
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM SORTING ALGORITHMS TO SCALABLE
KERNELS: BAYESIAN OPTIMIZATION IN HIGH-
DIMENSIONAL PERMUTATION SPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian Optimization (BO) is a powerful tool for black-box optimization, but
its application to high-dimensional permutation spaces is severely limited by the
challenge of defining scalable representations. The current state-of-the-art BO ap-
proach for permutation spaces relies on an exhaustive Ω(n2) pairwise comparison,
inducing a dense representation that is impractical for large-scale permutations. To
break this barrier, we introduce a novel framework for generating efficient permu-
tation representations via kernel functions derived from sorting algorithms. Within
this framework, the Mallows kernel can be viewed as a special instance derived
from enumeration sort. Further, we introduce the Merge Kernel , which leverages
the divide-and-conquer structure of merge sort to produce a compact, Θ(n log n)
to achieve the lowest possible complexity with no information loss and effec-
tively capture permutation structure. Our central thesis is that the Merge Kernel
performs competitively with the Mallows kernel in low-dimensional settings, but
significantly outperforms it in both optimization performance and computational
efficiency as the dimension n grows. Extensive evaluations on various permu-
tation optimization benchmarks confirm our hypothesis, demonstrating that the
Merge Kernel provides a scalable and more effective solution for Bayesian opti-
mization in high-dimensional permutation spaces, thereby unlocking the potential
for tackling previously intractable problems such as large-scale feature ordering
and combinatorial neural architecture search.

1 INTRODUCTION

As one of the most widely adopted approaches to black-box optimization, Bayesian optimization
(BO) Shahriari et al. (2015) has found broad application in machine-learning hyper-parameter tun-
ing Wu et al. (2019), financial portfolio optimization Gonzalvez et al. (2019), chemical and ma-
terial discovery Luo et al. (2025), and catalyst formulation design Xie et al. (2023). BO employs
probabilistic surrogate models—most commonly Gaussian processes (GPs)—to approximate the
unknown objective and uses an acquisition function to balance exploration and exploitation, thereby
approaching the global optimum with the fewest possible evaluations.

Most research on BO to date has concentrated on continuous Greenhill et al. (2020) and categorical
design spaces Garrido-Merchán & Hernández-Lobato (2020); Nguyen et al. (2020); Bartoli et al.
(2025), whereas applications to permutation spaces remain comparatively underexplored. This gap
is striking given the ubiquity of permutation optimization in both theory and practice: canonical ex-
amples include the traveling-salesperson problem (TSP), the sequencing of operations in automated
experimental pipelines Guidi et al. (2020), and the sequential order-of-addition experiments Lin
& Rios (2025). In addition, permutation optimization frequently arises in diverse AI applications,
including scheduling tasks in robotic planning Alatartsev et al. (2015), optimizing experimental se-
quences Blau et al. (2022), and other sequential decision-making problems Sun & Giles (2001); Wen
et al. (2023). Therefore, extending Bayesian optimization to permutation spaces holds significant
theoretical and practical value for artificial intelligence as well as broader academic and industrial
applications.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Successfully deploying BO in permutation spaces hinges on equipping the GP surrogate with a ker-
nel that faithfully quantifies the similarity between two permutations. Existing approaches have
evolved along two principal lines: (1) General-purpose discrete BO frameworks—most notably
COMBO Oh et al. (2019), which combines a graph-Laplacian kernel with local search to accom-
modate heterogeneous discrete variables and thus enjoys broad applicability. However, it relies on
manually crafted adjacency graphs or hash encodings, which struggle to capture the comparison se-
quences and cyclic shifts unique to permutations; consequently, its efficiency degrades on tasks that
involve frequent high-order swaps or mixed local/global reorderings. (2) Permutation-specific ker-
nels—chief among them the Mallows kernel in BOPS Deshwal et al. (2022). This kernel is built on
the Kendall–τ distance, representing a permutation via the inversion counts generated by enumera-
tion sort, yielding a feature dimension of O(n2). The dimension therefore scales quadratically with
n, and because 2n

2 ≫ n!, the vast majority of features fail to correspond to any valid permutation,
resulting in both statistical and computational redundancy.

To address the limitations of existing approaches, we propose a sorting-algorithm–driven kernel-
design framework for permutations and instantiate it with the Merge kernel, which reduces the fea-
ture dimension to O(n log n)—the information-theoretic lower bound for encoding a permutation.
The central insight is that any comparison-based sorting algorithm is defined by a fixed sequence of
element comparisons; recording the binary outcome of each comparison yields a feature vector for
the permutation. Choosing an algorithm with a deterministic comparison tree—such as merge sort
or bitonic sort—thus produces a representation that is both fixed in length and highly compact.

Contributions. Our work makes three principal contributions:

• General framework. We propose a unified design framework that constructs permutation-
space kernels by treating any comparison-based sorting algorithm as a feature generator.
Within this view, the classic Mallows kernel is recovered as the special case obtained when
the framework is instantiated with enumeration sort.

• Merge kernel. Applying the framework to merge sort yields Merge Kernel, whose
O(n log n) construction matches the information-theoretic lower bound on comparison
complexity.

• Comprehensive evaluation. We assess the effectiveness of our kernels on diverse synthetic
and real-world benchmarks. Results on low-dimensional benchmarks show competitive
performance against the state-of-the-art Mallows kernel, while it significantly outperforms
the Mallows kernel on high-dimensional benchmarks.

Our results demonstrate that the Merge kernel provides a practical and efficient tool for permutation
optimization, significantly enhancing BO’s applicability to diverse AI scenarios.

2 BACKGROUND AND RELATED WORKS

2.1 PERMUTATION OPTIMIZATION

Here we describe the problem formulation of permutation optimization with a fixed length n ∈ N.
Let [n] = {1, 2, ..., n}, a permutation is a function π : [n] −→ [n] such that π is bijective. The set
of all permutations of [n] is the symmetric group

Sn =
{
π | π : [n] −→ [n] is bijective

}
.

