
J
H
E
P
0
3
(
2
0
1
7
)
1
1
9

Published for SISSA by Springer

Received: November 14, 2016

Revised: February 6, 2017

Accepted: March 14, 2017

Published: March 23, 2017

Noether charge, black hole volume, and complexity

Josiah Couch, Willy Fischler and Phuc H. Nguyen

Theory Group, Department of Physics and Texas Cosmology Center,

University of Texas at Austin, 2515 Speedway, C1600, Austin, TX 78712-1192, U.S.A.

E-mail: josiah.couch@utexas.edu, fischler@physics.utexas.edu,

phn229@physics.utexas.edu

Abstract: In this paper, we study the physical significance of the thermodynamic volumes

of AdS black holes using the Noether charge formalism of Iyer and Wald. After applying

this formalism to study the extended thermodynamics of a few examples, we discuss how

the extended thermodynamics interacts with the recent complexity = action proposal of

Brown et al. (CA-duality). We, in particular, discover that their proposal for the late time

rate of change of complexity has a nice decomposition in terms of thermodynamic quantities

reminiscent of the Smarr relation. This decomposition strongly suggests a geometric, and

via CA-duality holographic, interpretation for the thermodynamic volume of an AdS black

hole. We go on to discuss the role of thermodynamics in complexity = action for a number

of black hole solutions, and then point out the possibility of an alternate proposal, which

we dub “complexity = volume 2.0”. In this alternate proposal the complexity would be

thought of as the spacetime volume of the Wheeler-DeWitt patch. Finally, we provide

evidence that, in certain cases, our proposal for complexity is consistent with the Lloyd

bound whereas CA-duality is not.

Keywords: AdS-CFT Correspondence, Black Holes, Gauge-gravity correspondence, Mod-

els of Quantum Gravity

ArXiv ePrint: 1610.02038

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2017)119

mailto:josiah.couch@utexas.edu
mailto:fischler@physics.utexas.edu
mailto:phn229@physics.utexas.edu
https://arxiv.org/abs/1610.02038
http://dx.doi.org/10.1007/JHEP03(2017)119


J
H
E
P
0
3
(
2
0
1
7
)
1
1
9

Contents

1 Introduction 1

2 Volume and Iyer-Wald formalism 3

2.1 Application to Einstein-Maxwell: charged BTZ black hole 5

2.2 Application to Einstein-Maxwell-dilaton: the R-charged black hole 7

3 Thermodynamic volume and complexity: Schwarzschild-AdS 10

3.1 Review of Brown et al. 11

3.2 CA-duality, through the lens of black hole chemistry 13

3.3 Complexity = volume 2.0 15

4 Thermodynamic volume and complexity: conserved charges 17

4.1 Electrically charged black holes 18

4.2 Rotating black hole 19

5 Action or volume? 21

5.1 The Lloyd bound with conserved charge 22

5.2 Bound violation: near the ground state 22

5.3 Bound violation: exact results 24

5.4 Altering the bound by a pre-factor 25

6 Conclusion 25

1 Introduction

The laws of black hole thermodynamics, at least in their traditional formulation [1–4], do

not include a pressure-volume conjugate pair. This conspicuous absence is perhaps related

to the difficulty of defining the volume of a black hole in a coordinate-invariant way: unlike

the area of the horizon, a näıve integration over the interior of a black hole depends on

the foliation of spacetime. A number of relativists [5–9], and more recently high energy

physicists [10], have suggested that the pressure should be identified as the cosmological

constant. In this framework, dubbed the extended black hole thermodynamics or “black

hole chemistry”, the ADM mass of the black hole is reinterpreted as the enthalpy H of the

system rather than its internal energy U . The volume, then, can be defined in the usual

thermodynamical way to be:

V =

(
∂H

∂P

)
S

. (1.1)
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Fascinatingly enough, in simple cases such as the AdS-Schwarzschild or AdS-Reissner-

Nordstrom (AdS-RN) black hole, the thermodynamic volume coincides with a näıve inte-

gration over the “black hole interior”:

V =
4

3
πr3

+ =

∫ r+

0

√
−gdrdΩ2

2. (1.2)

In more complicated cases, such as rotating holes or solutions with hair, the thermo-

dynamical volume is less intuitive, and it is an interesting question to ask how the volume

arises as an integral of some local quantity over some region of spacetime, in a way similar

to (1.2). For a selection of work on or related to this topic, we refer to [11–17].

Our main goal in this paper is two-fold: on one hand, we attempt to shed light on

the meaning of the thermodynamic volume as a geometrical quantity, which, a priori, is an

abstract notion of volume associated to the black hole and does not correspond to the actual

volume of any spatial region. On the other hand, we will relate the thermodynamic volume

to holography, and in particular to the quantum complexity of the boundary state. Why

should we believe that the thermodynamic volume has a role to play in the holographic

context ? To this question, we will offer four answers, which we list one after another below.

The first reason to believe that the thermodynamic volume has a place in holography

is that, as we will demonstrate below, this quantity is derivable from the Noether charge

(or Iyer-Wald) formalism [18, 19], or a slight twist thereof. This is the main finding of

section 2. A powerful way to derive the first law of black hole thermodynamics, the Iyer-

Wald formalism has yielded deep insights into the nature of black hole entropy, so it is a

natural step to extend the formalism to derive the thermodynamic volume. In recent years,

the Iyer-Wald formalism has proved useful to holographers as a means to translate between

the geometry in the bulk to quantum information theoretic quantities on the boundary,

starting with [20] where the formalism was used to derive the linearized equation of motion

in the bulk from the first law of entanglement on the boundary in pure AdS. To give a few

more examples, the formalism was used in [21] to relate matter in the bulk to the relative

entropy on the boundary, in [22] to relate canonical energy in the bulk to the quantum

Fisher information on the boundary, in [23] to relate quantum information inequalities to

gravitational positive energy theorems, and finally in [24] in conjunction with the kinematic

space program to clarify the emergence of gravity from entanglement.

The second reason to suspect that the thermodynamic volume is relevant to holography

is that various notions of volume in the bulk have been identified with quantum information

theoretic quantities. In particular, the size of the Einstein-Rosen bridge of a 2-sided eternal

AdS black hole is believed to capture the complexity of the thermofield double state [25, 26].

Furthermore, the complexity of subregions of the boundary CFT [27–30] and the fidelity [31]

have been related to the volume of a constant time slice in the bulk enclosed between the

Ryu-Takayanagi surface and the boundary. In the light of these ideas, it is suggestive that

the thermodynamical volume also admits a quantum information theoretic interpretation,

and we will find in this paper that it indeed seems so. In the second part of the paper

(sections 3 and 4), we will relate the thermodynamic volume (and also the Smarr relation)

to the complexity as per the proposals in [25, 26].

– 2 –



J
H
E
P
0
3
(
2
0
1
7
)
1
1
9

The third motivation to study the thermodynamic volume in holography is the question

of to what extent holography knows about the black hole interior. In [32], the black hole

interior was probed with minimal surfaces which cross the horizon, and the notion of

“vertical entanglement” as well as a tensor network picture of black hole interiors were

formulated. Like the quantum complexity, the vertical entanglement could serve as a

useful way to keep track of time in the dual CFT. In the case of the complexity, the key

observation is that the size of the ERB grows linearly with the boundary time at late time,

a behaviour conjectured to be true of the quantum complexity at exponentially late time.

