
Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

TWO EFFECTS, ONE TRIGGER: ON THE MODALITY
GAP, OBJECT BIAS, AND INFORMATION IMBALANCE
IN CONTRASTIVE VISION-LANGUAGE REPRESENTA-
TION LEARNING

Simon Schrodi1∗, David T. Hoffmann1,2∗, Max Argus1, Volker Fischer2 & Thomas Brox1
1 University of Freiburg, 2 Bosch Center for Artificial Intelligence

ABSTRACT

Contrastive vision-language models like CLIP have gained popularity for their
rich representations, that are applicable in various downstream tasks. Despite
their successes in some tasks, like zero-shot image recognition, they perform sur-
prisingly poor on other tasks, like attribute detection. Previous work has attributed
these challenges to the modality gap, a separation of image and text in the shared
representation space, and a bias favoring objects over other factors, such as at-
tributes. We investigate both phenomena. Specifically, we find an unintuitive cor-
relation between the modality gap and downstream performance, with only a few
embedding dimensions driving the gap. But how to determine what leads to the
emergence of these phenomena? To answer this question we design a controlled
setting which allows us to control the amount of shared information between the
modalities. This revealed that the driving factor behind both, the modality gap and
the object bias, is the information imbalance between images and captions.

1 INTRODUCTION

Large-scale Vision-Language Models (VLMs) have become increasingly popular and are success-
fully applied to numerous tasks. Their great advantage lies in the ability to exploit weak supervision,
which can be obtained with low costs by scraping the internet for image-text pairs. VLMs are com-
monly trained with a contrastive loss (Radford et al., 2021; Jia et al., 2021). Despite the successes
of such multi-modal models, recent works unveiled various undesired characteristics: modality gap
in the joint embedding space (Liang et al., 2022) or a bias towards objects at the cost of other factors
like attributes (So et al., 2023; Zhou et al., 2023; Bravo et al., 2023). But how bad are these effects?
To date, both the consequences and the underlying triggers are not fully understood.

In this work, we surprisingly find that larger modality gap correlates with better performance in a
large-scale study, only very few embedding dimensions drive the modality gap, and the embeddings
of the modalities have distinct characteristics. Next, we confirm that contrastive VLMs are more
biased towards objects than attributes. However, word frequency is not the cause and we link it
to the presence of words in captions - a caption presence bias taking a per-sample view. We find
that the caption presence bias stems from an information imbalance between modalities: the image
modality commonly contains more information than the text, while the text modality determines the
focal point. Refer to Fig. 1a for an illustration. Finally, we validate this explanation in a synthetic
setting, in which we control the data-generating process. Our findings provide practical utility as
well as justification to enrich visual captions for contrastive training of VLMs.

2 ANALYSIS OF THE MODALITY GAP

Recent work by Liang et al. (2022) revealed the existence of a modality gap within the shared
representation space of multi-modal models, i.e., the embeddings of the modalities are located in
two completely separate regions. They defined the modality gap distance as the L2-distance between
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"An image of 
a red cat"

Sparsely

captioned

A photo of a red cat
sitting on a tree with

yellow leaves.

It's just a red cat!
Which tree?

Complete information Incomplete information

(a) Sketch for information im-
balance between the modalities.

(b) Increasing shared information between modality inputs improves repre-
sentations.

Figure 1: a: Information imbalance makes it impossible for the image encoder (left) to know what
a (sparse) caption may contain. Thus, it may focus on the most salient objects due to their high
probability of being present in the caption and may tend to neglect other more unlikely factors, such
as attributes. b: We trained multiple small CLIP models on our dataset MAD (see Appendix C). The
number of attributes present in the captions controls the information imbalance between the modal-
ities. Less information imbalance leads to a smaller modality gap (a), object bias (b)-(c), higher
downstream accuracy (d)-(e), and only ideal words accuracy (Trager et al., 2023) drops slightly (f).
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(a) Relation between modality gap and
performance.

