the model using gradient
descent on a few shots of trials from the fine-tuning dataset. Finally, we test the performance of the
model on 4 shots of trials from the testing dataset. We utilize the EEGNet (Lawhern et al.| (2018))
architecture as the backbone of our approach. During few-shot fine-tuning on the test subject, we
freeze the feature extraction layers and only fine-tune the classifier.

Our Meta-Learning algorithm is employed for meta-training on the 8 training subjects to update the
model’s parameters (6). In each iteration, we sample 5 mini-batches of tasks, each from a different
subject, consisting of a support set S and a query set (). Separate model copies are created for
each mini-batch, and their parameters (f’) are updated through 2 steps of gradient descent on S.
The loss is then evaluated on the updated parameters (6’) using @, and the gradient of this loss is
calculated independently for each mini-batch. The sum of these gradients is used to update the main
parameters ¢. For a more detailed algorithm, please refer to Algorithm|[I]in the Appendix. Through
this approach, our goal is to learn an effective initialization for the model, enabling rapid adaptation
to new subjects with limited fine-tuning examples.

3 EXPERIMENTS

We used the BCI COMPETITION IV 2a Dataset (Brunner et al.| (2008)), consisting of EEG signals
from 9 subjects (numbered 1 to 9). The dataset comprises 4 motor imagery classes (left hand,
right hand, feet, tongue), with 144 trials per class for each subject. Each trial has a duration of
4 seconds, sampled at 250 Hz, resulting in 1001 timepoints. The EEG data is recorded using 22
channels. To evaluate the generalization of our approach, we performed 9 separate experiments,
where we pre-trained on the EEG signals from 8 subjects and tested on the remaining subject.
Specifically, for each ¢+ = 1 to 9, we used subject ¢ as the test subject and pre-trained on the EEG
signals from the other 8 subjects. We compared the performance of our Meta Learning approach with
a transfer learning approach that utilizes gradient descent on EEGNet for pre-training. To evaluate
the accuracy achieved by our approach on subject 7, we compared its performance using a few shots
of fine-tuning examples against the performance achieved when trained on a larger number of fine-
tuning examples. For this purpose, we divided all trials of subject ¢ into two sets: a fine-tuning
set and a testing set. Subsequently, we fine-tuned our pre-trained model, while freezing the feature
extraction layers, using the few shots of trials from the fine-tuning set and evaluated the accuracy on
the testing set. In order to assess many-shot classification accuracy, we divide the test subject’s data
into 80% for fine-tuning (112 trials) and 20% for testing. Through training the pre-trained model on
additional data from the new subject, we simultaneously fine-tune the feature extractor layers. Our
primary aim is to evaluate the effectiveness of our Meta Learning approach in achieving comparable
accuracy to the many-shot accuracy, despite utilizing only a few fine-tuning trials.

4 RESULTS AND CONCLUSION

Table 1: Average Accuracy (in %) of Transfer Learning and Meta Learning Approaches

Method | Shots— 0 2 4 6 8 10 many (112)
Transfer Learning 49.67 51.85 5444 56.00 56.77 59.59 79.66
Meta Learning 55.56 5538 57.52 59.67 6094 63.13 82.24

Table[T] shows the average accuracy across each of the 9 experiments. Our Meta Learning approach
consistently Transfer Learning in terms of few-shot classification accuracy on the BCI Competition
IV 2a dataset, indicating its ability to learn a better initialization of EEGNet parameters and effec-
tively learn representations using limited fine-tuning data. We observe that accuracy increases as the
number of fine-tuning shots increases, but the few-shot accuracy remains significantly lower than
the many-shot accuracy, highlighting the need for extensive fine-tuning on unseen subjects. Meta
Learning generally outperforms Transfer Learning even in many-shot classification scenarios. How-
ever, our observations reveal that the accuracy of many-shot classification can vary depending on the
similarity between test subjects and training subjects, including in the case of Meta Learning. For a
more detailed analysis on various subjects, please refer to the Appendix.

In conclusion, our Meta Learning approach successfully addresses the challenges of subject vari-
ability and demonstrates its effectiveness in learning better representations on adaption to unseen
subjects with limited fine-tuning data. Our work opens up new possibilities for enhancing the relia-
bility and efficiency of communication with external devices through BCI technology.
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A APPENDIX

Code and Implementation Details: The code and implementation details can be ac-
cessed at the following GitHub repository: |https://github.com/arnav-pati/
iclr2023-meta-learning-eeg-mi-classificationl

Algorithm 1 Meta-training

Require: Meta-training dataset D, EEGNet model fy with parameters 6, Loss function L(-),
hyperparameters «, 3, Number of inner-loop gradient update steps K
Ensure: 0: Updated model parameters
1: for iteration in iterations do

2: Sample batch B from D
3: for subjectin B do
4: Sample support set S and query set ) from subject
5: Initialize 6’ < 6
6: forkinl,2,..., K do
7: Compute embeddings for .S and () using fo-
8: Update model parameters 6’ using gradient descent with Vg L(S;6")
9: end for
10: Compute loss Lgupject using L(Q; 0")
11: end for
12: Update model parameters 6 using gradient descent with > Vo Lsubject
for subject in B
13: end for
14: return 6

Table 2: Performance Analysis of Transfer Learning and Meta Learning Approaches for Classifica-
tion Accuracy (in %) across Different Fine-tuning Shots and Test Subjects

