

000 FROM SORTING ALGORITHMS TO SCALABLE 001 KERNELS: BAYESIAN OPTIMIZATION IN HIGH- 002 DIMENSIONAL PERMUTATION SPACES 003 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Bayesian Optimization (BO) is a powerful tool for black-box optimization, but
014 its application to high-dimensional permutation spaces is severely limited by the
015 challenge of defining scalable representations. The current state-of-the-art BO ap-
016 proach for permutation spaces relies on an exhaustive $\Omega(n^2)$ pairwise comparison,
017 inducing a dense representation that is impractical for large-scale permutations. To
018 break this barrier, we introduce a novel framework for generating efficient permu-
019 tation representations via kernel functions derived from sorting algorithms. Within
020 this framework, the Mallows kernel can be viewed as a special instance derived
021 from enumeration sort. Further, we introduce the **Merge Kernel**, which leverages
022 the divide-and-conquer structure of merge sort to produce a compact, $\Theta(n \log n)$
023 to achieve the lowest possible complexity with no information loss and effec-
024 tively capture permutation structure. Our central thesis is that the Merge Kernel
025 performs competitively with the Mallows kernel in low-dimensional settings, but
026 significantly outperforms it in both optimization performance and computational
027 efficiency as the dimension n grows. Extensive evaluations on various permu-
028 tation optimization benchmarks confirm our hypothesis, demonstrating that the
029 Merge Kernel provides a scalable and more effective solution for Bayesian opti-
030 mization in high-dimensional permutation spaces, thereby unlocking the potential
031 for tackling previously intractable problems such as large-scale feature ordering
032 and combinatorial neural architecture search.

034 1 INTRODUCTION

036 As one of the most widely adopted approaches to black-box optimization, Bayesian optimization
037 (BO) Shahriari et al. (2015) has found broad application in machine-learning hyper-parameter tun-
038 ing Wu et al. (2019), financial portfolio optimization Gonzalvez et al. (2019), chemical and ma-
039 terial discovery Luo et al. (2025), and catalyst formulation design Xie et al. (2023). BO employs
040 probabilistic surrogate models—most commonly Gaussian processes (GPs)—to approximate the
041 unknown objective and uses an acquisition function to balance exploration and exploitation, thereby
042 approaching the global optimum with the fewest possible evaluations.

044 Most research on BO to date has concentrated on continuous Greenhill et al. (2020) and categorical
045 design spaces Garrido-Merchán & Hernández-Lobato (2020); Nguyen et al. (2020); Bartoli et al.
046 (2025), whereas applications to permutation spaces remain comparatively underexplored. This gap
047 is striking given the ubiquity of permutation optimization in both theory and practice: canonical ex-
048 amples include the traveling-salesperson problem (TSP), the sequencing of operations in automated
049 experimental pipelines Guidi et al. (2020), and the sequential order-of-addition experiments Lin
050 & Rios (2025). In addition, permutation optimization frequently arises in diverse AI applications,
051 including scheduling tasks in robotic planning Alatartsev et al. (2015), optimizing experimental se-
052 quences Blau et al. (2022), and other sequential decision-making problems Sun & Giles (2001); Wen
053 et al. (2023). Therefore, extending Bayesian optimization to permutation spaces holds significant
theoretical and practical value for artificial intelligence as well as broader academic and industrial
applications.

054 Successfully deploying BO in permutation spaces hinges on equipping the GP surrogate with a kernel
 055 that faithfully quantifies the similarity between two permutations. Existing approaches have
 056 evolved along two principal lines: (1) General-purpose discrete BO frameworks—most notably
 057 COMBO Oh et al. (2019), which combines a graph-Laplacian kernel with local search to accom-
 058 modate heterogeneous discrete variables and thus enjoys broad applicability. However, it relies on
 059 manually crafted adjacency graphs or hash encodings, which struggle to capture the comparison se-
 060 quences and cyclic shifts unique to permutations; consequently, its efficiency degrades on tasks that
 061 involve frequent high-order swaps or mixed local/global reorderings. (2) Permutation-specific ker-
 062 nels—chief among them the Mallows kernel in BOPS Deshwal et al. (2022). This kernel is built on
 063 the Kendall- τ distance, representing a permutation via the inversion counts generated by enumera-
 064 tion sort, yielding a feature dimension of $O(n^2)$. The dimension therefore scales quadratically with
 065 n , and because $2^n \gg n!$, the vast majority of features fail to correspond to any valid permutation,
 066 resulting in both statistical and computational redundancy.

067 To address the limitations of existing approaches, we propose a sorting-algorithm–driven kernel-
 068 design framework for permutations and instantiate it with the Merge kernel, which reduces the fea-
 069 ture dimension to $O(n \log n)$ —the information-theoretic lower bound for encoding a permutation.
 070 The central insight is that any comparison-based sorting algorithm is defined by a fixed sequence of
 071 element comparisons; recording the binary outcome of each comparison yields a feature vector for
 072 the permutation. Choosing an algorithm with a deterministic comparison tree—such as merge sort
 073 or bitonic sort—thus produces a representation that is both fixed in length and highly compact.

074 **Contributions.** Our work makes three principal contributions:

- 076 • **General framework.** We propose a unified design framework that constructs permutation-
 077 space kernels by treating any comparison-based sorting algorithm as a feature generator.
 078 Within this view, the classic Mallows kernel is recovered as the special case obtained when
 079 the framework is instantiated with enumeration sort.
- 080 • **Merge kernel.** Applying the framework to merge sort yields Merge Kernel, whose
 081 $O(n \log n)$ construction matches the information-theoretic lower bound on comparison
 082 complexity.
- 083 • **Comprehensive evaluation.** We assess the effectiveness of our kernels on diverse synthetic
 084 and real-world benchmarks. Results on low-dimensional benchmarks show competitive
 085 performance against the state-of-the-art Mallows kernel, while it significantly outperforms
 086 the Mallows kernel on high-dimensional benchmarks.

087 Our results demonstrate that the Merge kernel provides a practical and efficient tool for permutation
 088 optimization, significantly enhancing BO’s applicability to diverse AI scenarios.

090 2 BACKGROUND AND RELATED WORKS

092 2.1 PERMUTATION OPTIMIZATION

094 Here we describe the problem formulation of permutation optimization with a fixed length $n \in \mathbb{N}$.
 095 Let $[n] = \{1, 2, \dots, n\}$, a permutation is a function $\pi : [n] \longrightarrow [n]$ such that π is bijective. The set
 096 of all permutations of $[n]$ is the symmetric group

$$097 \mathcal{S}_n = \{\pi \mid \pi : [n] \longrightarrow [n] \text{ is bijective}\}.$$

098 We are given a costly-to-evaluate, possibly noisy black-box function $f : \mathcal{S}_n \longrightarrow \mathbb{R}$, which assigns
 099 a real-valued quality (e.g., cost, loss, reward) to every permutation π . Hence, the optimization
 100 problem can be formulated as

$$101 \pi^* = \arg \min_{\pi \in \mathcal{F}} f(\pi)$$

102 where $\mathcal{F} \subseteq \mathcal{S}_n$ is the feasible set. In this study we only consider the unconstrained case, therefore
 103 we have $\mathcal{F} = \mathcal{S}_n$; in practice \mathcal{F} may exclude permutations violating domain rules.