However this linear growth can be observed for various geometrical entities crossing

the wormhole, and to correctly pick out one among them is a non-trivial problem. This

leads us to the fourth and last motivation of this paper: how to correctly quantify the size

of an ERB and capture the complexity ? Two ways to achieve this have been considered in

the literature [25, 26, 33, 34]. The first way, first proposed in [34] and dubbed “complex-

ity=volume” or CV-duality, postulates that the complexity is dual to the volume of the

maximal spatial slice crossing the ERB. This proposal, while capturing the linear growth

at late time, has the minor problem that a length scale has to be introduced “by hand”,

for which there seems to be no unique, natural choice. The second way, first proposed

in [25] and dubbed “complexity=action” or CA-duality, postulates that the complexity is

dual to the bulk action evaluated on the Wheeler-DeWitt (WDW) patch. This proposal

solves the lengthscale problem of CV-duality, and has in addition the practical advantage

that the WDW patch is easier to work with than the maximal volume. We will see in this

paper that the thermodynamic volume is intimately related to the linear growth of the

WDW patch at late time. We will also point out a third possibility, dubbed “Complexity

= Volume 2.0” in which complexity is identified with the spacetime volume of the WDW

patch rather than the action. This is potentially even easier to work with and will be

discussed in more detail further in the paper.

The paper is organized as follows: in section 2, we briefly review the Iyer-Wald for-

malism (with varying cosmological constant) and apply it to derive the thermodynamic

volume of two solutions: the charged BTZ black hole and the R-charged black hole. In

section 3, we move on to discuss the connection between the extended thermodynamics

and the complexity in the simple case of the AdS-Schwarzschild black hole. In section 4,

we extend this connection with the complexity to a black hole with conserved charges (i.e.

electrically charged and rotating holes). In section 5, we contrast our proposal for the

complexity against CA-duality, and show that, in certain cases, our proposal can help fix

problems which ail CA-duality. In section 6, we conclude and discuss future work.

2 Volume and Iyer-Wald formalism

In this section we will present a slight generalization of the Iyer-Wald formalism [18, 19, 35]

which will allow us to derive the volume. The formalism requires a diffeomorphism invariant

action S =
∫

L =
∫
Lε, together with a solution with a bifurcate timelike Killing vector

– 3 –
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field ξ. We will follow the notation used in [20].1 Consider some general variation of the

Lagrangian. For an action including a cosmological constant which is allowed to vary, one

writes:

δL = dΘ +
∑
φ

Eφδφ+
∂L

∂Λ
δΛ, (2.2)

where

Θ(δφ) =
∑
φ

∂L

∂ (∇µφ)
δφ (2.3)

is the symplectic potential current,

Eφ =
∂L

∂φ
−∇µ

∂L

∂ (∇µφ)
(2.4)

is the equation of motion form for the field φ, and where the sum over φ runs over the

entire field content of the theory. In the case where this variation is due to applying a

diffeomorphism generated by a vector field ζ, this becomes

δζL = dΘ(δζφ) +
∑
φ

Eφδζφ. (2.5)

In this case, since our action is diffeomorphism invariant, we may apply Noether’s theorem

to derive the conserved current

J(ζ) = Θ(δζφ)− ζ · L (2.6)

and a Noether charge form Q(ζ) such that on-shell

J(ζ) = dQ(ζ). (2.7)

Replacing our general vector field ζ by the killing vector field ξ, and considering some

general other variation δφ, we now define

χ = δφQ(ξ)− ξ ·Θ(δφ). (2.8)

By an algebraic computation we may see that on-shell

dχ = −ξ · ∂L

∂Λ
δΛ. (2.9)

1In particular, ε denotes the usual volume form in d dimensions:

ε =
1

d!

√
−g εa1...addx

a1 ∧ . . . ∧ dxad (2.1)

We will find it useful to define the additional forms:

εµ =
1

(d− 1)!

√
−g εµa1...ad−1dx

a1 ∧ . . . ∧ dxad−1

εµν =
1

(d− 2)!

√
−g εµνa1...ad−2dx

a1 ∧ . . . ∧ dxad−2 .
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Applying Stokes’ theorem to this form on a region Σ of a constant time slice bounded by

the bifurcate killing horizon and the conformal boundary at infinity then yields∫
Σ
dχ = −δΛ

∫
Σ
ξ · ∂L

∂Λ
=

∫
∞
χ−

∫
H
χ. (2.10)

In the case of a black hole spacetime, this reduces to the extended first law of black hole

thermodynamics upon evaluation of the integrals, where roughly speaking, the second term

from the left above gives rise to the V dP .

2.1 Application to Einstein-Maxwell: charged BTZ black hole

Next, we apply the above formalism to the Einstein-Maxwell theory:

S =

∫
ddx
√
−g
[
(R− 2Λ)− 1

4
F 2

]
. (2.11)

After some algebra, we find the symplectic potential current, Noether current and Noether

charge to be:

Θ = Θµεµ

J = Jµεµ

Q = Qµνεµν

with

Θµ =
[
2
(
∇ν∇[νξµ] + gµνRνλξ

λ
)
− Fµν

(
∇ν(ξλAλ) + ξλFλν

)]
Jµ = ∇ν

[
2∇[νξµ] − FµνξλAλ

]
Qµν =

[
∇[νξµ] − 1

2
FµνξλAλ

]
.

Let us now specialize to a solution of the Einstein-Maxwell system: the charged BTZ black

hole in 3 dimensions. The metric together with the gauge field are given by:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dφ2

f(r) = −2m+
r2

L2
− 1

2
q2 log

( r
L

)
A = −q log

( r
L

)
dt.

Here we use units where 4G = 1. This solution has two horizons, an outer horizon at

r = r+ and an inner horizon at r = r−. Both outside the outer horizon (r > r+) and inside

the inner horizon (r < r−), ∂t is a bifurcate time-like Killing vector field, whose killing

horizons are given by r = r+ and r = r− respectively. For this choice of Killing vector

field, we find that the Noether charge only has one nonzero component:

Qtr =
4r2 − 2L2q2 log

(
r
L

)
− L2q2

16πL2r
(2.12)
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and all other independent components of Qµν vanish. For a perturbation defined by per-

turbing the AdS length L of the solution above and leaving the other parameters fixed, we

find that

Θr =
3
(
4r2 − L2q2

)
8πL3r

δL (2.13)

with the other two components zero. From these we find the only nonzero component of

χ to be:

χtr =
4r2 − L2q2

16πL3r
δL. (2.14)

Integrating this form over any surface of constant t and r yields∫
r=const

χ =

∫ 2π

0

√
−gχµνεµνφdφ =

δL

L

[
r2

L2
− 1

4
q2

]
. (2.15)

Evaluating this on the outer horizon r+ we can recongnize this as TδS after some algebra.