(b) Some pairs of embedding dimensions
can perfectly separate images from text.
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Figure 2: a: plot of modality gap (L2M) vs. performance for 113 contrastive VLMs. To factor
out the influence of the training dataset size, we split the models in two groups, i.e., medium- and
large-scale. b: two embedding dimensions suffice to perfectly separate image from text. Plotted for
ImageNet data. c: Successive removal of embedding dimensions based on maximal reduction in
L2M leads to a sharp drop, followed by a partial recovery of ImageNet accuracy.

the Means (L2M) of the embeddings: || 1n
∑n

i=1 xi − 1
n

∑n
i=1 yi||, where xi and yi are the i-th L2-

normalized image or text embeddings, respectively.

With increasing modality gap comes improvements in performance. We evaluated the modality
gap distance L2M and downstream task performance (DTP) for a total of 113 VLMs trained with
contrastive loss. Refer to Appendix B for details on the models and downstream tasks. While
theoretical work (Wang & Isola, 2020) suggests that there may be no modality gap in the asymptotic
limit with infinite negatives of the contrastive loss, we surprisingly find the contrary: the increase
of the modality gap distance co-occurs with the improvement of DTP; see Fig. 2a. Moreover, we
observe a clear separation of models trained on medium- (i.e., ≤128M image-text pairs) and large-
scale data. We conjecture that the dataset may be an important forming factor of the modality gap
due to, e.g., worse image-text alignments.

Takeaway 1: The modality gap distance (according to L2M) increases as DTP improves.

Few dimensions drive the modality gap. Fig. 2b shows that few embedding dimensions alone are
sufficient to separate images from texts. One may think that ablating these dimensions should close
the gap and lead to performance improvements, but we observe the opposite in Fig. 2c: DTP initially
drops sharply and recovers partially. We suspect that the re-normalization of the ablated embeddings
causes substantial changes in cosine similarities and cross-modal neighborhoods. Indeed, the most
modality-separating dimensions are characterized by large values in one modality and small ones in
the other (see next section) that may cause such substantial changes.
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Figure 3: a: Most embedding dimensions have similar mean values for both modalities but some
have substantial differences. We find that these correspond to the most modality-separating dimen-
sions. Image-text samples from MS COCO. b: DTP vs. object bias for a total of 113 contrastive
VLMs. We find a bias towards objects (mostly positive MOAD values) but only a weak correlation
with DTP. c: When showing a particular word (object or attribute) in the caption during the training,
the model is biased towards it (left) and achieves higher accuracy for it (right). Thus, the “object
bias“ is just a caption presence bias. Note that the bias is larger for the image encoder, as it needs to
match to the most likely caption, as sketched in Fig. 1a.

Takeaway 2: Few dimensions drive the modality gap and can separate the modalities.

3 DIFFERENCES IN THE EMBEDDINGS

Table 1: Dissimilarity of
neighborhood orderings
in the embedding space.
Kendall-Tau distance (KTD)
∈ [0, 1] lower is better. C:
Cifar, IN: ImageNet, s.:split.

Dataset KTD (↓)

C-10 0.3399
C-100 0.4965
IN-100 s. 1 0.4975
IN-100 s. 2 0.5046
IN-100 s. 3 0.5081

In this section we reveal various differences of image and text em-
beddings, particularly the different organization thereof; even though
one may suspect that both embeddings are similarly organized
(Trager et al., 2023). We find that the mean of the absolute mean
embedding is similar for images and texts, i.e., 0.0282 and 0.0267,
respectively. However, Fig. 3a reveals while most embedding di-
mensions have comparable absolute means, there are few notable
exceptions. Even more, we find that these dimensions (typically)
correspond to the most-modality separating dimensions (Fig. 2b).
We suspect that these are an result of the contrastive loss optimiza-
tion with image-text misalignments, i.e., the uniformity term may be
optimized by making the modalities as dissimilar as possible as the
alignment term’s maximization is limited by misalignments.