105 2.2 BAYESIAN OPTIMIZATION

107 Bayesian optimization (BO) Shahriari et al. (2015) is an optimization algorithm for black-box ob-
 108 jective functions that no closed-form expression or gradient information is available and whose

108 evaluation is often an expensive physical or computational experiment. The algorithm first fits the
 109 observed data with a surrogate model, most commonly a Gaussian process (GP) Williams & Ras-
 110 mussen (2006), and then employs an acquisition function to select the next query point, balancing
 111 exploration of uncertain regions against exploitation of promising areas identified by the surrogate.

112 The kernel $K(\mathbf{x}, \mathbf{x}')$ is the central design lever in a Gaussian-process surrogate: it defines the sim-
 113 ilarity metric between inputs, thereby specifying the prior smoothness assumptions and, through
 114 GP inference, the posterior mean and uncertainty. Extending BO to any new search domain is
 115 therefore tantamount to endowing that domain with an appropriate kernel function. Whereas Eu-
 116 clidean spaces typically rely on Gaussian (RBF) kernels, discrete structures—and permutations in
 117 particular—require bespoke constructions that faithfully encode ordering relationships. For exam-
 118 ple, Oh et al. (2022) uses the Position kernel Zaefferer et al. (2014) and L-ensemble with Acquisition
 119 Weights to extend BO on permutation space to a batched BO scheme.

120 While significant progress has been made in scaling BO to high-dimensional continuous domains
 121 (e.g., Eriksson et al. (2019); Wang et al. (2016)), extending BO to large-scale structured discrete
 122 domains like permutations presents a distinct set of challenges centered on kernel design, which is
 123 the primary focus of this work.

125 2.3 MALLOWS KERNEL FOR PERMUTATION SPACE

127 BOPS-H Deshwal et al. (2022) is the current state-of-the-art BO algorithm for permutation opti-
 128 mization, which proposes to employ Mallows kernel Jiao & Vert (2015) on the symmetric group \mathcal{S}_n
 129 in a similar manner to the RBF kernel on the Euclidean space. The Mallows kernel $K_{Mal}(\pi, \pi')$ for
 130 the permutation pair (π, π') is defined as the exponential negative of the number of discordant pairs
 131 $n_d(\pi, \pi')$ between π and π' :

$$132 \quad K_{Mal}(\pi, \pi') = \exp(-ld(\pi, \pi')) \quad (1)$$

134 where $l \geq 0$ is the length-scale parameter of the Mallows kernel, and $d(\pi, \pi')$ is the Kendall- τ
 135 distance Kendall (1938) which counts the number of pairs of elements ordered oppositely by π and
 136 π' :

$$138 \quad d(\pi, \pi') = \sum_{i < j} [1_{\pi(i) > \pi(j)} 1_{\pi'(i) < \pi'(j)} \\ 139 \quad + 1_{\pi(i) < \pi(j)} 1_{\pi'(i) > \pi'(j)}] \quad (2)$$

142 Intuitively, the Kendall- τ distance counts the differences of all pair-wise comparisons between π
 143 and π' . For example, let $\pi = (1, 2, 3, 4)$ and $\pi' = (2, 1, 4, 3)$. Two pairs are discordant among
 144 the six unordered pairs: $(1, 2), (3, 4)$, hence $d(\pi, \pi') = 2$ and $K_{Mal}(\pi, \pi') = \exp(-2l)$.

146 3 MERGE KERNEL: GENERATING KERNELS FROM SORTING ALGORITHMS

148 In the previous section, we have shown that the core of the Mallows kernel is the pairwise compari-
 149 son of all elements. Equivalently, it maps a permutation π to a feature vector

$$151 \quad \Phi_{Mal}(\pi) \in \{0, 1\}^{\binom{n}{2}}$$

152 where each coordinate corresponds to the comparison of a pair of elements: 0 if they are in ascending
 153 order, and 1 otherwise. We then have

$$154 \quad K_{Mal}(\pi, \pi') = \exp\left(-\frac{\|\Phi_{Mal}(\pi) - \Phi_{Mal}(\pi')\|^2}{2\ell^2}\right) \quad (3)$$

$$155 \quad = K_{RBF}(\Phi_{Mal}(\pi), \Phi_{Mal}(\pi')).$$

158 under the reparameterization $l = \frac{1}{2\ell^2}$ for the length-scale parameter ℓ in the Gaussian RBF kernel.
 159 Since the RBF kernel K_{RBF} is strictly positive definite on \mathbb{R}^d and thus satisfies Mercer’s condi-
 160 tion Mercer (1909), and because positive definiteness is preserved under composition with any de-
 161 terministic mapping Φ , it follows that $K(\pi, \pi')$ constructed from Φ also satisfies Mercer’s condition
 and is therefore a valid kernel function.

162 **Algorithm 1** MERGE FEATURE MAPPING $\Phi_{Mer}(\pi)$
 163
 164 **Input:** Permutation π of length n
 165 **Output:** Feature vector $\Phi_{Mer}(\pi)$
 166 **if** $\text{length}(\pi) == 1$ **then**
 167 **return** []
 168 **end if**
 169 **if** $\text{length}(\pi) == 2$ **then**
 170 **return** [1] **if** $\pi[0] > \pi[1]$ **else** [0]
 171 **end if**
 172 Let $mid = \lfloor \frac{n}{2} \rfloor$
 173 Let $V_{Left}, V_{Right} = \Phi_{Mer}(\pi[: mid]), \Phi_{Mer}(\pi[mid :])$
 174 Let $\hat{\pi}_l, \hat{\pi}_r = \text{sorted}(\pi[: mid]), \text{sorted}(\pi[mid :])$
 175 Let $V_{Merge} = [], i = j = 0$
 176 **while** $i < \text{length}(\hat{\pi}_l)$ and $j < \text{length}(\hat{\pi}_r)$ **do**
 177 **if** $\hat{\pi}_l[i] > \hat{\pi}_r[j]$ **then**
 178 $V_{Merge}.\text{append}(1)$
 179 $j += 1$
 180 **end if**
 181 **if** $\hat{\pi}_l[i] < \hat{\pi}_r[j]$ **then**
 182 $V_{Merge}.\text{append}(0)$
 183 $i += 1$
 184 **end if**
 185 **end while**
 186 **return** $V_{Left} + V_{Right} + V_{Merge}$

187 Thus, other pairwise comparison methods can also be used to construct analogous feature vectors, which—when combined with an RBF kernel—yield valid kernel functions. Naturally, we
 188 can extend the idea of pairwise comparison to sorting algorithms: the essence of a sorting
 189 algorithm is to compare elements in a sequence and swap them when necessary. Consequently, each
 190 sorting algorithm embodies a unique pairwise comparison strategy, suggesting that we can build
 191 permutation-space kernels based on sorting procedures. As a sorting algorithm traverses all
 192 elements, it records whether each comparison leads to a swap, thereby fully reconstructing the original
 193 permutation; hence, the resulting feature vector retains all information without any loss. Viewed in
 194 this light, the Mallows kernel’s exhaustive enumeration of every element pair can be interpreted as
 195 an enumeration-sort-inspired featurization, where enumeration sort ranks each item by comparing
 196 it with every other element and then places it directly in its final position.