We are given a costly-to-evaluate, possibly noisy black-box function f : Sn −→ R, which assigns
a real-valued quality (e.g., cost, loss, reward) to every permutation π. Hence, the optimization
problem can be formulated as

π∗ = arg minπ ∈ Ff(π)

where F ⊆ Sn is the feasible set. In this study we only consider the unconstrained case, therefore
we have F = Sn; in practice F may exclude permutations violating domain rules.

2.2 BAYESIAN OPTIMIZATION

Bayesian optimization (BO) Shahriari et al. (2015) is an optimization algorithm for black-box ob-
jective functions that no closed-form expression or gradient information is available and whose

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

evaluation is often an expensive physical or computational experiment. The algorithm first fits the
observed data with a surrogate model, most commonly a Gaussian process (GP) Williams & Ras-
mussen (2006), and then employs an acquisition function to select the next query point, balancing
exploration of uncertain regions against exploitation of promising areas identified by the surrogate.

The kernel K(x,x′) is the central design lever in a Gaussian-process surrogate: it defines the sim-
ilarity metric between inputs, thereby specifying the prior smoothness assumptions and, through
GP inference, the posterior mean and uncertainty. Extending BO to any new search domain is
therefore tantamount to endowing that domain with an appropriate kernel function. Whereas Eu-
clidean spaces typically rely on Gaussian (RBF) kernels, discrete structures—and permutations in
particular—require bespoke constructions that faithfully encode ordering relationships. For exam-
ple, Oh et al. (2022) uses the Position kernel Zaefferer et al. (2014) and L-ensemble with Acquisition
Weights to extend BO on permutation space to a batched BO scheme.

While significant progress has been made in scaling BO to high-dimensional continuous domains
(e.g., Eriksson et al. (2019); Wang et al. (2016)), extending BO to large-scale structured discrete
domains like permutations presents a distinct set of challenges centered on kernel design, which is
the primary focus of this work.

2.3 MALLOWS KERNEL FOR PERMUTATION SPACE

BOPS-H Deshwal et al. (2022) is the current state-of-the-art BO algorithm for permutation opti-
mization, which proposes to employ Mallows kernel Jiao & Vert (2015) on the symmetric group Sn

in a similar manner to the RBF kernel on the Euclidean space. The Mallows kernel Kmal(π, π
′) for

the permutation pair (π, π′) is defined as the exponential negative of the number of discordant pairs
nd(π, π

′) between π and π′:

KMal(π, π
′) = exp(−ld(π, π′)) (1)

where l ≥ 0 is the length-scale parameter of the Mallows kernel, and d(π, π′) is the Kendall-τ
distance Kendall (1938) which counts the number of pairs of elements ordered oppositely by π and
π′:

d (π, π′) =
∑
i<j

[
1π(i)>π(j)1π′(i)<π′(j)

+1π(i)<π(j)1π′(i)>π′(j)

] (2)

Intuitively, the Kendall-τ distance counts the differences of all pair-wise comparisons between π
and π′. For example, let π = (1, 2, 3, 4) and π′ = (2, 1, 4, 3). Two pairs are discordant among
the six unordered pairs: (1, 2), (3, 4), hence d(π, π′) = 2 and KMal(π, π

′) = exp(−2l).

3 MERGE KERNEL: GENERATING KERNELS FROM SORTING ALGORITHMS

In the previous section, we have shown that the core of the Mallows kernel is the pairwise compari-
son of all elements. Equivalently, it maps a permutation π to a feature vector

ΦMal(π) ∈ {0, 1}(
n
2)

where each coordinate corresponds to the comparison of a pair of elements: 0 if they are in ascending
order, and 1 otherwise. We then have

KMal(π, π
′) = exp

(
−∥ΦMal(π)− ΦMal(π

′)∥2

2ℓ2

)
= KRBF

(
ΦMal(π), ΦMal(π

′)
)
.

(3)

under the reparameterization l = 1
2ℓ2 for the length-scale parameter ℓ in the Gaussian RBF kernel.

Since the RBF kernel KRBF is strictly positive definite on Rd and thus satisfies Mercer’s condi-
tion Mercer (1909), and because positive definiteness is preserved under composition with any de-
terministic mapping Φ, it follows that K(π, π′) constructed from Φ also satisfies Mercer’s condition
and is therefore a valid kernel function.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 MERGE FEATURE MAPPING ΦMer(π)

Input: Permutation π of length n
Output: Feature vector ΦMer(π)

if length(π) == 1 then
return []

end if
if length(π) == 2 then

return [1] if π[0] > π[1] else [0]
end if
Let mid = ⌊n

2 ⌋
Let VLeft, VRight = ΦMer(π[: mid]),ΦMer(π[mid :])
Let π̂l, π̂r = sorted(π[: mid]), sorted(π[mid :])
Let VMerge = [], i = j = 0
while i < length(π̂l) and j < length(π̂r) do

if π̂l[i] > π̂r[j] then
VMerge.append(1)
j+ = 1

end if
if π̂l[i] < π̂r[j] then

VMerge.append(0)
i+ = 1

end if
end while
return VLeft + VRight + VMerge

Thus, other pairwise comparison methods can also be used to construct analogous feature vec-
tors, which—when combined with an RBF kernel—yield valid kernel functions. Naturally, we
can extend the idea of pairwise comparison to sorting algorithms: the essence of a sorting algo-
rithm is to compare elements in a sequence and swap them when necessary. Consequently, each
sorting algorithm embodies a unique pairwise comparison strategy, suggesting that we can build
permutation-space kernels based on sorting procedures. As a sorting algorithm traverses all ele-
ments, it records whether each comparison leads to a swap, thereby fully reconstructing the original
permutation; hence, the resulting feature vector retains all information without any loss. Viewed in
this light, the Mallows kernel’s exhaustive enumeration of every element pair can be interpreted as
an enumeration-sort–inspired featurization, where enumeration sort ranks each item by comparing
it with every other element and then places it directly in its final position.