Following the ideal words approach of Trager et al. (2023) and ex-
tending it to ideal images on MIT-States & UT-Zappos, we find low cosine-simiarities (0.19 &
0.16) between the ideal images and ideal words. However, when we correct them with the modality
gap vector (mean difference vector between matching image and text embeddings) cosine similar-
ities significantly increase (0.56 & 0.40). Hence, this indicates that embedding directions of each
modality have different “meanings” when not corrected by the modality gap vector. Further, we
tested similarity of neighborhood relations in the embedding spaces by computing the normalized
Kendall-Tau distance on the mean vectors for each class from CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), and the three ImageNet-100 splits from Hoffmann et al. (2022). We find that neighbor-
hood orderings are not preserved across the modalities’ embeddings (Table 1).

Takeaway 3: Direction of image and text embeddings align when corrected by the modality
gap vector and neighborhood relations vary between the modalities.

4 IS OBJECT BIAS A MERE CAPTION PRESENCE BIAS?

While previous work mostly assessed object bias based on DTP benchmark results, we propose a
novel similarity measure Matching Object Attribute Distance (MOAD) to explicitly quantify the ob-

ject bias: 1
4n

n∑
i=1

(
xT
i,oyi,o − 1

n−1

n∑
j=1,j ̸=i

xT
i,oyj,o

)
− 1
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)
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In words, MOAD is the difference of alignment scores for objects o and attributes a. Negative values
indicate bias towards attributes, positive values a bias towards objects, and 0 no bias. Fig. 3b affirms
that contrastive VLMs are biased towards objects and models trained on large-scale data tend to
have weaker object bias. However, word frequency is not the cause, as revealed by Fig. 5 in the
Appendix. Interestingly, we find that improvements in object-based DTPs correlate with improved
attribute detection (Fig. 6 in the Appendix).

Takeaway 4: Contrastive VLMs trained on large-scale data tend to have a lower object bias.
Our results indicate that object performance improvements transfer to performance gains for
other factors, such as attributes.

5 INFORMATION IMBALANCE IN IMAGE CAPTIONS

We hypothesize that both modality gap and object bias are caused by an information imbalance be-
tween image and text encoder triggered by sparse captions. Specifically, while the image encoder
has all the information about the latent factors in the image (i.e., objects, attributes, etc.), the textual
descriptions are typically very sparse, i.e., only the most salient objects and perhaps a handful of
attributes or similar are present in a caption. Refer to Fig. 1a for an illustration of the information
imbalance problem. Consequently, the maximization of the alignment term is limited, as the image
encoder cannot infer what the text encoder may encode for a given sparse captions. The best both
encoders can do is to make sure that latent factors with small conditional caption presence probabil-
ity contribute only little to the loss by encoding them in few dimensions, with small values or both,
and focus on the most salient parts, i.e., the objects. Moreover, we posit that the image encoder
should exhibit a larger caption presence bias, since the text encoder can simply encode all given
information, while the image encoder needs to match to the most likely caption. We validated our
hypothesis on MAD (refer to Appendix C for dataset & training details).

To confirm that the object bias is an “always in caption” bias, we modified the prevalence of the latent
factors of MAD, i.e., making each digit or attribute always present while designating the others as
less often present, and trained small-scale CLIP models on this data. Fig. 3c confirms this. Next,
to further validate our hypothesis, we control the information imbalance in MAD. Specifically, we
change the number of present attributes in the captions and ensure that the object, i.e., MNIST digit,
is always present. Fig. 1b(b)-(e) show that object bias reduces while performance improves when
information imbalance is reduced, as the attributes enrich the captions. Further, Fig. 1b(a) shows that
the modality gap also reduces with reducing information imbalance. Visually, the reduction of the
gap is also visualized in the UMAP embeddings in Fig. 7 in the Appendix. In fact, even though there
exists a modality gap after model initialization, the contrastive objective within the full information
setting is capable of reducing it substantially. Interestingly, we find that zero-shot accuracy using
ideal words (Trager et al., 2023) decreases slightly for the full information setting (Fig. 1b(f)) but
leave further investigation for future work.