197 Here is a more detailed explanation. Consider that each entry in the Mallows feature (or Kendall- τ
 198 distance) represents whether the order of elements at two positions i, j in a pair of permutations π_a
 199 and π_b is the same. Considering only one permutation, we compare all element pairs within it: if
 200 the element at the earlier position is greater than the element at the later position, we mark it as
 201 1; otherwise, we mark it as 0. The value of each entry here is equivalent to the swap information
 202 examined for that pair during an enumerate sort referring to all pairwise comparisons, we can thus
 203 obtain the feature vectors for these two permutations. By comparing the elements of these two
 204 feature vectors position by position, if the two elements are the same, it means π_a and π_b share
 205 the same order for the element pair represented at this position (i.e., Φ_{mal} is 0 at this position in
 206 the distance calculation); otherwise, it is 1. Now, we can replace the above enumerate sort with a
 207 sorting algorithm to generate another feature vector for permutation kernel. That is, we use sorting
 208 algorithm to obtain the information on whether a swap occurred during every comparison in the
 209 comparison map.

210 However, not every sorting algorithm can induce a valid feature mapping suitable for kernel
 211 construction. This is because the mapping from permutations to feature space must yield feature vectors
 212 of fixed length; otherwise, feature vectors of differing lengths would not be compatible with the RBF
 213 kernel. Hence, only sorting algorithms that have a fixed comparison path and a constant number of
 214 comparisons across all inputs can generate valid feature mappings, e.g., a fixed sorting network with
 215 a predetermined comparator sequence Batcher (1968). This strict constraint allows us to exclude
 the vast majority of $O(n \log n)$ complexity sorting algorithms that are stochastic or adaptive, such

as quicksort, heapsort, and standard merge sort, since their comparisons are data-dependent, not fixed. Nevertheless, merge sort could be an exception: although typically merge sort ceases comparisons once all elements from one subsequence have been merged, redundant comparisons can be artificially introduced during the merge procedure, resulting in a fixed number of comparisons $L + R - 1$, where L and R are the length of the two subsequences. This ensures that both the comparison path and the number of comparisons remain identical across different permutations, thus establishing a fixed comparison path.

Stabilizing the comparison map of other $O(n \log n)$ sorting algorithms is quite challenging, and other $O(n^2)$ sorting algorithms are equivalent to Mallows kernel. At the moment we can confirm that Bitonic sort satisfy the above constraint, however it is of $O(n \log^2 n)$ complexity. Consequently, we select merge sort as the feature mapping $\Phi_{Mer}(\pi)$ for constructing permutation-space kernel function K_{Mer} , following Equation 3:

$$K_{Mer}(\pi, \pi') = \exp\left(-\frac{\|\Phi_{Mer}(\pi) - \Phi_{Mer}(\pi')\|^2}{2\ell^2}\right) = K_{RBF}(\Phi_{Mer}(\pi), \Phi_{Mer}(\pi')). \quad (4)$$

The element-pair comparison mapping $\Phi_{Mer}(\pi)$ is shown in Algorithm 1. Here we present an example for permutation [1,4,3,2] to show the **Merging** process.

Example: Feature Mapping for $\pi = (1, 4, 3, 2)$

1. **Initial Split:** π splits into $L_0 = (1, 4)$ and $R_0 = (3, 2)$.
2. **Recurse on $L_0 = (1, 4)$:** Merging sorted lists ‘[1]’ and ‘[4]’ yields feature vector $V_L = [0]$.
3. **Recurse on $R_0 = (3, 2)$:** Merging sorted lists ‘[2]’ and ‘[3]’ yields feature vector $V_R = [1]$.
4. **Final Merge:** Merge sorted lists ‘(1,4)’ and ‘(2,3)’. The fixed comparison path generates the merge vector $V_{Merge} = [0(1 < 2), 1(4 > 2), 1(4 > 3), 1(\text{left padding})]$.
5. **Concatenate:** The final feature vector is $\Phi_{Mer}(\pi) = V_L \oplus V_R \oplus V_{Merge} = [0] \oplus [1] \oplus [0, 1, 1, 1] = [0, 1, 0, 1, 1, 1]$.

We have established that merge sort, with a specially designed fixed-comparison procedure, is uniquely capable of constructing valid kernel functions among common sorting algorithms with a complexity of $\Omega(n \log n)$. We now demonstrate that the feature vector derived from merge sort achieves the theoretical lower bound on vector length for lossless permutation encoding. First, note that the lower bound on time complexity for any comparison-based sorting algorithm is $\Omega(n \log n)$; as this complexity directly corresponds to the number of element comparisons during sorting, it similarly sets a lower bound on the length of the feature vector. On the other hand, consider the permutation space consisting of all $n!$ possible permutations of length n . From an information-theoretic viewpoint, encoding all $n!$ permutations without loss using a binary feature vector composed solely of 0, 1 requires a minimum vector length of $\log_2(n!)$. Applying Stirling’s approximation Donald et al. (1999), we have: $\log_2(n!) = n \log_2 n - n \log_2 e + O(\log n) = \Omega(n \log n)$. Consequently, the feature vector length of the merge-sort-based kernel (Merge Kernel) reaches this theoretical lower bound for lossless permutation encoding.

It is important to clarify that the feature vector lower bound discussed here refers to the information-theoretic lower bound on the number of pairwise comparisons required to reconstruct the relative order of two permutations, i.e., the lower bound implied by lossless information compression. This should be distinguished from the algorithmic lower bound for computing a distance regarding to the original permutations. For example, the Mallows kernel relies on the Kendall- τ distance, and although the latter can be computed in $O(n \log n)$ time using algorithms such as modified merge sort, this does not reduce the information requirement to $O(n \log n)$. Such algorithms still implicitly depend on the relative order of all $O(n^2)$ pairs of elements, but accelerate computation by batch processing rather than by reducing the underlying information model. In contrast, our method does not require explicit access to all $O(n^2)$ pairs. Instead, it achieves a complete reconstruction of the relative order using only $O(n \log n)$ pairwise comparisons.

It is worth noting that, when constructing the Merge kernel via merge sort, we have not required the feature mapping Φ to possess any group invariance property, such as right-invariance. Traditionally,

270 a permutation-distance measure should be invariant under right multiplication, meaning that applying
 271 an identical right-multiplication operation to two permutations should not alter the distance be-
 272 tween them. However, only sorting algorithms with complexity $O(n^2)$ can yield fully right-invariant
 273 kernel functions with no information loss (otherwise, a simple Spearman’s footrule Diaconis & Gra-
 274 ham (1977) with $O(n)$ complexity can hold right-invariance as well), since such invariance neces-
 275 sitates exhaustive pairwise comparisons among all $\frac{n(n-1)}{2}$ pairs of elements—an impossibility for
 276 more efficient sorting algorithms like merge sort. Consequently, although the Merge kernel achieves
 277 better computational efficiency through a more compact encoding, it sacrifices a certain degree of
 278 performance due to the loss of right-invariance.