Here is a more detailed explanation. Consider that each entry in the Mallows feature (or Kendall-τ
distance) represents whether the order of elements at two positions i, j in a pair of permutations πa

and πb is the same. Considering only one permutation, we compare all element pairs within it: if
the element at the earlier position is greater than the element at the later position, we mark it as
1; otherwise, we mark it as 0. The value of each entry here is equivalent to the swap information
examined for that pair during an enumerate sort referring to all pairwise comparisons, we can thus
obtain the feature vectors for these two permutations. By comparing the elements of these two
feature vectors position by position, if the two elements are the same, it means πa and πb share
the same order for the element pair represented at this position (i.e., Φmal is 0 at this position in
the distance calculation); otherwise, it is 1. Now, we can replace the above enumerate sort with a
sorting algorithm to generate another feature vector for permutation kernel. That is, we use sorting
algorithm to obtain the information on whether a swap occurred during every comparison in the
comparison map.

However, not every sorting algorithm can induce a valid feature mapping suitable for kernel con-
struction. This is because the mapping from permutations to feature space must yield feature vectors
of fixed length; otherwise, feature vectors of differing lengths would not be compatible with the RBF
kernel. Hence, only sorting algorithms that have a fixed comparison path and a constant number of
comparisons across all inputs can generate valid feature mappings, e.g., a fixed sorting network with
a predetermined comparator sequence Batcher (1968). This strict constraint allows us to exclude
the vast majority of O(n log n) complexity sorting algorithms that are stochastic or adaptive, such

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

as quicksort, heapsort, and standard merge sort, since their comparisons are data-dependent, not
fixed. Nevertheless, merge sort could be an exception: although typically merge sort ceases com-
parisons once all elements from one subsequence have been merged, redundant comparisons can
be artificially introduced during the merge procedure, resulting in a fixed number of comparisons
L+R− 1, where L and R are the length of the two subsequences. This ensures that both the com-
parison path and the number of comparisons remain identical across different permutations, thus
establishing a fixed comparison path.

Stabilizing the comparison map of other O(n log n) sorting algorithms is quite challenging, and
other O(n2) sorting algorithms are equivalent to Mallows kernel. At the moment we can confirm
that Bitonic sort satisfy the above constraint, however it is of O(n log2 n) complexity. Consequently,
we select merge sort as the feature mapping ΦMer(π) for constructing permutation-space kernel
function KMer, following Equation 3:

KMer(π, π
′) = exp

(
−∥ΦMer(π)− ΦMer(π

′)∥2

2ℓ2

)
= KRBF

(
ΦMer(π), ΦMer(π

′)
)
.

(4)

The element-pair comparison mapping ΦMer(π) is shown in Algorithm 1. Here we present an
example for permutation [1,4,3,2] to show the Merging process.

Example: Feature Mapping for π = (1, 4, 3, 2)

1. Initial Split: π splits into L0 = (1, 4) and R0 = (3, 2).
2. Recurse on L0 = (1, 4): Merging sorted lists ‘[1]’ and ‘[4]’ yields feature vector VL = [0].
3. Recurse on R0 = (3, 2): Merging sorted lists ‘[2]’ and ‘[3]’ yields feature vector VR = [1].
4. Final Merge: Merge sorted lists ‘(1,4)’ and ‘(2,3)’. The fixed comparison path generates

the merge vector VMerge = [0(1 < 2), 1(4 > 2), 1(4 > 3), 1(left padding)].
5. Concatenate: The final feature vector is ΦMer(π) = VL ⊕ VR ⊕ VMerge = [0] ⊕ [1] ⊕

[0, 1, 1, 1] = [0, 1, 0, 1, 1, 1].

We have established that merge sort, with a specially designed fixed-comparison procedure, is
uniquely capable of constructing valid kernel functions among common sorting algorithms with
a complexity of Ω(n log n). We now demonstrate that the feature vector derived from merge sort
achieves the theoretical lower bound on vector length for lossless permutation encoding. First, note
that the lower bound on time complexity for any comparison-based sorting algorithm is Ω(n log n);
as this complexity directly corresponds to the number of element comparisons during sorting, it
similarly sets a lower bound on the length of the feature vector. On the other hand, consider the per-
mutation space consisting of all n! possible permutations of length n. From an information-theoretic
viewpoint, encoding all n! permutations without loss using a binary feature vector composed solely
of 0, 1 requires a minimum vector length of log2(n!). Applying Stirling’s approximation Donald
et al. (1999), we have: log2(n!) = n log2 n− nlog2e+ O(log n) = Ω(n log n). Consequently, the
feature vector length of the merge-sort-based kernel (Merge Kernel) reaches this theoretical lower
bound for lossless permutation encoding.

It is important to clarify that the feature vector lower bound discussed here refers to the information-
theoretic lower bound on the number of pairwise comparisons required to reconstruct the relative
order of two permutations, i.e., the lower bound implied by lossless information compression. This
should be distinguished from the algorithmic lower bound for computing a distance regarding to
the original permutations. For example, the Mallows kernel relies on the Kendall–τ distance, and
although the latter can be computed in O(n log n) time using algorithms such as modified merge
sort, this does not reduce the information requirement to O(n log n). Such algorithms still implicitly
depend on the relative order of all O(n2) pairs of elements, but accelerate computation by batch
processing rather than by reducing the underlying information model. In contrast, our method does
not require explicit access to all O(n2) pairs. Instead, it achieves a complete reconstruction of the
relative order using only O(n log n) pairwise comparisons.

It is worth noting that, when constructing the Merge kernel via merge sort, we have not required the
feature mapping Φ to possess any group invariance property, such as right-invariance. Traditionally,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

a permutation-distance measure should be invariant under right multiplication, meaning that apply-
ing an identical right-multiplication operation to two permutations should not alter the distance be-
tween them. However, only sorting algorithms with complexity O(n2) can yield fully right-invariant
kernel functions with no information loss (otherwise, a simple Spearman’s footrule Diaconis & Gra-
ham (1977) with O(n) complexity can hold right-invariance as well), since such invariance neces-
sitates exhaustive pairwise comparisons among all n(n−1)

2 pairs of elements—an impossibility for
more efficient sorting algorithms like merge sort. Consequently, although the Merge kernel achieves
better computational efficiency through a more compact encoding, it sacrifices a certain degree of
performance due to the loss of right-invariance.