On the other hand, the integral of χ diverges as r →∞, but putting in a large r cutoff R

and adding

δΛ

∫
ξ · δL

δΛ
=
δL

4π

∫ 2π

0
dφ

∫ R

r+

dr
√
−g−4

L3
=
r2

+ −R2

L3
δL (2.16)

we get a cutoff independent result also equal to TδS. Rewriting this in terms of δP instead

of δL, the first law with m and q fixed then becomes

TδS + π

(
r2

+ −
1

4
L2q2

)
δP = 0 (2.17)

and so we have the volume

V+ = π

(
r2

+ −
1

4
L2q2

)
(2.18)

We could equally well have done this in region inside the inner horizon. Evaluating equa-

tion (2.15) at r = r− once again yields TδS for this horizon, and evaluating at the singu-

larity gives − q2

4LδL. On the other hand,

δΛ

∫
ξ · δL

δΛ
=
δL

4π

∫ 2π

0
dφ

∫ 0

r−

dr
√
−g−4

L3
=
r2
−
L3
δL (2.19)

All in all, we obtain the first law:

(TδS)− +
δL

L

(
r2
−
L2
− 1

4
q2

)
= 0 (2.20)

where the (. . . )− is to emphasize that the quantity enclosed pertains to the inner horizon.

Once again trading δL for δP we read off the volume for the inner horizon:

V− = π

(
r2
− −

1

4
q2L2

)
(2.21)
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2.2 Application to Einstein-Maxwell-dilaton: the R-charged black hole

In this subsection, we consider a more complicated example, and derive the volume of the

R-charged black hole in 4 dimensions. The thermodynamics of R-charged black holes has

been studied in [36]. In (3+1) dimension, the action is given by:

L =

(
R

16π
− 1

8π

4∑
I=1

e~aI ·
~φF 2

(I) −
1

32π

3∑
i=1

((∂φi)
2 − V(φi))

)
ε (2.22)

with

a1 = (1, 1, 1), a2 = (1,−1,−1), a3 = (−1, 1,−1), a4 = (−1,−1, 1)

and

V(φi) = − g
2

4π

∑
i

coshφi (2.23)

The metric together with the matter fields are given by:

ds2 = −
4∏
I=1

H
−1/2
I fdt2 +

4∏
I=1

H
1/2
I

(
dr2

f
+ r2dΩ2

)
(2.24)

AI =

√
qI(qI + 2m)

r + qI
dt (2.25)

e−
1
2
~aI ·~φ =

∏4
J=1H

1/4
J

HI
(2.26)

f = 1− 2m

r
+ g2r2

∏
J

HJ (2.27)

HJ = 1 +
qJ
r

(2.28)

The thermodynamical quantities are:

M = m+
1

4

4∑
I=1

qI (2.29)

QI =
1

2

√
qI(qI + 2m) (2.30)

S = π
4∏
I=1

√
r+ + qI (2.31)

T =
f ′(r+)

4π

4∏
I=1

H
−1/2
I (r+) (2.32)

ΦI =

√
qI(qI + 2m)

2(r+ + qI)
(2.33)

(2.34)
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In the extended phase space, the pressure is the cosmological constant, which is also the

bottom of the scalar potential:

P =
3

8π
g2 (2.35)

As mentioned in the introduction, the ADM mass is now reinterpreted as the enthalpy and

the black hole’s volume can be computed using the familiar thermodynamic formula:

V :=

(
∂M

∂P

)
QI ,S

=
π

3
r3

+

4∏
J=1

HJ(r+)
4∑

K=1

HK(r+)−1 (2.36)

In particular, the AdS-RN black hole is a special case when all 4 charges coincide q1 =

q2 = q3 ≡ q. In this case, the above reduces to:

V =
4

3
π(q + r+)3 (2.37)

Also, the radial coordinate has to be redefined by r → r − q in order to recover the usual

Schwarzschild-like form of the AdS-RN metric. We then recognize the volume of the AdS-

RN black hole in the form of equation (1.2). A note here is in order about coordinate

dependence. While the thermodynamic volume can take different forms depending on the

radial coordinate used (as illustrated in the example above), we stress that the volume is

coordinate-invariant quantity. The fact that it is not the actual volume of some spatial

region, combined with the fact that spatial volumes in General Relativity depend on the

foliation, can make this coordinate invariance not so obvious. The cleanest way to see this

coordinate invariance is to go back to the definition of V as a partial derivative (1.1). The

function M(S, P ), which represents an equation of state so to say, is a relation between

coordinate invariant quantities (M , S and P ), and so is the partial derivative (1.1).

The paper [36] asks the interesting question of what integral over the black hole interior

would give rise to the volume (2.36). To answer this question, one can recast the above in

the form:

V =

∫
S2

∫ r+

r0

V ′(r)drdΩ2
2 (2.38)

where V (r) is the function defined in equation (2.36) (with r+ relabeled to r), and r0 is

taken to be the largest root of the equation V (r) = 0. We then find that r0 is the largest

root of a cubic polynomial:

4r3
0 + 3r2

0

∑
I

qI + 2r0

∑
i<j

qIqJ +
∑

I<J<K

qIqJqK = 0 (2.39)

As for the integral V ′(r), it was pointed out in [36] that it is essentially the scalar potential:

V = − 8π

3g2

∫
S2

∫ r+

r0

V
√
−gdrdΩ2

2 (2.40)

Two aspects of this formula are remarkable: first, the fact that the integrand admits a

clean interpretation in terms of the scalar potential; and secondly, the integral does not

run over the whole of the black hole’s interior. As one can generally expect the volume to

– 8 –
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have something to do with the scalar potential, the second aspect is perhaps a bit more

mysterious than the first one. We now proceed to apply the extended Iyer-Wald formalism

to compute the volume, and we will see how the formalism sheds light on the two mysterious

aspects as described above. The symplectic potential current and Noether charge for this

theory are given by:

Θa = ∇b(gadgbcδgcd − gabgcdδgcd)−
3∑
i=1

∇aφiδφi − 8
∑
I

e~aI ·
~φF ab(I)(∂b(ξ

cA(I)c) + ξcF(I)cb)

(2.41)

Qab = − 1

16π
∇[bξa] +

1

4π

∑
I

e~aI ·
~φF ab(I)ξ

cA(I)c (2.42)

Here we only give the on-shell form of these expressions. Next, let us perturb the coupling

g2. By noting that equations (2.25) and (2.26) are g-independent, it is clear that the

profiles of the matter fields are unaffected, and only the gravity part contributes to δQ and

Θ. Moreover, equations (2.29) and (2.30) are also g-independent, so neither the ADM mass

M nor the charges Qi are affected by the g-variation. This implies that the (extended)

first law of thermodynamics:

δM = TδS + ΦIdQI + V dP (2.43)

simplifies to

TδS + V δP = 0 (2.44)

If we now compare with equation (2.10), we can identify the TδS term with the integral of χ

over the horizon, and the V δP term as arising from a combination of the two other terms.

The fact that TδS corresponds to the integral of χ over the horizon is to be expected

from the Iyer-Wald formalism: roughly speaking, it is because the form χ evaluated on

the bifurcation surface reduces to the surface binormal, and hence its integral over the

bifurcation surface gives the area (or the entropy).