279 We can view the relationship between the Merge and Mallows kernels as a feature selection process.
 280 Given that the $\Phi_{\text{mer}}(\pi)$ vector corresponds to a structured subset of the complete $\Phi_{\text{mal}}(\pi)$ feature
 281 space, incrementally adding the missing comparison positions to Φ_{mer} is equivalent to a gradual
 282 transformation towards the Φ_{mal} vector. This transformation represents a principled trade-off: the
 283 process of “buying back” the property of right-invariance through the incorporation of more fea-
 284 tures is achieved at the explicit cost of sacrificing computational efficiency. However, because this
 285 requires the development of appropriate analytical tools to quantify the exact marginal gain in in-
 286 variance per added comparison, this remains a fascinating, yet highly complex, direction for future
 287 research that is beyond the scope of this paper.

288 4 EXPERIMENTS

291 4.1 BENCHMARKS AND EXPERIMENT SETTINGS

292 Our empirical evaluation focuses on the state-of-the-art BOPS-H algorithm Deshwal et al. (2022)
 293 as the primary control baseline. This choice is twofold: first, BOPS-H was shown to substantially
 294 outperform other permutation-specific methods like COMBO Oh et al. (2019). Second, our core
 295 objective is a principled comparison between our Merge Kernel and the Mallows Kernel—both na-
 296 tively designed for permutations. This comparison serves as a direct evaluation of representation
 297 power without confounding factors from domain adaptation. Furthermore, we adapt TuRBO Eriks-
 298 son et al. (2019) as a high-dimensional BO algorithm of general purpose to evaluate the overall
 299 competitiveness of our framework. Since TuRBO is designed for continuous space, we apply a con-
 300 tinuous relaxation to the permutation space: we define the search space as a d -dimensional unit
 301 hypercube $[0, 1]^d$, where the discrete permutation is induced by the argsort of the continuous vector
 302 elements.

303 To disentangle whether the performance of the Merge kernel stems merely from its compact di-
 304 mensionality or from the specific structured information it captures, we introduce a randomized
 305 baseline. Specifically, we randomly subsample a fixed number of pairwise comparisons from the
 306 full Mallows feature vector, ensuring the total dimensionality exactly matches that of the Merge ker-
 307 nnel. We then apply the same RBF kernel to these features. If the success of the Merge kernel were
 308 driven solely by “compression” rather than the “informative structure” of the features, this baseline
 309 should achieve comparable performance. In addition, discussion of using Spearman’s footrule as
 310 featurization method is also added to Appendix B.1, due to limited space in the main manuscript.

311 4.1.1 LOW-DIMENSIONAL BENCHMARKS

313 The study by Deshwal et al. (2022) exclusively considers problems with dimensions of 30 or less.
 314 Accordingly, we adopt their experimental settings to form our suite of low-dimensional benchmarks.
 315 The BOPS-H algorithm follows and modifies the local-search strategy used in COMBO, examining
 316 only the set of neighbouring permutations of the current incumbent to restrict the combinatorial
 317 search space, we therefore adopt the same procedure in our experiments. GPyTorch Gardner et al.
 318 (2018) and BoTorch Balandat et al. (2020) libraries are used to implement both algorithms. Expected
 319 Improvement acquisition function is used for all the experiments, and 10 restarts are used for local
 320 search based EI optimization for BOPS-H and MergeBO. Each benchmark is evaluated with 20
 321 independent trials, each consisting of 50 iterations. The random seed for each trial is set to its trial
 322 index.

323 We evaluate our method on the same two synthetic benchmarks and the same two real-world appli-
 324 cations in Deshwal et al. (2022). Detailed information for all benchmarks are listed below:

(1) **Quadratic Assignment (QAP)** _{$n=15$} . This is a classic facility-location problem: assign n facilities to n locations so that flow costs and distances align optimally. We use the 15-city instances from **QAPLIB** Burkard et al. (1997), each with cost matrix A and distance matrix B , and minimise $\text{Tr}(APB^T)$ over permutation matrices P .

(2) **Travelling Salesman (TSP)** _{$n=15$} . The TSP seeks the shortest Hamiltonian cycle through a set of cities and is a standard benchmark for route-planning. Our instances are 15 city PCB drill tours from **TSPLIB** Reinelt (1995); the score is the total travel time to visit all holes exactly once and return.

(3) **Floor Planning (FP)** _{$n=30$} . Floor planning is an NP-hard VLSI layout task that packs rectangular modules on a chip while minimising area and manufacturing cost. We evaluate two 15-block variants (FP-1 and FP-2); each permutation defines a block placement whose cost we minimise.

(4) **Cell Placement (CP)** _{$n=30$} . Cell placement arranges logic cells on a row to reduce wire-length and hence circuit delay. We consider 30 equal-height cells with a fixed net-list; the objective is the total Manhattan wire-length induced by a permutation of cell positions.

Because the publicly available implementation of the Mallows kernel (<https://github.com/aryandeshwal/BOPS>) does not provide the interface required to run the Rodinia’s heterogeneous many-core benchmark Che et al. (2009), we did not perform experiments on this benchmark. We note a numerical discrepancy between our replicated results and those reported in the original paper, which we attribute to subtle implementation details not specified in the publication, such as problem instance choices. However, we emphasize that within our experimental framework, both the Merge Kernel and the Mallows Kernel were evaluated under identical conditions, ensuring a fair and controlled comparison of their relative performance.

4.1.2 HIGH-DIMENSIONAL BENCHMARKS: TRAVELING THIEF PROBLEMS

We introduce traveling thief problems (TTP) Bonyadi et al. (2013) as high-dimensional benchmarks, which is defined as a combination of TSP and knapsack problem: a thief must determine a tour through n cities with distance matrix $D = \{d_{ij}\}$ while simultaneously selecting items of varying weights w_k and values p_k to maximize profit without exceeding a knapsack capacity W . This structure defines a complex, hybrid search space, combining an n -dimensional permutation space for the city tour with a $\{0, 1\}^m$ discrete space for item selection. Despite its typical application in evaluating white-box or heuristic algorithms Polyakovskiy et al. (2014); Gupta et al. (2015), we adapt the TTP as a true black-box benchmark, providing no structural information to the optimizer.

Following the implementation in Polyakovskiy et al. (2014), we create three distinct instances based on a $n = 280$ -city problem (a 280-dimensional permutation space). These instances feature a large number of items with varying properties: (1) $m = 279$ items with uncorrelated weights; (2) $m = 837$ items with bounded strong correlation in the weights; and (3) $m = 837$ items with uncorrelated weights. These benchmarks provide a strenuous test for our proposed MergeBO and the baseline BOPS-H. Notice that the TTP is a hybrid space problem, we modified both MergeBO and BOPS-H by multiplying an RBF kernel on the $\{0, 1\}^m$ discrete space:

$$K_{TTP}((\pi, \sigma), (\pi', \sigma')) = K(\pi, \pi')K_{RBF}(\sigma, \sigma') \quad (5)$$

Where σ is the item picking strategy. The neighbouring permutation search method for BOPS-H is computationally infeasible on such a vast space. Therefore, we adopt a continuous relaxation approach, treating the entire set of optimization variables (π, σ) as a continuous vector for gradient-based optimization, and the result is subsequently projected back to the nearest permutation and binary vectors.

Crucially, this relaxation approach relies on the existence of a feasible projection from the continuous feature space back to the permutation space. While our Merge kernel features preserve the structural logic of the sorting algorithm to allow for valid reconstruction, the randomized baseline lacks this structural consistency (e.g., potentially inducing cyclic or conflicting comparisons). Consequently, a valid projection for the randomized baseline is ill-defined, rendering it inapplicable to this high-dimensional optimization setting.