We can view the relationship between the Merge and Mallows kernels as a feature selection process.
Given that the Φmer(π) vector corresponds to a structured subset of the complete Φmal(π) feature
space, incrementally adding the missing comparison positions to Φmer is equivalent to a gradual
transformation towards the Φmal vector. This transformation represents a principled trade-off: the
process of ”buying back” the property of right-invariance through the incorporation of more fea-
tures is achieved at the explicit cost of sacrificing computational efficiency. However, because this
requires the development of appropriate analytical tools to quantify the exact marginal gain in in-
variance per added comparison, this remains a fascinating, yet highly complex, direction for future
research that is beyond the scope of this paper.

4 EXPERIMENTS

4.1 BENCHMARKS AND EXPERIMENT SETTINGS

Our empirical evaluation focuses on the state-of-the-art BOPS-H algorithm Deshwal et al. (2022)
as the primary control baseline. This choice is twofold: first, BOPS-H was shown to substantially
outperform other permutation-specific methods like COMBO Oh et al. (2019). Second, our core
objective is a principled comparison between our Merge Kernel and the Mallows Kernel—both na-
tively designed for permutations. This comparison serves as a direct evaluation of representation
power without confounding factors from domain adaptation. Furthermore, we adapt TuRBO Eriks-
son et al. (2019) as a high-dimensional BO algorithm of general purpose to evaluate the overall
competitiveness of our framework. Since TuRBO is designed for continuous space, we apply a con-
tinuous relaxation to the permutation space: we define the search space as a d−dimensional unit
hypercube [0, 1]d, where the discrete permutation is induced by the argsort of the continuous vector
elements.

To disentangle whether the performance of the Merge kernel stems merely from its compact di-
mensionality or from the specific structured information it captures, we introduce a randomized
baseline. Specifically, we randomly subsample a fixed number of pairwise comparisons from the
full Mallows feature vector, ensuring the total dimensionality exactly matches that of the Merge ker-
nel. We then apply the same RBF kernel to these features. If the success of the Merge kernel were
driven solely by “compression” rather than the “informative structure” of the features, this baseline
should achieve comparable performance. In addition, discussion of using Spearman’s footrule as
featurization method is also added to Appendix B.1, due to limited space in the main manuscript.

4.1.1 LOW-DIMENSIONAL BENCHMARKS

The study by Deshwal et al. (2022) exclusively considers problems with dimensions of 30 or less.
Accordingly, we adopt their experimental settings to form our suite of low-dimensional benchmarks.
The BOPS-H algorithm follows and modifies the local-search strategy used in COMBO, examining
only the set of neighbouring permutations of the current incumbent to restrict the combinatorial
search space, we therefore adopt the same procedure in our experiments. GPyTorch Gardner et al.
(2018) and BoTorch Balandat et al. (2020) libraries are used to implement both algorithms. Expected
Improvement acquisition function is used for all the experiments, and 10 restarts are used for local
search based EI optimization for BOPS-H and MergeBO. Each benchmark is evaluated with 20
independent trials, each consisting of 50 iterations. The random seed for each trial is set to its trial
index.

We evaluate our method on the same two synthetic benchmarks and the same two real-world appli-
cations in Deshwal et al. (2022). Detailed information for all benchmarks are listed below:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(1)Quadratic Assignment (QAP)n=15. This is a classic facility-location problem: assign n facil-
ities to n locations so that flow costs and distances align optimally. We use the 15-city instances
from QAPLIB Burkard et al. (1997), each with cost matrix A and distance matrix B, and minimise
Tr(APBPT) over permutation matrices P .

(2)Travelling Salesman (TSP)n=15. The TSP seeks the shortest Hamiltonian cycle through a set
of cities and is a standard benchmark for route-planning. Our instances are 15 city PCB drill tours
from TSPLIB Reinelt (1995); the score is the total travel time to visit all holes exactly once and
return.

(3)Floor Planning (FP)n=30. Floor planning is an NP-hard VLSI layout task that packs rectangular
modules on a chip while minimising area and manufacturing cost. We evaluate two 15-block variants
(FP-1 and FP-2); each permutation defines a block placement whose cost we minimise.

(4)Cell Placement (CP)n=30. Cell placement arranges logic cells on a row to reduce wire-length
and hence circuit delay. We consider 30 equal-height cells with a fixed net-list; the objective is the
total Manhattan wire-length induced by a permutation of cell positions.

Because the publicly available implementation of the Mallows kernel
(https://github.com/aryandeshwal/BOPS) does not provide the interface required to run the
Rodinia’s heterogeneous many-core benchmark Che et al. (2009), we did not perform experiments
on this benchmark. We note a numerical discrepancy between our replicated results and those
reported in the original paper, which we attribute to subtle implementation details not specified
in the publication, such as problem instance choices. However, we emphasize that within our
experimental framework, both the Merge Kernel and the Mallows Kernel were evaluated under
identical conditions, ensuring a fair and controlled comparison of their relative performance.

4.1.2 HIGH-DIMENSIONAL BENCHMARKS: TRAVELING THIEF PROBLEMS

We introduce traveling thief problems (TTP) Bonyadi et al. (2013) as high-dimensional benchmarks,
which is a defined as a combination of TSP and knapsack problem: a thief must determine a tour
through n cities with distance matrix D = {dij} while simultaneously selecting items of varying
weights wk and values pk to maximize profit without exceeding a knapsack capacity W . This
structure defines a complex, hybrid search space, combining an n-dimensional permutation space
for the city tour with a {0, 1}m discrete space for item selection. Despite its typical application
in evaluating white-box or heuristic algorithms Polyakovskiy et al. (2014); Gupta et al. (2015), we
adapt the TTP as a true black-box benchmark, providing no structural information to the optimizer.