Let us next compute the form χ. After some algebra, we find that the only nonzero

component of χ is:

χrt = − 1

16π

(r
2

)(
2
√
H1H2H3H4 + r∂r

√
H1H2H3H4

)
δg2 (2.45)

The integral of χ over infinity diverges. If we regularize by a radial cutoff rc � r+, we find:∫
∞
χ =

[
−r

3
c

2
− 3r2

c

8

∑
I

qI −
rc
4

∑
I<J

qIqJ −
1

8

∑
I<J<K

qIqJqK

]
δg2 (2.46)

Next, let us focus on the δΛ term in the extended first law. By differentiating the La-

grangian with respect to the coupling g2, we have:

δg2

∫
∂L
∂g2

ξ · ε = −δg
2

g2

∫
S2

∫ ∞
r+

V
√
−gdrdΩ2

2 (2.47)
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Notice that we have an integral of the scalar potential on the right-hand side! We emphasize

here that the extended Iyer-Wald formalism makes this fact manifest, in contrast with the

approach described in equation (2.38). As usual, the upper limit of integration above

will diverge and we have to regularize by a radial cutoff rc. Evaluating the integral, we

then find:

δg2

∫
∂L
∂g2

ξ · ε = δg2

[
r3

2
+

3

8
r2
∑
I

qI +
1

4
r
∑
I<J

qIqJ

]rc
r+

(2.48)

If we now compare the divergent terms in (2.46) and (2.48), we then find that they cancel

pairwise, and we are left with a finite answer which consists of two parts: (1) the finite

term in (2.46) and the horizon term (the lower limit of integration) in (2.48). We then

obtain:

V dP =

∫
∞
χ+ δg2

∫
∂L
∂g2

ξ · ε

= δg2

(
r3

+

2
+

3

8
r2

+

∑
I

qI +
r+

4

∑
I<J

qIqJ −
1

8

∑
I<J<K

qIqJqK

)
(2.49)

and we recover equation (2.36). Notice in particular, that, from the viewpoint of the

extended Iyer-Wald formalism, the lower limit of integration r0 in (2.40) arises from the

finite term in the integral of χ at infinity. Moreover, the Iyer-Wald formalism has taught

us that the volume of the black hole is perhaps best thought of as arising from an integral

over the exterior of the black hole rather than its interior.2 To summarize, the volume

arises as the integral of the scalar potential over the whole black hole exterior, but it is

regularized by the Iyer-Wald form χ at infinity in a nontrivial way.

3 Thermodynamic volume and complexity: Schwarzschild-AdS

From the viewpoint of the Iyer-Wald formalism, as we have seen above, the black hole

volume arises as an integral over the exterior of the black hole. This observation naturally

begs the question of whether the thermodynamic volume has something to do with the black

hole interior. Moreover, it remains unclear as to what the information contained in the

volume can teach us about the dual CFT. It is generally pointed out in the literature [5, 9–

11, 13, 15, 16, 37] that varying the cosmological constant in the bulk corresponds to varying

the rank of SU(N) or the central charge on the field theory side, and that the volume can

be thought of as a chemical potential-like quantity corresponding to the degrees of freedom

counted by the central charge.

In this section, we bring the two questions above together (the black hole interior and

the CFT interpretation) and attempt to answer them through the notion of complexity

of quantum states. In a series of elegant papers [25, 26], Brown et al. proposed that the

complexity of the CFT state is dual to the integral of the bulk action over the so-called

2We also note here that there exists an alternative approach in the literature to derive the volume, which

is based on the Komar formula, see e.g. [5, 8, 36]. As with our approach, the volume also arises from the

Komar formula as a integral over the exterior of the black hole, and the integrand is basically the Killing

potential.
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tL

tL+δtL tR

B

B'

Figure 1. The Wheeler-DeWitt patch of the AdS-Schwarzschild black hole (depicted in orange).

When tL is shifted to tL + δtL, the patch loses a sliver and gains another one (depicted in darker

orange). The contributions from the Gibbons-Hawking term are in blue.

Wheeler-DeWitt (WdW) patch. In particular, this quantity grows linearly with time at

late time, and we will see in the first half of this section that the thermodynamical volume

is a contribution to this growth. In the section half of this section, we switch gear and

consider the possibility that it is the spacetime volume, rather than the action, of the

WDW patch which is dual to the complexity. We will show that the spacetime volume

of the WDW patch is intimately related to the thermodynamic volume, and that, in the

Schwarzschild-AdS case, the spacetime volume and action behave in very similar fashions

and both proposals should work equally well.

3.1 Review of Brown et al.

Let us start by reviewing the proposal by Brown et al. in some level of details. The

Wheeler-DeWitt patch is a region in the maximally extended black hole spacetime defined

with respect to two choices of time, one on each boundary. For simplicity let us first

consider the AdS-Schwarzschild black hole in 4 dimensions. We will denote the time on the

left boundary as tL and the time on the right boundary as tR. From these two points on the

boundary (see figure 1 for a depiction), we draw four null rays, and the WdW patch is the

region in the bulk enclosed between rays (and possibly the past and future singularities).3

On the CFT side, picking out two times tL and tR is equivalent to choosing a quan-

tum state:

|ψ(tL, tR)〉 = e−i(HLtL+HRtR)|TFD〉 (3.1)

3The WdW patch as described here extends all the way to the boundary, and therefore the action

evaluated on the WdW is divergent. To extract a finite answer, we have to choose a regularization. One

could simply cut off the patch at some large radius rcutoff � r+. Alternatively, one could move the two

corners of the WdW patch on the boundary to rcutoff , as done in [38]. The regularization introduces

terms which drop out when we take the time derivative of the complexity, and for this reason we leave the

regularization unspecified.
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where HL and HR are the Hamiltonian on the left and right boundaries, respectively, and

|TFD〉 is the thermofield double state:

|TFD〉 = Z−1/2
∑
n

e−βEn/2|En〉L ⊗ |En〉R (3.2)

The thermofield double state has the properties that it is close to being maximally entan-

gled, and that the reduced density matrix on either side is the usual thermal state.

The complexity of a quantum state is, roughly speaking, the minimal number of quan-

tum gates needed to produce the state from some universally agreed-upon starting point.

The statement of CA-duality is that:

C(|ψ(tL, tR)〉) =
A
π~

(3.3)

where A is the bulk action evaluated on the WDW patch. At late tL, it follows from CA-

duality that the rate of growth of the complexity approaches the mass of the black hole:

lim
tL→∞

dC
dtL

=
2M

π~
(3.4)

Equation (3.4) is a convincing piece of evidence for CA-duality. This is because it is

reminiscent of a conjectured upper bound on the rate of computation by Lloyd ([39]),

according to which the rate of computation is bounded above by the energy. Let us briefly

review the motivation for the Lloyd bound.