Fine-tuning shots
0 1 2 3 4 5 6 7 8 9 10 many(112)
Test Subject 1:
Transfer Learning | 63.54 60.71 64.32 66.88 68.75 69.53 69.20 70.19 7135 73.86 72.50 83.93
Meta Learning 70.83 64.96 66.15 69.06 7049 71.09 73.21 74.52 7396 75.00 76.25 90.18
Test Subject 2:
Transfer Learning | 32.81 36.16 34.11 34.06 36.46 38.28 38.84 41.83 39.58 39.77 41.88 67.86
Meta Learning 3542 36.38 39.58 38.44 41.67 4141 41.96 42.79 43.75 43.75 46.25 73.21
Test Subject 3:
Transfer Learning | 65.10 65.40 67.97 70.31 70.49 71.88 71.88 73.08 73.44 72.73 77.50 91.96
Meta Learning 71.88 70.54 7292 73.75 76.39 79.30 79.02 80.29 81.25 78.98 81.25 97.32
Test Subject 4:
Transfer Learning | 41.15 4397 46.35 47.50 49.65 48.83 53.13 5240 51.56 52.84 59.38 82.14
Meta Learning 48.44 48.66 48.18 50.31 5243 53.13 54.02 54.33 56.77 55.68 56.25 83.93
Test Subject 5:
Transfer Learning | 34.38 32.59 3438 34.69 36.81 38.28 37.05 37.50 3594 39.20 38.75 56.25
Meta Learning 36.63 39.06 39.58 38.44 38.54 38.28 40.63 41.83 42.19 43.75 44.38 59.82
Test Subject 6:
Transfer Learning | 42.71 39.51 4349 4344 4583 4492 46.88 4471 46.88 46.59 51.88 66.96
Meta Learning 47.74 43.53 4583 4594 4375 46.09 48.21 49.52 47.92 51.70 55.63 74.10
Test Subject 7:
Transfer Learning | 50.52 47.54 51.04 53.75 53.47 55.08 5491 5529 5521 57.39 60.00 91.07
Meta Learning 59.55 53.57 5599 56.88 58.68 62.89 61.61 65.38 6042 61.36 61.25 90.18
Test Subject 8:
Transfer Learning | 57.99 5893 6146 62.81 63.19 64.84 65.18 6538 67.19 69.32 66.25 89.29
Meta Learning 66.49 61.83 64.58 65.63 69.10 71.48 69.64 69.71 70.83 71.59 73.75 88.39
Test Subject 9:
Transfer Learning | 58.85 58.26 63.54 63.44 65.28 68.75 66.96 69.71 69.79 66.48 68.13 87.50
Meta Learning 63.02 66.07 65.63 66.88 66.67 68.36 68.75 69.71 71.35 69.88 73.13 83.04

Table [2] presents an accuracy comparison for different numbers of fine-tuning shots across various

test subjects using Transfer Learning and Meta Learning methods. Here are a few observations:
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1. Generally, we observe that as the number of fine-tuning shots increases, the accuracy of
both the Transfer Learning and Meta Learning models tends to improve across most test
subjects.

2. Test Subjects 2, 5 and 6 exhibit low 0-shot accuracy with both Transfer Learning and Meta
Learning, indicating their dissimilarity to the training subjects. However, Meta Learning
demonstrates superior performance over Transfer Learning in fine-tuning with few shots
and continues to outperform even after fine-tuning with a larger number of shots.

3. Meta Learning significantly outperforms Transfer Learning in learning representations
from very few shots for Test Subjects 4, 7, 8, and 9. However, Transfer Learning gradually
improves with more data, reaching comparable accuracy to Meta Learning in many-shot
classification.

4. For Test Subjects 1 and 3, Meta Learning significantly outperforms Transfer Learning in
learning representations from both few shots and many shots. This highlights that Meta
Learning provides pre-trained parameters that consistently outperform Transfer Learning,
even with a substantial amount of fine-tuning data.

Overall, the Meta Learning tends to outperform Transfer Learning across multiple test subjects and

fine-tuning shot numbers, indicating its effectiveness in the given context. However, it is worth
noting that the results may vary depending on the specific dataset and problem domain.

Accuracy Comparison for Different Fine-tuning Shots

100
80 A
60
=
L
°
= |
o
2
40 4
—&— EEGNet - Test Subject 1  —@— EEGMNet - Test Subject 4  —@— EEGMNet - Test Subject 7
201 — Reptile - Test Subject 1 —# Reptile - Test Subject 4  —M— Reptile - Test Subject 7
—&— EEGNet - Test Subject 2 —@— EEGMNef - Test Subject 5  —@— EEGMNef - Test Subject 8
—- Reptile - Test Subject 2  —— Reptile - Test Subject5  —— Reptile - Test Subject 8
=&~ EEGNet - Test Subject 3 EEGNet - Test Subject & EEGMet - Test Subject 9
=~ Reptile - Test Subject 3 Reptile - Test Subject & Reptile - Test Subject 9
D T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 many

Number of Fine-tuning Shots
Figure 1: Performance Analysis by Shots and Comparison between

The figurdI|compares the accuracy of Transfer Learning and Meta Learning, for different numbers of
fine-tuning shots. The x-axis represents the number of shots, and the y-axis represents the accuracy.
Each line plot represents a different test subject. The plot shows that, in general, increasing the
number of fine-tuning shots improves the accuracy for both models. Transfer Learning typically
requires a larger amount of data to achieve comparable accuracy to Meta Learning across multiple
test subjects. However, there are instances where both models exhibit similar performance.
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Figure 2] shows that the validation loss after fine-tuning with many shots is significantly lower when
pre-trained using our Meta Learning approach.
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Figure 2: Training the pre-trained model on a large amount of fine-tuning data from the unseen
subject: The x-axis shows the number of epochs, and the y-axis shows the classification accuracy
on testing trials.
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