Following the implementation in Polyakovskiy et al. (2014), we create three distinct instances based
on a n = 280-city problem (a 280-dimensional permutation space). These instances feature a
large number of items with varying properties: (1) m = 279 items with uncorrelated weights; (2)
m = 837 items with bounded strong correlation in the weights; and (3) m = 837 items with
uncorrelated weights. These benchmarks provide a strenuous test for our proposed MergeBO and
the baseline BOPS-H. Notice that the TTP is a hybrid space problem, we modified both MergeBO
and BOPS-H by multiplying an RBF kernel on the {0, 1}m discrete space:

KTTP ((π, σ), (π
′, σ′)) = K(π, π′)KRBF (σ, σ

′) (5)

Where σ is the item picking strategy. The neighbouring permutation search method for BOPS-H
is computationally infeasible on such a vast space. Therefore, we adopt a continuous relaxation
approach, treating the entire set of optimization variables (π, σ) as a continuous vector for gradient-
based optimization, and the result is subsequently projected back to the nearest permutation and
binary vectors.

Crucially, this relaxation approach relies on the existence of a feasible projection from the contin-
uous feature space back to the permutation space. While our Merge kernel features preserve the
structural logic of the sorting algorithm to allow for valid reconstruction, the randomized baseline
lacks this structural consistency (e.g., potentially inducing cyclic or conflicting comparisons). Con-
sequently, a valid projection for the randomized baseline is ill-defined, rendering it inapplicable to
this high-dimensional optimization setting.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Feature length comparison of Merge and Mallows kernel over problems of different scales.

Problem Dimension Merge feature length Mallows feature length
TSP 15 45 105
QAP 15 45 105
FP 30 119 435
CR 30 119 435
TTP 280 2009 39060

All experiments use the EI acquisition function. Each benchmark is evaluated with 50 independent
trials, each consisting of 55 iterations (5 iterations of random initialization and 50 iterations of
optimization). The random seed for each trial is set to its trial index.

4.1.3 EVALUATION METRICS

In this study, we employ two evaluation metrics: the final simple regret and the area under the
best-so-far regret curve (AUC). In optimization, regret is defined as the difference between the best
objective value observed to date and the global optimum:

rt = f best
t − f∗

Following this concept, the final simple regret is the regret value obtained in the last iteration and
reflects the algorithm’s ultimate optimization capability when computational cost is disregarded. By
contrast, the regret AUC, or cumulative regret—the sum (area under the curve) of the simple regret
across all iterations—quantifies the convergence speed of the entire optimization process:

AUCT = Σrt

Generally speaking, the final simple regret and AUC represent different, valuable aspects of an
algorithm’s performance: the former represents the the quality of the solution it ultimately finds
while the latter represents the “journey”, or convergence speed during optimization. For sample-
efficient methods like BO, these two evaluation metrics are standard practices as they allow for a
comprehensive comparison.

Table 2: Performance comparison between MergeBO, BOPS-H (Mallows kernel), BOPS-H with
random comparisons and TuRBO. Underlined results indicate the best numerical results in terms of
mean value ± standard deviation of all trials, and bold font indicates statistically significant superi-
ority of MergeBO against BOPS-H as determined by a binomial sign test (p < 0.05, corresponding
to more than 15 wins of 20 trials).

Problem Simple final Regret Regret Wins
Merge Mallows Random TuRBO Merge Wins Ties Mallows Wins

TSPn=15 0.077± 0.125 0.013± 0.039 0.329± 0.332 1.213± 0.879 1 12 7
QAPn=15 14.9± 5.5× 103 8.1± 4.1× 103 18.1± 3.6× 103 14.2± 5.9× 103 1 3 16
FPn=30 24.0± 9.7 30.1± 12.8 35.7± 11.2 20.5± 8.4 10 4 6
CRn=30 6.1± 2.2 6.1± 3.0 52.15± 19.0 33.85± 15.7 9 3 8

TTP1n=280 23.0± 11.3× 103 88.9± 7.5× 103 54.8± 12.6× 103 50 0 0
TTP2n=280 14.9± 7.2× 104 56.5± 6.1× 104 36.8± 9.4× 104 50 0 0
TTP3n=280 8.0± 3.2× 104 28.1± 2.8× 104 19.1± 3.6× 104 50 0 0

Problem Best so far AUC AUC Wins
Merge Mallows Random TuRBO Merge Wins Ties Mallows Wins

TSPn=15 527.6± 162.8 428.2± 121.9 559.7± 224.9 877.2± 352.4 5 0 15
QAPn=15 38.3± 8.4× 105 27.5± 7.4× 105 42.5± 6.1× 105 46.7± 9.2× 105 1 2 17
FPn=30 8097.5± 2163.7 8665.7± 2638.8 9481.0± 2086.2 5932.1± 1636.9 10 1 9
CRn=30 5495.6± 687.7 5350.5± 910.1 13970.8± 2408.8 10340.5± 2477.3 8 0 12

TTP1n=280 20.5± 4.4× 105 48.5± 3.1× 105 40.0± 4.9× 105 50 0 0
TTP2n=280 12.3± 3.2× 106 30.5± 2.4× 106 25.9± 3.8× 106 50 0 0
TTP3n=280 6.7± 1.4× 106 15.2± 1.3× 106 13.2± 1.5× 106 50 0 0

It is important to note that this study does not include a comparison of wall-clock computation
times. This is a deliberate choice grounded in the fundamental premise of BO, where the cost of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175 200
Iteration

0

10

20

30

40

50

Si
m

pl
e

Re
gr

et
 (m

ea
n

±
1s

td
)

Mallows
Merge
Random Comparison
TuRBO

(a) TSP (n=15)

0 25 50 75 100 125 150 175 200
Iteration

0

10000

20000

30000

40000

50000

Si
m

pl
e

Re
gr

et
 (m

ea
n

±
1s

td
)

Mallows
Merge
Random Comparison
TuRBO

(b) QAP (n=15)

0 25 50 75 100 125 150 175 200
Iteration

25

50

75

100

125

150

175

Si
m

pl
e

Re
gr

et
 (m

ea
n

±
1s

td
)

Mallows
Merge
Random Comparison
TuRBO

(c) Floor planning (n=30)

0 25 50 75 100 125 150 175 200
Iteration

0

25

50

75

100

125

150

175

Si
m

pl
e

Re
gr

et
 (m

ea
n

±
1s

td
)

Mallows
Merge
Random Comparison
TuRBO

(d) Cell placement (n=30)

0 10 20 30 40 50
Iteration

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Si
m

pl
e

Re
gr

et
 (m

ea
n

±
1s

td
)