The Lloyd bound takes inspiration from another bound known as the Margolus-Levitin

theorem [43]. This latter states that the time τ⊥ it takes for a quantum state to evolve

into a state orthogonal to it is bounded below by:

τ⊥ ≥
h

4E
(3.5)

where E is the average energy of the state. If we take the reciprocal of both sides, and

re-interpret the left-hand side (which has unit of frequency) as the rate of change of the

complexity, we then arrive at the statement that this rate is bounded above by the energy

of the system:

Ċ ≤ 2E

π~
(3.6)

which is the Lloyd bound. We point out that, while the Margolus-Levitin theorem can be

proved using elementary techniques, the Lloyd bound is a conjecture. If we now compare

the Lloyd bound with the prediction of CA-duality ( 3.4) for the late-time complexification

rate, we see that the ADM mass of the black hole plays the role of energy in the Lloyd

bound, and that the bound is saturated at late time. That the bound is saturated is another

conjecture but is appealing: black holes seem to excel at information-related tasks, since

they saturate the Bekenstein bound [44, 45] and are believed to be the fastest scramblers

in nature [46].
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3.2 CA-duality, through the lens of black hole chemistry

In this subsection, we take a closer look at the gravity calculation of CA-duality to derive

equation (3.4). This computation itself, of course, can be found in [25, 26].4 Our contri-

bution in this subsection is to show that the thermodynamic volume (together with the

pressure) arises naturally from the calculation.

First, since the WdW patch is a region with boundary, the action is the sum of the

Einstein-Hilbert action and the Gibbons-Hawking(-York) term:

A =
1

16πG

∫
M

√
−g(R− 2Λ) +

1

8πG

∫
∂M

√
|h|K (3.7)

When we shift tL to tL+δtL, the WdW patch loses a thin rectangle and gains another thin

rectangle as described in dark orange in figure 1. Thus, to compute the rate of change of the

action we have to evaluate the action above on the two orange rectangles. Observe that all

the sides of these two rectangles are null except at the singularity, and the paper [38] gives

a detailed argument that the null boundaries do not contribute to the Gibbons-Hawking

term. Also, since the boundary is not smooth at the corners of the rectangles, we have to

take into account the contributions localized at these corners (named B and B’ in figure 1).

Thus, we see that the Gibbons-Hawking term contributes at the singularity, at B and at

B′ (all of which are depicted in blue in figure 1):

δA = SV1 − SV2 −
1

8πG

∫
S
KdΣ +

1

8πG

∮
B′
adS − 1

8πG

∮
B
adS (3.8)

Note that V1 and V2 denote the upper and lower dark orange slivers from figure 1

respectively, and that a = ln |k · k̄| where k and k̄ are the null normals to the corner pieces.

Let us consider first the difference between the two rectangles SV1 − SV1 . Note that the

Ricci scalar of the AdS-Schwarzschild solution is a constant:

R =
2d

d− 2
Λ (3.9)

This readily follows from the fact that AdS-Schwarzschild is a vacuum solution of Einstein-

Hilbert theory. Thus, if we evaluate the Einstein-Hilbert action on the AdS-Schwarzschild

background, we immediately see that we have something proportional to the spacetime

volume:

SV1 − SV2 ∝
∫
V1

√
−gd4x−

∫
V2

√
−gd4x (3.10)

Thus, after one evaluates the integrals above, we expect to see something which is schemat-

ically the product of a spatial volume and the infinitesimal time interval δt:

SV1 − SV2 = (some spatial volume)δt (3.11)

4A technical remark is in order here. The method of computation in [25, 26] was questioned by [38],

where the calculation was redone with a more careful treatment of the boundary of the WDW patch.

However the conclusion 3.4 remains unchanged. In this section we will follow the more rigorous treatment

of the boundary term as presented in [38].
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Let now us do the integral for SV1−SV2 explicitly. When we do this, two remarkable things

happen. The is that the part of the upper rectangle which is outside the future horizon

always cancels with the part of the lower rectangle which is outside the past horizon, and

this happens for any tL thanks to boost symmetry of the black hole.5 Thus, whatever

quantity comes out to be the spatial volume in equation (3.11) only receives contribution

from the black hole interior. The second is that the integral evaluates to:

SV1 − SV2 = −
r3
B

2GL2
δt (3.12)

where rB is the r coordinate of the 2-sphere sitting at B. In the late time limit, we can

easily see by inspection of figure (1) that rB tends to r+. Thus, in the late time limit, the

integral above can be interpreted in the language of the extended thermodynamics as:

SV1 − SV2 = −
r3

+

2GL2
δt = −PV δt (3.13)

where, in the last equality, we used P = − Λ
8πG , Λ = − 3

L2 and V = 4
3πr

3
+. Thus, we have

seen how the thermodynamic volume arises from the action evaluated on the WDW patch.

Put differently, the WDW patch provides an interpretation of hte thermodynamic volume

as a measure of the black hole interior, and in the same time, relates it to the late-time

rate of growth of the complexity.

Let us now evaluate the remaining contributions in (3.8) (The algebraic details are

found again in [38]). The contribution of the Gibbons-Hawking term at the singularity is

essentially the ADM mass:

− 1

8πG

∫
S
KdΣ =

3

2
Mδt (3.14)

As for the contribution at the two corners B and B′, one finds:

1

8πG

[∮
B′
adS −

∮
B
adS

]
=

1

4G

[
r2 df

dr
+ 2rf log

(
−f
K

)]
r=rB

δt (3.15)

where K is a constant. In the late time limit, where rB → r+, the second term above

vanishes and:
1

8πG

[∮
B′
adS −

∮
B
adS

]
= TSδt (3.16)

Putting everything together, we find the time derivative of the action at late time to be:

dA
dt

=
3

2
M + TS − PV (3.17)

Next, recall the Smarr relation for AdS-Schwarzschild in 4 dimensions:

M = 2TS − 2PV (3.18)

Using the Smarr relation above, the time derivative of the action simplifies to:

dA
dt

= 2M (3.19)

5Indeed the Schwarzschild-AdS metric in Kruskal coordinates only depends on the coordinates U and V

through their product UV , and is therefore invariant under U → eβU and V → e−βV .
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If we now turn the logics around, we can reinterpret the following slight rewriting of the

Smarr relation:

2M =
3

2
M + TS − PV (3.20)

as a way to keep track of the different contributions to the complexity growth: the left-

hand side corresponds to the total growth, the term with M on the right-hand side is

the contribution from the singularity of the WdW patch, the term with TS is the corner

contributions which end up on the horizon at late time, and finally the term with PV is

the contribution from the black hole interior away from the singularity.

3.3 Complexity = volume 2.0

As we have learned from (3.13), in the case of AdS-Schwarzschild, the late-time rate of

change of the bulk action evaluated on the WDW patch gives the product PV , or equiv-

alently the late-time rate of change of the spacetime volume of the WDW patch is the

thermodynamic volume V . These observations beg the question of whether P and V can

serve as the basis for a new, alternative proposal for the complexity alongside with CA-

duality. In this subsection, we will make the case that a possible holographic dual to the

complexity is the spacetime volume of the WDW patch.

As previously noted, what we are looking for in proposing a holographic dual to the

complexity is a linear growth at late time, together with consistency with the Lloyd bound.