378 Table 1: Feature length comparison of Merge and Mallows kernel over problems of different scales.
379

380 Problem	381 Dimension	382 Merge feature length	383 Mallows feature length
TSP	15	45	105
QAP	15	45	105
FP	30	119	435
CR	30	119	435
385 TTP	280	2009	39060

386
387 All experiments use the EI acquisition function. Each benchmark is evaluated with 50 independent
388 trials, each consisting of 55 iterations (5 iterations of random initialization and 50 iterations of
389 optimization). The random seed for each trial is set to its trial index.
390

391 4.1.3 EVALUATION METRICS

392 In this study, we employ two evaluation metrics: the final simple regret and the area under the
393 best-so-far regret curve (AUC). In optimization, regret is defined as the difference between the best
394 objective value observed to date and the global optimum:
395

$$396 r_t = f_t^{\text{best}} - f^* \\ 397$$

398 Following this concept, the final simple regret is the regret value obtained in the last iteration and
399 reflects the algorithm’s ultimate optimization capability when computational cost is disregarded. By
400 contrast, the regret AUC, or cumulative regret—the sum (area under the curve) of the simple regret
401 across all iterations—quantifies the convergence speed of the entire optimization process:
402

$$403 \text{AUC}_T = \sum r_t \\ 404$$

405 Generally speaking, the final simple regret and AUC represent different, valuable aspects of an
406 algorithm’s performance: the former represents the quality of the solution it ultimately finds
407 while the latter represents the “journey”, or convergence speed during optimization. For sample-
408 efficient methods like BO, these two evaluation metrics are standard practices as they allow for a
409 comprehensive comparison.
410

411 Table 2: Performance comparison between MergeBO, BOPS-H (Mallows kernel), BOPS-H with
412 random comparisons and TuRBO. Underlined results indicate the best numerical results in terms of
413 mean value \pm standard deviation of all trials, and bold font indicates statistically significant superi-
414 ority of MergeBO against BOPS-H as determined by a binomial sign test ($p < 0.05$, corresponding
415 to more than 15 wins of 20 trials).
416

417 Problem	418 Simple final Regret				419 Regret Wins		
	Merge	Mallows	Random	TuRBO	Merge Wins	Ties	Mallows Wins
TSP _{n=15}	0.077 ± 0.125	0.013 ± 0.039	0.329 ± 0.332	1.213 ± 0.879	1	12	7
QAP _{n=15}	$14.9 \pm 5.5 \times 10^3$	$8.1 \pm 4.1 \times 10^3$	$18.1 \pm 3.6 \times 10^3$	$14.2 \pm 5.9 \times 10^3$	1	3	16
FP _{n=30}	24.0 ± 9.7	30.1 ± 12.8	35.7 ± 11.2	20.5 ± 8.4	10	4	6
CR _{n=30}	6.1 ± 2.2	6.1 ± 3.0	52.15 ± 19.0	33.85 ± 15.7	9	3	8
TTP1 _{n=280}	$23.0 \pm 11.3 \times 10^3$	$88.9 \pm 7.5 \times 10^3$		$54.8 \pm 12.6 \times 10^3$	50	0	0
TTP2 _{n=280}	$14.9 \pm 7.2 \times 10^4$	$56.5 \pm 6.1 \times 10^4$		$36.8 \pm 9.4 \times 10^4$	50	0	0
TTP3 _{n=280}	$8.0 \pm 3.2 \times 10^4$	$28.1 \pm 2.8 \times 10^4$		$19.1 \pm 3.6 \times 10^4$	50	0	0

420 Problem	421 Best so far AUC				422 AUC Wins		
	Merge	Mallows	Random	TuRBO	Merge Wins	Ties	Mallows Wins
TSP _{n=15}	527.6 ± 162.8	428.2 ± 121.9	559.7 ± 224.9	877.2 ± 352.4	5	0	15
QAP _{n=15}	$38.3 \pm 8.4 \times 10^5$	$27.5 \pm 7.4 \times 10^5$	$42.5 \pm 6.1 \times 10^5$	$46.7 \pm 9.2 \times 10^5$	1	2	17
FP _{n=30}	8097.5 ± 2163.7	8665.7 ± 2638.8	9481.0 ± 2086.2	5932.1 ± 1636.9	10	1	9
CR _{n=30}	5495.6 ± 687.7	5350.5 ± 910.1	13970.8 ± 2408.8	10340.5 ± 2477.3	8	0	12
TTP1 _{n=280}	$20.5 \pm 4.4 \times 10^5$	$48.5 \pm 3.1 \times 10^5$		$40.0 \pm 4.9 \times 10^5$	50	0	0
TTP2 _{n=280}	$12.3 \pm 3.2 \times 10^6$	$30.5 \pm 2.4 \times 10^6$		$25.9 \pm 3.8 \times 10^6$	50	0	0
TTP3 _{n=280}	$6.7 \pm 1.4 \times 10^6$	$15.2 \pm 1.3 \times 10^6$		$13.2 \pm 1.5 \times 10^6$	50	0	0

423 It is important to note that this study does not include a comparison of wall-clock computation
424 times. This is a deliberate choice grounded in the fundamental premise of BO, where the cost of
425