1e5
Mallows
Merge
TuRBO

(e) TTP (1)

0 10 20 30 40 50
Iteration

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Si
m

pl
e

Re
gr

et
 (m

ea
n

±
1s

td
)

1e5
Mallows
Merge
TuRBO

(f) TTP (2)

0 10 20 30 40 50
Iteration

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

Si
m

pl
e

Re
gr

et
 (m

ea
n

±
1s

td
)

1e5
Mallows
Merge
TuRBO

(g) TTP (3)

Figure 1: Low- and high-dimensional results comparing Mallows kernel (BOPS-H) and Merge ker-
nel (MergeBO) on the current regret value (difference between best-so-far and optimal value) vs.
number of iteration. Solid lines show the average regrets, while the shaded areas denote one stan-
dard deviation.

function evaluations (e.g., physical experiments or complex simulations) is assumed to far outweigh
the computational cost of the algorithm itself. Consequently, our analysis prioritizes metrics related
to sample efficiency, which is the primary bottleneck in such real-world scenarios. As a more sta-
ble and implementation-agnostic proxy for computational complexity, we instead report the feature
vector dimensions generated by each kernel in Table 1, which directly reflects the compactness of
the learned representations. Furthermore, as our experiments were conducted on a shared high-
performance computing (HPC) cluster, reported wall-clock times would be subject to scheduler-
induced variability, making them an unreliable metric for rigorous algorithmic comparison.

Instead, we can report a rough time estimation based on local, small-scale experiments here: the
Merge kernel is approximately 10% slower than the Mallows kernel in low-dimensional problems.
This is because the Mallows kernel’s calculation relies on two clean for-loops, whereas the Merge
kernel requires recursive calls to merge sort, which involves significant constant overhead from func-
tion calls, Python list slicing, and deepcopy operations. However, in high-dimensional problems, we
believe the kernel value computation bottleneck arising from the O(n2) feature space will lead to
significant performance degradation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

4.2 RESULTS AND DISCUSSION

Our experimental results, as presented in Table 2 and Figure 1, systematically reveal a strong correla-
tion between the performance advantage of the Merge kernel and the problem’s dimensionality. For
low-dimensional permutation problems (TSP and QAP), the Mallows kernel, which is specifically
designed for such tasks, exhibited a slight performance advantage. However, on problems of inter-
mediate dimensionality (FP and CR), the performance of the two kernels was comparable, with no
statistically significant difference observed. This trend shifted decisively on the higher-dimensional
TTP problems, where the Merge kernel demonstrated definitive superiority. The statistical data in
Table 2 indicates that the Merge kernel significantly outperformed the Mallows kernel across all
TTP instances on both the final regret and AUC metrics. Furthermore, the convergence curves in
Figure 1 confirm its substantially faster convergence speed. This validates the superior performance
and scalability of our proposed method on complex, high-dimensional optimization problems.

The consistent underperformance of the randomized baseline confirms that unstructured feature se-
lection fails to capture necessary permutation similarities. This validates that our method’s efficiency
stems from preserving principled structural information, rather than mere dimensionality reduction.
Regarding TuRBO, while it demonstrates scalability by outperforming BOPS-H in high-dimensional
tasks, it remains significantly inferior to our method. This substantial gap underscores the necessity
of our specialized permutation optimization framework over generic continuous relaxation strategies
and general high-dimensional optimization approaches.

These results corroborate our core hypothesis: the Merge kernel possesses an inherent advantage in
high-dimensional permutation optimization problems, owing to its more compact structural design.
The disparity between its O(n log n) feature complexity and the Mallows kernel’s O(n2) complexity
widens dramatically as the dimensionality n increases. This is explicitly quantified by the feature
length comparison in Table 1: for low, intermediate, and high-dimensional problems, the feature
dimensionality of the Mallows kernel is approximately 2, 3.5, and 19.5 times that of the Merge
kernel, respectively. These results indicate that the experimental performance is governed by a
trade-off between two key factors: (1) the ability to capture global information via the distance
metric, and (2) the search efficiency driven by the compactness of the feature space. Due to its
right-invariance property, the Mallows kernel possesses a stronger distance metric capability than
the Merge kernel. However, as dimensionality increases, the vast disparity in feature vector length
leads to a more pronounced space-compression effect. The resulting gains in search efficiency begin
to outweigh the performance benefits afforded by the superior distance metric. Consequently, as the
problem dimensionality continues to grow, the performance of the Merge kernel ultimately surpasses
that of the Mallows kernel by a significant margin. This naturally suggests a dimension-dependent
heuristic for practitioners: leveraging the Mallows kernel’s robust, right-invariant distance metric for
low-dimensional tasks, while switching to the Merge kernel to capitalize on its superior scalability
in high-dimensional regimes.

5 CONCLUSIONS

In this work, we proposed a novel kernel construction framework for permutation spaces by leverag-
ing sorting algorithms as structured comparison schemes. Within this framework, we introduced the
Merge kernel—an efficient, compact, and theoretically grounded alternative to the quadratic Mal-
lows kernel. We showed that the Merge kernel achieves the information-theoretic lower bound on
feature complexity while preserving meaningful structural information. This contribution bridges
sorting theory and kernel design, revealing a fundamental trade-off between a model’s structural
invariance and the compactness of its feature space.

Empirical experiments confirmed this trade-off: while the state-of-the-art BOPS-H algorithm
held a marginal advantage in low-dimensional problems, their performances were comparable on
intermediate-dimensional tasks. In high-dimensional settings, however, MergeBO’s compact repre-
sentation enabled far superior search efficiency, allowing it to significantly outperform BOPS-H and
TuRBO. This work opens exciting possibilities for scaling Bayesian optimization to larger permuta-
tion spaces. Future directions include exploring other sorting algorithms with constant comparison
counts or constructing stabilized sorting algorithm of O(n log n) complexity for kernel design, and
applying this framework to challenging real-world domains like combinatorial neural architecture
search and computational biology.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Sergey Alatartsev, Sebastian Stellmacher, and Frank Ortmeier. Robotic task sequencing problem: A
survey. Journal of intelligent & robotic systems, 80(2):279–298, 2015.