On the information-theoretical side, the linear growth of the complexity at late time is

generally believed to be true but is surprisingly hard to prove.6 It is straightforward to see

that the complexity of the thermofield double state is bounded above by a linear function

of time:

C(|ψ(t)〉) < t · poly(K) (3.21)

almost by definition of the complexity. To see this, recall that the complexity is the

smallest number of quantum gates needed build a state, hence any way to build the state

automatically establishes an upper bound on the complexity. In particular, time-evolving

the thermofield double state the usual way in quantum mechanics establishes the upper

bound (3.21). To establish that the complexity grows linearly at late time, one needs to also

bound the complexity from below by a linear function of time. This is a highly non-trivial

task, but there are two promising directions. One of them is a recently proved theorem by

Aaronson and Susskind [41] which establishes a lower bound for the complexity (modulo

the possibility that an improbable statement in complexity theory is true). The other

direction is Nielsen’s idea of the complexity geometry [42] where finding the complexity

reduces to the problem of finding geodesics on a curved manifold.

On the gravity side, as noted in the introduction already, one can associate various

geometrical quantities to the ERB which all grow linearly in size at late time, so this

property of the complexity alone allows for quite some freedom in proposing a holographic

dual. A simple illustration of this non-uniqueness phenomenon (given in [34]) is a geodesics

6“Late time” in this statement refers to timescales exponential in the entropy. For much later times

(doubly exponential in the entropy), quantum recurrence kicks in and the complexity periodically returns

to zero.
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in the BTZ black hole anchored at boundary times tL and tR. The length of such a geodesic

is given by (for the case r+ = L):

d(tL, tR) = 2 log

(
cosh

1

2
(tL + tR)

)
(3.22)

If we keep tR fixed and send tL →∞, we find that indeed the leading term is linear in tL.

Another geometrical entity whose size grows linearly at late time is the maximal surface

spanning the wormhole. As previously noted, this quantity served as the basis for an earlier

proposal by Brown et al. known as CV-duality [34].

Taking inspiration from CV-duality and CA-duality, we would like to propose now that

the complexity is dual to the spacetime volume of the WDW patch (more precisely the

spacetime volume multiplied by the pressure):

C ∼ 1

~
P (Spacetime Volume) (3.23)

In the late time regime, by design we will have:

Ċ ∼ PV

~
(3.24)

We will refer to this proposal as “complexity=volume 2.0”.

Next, we ask the question of whether “complexity=volume 2.0” satisfies the Lloyd

bound. Naively, it might seem that the Lloyd bound favors CA-duality over our proposal,

because we have the mass M coming out of CA-duality calculation as opposed to PV , and

the Lloyd bound refers to the energy of the system.

However, we can form 3 quantities with the dimension of energy out of the standard

thermodynamical variables, by multiplying each variable by its conjugate. Thus we have:

M , TS and PV . While M seems to be the “correct” energy from the viewpoint of the

Lloyd bound, it is TS which should be identified as the complexification rate from the

viewpoint of quantum circuits [34]. To see this, [34] argues that if we think about the CFT

as a quantum circuit of K qubits, then the complexity grows linearly in time with slope K:

C(tL, tR) = K|tL + tR| (3.25)

To convert between the quantum circuit picture and the field theory picture, we identify

K with the entropy S of the CFT, and use the temperature T to convert between the CFT

time and the quantum circuit time. Thus, we find after the translation:

C(tL, tR) ∼ TS|tL + tR| (3.26)

and

Ċ ∼ TS (3.27)

On the other hand, one could make similar arguments to make the case that the

complexification rate should be PV . The complexity should again be proportional to the

number of degrees of freedom, which for a discretized CFT is roughly the central charge
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times the number of lattice sites. Now by the holographic dictionary we know that the

central charge is dual to what we have been calling the pressure. For example in 3 bulk

dimensions we have the Brown-Henneaux formula [47]

c =
3L

2G
∝ P−

1
2 (3.28)

It furthermore seems reasonable that the volume would roughly encode the number of sites.

Thus, one can schematically write down:

C = PV (tL + tR) (3.29)

and the complexification rate at late time is PV .

We end this section by noting that for most black holes all three quantities M , TS

and PV have the same order of magnitude. To see this, we express these quantities as

functions of r+ and L:

M =
r+

2

(
1 +

r2
+

L2

)
(3.30)

TS =
r+

4

(
1 +

3r2
+

L2

)
(3.31)

PV =
r3

+

2L2
(3.32)

For r+ � L (i.e. large black holes), we then find

M ≈
r3

+

2L2
(3.33)

TS ≈
3r3

+

4L2
(3.34)

Interestingly, the two quantities M and TS differ by an O(1) numerical factor, while M

and PV become the same quantity ! Thus, for high temperatures at least, it does not make

much of a difference whether the rate of growth of the complexity is thought of as M , as TS

or as PV . Given that there are ambiguities associated with defining the complexity (such

as overall numerical factors), the discrepancies between M , TS and PV seem relatively

easy to accommodate.

4 Thermodynamic volume and complexity: conserved charges

Given the clean connection between the Schwarzschild-AdS WDW patch with the ther-

modynamic volume and the complexity, it is natural to ask whether we can also establish

similar connections for charged and rotating solutions. Unfortunately, within the frame-

work of CA-duality, the situation for charged and rotating black holes is not as clean, and

the gravity calculation does not respect the Lloyd bound. In this section, however, we will

simply present the computation of the complexity according to “complexity=volume 2.0”

for a variety of charged black holes, and demonstrate that - like in the uncharged case -
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tL

tL+δtL

tR

r+ r+

r+r+

r- r-

r-r-

Figure 2. The Penrose diagram of a charged and/or rotating black hole and a Wheeler-DeWitt

patch (depicted in orange). When tL is shifted to tL+δtL, the patch loses a sliver and gains another

one (depicted in darker orange). The singularity is in red, and the horizons are dashed.

the thermodynamic volume and the pressure emerge naturally from the late-time rate of

growth. We will relegate the interesting question of consistency with the Lloyd bound to

the next section.

On the gravity side, for both charged and rotating black holes, the Penrose diagram

is qualitatively the same. In figure 2, we depict their Penrose diagram together with

the WDW patch. Note that the WDW patch is qualitatively different from that of the

Schwarzschild-AdS solution: the upper part of the patch no longer runs into a singularity,

but approaches the inner horizon at late time.

4.1 Electrically charged black holes

Let us start with the Reissner-Nordström black hole in n + 2 dimensions. The metric

together with the gauge field are given by:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

n (4.1)

f(r)) = 1− ωn−1

rn−1
+

q2

r2(n−1)
+
r2

L2
(4.2)

A =

√
n

2(n− 1)

(
q

rn−1
+

− q

rn−1

)
dt (4.3)
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As mentioned in the introduction, the thermodynamic volume is well-known and looks like

the geometric volume of a ball in flat space:

V± =
Vol(Sn)

n+ 1
rn+1
± (4.4)

where the subscript ± of course refers to either horizon. The spacetime volume of the

WDW patch takes the form:

Spacetime volume =
Vol(Sn)

n
(rn+ − rn−)(tL + tR) + . . . (4.5)

where the ellipsis stand for terms which are time-independent (and therefore drop out from

the time derivative of the complexity) or are exponentially suppressed at late time. We

recognize the difference between thermodynamic volumes in the equation above. At late

time, then, we have as advertised:

lim
tL→∞

Ċ =
P (V+ − V−)

~
(4.6)

Note the slight difference compared with the Schwarzschild-AdS case: the late-time com-

plexification rate is now proportional to the difference between the two thermodynamic

volumes. Let us end this subsection by mentioning the 3-dimensional case of the charged

BTZ black hole. Here there is potential for some surprise, since the volume takes the

somewhat different form:

V± = πr2
± −

π

4
Q2L2 (4.7)

But in the end, the second term on the right-hand side above drops out of the difference

V+ − V−, and the late-time rate of change of the complexity still takes the form (4.6).