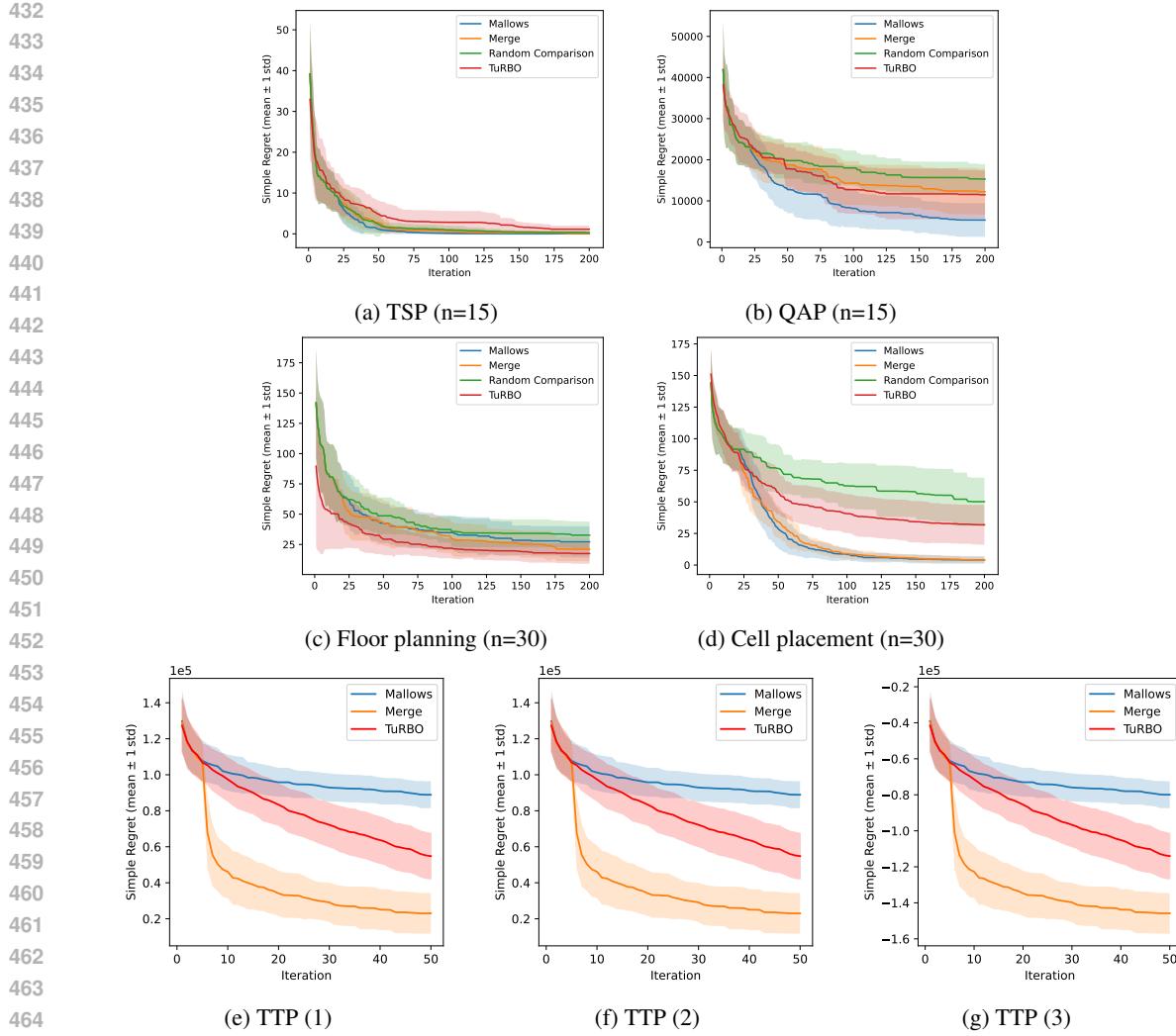


Figure 1: Low- and high-dimensional results comparing Mallows kernel (BOPS-H) and Merge kernel (MergeBO) on the current regret value (difference between best-so-far and optimal value) vs. number of iteration. Solid lines show the average regrets, while the shaded areas denote one standard deviation.

function evaluations (e.g., physical experiments or complex simulations) is assumed to far outweigh the computational cost of the algorithm itself. Consequently, our analysis prioritizes metrics related to sample efficiency, which is the primary bottleneck in such real-world scenarios. As a more stable and implementation-agnostic proxy for computational complexity, we instead report the feature vector dimensions generated by each kernel in Table 1, which directly reflects the compactness of the learned representations. Furthermore, as our experiments were conducted on a shared high-performance computing (HPC) cluster, reported wall-clock times would be subject to scheduler-induced variability, making them an unreliable metric for rigorous algorithmic comparison.

Instead, we can report a rough time estimation based on local, small-scale experiments here: the Merge kernel is approximately 10% slower than the Mallows kernel in low-dimensional problems. This is because the Mallows kernel’s calculation relies on two clean for-loops, whereas the Merge kernel requires recursive calls to merge sort, which involves significant constant overhead from function calls, Python list slicing, and deepcopy operations. However, in high-dimensional problems, we believe the kernel value computation bottleneck arising from the $O(n^2)$ feature space will lead to significant performance degradation.

486
487

4.2 RESULTS AND DISCUSSION

488
489
490
491
492
493
494
495
496
497
498

Our experimental results, as presented in Table 2 and Figure 1, systematically reveal a strong correlation between the performance advantage of the Merge kernel and the problem’s dimensionality. For low-dimensional permutation problems (TSP and QAP), the Mallows kernel, which is specifically designed for such tasks, exhibited a slight performance advantage. However, on problems of intermediate dimensionality (FP and CR), the performance of the two kernels was comparable, with no statistically significant difference observed. This trend shifted decisively on the higher-dimensional TTP problems, where the Merge kernel demonstrated definitive superiority. The statistical data in Table 2 indicates that the Merge kernel significantly outperformed the Mallows kernel across all TTP instances on both the final regret and AUC metrics. Furthermore, the convergence curves in Figure 1 confirm its substantially faster convergence speed. This validates the superior performance and scalability of our proposed method on complex, high-dimensional optimization problems.

499
500
501
502
503
504
505

The consistent underperformance of the randomized baseline confirms that unstructured feature selection fails to capture necessary permutation similarities. This validates that our method’s efficiency stems from preserving principled structural information, rather than mere dimensionality reduction. Regarding TuRBO, while it demonstrates scalability by outperforming BOPS-H in high-dimensional tasks, it remains significantly inferior to our method. This substantial gap underscores the necessity of our specialized permutation optimization framework over generic continuous relaxation strategies and general high-dimensional optimization approaches.

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

These results corroborate our core hypothesis: the Merge kernel possesses an inherent advantage in high-dimensional permutation optimization problems, owing to its more compact structural design. The disparity between its $O(n \log n)$ feature complexity and the Mallows kernel’s $O(n^2)$ complexity widens dramatically as the dimensionality n increases. This is explicitly quantified by the feature length comparison in Table 1: for low, intermediate, and high-dimensional problems, the feature dimensionality of the Mallows kernel is approximately 2, 3.5, and 19.5 times that of the Merge kernel, respectively. These results indicate that the experimental performance is governed by a trade-off between two key factors: (1) the ability to capture global information via the distance metric, and (2) the search efficiency driven by the compactness of the feature space. Due to its right-invariance property, the Mallows kernel possesses a stronger distance metric capability than the Merge kernel. However, as dimensionality increases, the vast disparity in feature vector length leads to a more pronounced space-compression effect. The resulting gains in search efficiency begin to outweigh the performance benefits afforded by the superior distance metric. Consequently, as the problem dimensionality continues to grow, the performance of the Merge kernel ultimately surpasses that of the Mallows kernel by a significant margin. This naturally suggests a dimension-dependent heuristic for practitioners: leveraging the Mallows kernel’s robust, right-invariant distance metric for low-dimensional tasks, while switching to the Merge kernel to capitalize on its superior scalability in high-dimensional regimes.

5 CONCLUSIONS

525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

In this work, we proposed a novel kernel construction framework for permutation spaces by leveraging sorting algorithms as structured comparison schemes. Within this framework, we introduced the Merge kernel—an efficient, compact, and theoretically grounded alternative to the quadratic Mallows kernel. We showed that the Merge kernel achieves the information-theoretic lower bound on feature complexity while preserving meaningful structural information. This contribution bridges sorting theory and kernel design, revealing a fundamental trade-off between a model’s structural invariance and the compactness of its feature space.

Empirical experiments confirmed this trade-off: while the state-of-the-art BOPS-H algorithm held a marginal advantage in low-dimensional problems, their performances were comparable on intermediate-dimensional tasks. In high-dimensional settings, however, MergeBO’s compact representation enabled far superior search efficiency, allowing it to significantly outperform BOPS-H and TuRBO. This work opens exciting possibilities for scaling Bayesian optimization to larger permutation spaces. Future directions include exploring other sorting algorithms with constant comparison counts or constructing stabilized sorting algorithm of $O(n \log n)$ complexity for kernel design, and applying this framework to challenging real-world domains like combinatorial neural architecture search and computational biology.

540 REFERENCES

542 Sergey Alatartsev, Sebastian Stellmacher, and Frank Ortmeier. Robotic task sequencing problem: A
543 survey. *Journal of intelligent & robotic systems*, 80(2):279–298, 2015.