Takeaway 5: Bias towards concepts, e.g., objects, is caused by their high presence probability
in captions if said concept appears in the image. Reducing the information imbalance between
modalities mitigates both the modality gap and object bias.

6 CONCLUSION

This work studied contrastive VLMs and found that surprisingly performance improves as the
modality gap widens (according to L2M), the gap is driven by just a few embedding dimensions, and
affirmed their object bias. We show that both phenomena are triggered by an information imbalance
between modalities and a reduction of such mitigates them.
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A RELATED WORK

Contrastive multi-modal representation learning. Multi-modal representation learning aims to
learn a shared representation space from heterogeneous input modalities. In this work, we focus on
VLMs that are trained by contrastive learning. Contrastive learning aims to align related data from
different modalities and to enforce uniformity of the induced distribution on the unit hypersphere
(Oord et al., 2018; Wang & Isola, 2020). Following the popular CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021), other works proposed several techniques to improve reproducibility (Cherti
et al., 2023) or training efficiency (Zhai et al., 2022; Li et al., 2023d; Zhai et al., 2023; Li et al.,
2023b;a; Sun et al., 2023).

Understanding contrastive multi-modal representation learning. Given its success across di-
verse tasks, recent attention has been directed toward understanding contrastive multi-modal repre-
sentation learning. Prior work studied the importance of data (Nguyen et al., 2022; Xu et al., 2024),
generalization or robustness (Mayilvahanan et al., 2024; Crabbé et al., 2023), analyzed the learned
features/representations (Goh et al., 2021; Materzyńska et al., 2022; Rashtchian et al., 2023), or
learned (social) biases and capabilities (Agarwal et al., 2021; Yamada et al., 2023; Zhang et al.,
2022; Wu & Maji, 2022; Shtedritski et al., 2023; Hamidieh et al., 2023). Other work studied the
compositionality of CLIP’s embedding space through vector arithmetic (Jia et al., 2021; Couairon
et al., 2022; Trager et al., 2023). Specifically, Trager et al. (2023) proposed computing ideal words
by marginalizing out other factors from captions. While some works found that large models, in-
cluding VLMs, close the gap to human perception (Geirhos et al., 2021; Li et al., 2023c), another
line of works found several failure modes of VLMs (Yuksekgonul et al., 2022; Brody, 2023).

Recent work showed the presence of a modality gap and found evidence that it appears due to the
cone effect of model initialization and the contrastive learning objective (Liang et al., 2022). Subse-
quent work explored the influence of the Softmax temperature (Udandarao, 2022; Shi et al., 2023).
In our work we fine evidence against the cone effect hypothesis by prior work (Liang et al., 2022) as
the sole cause of modality gap and identify the information imbalance between the modalities as a
trigger for the modality gap. Further, we approach the question whether the gap is an actual problem
by a large-scale analysis of 113 contrastive VLMs.

Orthogonal to the above, other works disentangled the standard InfoNCE (contrastive) loss (Oord
et al., 2018) into an alignment and uniformity component (Wang & Isola, 2020). Recent works
theoretically analyzed the (multi-modal) contrastive loss and identified the importance of shared
task-relevant information, i.e., content, between the modalities (Von Kügelgen et al., 2021; Daun-
hawer et al., 2023; Liang et al., 2023). We connect the per-sample information imbalance between
the modalities to two observed phenomena.