4.2 Rotating black hole

Next, we move on to discuss rotating holes. Like the Schwarzschild-AdS case, rotating

holes are vacuum solutions of the Einstein-Hilbert action, and this again implies that the

on-shell Einstein-Hilbert action (ignoring boundary contributions) is proportional to the

pressure multiplied by the spacetime volume of the WDW patch:

SEinstein−Hilbert ∝
1

L2

∫
dnx
√
−g ∝ P (Spacetime volume) (4.8)

Thus, like for the Schwarzschild-AdS case, the distinction between the bulk action (i.e.

without the boundary term) and spacetime volume is not very important here. In the

simple case of the rotating BTZ black hole, the metric reads:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dφ− J

2r2
dt

)2

(4.9)

The thermodynamic volume can be found to be (see for example [8] for the outer horizon

volume):

V± = πr2
± (4.10)
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After some calculation, the late time rate of complexification is again found to be propor-

tional to the difference between the two thermodynamic volumes:

Ċ = P (V+ − V−) (4.11)

Next, we move on to discuss the case of rotating black hole in higher dimensions (the

Kerr-AdS). This case is substantially richer and more interesting, as the analysis of the

thermodynamics is somewhat different depending on whether the spacetime dimension is

odd or even (see [36]), and there are two possible notions of volume one can identify. For

simplicitly, we will focus on the 4-dimensional case. The solution is given by:

ds2 = −(1 + g2r2)∆θ

1− a2g2
dt2 +

(r2 + a2) sin2 θ

1− a2g2
dφ2 +

ρ2dr2

∆r
+
ρ2dθ2

∆θ

+
2mr

ρ2(1− a2g2)2
(∆θdt− a sin2 θdφ)2 (4.12)

∆r = (r2 + a2)(1 + g2r2)− 2mr (4.13)

∆θ = 1− a2g2 cos2 θ (4.14)

ρ2 = r2 + a2 cos2 θ (4.15)

(4.16)

Here a = J/M is the ratio of the angular momentum to the mass. The late-time growth

of the bulk Einstein-Hilbert action was computed in [48]:

dA
dtL

= − 1

2G(L2 − a2)

(
r3

+ + a2r+ − r3
− − a2r−

)
(4.17)

which again is proportional to the spacetime volume by virtue of the solution being a vac-

uum solution. As for the thermodynamic volume, we have two different notions of volume

depending on whether the analysis is done in a non-rotating or rotating frame at infinity.

Following [36], we refer to the volume in the non-rotating frame as the thermodynamic

volume and the one in the rotating frame as the geometric volume. The latter admits a

geometrical interpretation:7

V+ =
1

3
r+A+ (4.18)

where A is the area of the horizon:

A+ = 4π

(
r2

+ + a2

1− a2/L2

)
(4.19)

Putting the two equations above together, we have:

V+ =
4

3
πr+

(
r2

+ + a2

1− a2/L2

)
(4.20)

7We also note here that the thermodynamic quantities derived in the rotating frame obey the Smarr

relation [36] but not the first law. On the other hand, the thermodynamic quantities derived in the non-

rotating frame at infinity do obey a first law (in addition to a Smarr relation) and can be derived from the

Iyer-Wald formalism.
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V+-V-

0.2

0.4

0.6

0.8
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a

Figure 3. Given M and L, we vary the angular momentum to mass ratio a and for each value

solve numerically for V = V+ − V−. Notice that a = 0, which reduces to the Schwarzschild case,

has the maximal V . As we approach extremality, which here occurs as the plots flatten out on the

left (In flat space exremality occurs for a = 1, but this is modified by the AdS length dependence of

the metric), V tends towards zero. In the plot green is for M = 5, L = 1, blue is for M = 2, L = 3,

and red is for M = 1, L = 2.

As in the previous cases, we can define a second volume V− associated to the inner horizon

by the replacement r+ → r− in V+:

V− =
4

3
πr−

(
r2
− + a2

1− a2/L2

)
(4.21)

Comparing equations (4.17) and (4.20), and converting from the bulk action to the space-

time volume, we finally find:

Ċ = P (V+ − V−) (4.22)

To help gain intuition, in figure 3, we plot the angular momentum-to-mass ratio a versus

V+ − V− for fixed M and L.

5 Action or volume?

In this paper we have discussed two different possible holographic identifications of the

complexity of the boundary thermofield double state. On could identify this complexity

on the one hand with the action of the Wheeler-DeWitt patch, and on the other hand

with the spacetime volume of the same. These two quantities behave in a rather similar

fashion, and one is naturally led to ask whether any advantage can be identified for one or

the other. One advantage is that there are no boundary terms, which in higher curvature

theories could have problems near a singularity.8 In this section we seek to answer this

question as regards the Lloyd bound [39].

8We thank Adam Brown for pointing this out to us.
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5.1 The Lloyd bound with conserved charge

In this subsection, let us derive the Lloyd bound in the presence of a conserved charge.

As argued in [26], the existence of conserved charges puts constraints on the system and

implies that the rate of growth of the complexity at late time is slower than in the case

without charges. Let us start by generalizing the thermofield double state to include a

chemical potential µ:

|TFDµ〉 =
1√
Z

∑
n

e−β(En+µQn)/2|EnQn〉L|En −Qn〉R (5.1)

This state time-evolves by the Hamiltonian HL + µQL on the left, and HR − µQR on the

right:9

|ψ(tL, tR)〉 = e−i(HL+µQL)tLe−i(HR−µQR)tR |TFDµ〉 (5.2)

Based on this, one would guess that the appropriate generalization of the Lloyd bound is:

Ċ ≤ 2

π~
(M − µQ) (5.3)

This however violates our intuition that as zero temperature system, the complexification

rate of an extremal black hole should be zero, and that the bound should reflect this. It

thus seems appropriate to modify the above to

Ċ ≤ 2

π~

[
(M − µQ)− (M − µQ)gs

]
(5.4)

where (M − µQ)gs is nothing but M − µQ evaluated in the appropriate ground state,

which will be either empty AdS or an extremal black hole depending on the case under

consideration. If we think of our system as being in the grand canonical ensemble, it is most

natural to take the ground state to correspond to the geometry whose chemical potential

is the same as the black hole under consideration. As it happens, this is nothing but pure

AdS for black holes with µ ≤ 1, but for µ > 1 it corresponds to some extremal black hole

(In units where G = 1).