544 Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wilson,
545 and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian optimization.
546 *Advances in neural information processing systems*, 33:21524–21538, 2020.

547 Nathalie Bartoli, Thierry Lefebvre, Rémi Lafage, Paul Saves, Youssef Diouane, Joseph Morlier,
548 Jasper Bussemaker, Giuseppa Donelli, Joao Marcos Gomes de Mello, Massimo Mandorino, et al.
549 Multi-objective bayesian optimization with mixed-categorical design variables for expensive-to-
550 evaluate aeronautical applications. *arXiv preprint arXiv:2504.09930*, 2025.

552 Kenneth E Batcher. Sorting networks and their applications. In *Proceedings of the April 30–May 2,
553 1968, spring joint computer conference*, pp. 307–314, 1968.

554 Tom Blau, Edwin V Bonilla, Iadine Chades, and Amir Dezfouli. Optimizing sequential experimental
555 design with deep reinforcement learning. In *International conference on machine learning*, pp.
556 2107–2128. PMLR, 2022.

558 Mohammad Reza Bonyadi, Zbigniew Michalewicz, and Luigi Barone. The travelling thief problem:
559 The first step in the transition from theoretical problems to realistic problems. In *2013 IEEE
560 congress on evolutionary computation*, pp. 1037–1044. IEEE, 2013.

561 Rainer E Burkard, Stefan E Karisch, and Franz Rendl. Qaplib—a quadratic assignment problem
562 library. *Journal of Global optimization*, 10:391–403, 1997.

563 Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha Lee, and
564 Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In *2009 IEEE
565 international symposium on workload characterization (IISWC)*, pp. 44–54. Ieee, 2009.

567 Aryan Deshwal, Syrine Belakaria, Janardhan Rao Doppa, and Dae Hyun Kim. Bayesian optimiza-
568 tion over permutation spaces. In *Proceedings of the AAAI conference on artificial intelligence*,
569 volume 36, pp. 6515–6523, 2022.

570 Persi Diaconis and Ronald L Graham. Spearman’s footrule as a measure of disarray. *Journal of the
571 Royal Statistical Society Series B: Statistical Methodology*, 39(2):262–268, 1977.

573 E Knuth Donald et al. The art of computer programming. *Sorting and searching*, 3(426-458):4,
574 1999.

575 David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
576 global optimization via local bayesian optimization. *Advances in neural information processing
577 systems*, 32, 2019.

579 Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. Gpytorch:
580 Blackbox matrix-matrix gaussian process inference with gpu acceleration. *Advances in neural
581 information processing systems*, 31, 2018.

582 Eduardo C Garrido-Merchán and Daniel Hernández-Lobato. Dealing with categorical and integer-
583 valued variables in bayesian optimization with gaussian processes. *Neurocomputing*, 380:20–35,
584 2020.

585 Joan Gonzalvez, Edmond Lezmi, Thierry Roncalli, and Jiali Xu. Financial applications of gaussian
586 processes and bayesian optimization. *arXiv preprint arXiv:1903.04841*, 2019.

588 Stewart Greenhill, Santu Rana, Sunil Gupta, Pratibha Vellanki, and Svetha Venkatesh. Bayesian
589 optimization for adaptive experimental design: A review. *IEEE access*, 8:13937–13948, 2020.

590 Mara Guidi, Peter H Seeberger, and Kerry Gilmore. How to approach flow chemistry. *Chemical
591 Society Reviews*, 49(24):8910–8932, 2020.

593 Abhishek Gupta, Yew-Soon Ong, and Liang Feng. Multifactorial evolution: Toward evolutionary
594 multitasking. *IEEE Transactions on Evolutionary Computation*, 20(3):343–357, 2015.

594 Yunlong Jiao and Jean-Philippe Vert. The kendall and mallows kernels for permutations. In *Inter-
595 national Conference on Machine Learning*, pp. 1935–1944. PMLR, 2015.
596

597 Maurice G Kendall. A new measure of rank correlation. *Biometrika*, 30(1-2):81–93, 1938.
598

599 Dennis KJ Lin and Nicholas Rios. Order-of-addition experiments: A review and some recom-
600 mendations. *Wiley Interdisciplinary Reviews: Computational Statistics*, 17(2):e70024, 2025.
601

602 Man Luo, Zikai Xie, Huirong Li, Baicheng Zhang, Jiaqi Cao, Yan Huang, Hang Qu, Qing Zhu,
603 Linjiang Chen, Jun Jiang, et al. Physics-informed, dual-objective optimization of high-entropy-
604 alloy nanozymes by a robotic ai chemist. *Matter*, 8(4), 2025.
605

606 James Mercer. Xvi. functions of positive and negative type, and their connection the theory of
607 integral equations. *Philosophical transactions of the royal society of London. Series A, containing
608 papers of a mathematical or physical character*, 209(441-458):415–446, 1909.
609

610 Dang Nguyen, Sunil Gupta, Santu Rana, Alistair Shilton, and Svetha Venkatesh. Bayesian opti-
611 mization for categorical and category-specific continuous inputs. In *Proceedings of the AAAI
612 Conference on Artificial Intelligence*, volume 34, pp. 5256–5263, 2020.
613

614 Changyong Oh, Jakub Tomczak, Efstratios Gavves, and Max Welling. Combinatorial bayesian opti-
615 mization using the graph cartesian product. *Advances in Neural Information Processing Systems*,
616 32, 2019.
617

618 Changyong Oh, Roberto Bondesan, Efstratios Gavves, and Max Welling. Batch bayesian optimiza-
619 tion on permutations using the acquisition weighted kernel. *Advances in Neural Information
620 Processing Systems*, 35:6843–6858, 2022.
621

622 Sergey Polyakovskiy, Mohammad Reza Bonyadi, Markus Wagner, Zbigniew Michalewicz, and
623 Frank Neumann. A comprehensive benchmark set and heuristics for the traveling thief prob-
624 lem. In *Proceedings of the 2014 annual conference on genetic and evolutionary computation*, pp.
625 477–484, 2014.
626

627 Gerhard Reinelt. Tsplib95. *Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Hei-
628 delberg*, 338:1–16, 1995.
629

630 Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
631 human out of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, 104(1):
632 148–175, 2015.
633

634 Ron Sun and C Lee Giles. Sequence learning: From recognition and prediction to sequential deci-
635 sion making. *IEEE Intelligent Systems*, 16(4):67–70, 2001.
636

637 Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Feitas. Bayesian opti-
638 mization in a billion dimensions via random embeddings. *Journal of Artificial Intelligence
639 Research*, 55:361–387, 2016.
640

641 Muning Wen, Runji Lin, Hanjing Wang, Yaodong Yang, Ying Wen, Luo Mai, Jun Wang, Haifeng
642 Zhang, and Weinan Zhang. Large sequence models for sequential decision-making: a survey.
643 *Frontiers of Computer Science*, 17(6):176349, 2023.
644

645 Christopher KI Williams and Carl Edward Rasmussen. *Gaussian processes for machine learning*,
646 volume 2. MIT press Cambridge, MA, 2006.
647

648 Jia Wu, Xiu-Yun Chen, Hao Zhang, Li-Dong Xiong, Hang Lei, and Si-Hao Deng. Hyperparameter
649 optimization for machine learning models based on bayesian optimization. *Journal of Electronic
650 Science and Technology*, 17(1):26–40, 2019.
651