B EXPERIMENTAL SETUP FOR SECTIONS 2 TO 4

Contrastive vision-language models. Unless otherwise stated, we used CLIP ViT-B/16 (Radford
et al., 2021) for our analysis. For our large-scale analyses, we used a total of 113 contrastive VLMs
trained across various datasets provided by OpenCLIP (Ilharco et al., 2021; Cherti et al., 2023)1.
It contains contrastive VLMs, such as OpenAI’s CLIP (Radford et al., 2021), CLIP-A (Li et al.,
2023b), EVA-CLIP (Sun et al., 2023), CoCa (Yu et al., 2022), NLLB-CLIP (Visheratin, 2023),
or SigLIP (Zhai et al., 2023). Note that these models use various backbones, including ResNet
(He et al., 2016), ConvNeXt (Liu et al., 2022), or ViT (Dosovitskiy et al., 2020). The models
were trained on, e.g., OpenAI’s proprietary (400M) WebImageText dataset (Radford et al., 2021),
LAION-400M, LAION-2B, LAION-5B (Schuhmann et al., 2022), Merged-2B (merge of 1.6B
samples from LAION-2B and 0.4B samples from COYO-700M (Byeon et al., 2022)) (Sun et al.,
2023), WebLI (Chen et al., 2023), So-400M (Alabdulmohsin et al., 2023), MetaCLIP (400M) (Xu
et al., 2024), Conceptual 12M (Changpinyo et al., 2021), YFCC (15M) (Thomee et al., 2016),
CommonPool-s (max. 12.8M; refer to Table 3 of Gadre et al. (2023) for the details of filtering),
CommonPool-m (max. 128M), CommonPool-l (max. 1.28B), CommonPool-xl (max. 12.8B)
(Gadre et al., 2023), or DataPool-s (1.4M), DataPool-m (14M), DataPool-l (140M), DataPool-xl
(1B) (Gadre et al., 2023).

1https://github.com/mlfoundations/open_clip
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In our analysis, we distinguished between medium- (i.e., dataset size of ≤128M) and large-scale
datasets.

Evaluation datasets. We conducted our evaluation of contrastive VLMs on ImageNet (Russakovsky
et al., 2015), MS COCO (Lin et al., 2014; Chen et al., 2015), MIT-States (Isola et al., 2015), and UT-
Zappos (Yu & Grauman, 2014). The datasets comprise 50000, 25000 (5000 images with 5 captions
each), 12995, or 2914 test samples, respectively. ImageNet and MS COCO are standard datasets
for evaluation of object recognition or retrieval performance, respectively. We used the standard
evaluation protocols to compute accuracy or image retrieval performance. MIT-States consists of
245 objects and 115 adjectives (attributes), while UT-Zappos consists of 12 shoe types with 16 fine-
grained states (∼ attributes). For both datasets, we assume that we do not know the object of a
respective image and only want to find the adjective or fine-grained state. We considered them as
a classification problem, following previous work (Trager et al., 2023). Note that these datasets
implicitly assume that the adjectives are mutually exclusive per image. However, this may not be
necessarily true, as multiple adjectives or fine-grained states may be present in an image.

For ImageNet, we used the CLIP-style prompts "a photo of a {obj}" (Radford et al., 2021)
and computed the zero-shot (object) accuracy. For MS COCO, we prepended the prompt "a
photo of" to the description of each image following Radford et al. (2021) and used R@1 to
assess zero-shot image retrieval performance. For MIT-States and UT-Zappos we adopted simi-
lar prompts: "an image of a {attr} object" and computed the zero-shot attribute accu-
racy.

C EXPERIMENTAL DETAILS FOR EXPERIMENTS ON MULTI-MODAL
ATTRIBUTES AND DIGITS (MAD)

To understand the influence of data and embedding size, we constructed a multi-modal dataset based
on the MNIST (LeCun, 1998) variation Morpho-MNIST (Castro et al., 2019) called Multi-modal
Attributes and Digits (MAD) with full control over the data-generating process. We adopted the
following morphing or warping operations as latent factors (i.e., attributes): altering image thick-
ness, swelling, fractures from (Castro et al., 2019) and added scaling, colors and captions. To
generate image captions, we mapped the digit class and latent factors to words and chained them
together, e.g., 0-thickening-swelling-fractures-large-blue. Specifically, we used
the following words for digits (0, ..., 9), altering image thickness (thickening, thinning,
no thickthinning), swelling (swelling, no swelling), fractures (fracture, no
fracture), scaling (large, small), and color (gray, red, green, blue, cyan, magenta,
yellow). Thus, we have 16 different attributes. Example image-caption pairs are provided in
Fig. 4.