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wil-
son, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian optimization.
Advances in neural information processing systems, 33:21524–21538, 2020.

Nathalie Bartoli, Thierry Lefebvre, Rémi Lafage, Paul Saves, Youssef Diouane, Joseph Morlier,
Jasper Bussemaker, Giuseppa Donelli, Joao Marcos Gomes de Mello, Massimo Mandorino, et al.
Multi-objective bayesian optimization with mixed-categorical design variables for expensive-to-
evaluate aeronautical applications. arXiv preprint arXiv:2504.09930, 2025.

Kenneth E Batcher. Sorting networks and their applications. In Proceedings of the April 30–May 2,
1968, spring joint computer conference, pp. 307–314, 1968.

Tom Blau, Edwin V Bonilla, Iadine Chades, and Amir Dezfouli. Optimizing sequential experimental
design with deep reinforcement learning. In International conference on machine learning, pp.
2107–2128. PMLR, 2022.

Mohammad Reza Bonyadi, Zbigniew Michalewicz, and Luigi Barone. The travelling thief problem:
The first step in the transition from theoretical problems to realistic problems. In 2013 IEEE
congress on evolutionary computation, pp. 1037–1044. IEEE, 2013.

Rainer E Burkard, Stefan E Karisch, and Franz Rendl. Qaplib–a quadratic assignment problem
library. Journal of Global optimization, 10:391–403, 1997.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha Lee, and
Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE inter-
national symposium on workload characterization (IISWC), pp. 44–54. Ieee, 2009.

Aryan Deshwal, Syrine Belakaria, Janardhan Rao Doppa, and Dae Hyun Kim. Bayesian optimiza-
tion over permutation spaces. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pp. 6515–6523, 2022.

Persi Diaconis and Ronald L Graham. Spearman’s footrule as a measure of disarray. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 39(2):262–268, 1977.

E Knuth Donald et al. The art of computer programming. Sorting and searching, 3(426-458):4,
1999.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
global optimization via local bayesian optimization. Advances in neural information processing
systems, 32, 2019.

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. Gpytorch:
Blackbox matrix-matrix gaussian process inference with gpu acceleration. Advances in neural
information processing systems, 31, 2018.

Eduardo C Garrido-Merchán and Daniel Hernández-Lobato. Dealing with categorical and integer-
valued variables in bayesian optimization with gaussian processes. Neurocomputing, 380:20–35,
2020.

Joan Gonzalvez, Edmond Lezmi, Thierry Roncalli, and Jiali Xu. Financial applications of gaussian
processes and bayesian optimization. arXiv preprint arXiv:1903.04841, 2019.

Stewart Greenhill, Santu Rana, Sunil Gupta, Pratibha Vellanki, and Svetha Venkatesh. Bayesian
optimization for adaptive experimental design: A review. IEEE access, 8:13937–13948, 2020.

Mara Guidi, Peter H Seeberger, and Kerry Gilmore. How to approach flow chemistry. Chemical
Society Reviews, 49(24):8910–8932, 2020.

Abhishek Gupta, Yew-Soon Ong, and Liang Feng. Multifactorial evolution: Toward evolutionary
multitasking. IEEE Transactions on Evolutionary Computation, 20(3):343–357, 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yunlong Jiao and Jean-Philippe Vert. The kendall and mallows kernels for permutations. In Inter-
national Conference on Machine Learning, pp. 1935–1944. PMLR, 2015.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81–93, 1938.

Dennis KJ Lin and Nicholas Rios. Order-of-addition experiments: A review and some recommen-
dations. Wiley Interdisciplinary Reviews: Computational Statistics, 17(2):e70024, 2025.

Man Luo, Zikai Xie, Huirong Li, Baicheng Zhang, Jiaqi Cao, Yan Huang, Hang Qu, Qing Zhu,
Linjiang Chen, Jun Jiang, et al. Physics-informed, dual-objective optimization of high-entropy-
alloy nanozymes by a robotic ai chemist. Matter, 8(4), 2025.

James Mercer. Xvi. functions of positive and negative type, and their connection the theory of
integral equations. Philosophical transactions of the royal society of London. Series A, containing
papers of a mathematical or physical character, 209(441-458):415–446, 1909.

Dang Nguyen, Sunil Gupta, Santu Rana, Alistair Shilton, and Svetha Venkatesh. Bayesian opti-
mization for categorical and category-specific continuous inputs. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 5256–5263, 2020.

Changyong Oh, Jakub Tomczak, Efstratios Gavves, and Max Welling. Combinatorial bayesian opti-
mization using the graph cartesian product. Advances in Neural Information Processing Systems,
32, 2019.

Changyong Oh, Roberto Bondesan, Efstratios Gavves, and Max Welling. Batch bayesian optimiza-
tion on permutations using the acquisition weighted kernel. Advances in Neural Information
Processing Systems, 35:6843–6858, 2022.

Sergey Polyakovskiy, Mohammad Reza Bonyadi, Markus Wagner, Zbigniew Michalewicz, and
Frank Neumann. A comprehensive benchmark set and heuristics for the traveling thief prob-
lem. In Proceedings of the 2014 annual conference on genetic and evolutionary computation, pp.
477–484, 2014.

Gerhard Reinelt. Tsplib95. Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Hei-
delberg, 338:1–16, 1995.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2015.

Ron Sun and C Lee Giles. Sequence learning: From recognition and prediction to sequential deci-
sion making. IEEE Intelligent Systems, 16(4):67–70, 2001.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Feitas. Bayesian op-
timization in a billion dimensions via random embeddings. Journal of Artificial Intelligence
Research, 55:361–387, 2016.

Muning Wen, Runji Lin, Hanjing Wang, Yaodong Yang, Ying Wen, Luo Mai, Jun Wang, Haifeng
Zhang, and Weinan Zhang. Large sequence models for sequential decision-making: a survey.
Frontiers of Computer Science, 17(6):176349, 2023.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

Jia Wu, Xiu-Yun Chen, Hao Zhang, Li-Dong Xiong, Hang Lei, and Si-Hao Deng. Hyperparameter
optimization for machine learning models based on bayesian optimization. Journal of Electronic
Science and Technology, 17(1):26–40, 2019.