652 Zikai Xie, Xenophon Evangelopoulos, Joseph CR Thacker, and Andrew I Cooper. Domain knowl-
653 edge injection in bayesian search for new materials. In *ECAI 2023*, pp. 2768–2775. IOS Press,
654 2023.
655

656 Martin Zaefferer, Jörg Stork, and Thomas Bartz-Beielstein. Distance measures for permutations
657 in combinatorial efficient global optimization. In *International Conference on Parallel Problem
658 Solving from Nature*, pp. 373–383. Springer, 2014.
659

648 A THE USE OF LARGE LANGUAGE MODELS
649650 We declare that the large language models (LLMs) ChatGPT and Gemini are only used to aid and
651 polish writing. No further applications of LLMs are used in this research, including but not limited
652 to retrieval, research ideation and experiment designing.
653654 B EXTRA EXPERIMENT RESULTS
655656 B.1 DISCUSSION ON SPEARMAN’S FOOTRULE
657658 To evaluate the trade-off between permutation information, dimension reduction and right-
659 invariance, we employ Spearman’s footrule Diaconis & Graham (1977) distance as another bench-
660 mark baseline. Similar to Euclidean measures on raw coordinates, Spearman’s footrule operates
661 directly on the permutation group S_n . Formally, for two permutations (rankings) σ and π of n el-
662 ements, the distance is defined as the sum of the absolute differences between the ranks of each
663 element:
664

665
$$d_{\text{footrule}}(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^n |r_i - r'_i| \quad (6)$$

666
667

668 Table 3: Performance comparison between MergeBO, BOPS-H (Mallows kernel), BOPS-H with
669 random comparisons, TuRBO and Spearman’s footrule. Underlined results indicate the best numer-
670 ical results in terms of mean value \pm standard deviation of all trials.
671

672 Problem	673 Simple final Regret				
	Merge	Mallows	Random	TuRBO	Spearman
TSP _{n=15}	0.077 \pm 0.125	0.013 \pm 0.039	0.329 \pm 0.332	1.213 \pm 0.879	0.026 \pm 0.052
QAP _{n=15}	14.9 \pm 5.5 $\times 10^3$	<u>8.1 \pm 4.1 $\times 10^3$</u>	18.1 \pm 3.6 $\times 10^3$	14.2 \pm 5.9 $\times 10^3$	10.2 \pm 4.7 $\times 10^3$
FP _{n=30}	24.0 \pm 9.7	30.1 \pm 12.8	35.7 \pm 11.2	<u>20.5 \pm 8.4</u>	34.6 \pm 9.0
CR _{n=30}	6.1 \pm 2.2	6.1 \pm 3.0	52.15 \pm 19.0	33.85 \pm 15.7	<u>1.5 \pm 2.4</u>
TTP1 _{n=280}	<u>23.0 \pm 11.3 $\times 10^3$</u>	88.9 \pm 7.5 $\times 10^3$		54.8 \pm 12.6 $\times 10^3$	88.7 \pm 10.1 $\times 10^3$
TTP2 _{n=280}	<u>14.9 \pm 7.2 $\times 10^4$</u>	56.5 \pm 6.1 $\times 10^4$		36.8 \pm 9.4 $\times 10^4$	56.2 \pm 6.2 $\times 10^4$
TTP3 _{n=280}	<u>8.0 \pm 3.2 $\times 10^4$</u>	28.1 \pm 2.8 $\times 10^4$		19.1 \pm 3.6 $\times 10^4$	28.4 \pm 2.5 $\times 10^4$

681 Problem	682 Best so far AUC				
	Merge	Mallows	Random	TuRBO	Spearman
TSP _{n=15}	527.6 \pm 162.8	428.2 \pm 121.9	559.7 \pm 224.9	877.2 \pm 352.4	<u>397.1 \pm 98.0</u>
QAP _{n=15}	38.3 \pm 8.4 $\times 10^5$	<u>27.5 \pm 7.4 $\times 10^5$</u>	42.5 \pm 6.1 $\times 10^5$	46.7 \pm 9.2 $\times 10^5$	31.8 \pm 8.5 $\times 10^5$
FP _{n=30}	8097.5 \pm 2163.7	8665.7 \pm 2638.8	9481.0 \pm 2086.2	5932.1 \pm 1636.9	9187.7 \pm 2024.1
CR _{n=30}	5495.6 \pm 687.7	5350.5 \pm 910.1	13970.8 \pm 2408.8	10340.5 \pm 2477.3	<u>4673.4 \pm 1020.15</u>
TTP1 _{n=280}	<u>20.5 \pm 4.4 $\times 10^5$</u>	48.5 \pm 3.1 $\times 10^5$		40.0 \pm 4.9 $\times 10^5$	48.2 \pm 4.3 $\times 10^5$
TTP2 _{n=280}	<u>12.3 \pm 3.2 $\times 10^6$</u>	30.5 \pm 2.4 $\times 10^6$		25.9 \pm 3.8 $\times 10^6$	30.3 \pm 2.4 $\times 10^6$
TTP3 _{n=280}	<u>6.7 \pm 1.4 $\times 10^6$</u>	15.2 \pm 1.3 $\times 10^6$		13.2 \pm 1.5 $\times 10^6$	15.3 \pm 9.4 $\times 10^6$

690 Obviously, the corresponding featurization method $\Phi_{\text{footrule}}(\pi)$ is an identical mapping that
691 directly uses the permutation π as its feature vector. The computational complexity of Spearman’s
692 footrule is $O(n)$, and it is fully right-invariant since it simply calculates the L_1 distance between
693 two vectors.
694695 However, while this mapping retains the raw rank values, it treats permutations merely as vectors
696 in a Euclidean space, thereby ignoring the underlying algebraic structure of the symmetric group.
697 Unlike the Mallows kernel or our proposed Merge kernel, which embed specific probabilistic or
698 hierarchical priors, this naive representation doesn’t project the permutation to a compact manifold
699 and fails to capture the compact dependencies within the feasible space. Nevertheless, its L_1 nature
700 allows it to effectively approximate local structural discrepancies through simple summation.701 The experiment results of Spearman’s footrule are added in Table 3 above. In low-dimensional set-
702 tings, Spearman’s footrule performs slightly worse than the Mallows kernel but marginally better

702 than the Merge kernel. This can be attributed to the high relevance of right-invariance in lower di-
703 mensions, where accurately measuring the similarity between local regions—which often share simi-
704 lar performance characteristics—is critical. Notably, the method exhibits rapid convergence on TSP
705 and CR tasks, stemming from the inherent local additivity of these problems. However, Spearman’s
706 footrule offers lower discriminative resolution for permutations compared to the Mallows kernel.
707 This coarser granularity tends to bias the search towards exploitation rather than exploration; while
708 this enables quick convergence to local optima, it may limit the model’s ability to escape them for a
709 global solution.

710 Conversely, in high-dimensional problems, Spearman’s footrule performs comparably to the Mal-
711 lows kernel but significantly lags behind the Merge kernel. This stark contrast highlights the Merge
712 kernel’s superior capability to compress high-dimensional search spaces and accelerate optimization
713 through hierarchical decomposition.

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755