To study the impact of missing information in captions, we considered five cases. In each case, the
object, i.e., digit, remains consistently present, while we alter the number of attributes mentioned in
the captions, ranging from one to five, by randomly selecting them at every batch. This allows us
to simulate diverse cases of information imbalance in captions, spanning from cases with a lot of
missing information to those with full information. We provide examples below, where we sequen-
tially remove the amount of information within the captions, i.e., fewer latent factors (attributes) are
present:

• Full information setting (i.e., digit & all five attributes)

– yellow-swelling-thickening-9-large-fracture
– swelling-thickening-6-red-small-fracture
– 5-large-yellow-no swelling-fracture-thinning

• Partial information setting I (i.e., digit & four attributes)

– yellow-swelling-thickening-9-large
– swelling-thickening-6-red-small
– 5-large-yellow-no swelling-fracture

• Partial information setting II (i.e., digit & three attributes)

– yellow-swelling-thickening-9
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– swelling-thickening-6-red
– 5-large-yellow-no swelling

• Partial information setting III (i.e., digit & two attributes)
– yellow-swelling-9
– swelling-thickening-6
– 5-large-yellow

• Partial information setting IV (i.e., digit & one attributes)
– yellow-9
– swelling-6
– 5-large

Note that while all the latent factors, i.e., digit and all five attributes, are still visible in the image,
the caption may only provide partial information, i.e., attributes are missing from the caption.

Model details. We used smaller CLIP models to train on MAD. Specifically, the ViT-based vision
backbone comprises 6 layers, each with a dimensionality d of 256 and ⌊d/64⌋ = 4 heads. The
transformer-based language backbone also comprises 6 layers, each with a dimensionality of 256
and 8 heads. We used a patch size of 7 and set the context length to 8. The vocabulary consists of
28 words, i.e., all the words for digits (10) and attributes (16), as well as a start and end symbol (2).

Training details. We trained all models with a batch size of 128 for 200 epochs with a learning
rate warm-up period of 5 epochs. We used AdamW (Loshchilov & Hutter, 2019) as optimizer with
cosine annealing learning rate schedule. We always selected the best performing learning rate across
3 learning rates {5e− 4, 5e− 5, 1e− 5} each trained with 3 random seeds. The best learning rate
was selected by comparing average accuracies over the ideal word accuracy, average precision and
zero-shot accuracy on all attributes and the class label. For all of our results, we report the average
over 3 random seeds.

D FURTHER EXPERIMENTAL RESULTS

Object bias is not caused by word frequency. Fig. 5 shows that the object bias is not caused by
the word frequency, i.e., attributes are even more common than objects in the LAION-2B captions.

Object performance improvements transfer to improvements in attribute detection. Fig. 6
shows that improvements on object-related tasks (ImageNet & MS COCO) transfer to improvements
in attribute detection (MIT-States & UT-Zappos).

Perfect image-text alignments can close an initial modality gap at model initialization.
Fig. 7(left) shows that a model may have a modality gap at model initialization due to the cone
effect (Liang et al., 2022) but it can be closed by the contrastive loss under perfect image-text align-
ments (Fig. 7(right)).
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Figure 4: Example image with corresponding caption of our MAD dataset. Note that the words of
the captions are shuffled during training. For example, the in the first row and first column shows
the digit 4 without altering the thickness, no swelling applied, with fracture augmentation, scaled
down and the color gray.
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Figure 5: Object and attribute frequencies on LAION-2B captions. We used objects and attributes
from OVAD (Bravo et al., 2023). Object bias is not caused by the word frequency.
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Figure 6: Relation between object and attribute performance. There is a strong relation between
object and attribute performance, indicating that advances on object performance transfer to attribute
performance.

Figure 7: A contrastive loss with full information can close the modality gap in MAD. UMAP
embeddings after model initialization (left) and after contrastive pre-training (right).
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