Zikai Xie, Xenophon Evangelopoulos, Joseph CR Thacker, and Andrew I Cooper. Domain knowl-
edge injection in bayesian search for new materials. In ECAI 2023, pp. 2768–2775. IOS Press,
2023.

Martin Zaefferer, Jörg Stork, and Thomas Bartz-Beielstein. Distance measures for permutations
in combinatorial efficient global optimization. In International Conference on Parallel Problem
Solving from Nature, pp. 373–383. Springer, 2014.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

We declare that the large language models (LLMs) ChatGPT and Gemini are only used to aid and
polish writing. No further applications of LLMs are used in this research, including but not limited
to retrieval, research ideation and experiment designing.

B EXTRA EXPERIMENT RESULTS

B.1 DISCUSSION ON SPEARMAN’S FOOTRULE

To evaluate the trade-off between permutation information, dimension reduction and right-
invariance, we employ Spearman’s footruleDiaconis & Graham (1977) distance as another bench-
mark baseline. Similar to Euclidean measures on raw coordinates, Spearman’s footrule operates
directly on the permutation group Sn. Formally, for two permutations (rankings) σ and π of n el-
ements, the distance is defined as the sum of the absolute differences between the ranks of each
element:

dfootrule(x,x
′) =

n∑
i=1

|ri − r′i| (6)

Table 3: Performance comparison between MergeBO, BOPS-H (Mallows kernel), BOPS-H with
random comparisons, TuRBO and Spearman’s footrule. Underlined results indicate the best numer-
ical results in terms of mean value ± standard deviation of all trials.

Problem Simple final Regret
Merge Mallows Random TuRBO Spearman

TSPn=15 0.077± 0.125 0.013± 0.039 0.329± 0.332 1.213± 0.879 0.026± 0.052
QAPn=15 14.9± 5.5× 103 8.1± 4.1× 103 18.1± 3.6× 103 14.2± 5.9× 103 10.2± 4.7× 103

FPn=30 24.0± 9.7 30.1± 12.8 35.7± 11.2 20.5± 8.4 34.6± 9.0
CRn=30 6.1± 2.2 6.1± 3.0 52.15± 19.0 33.85± 15.7 1.5± 2.4

TTP1n=280 23.0± 11.3× 103 88.9± 7.5× 103 54.8± 12.6× 103 88.7± 10.1× 103

TTP2n=280 14.9± 7.2× 104 56.5± 6.1× 104 36.8± 9.4× 104 56.2± 6.2× 104

TTP3n=280 8.0± 3.2× 104 28.1± 2.8× 104 19.1± 3.6× 104 28.4± 2.5× 104

Problem Best so far AUC
Merge Mallows Random TuRBO Spearman

TSPn=15 527.6± 162.8 428.2± 121.9 559.7± 224.9 877.2± 352.4 397.1± 98.0
QAPn=15 38.3± 8.4× 105 27.5± 7.4× 105 42.5± 6.1× 105 46.7± 9.2× 105 31.8± 8.5× 105

FPn=30 8097.5± 2163.7 8665.7± 2638.8 9481.0± 2086.2 5932.1± 1636.9 9187.7± 2024.1
CRn=30 5495.6± 687.7 5350.5± 910.1 13970.8± 2408.8 10340.5± 2477.3 4673.4± 1020.15

TTP1n=280 20.5± 4.4× 105 48.5± 3.1× 105 40.0± 4.9× 105 48.2± 4.3× 105

TTP2n=280 12.3± 3.2× 106 30.5± 2.4× 106 25.9± 3.8× 106 30.3± 2.4× 106

TTP3n=280 6.7± 1.4× 106 15.2± 1.3× 106 13.2± 1.5× 106 15.3± 9.4× 106

Obviously, the corresponding featurization method Φfootrule(π) is an identical mapping that di-
rectly uses the permutation π as its feature vector. The computational complexity of Spearman’s
footrule is O(n), and it is fully right-invariant since it simply calculates the L1 distance between
two vectors.

However, while this mapping retains the raw rank values, it treats permutations merely as vectors
in a Euclidean space, thereby ignoring the underlying algebraic structure of the symmetric group.
Unlike the Mallows kernel or our proposed Merge kernel, which embed specific probabilistic or
hierarchical priors, this naive representation doesn’t project the permutation to a compact manifold
and fails to capture the compact dependencies within the feasible space. Nevertheless, its L1 nature
allows it to effectively approximate local structural discrepancies through simple summation.

The experiment results of Spearman’s footrule are added in Table 3 above. In low-dimensional set-
tings, Spearman’s footrule performs slightly worse than the Mallows kernel but marginally better

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

than the Merge kernel. This can be attributed to the high relevance of right-invariance in lower di-
mensions, where accurately measuring the similarity between local regions—which often share sim-
ilar performance characteristics—is critical. Notably, the method exhibits rapid convergence on TSP
and CR tasks, stemming from the inherent local additivity of these problems. However, Spearman’s
footrule offers lower discriminative resolution for permutations compared to the Mallows kernel.
This coarser granularity tends to bias the search towards exploitation rather than exploration; while
this enables quick convergence to local optima, it may limit the model’s ability to escape them for a
global solution.

Conversely, in high-dimensional problems, Spearman’s footrule performs comparably to the Mal-
lows kernel but significantly lags behind the Merge kernel. This stark contrast highlights the Merge
kernel’s superior capability to compress high-dimensional search spaces and accelerate optimization
through hierarchical decomposition.

14

	Introduction
	Background and Related Works
	Permutation Optimization
	Bayesian Optimization
	Mallows Kernel for Permutation Space

	Merge Kernel: Generating Kernels from sorting algorithms
	Experiments
	Benchmarks and Experiment Settings
	Low-dimensional Benchmarks
	High-dimensional Benchmarks: Traveling Thief Problems
	Evaluation Metrics

	Results and Discussion

	Conclusions
	The Use of Large Language Models
	Extra Experiment Results
	Discussion on Spearman's Footrule