5.2 Bound violation: near the ground state

Now we will check to see whether the Lloyd bound is obeyed by the two proposals at

hand. For simplicity we restrict our attention to 4-dimension, and work in units where

G = 1. First we consider the case where µ > 1. Expanding the outer horizon radius near

extremality, we find that

r+ ≈ re

(
1 +

√
3

µ2
√
µ2 − 1L

δM +O(δM2)

)
(5.5)

Where δM := M−Me, M is the total mass of the black hole, and re and Me are the radius

and mass respectively of an extremal black hole with the same chemical potential as the

9Note the difference in the sign of µ between HL and HR. This is because the electrostatic potential is

positive on one side and negative on the other.
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one we are considering. We likewise may expand the inner horizon as

r− ≈ re

(
1−

√
3

µ2
√
µ2 − 1 (2µ2 − 1)L

δM +O(δM2)

)
(5.6)

From these we can expand Ċ under both proposals as

ĊV = P
(
r3

+ − r3
−
)
≈ r3

e

[
9
√

3
√
µ2 − 1

4πµ2 (2µ2 − 1)L3
δM +O(δM2)

]
(5.7)

ĊA =
Q2

r−
− µQ ≈

2
(
µ2 − 1

)
2µ2 − 1

δM +O(δM2) (5.8)

On the other hand the bound is given by

(M − µQ)− (M − µQ)e ≈
√

3
√
µ2 − 1

2µ4L
δM2 +O(δM3) (5.9)

We thus see that both proposals must violate the Lloyd bound near extremallity. This is

in agreement with [26].

Next we consider µ ≤ 1, in which case we expand around empty AdS. Here the bound

becomes to lowest order

2 (M − µQ) ≈
(

1− 2µ2

µ2 + 1

)
M = 2

(
1− µ2

1 + µ2

)
M (5.10)

But Ċ becomes under each proposal

ĊV ≈
3
(
1− µ6

)
π (µ2 + 1)3 L2

M3 +O(M5) (5.11)

ĊA ≈ 2

(
1− µ2

1 + µ2

)
M +O(M3) (5.12)

We see immediately that the bound is satisfied in CV-duality sufficiently near extremality,

but the bound is far from saturated.The situation with CA-duality is a bit more complex:

ĊA exactly saturates the bound to lowest order in M , and so the lower order behavior

becomes important. Expanding the bound violation (i.e. the difference between ĊA and

the bound) directly we find to lowest order

ĊA − 2 (M − µQ) ≈ 8µ2

(µ2 + 1)2 L2
M3 + . . . (5.13)

As this term is positive definite, we see that the bound is violated as we approach empty

AdS. This would seem to put CV-duality in a slightly better position than CA-duality,

though the expectation that the bound should be saturated, or nearly so is not met in

this case.
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5.3 Bound violation: exact results

In the µ ≤ 1 case, one can in fact do better. We can find the bound violations as an exact

function of the inner and outer horizon. Note of course that these are only valid over the

region in r+, r− space where µ ≤ 1. The exact expressions in 4 dimensions are

ĊV − 2(M − µQ) =
2L2(r− − r+) + r3

− + 2r2
−r+ + 2r−r

2
+ − r3

+

2L2
(5.14)

= −(r+ − r−)3 + 2L2(r+ − r−) + r+r−(r+ − 5r−)

2L2

and

ĊA − 2(M − µQ) =
r+r−(r+ + r−)

L2
(5.15)

The second expression is clearly positive definite, and so the under CA-duality the bound

is always violated for µ ≤ 1. Now the exact expression for the chemical potential is

µ =

√
r−(L2 + r2

− + r−r+ + r2
+)

r+L2
(5.16)

From this we may conclude that

µ2 ≤ 1⇒ r−(r2
+ + r+r− + r2

−) ≤ L2(r+ − r−) (5.17)

and so

ĊV − 2(M − µQ) ≤
−(r+ − r−)3 − 2r−(r2

+ + r+r− + r2
−)− r+r−(r+ − 5r−)

2L2
(5.18)

= −
r3

+ + r3
−

2L2
≤ 0

and so we may conclude that CV respects the bound whenever µ ≤ 1.

Generalizing further to arbitrary dimension d > 3, we find that

ĊA − 2(M − µQ) =
(d− 2)Ωdr

d
+r

d
−(r2

+ − r2
−)

8πL2(rd+r
3
− − r3

+r
d
−)

(5.19)

Which is a positive definite quantity. This in fact recovers a result already derived by [48].

Being, for now, a bit less ambitions with the CV quantity, we find in 5 dimensions

ĊV − 2(M − µQ) = −
3π
(
2L2

(
r2

+ − r2
−
)

+ r4
+ − 2r2

−r
2
+ − r4

−
)

8L2
(5.20)

and

µ2 =
3πr2

−
(
L2 + r2

− + r2
+

)
4L2r2

+

≤ 1⇒ r2
+ ≥

3πr2
−
(
L2 + r2

− + r2
+

)
4L2

(5.21)

from which we get

ĊV − 2(M − µQ) ≤ −
3π

(
2L2

(
3πr2
−(L2+r2

−+r2
+)

4L2 − r2
−

)
+ r4

+ − 2r2
−r

2
+ − r4

−

)
8L2

(5.22)

= −
3π
(
(3π − 4)L2r2

− + (3π − 2)r4
− + (3π − 4)r2

−r
2
+ + 2r4

+

)
16L2

≤ 0
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And so CV duality in 5 dimensions respects the bound whenever µ2 < 1. We conjecture

without proof that CV-duality repects the Lloyd bound whenever µ2 ≤ 1 for all AdS-RN

spacetimes.

5.4 Altering the bound by a pre-factor

We have considered the Lloyd bound in it’s usual form,

Ċ ≤ 2E

π~
. (5.23)

It would seem, however, due to the arguments leading to this bound, that the bound

should only be trusted up to an overall factor. It would be interesting, therefore, to see

how robust the above discussion is under the insertion of some pre-factor. For example,

under which proposals and sets of circumstances does

Ċ ≤ αE

π~
. (5.24)

hold for various values of α. For example, for α = 1 for the AdS-RN case we find:

ĊV − (M − µQ) =
r+r−(r+ + r−)− L2(r+ − r−)

2L2
(5.25)

and, using the inequality (5.17) again, we find:

ĊV − (M − µQ) ≤ −
r3
−

2L2
< 0 (5.26)

Hence the value α = 1 is also consistent with the bound. We leave further explorations of

other values of α to future research.

6 Conclusion

Let us summarize the main findings in this paper and sketch out some future directions.

In the first part of the paper, we analyzed the notion of thermodynamic volume from the

viewpoint of the Iyer-Wald formalism. Using a slight generalization this formalism, we

present a systematic way to derive the volume and illustrate it in two cases: the charged

BTZ black hole and the R-charged black hole. In the latter case, our method explains

several interesting and intriguing features of the thermodynamic volume, and we believe

that it will prove useful to compute the volume of many more complicated black hole

solutions in the future. Of particular interest are Lifschitz black holes [49, 50]. Even though

the computation of the volume for the R-charged black hole was a bit involved, it is still

relatively simple since we saw that perturbing the coupling g leaves all the matter fields

unchanged. In comparison, we do not have this luxury in the case of Lifschitz solutions: a

generic feature of these spacetimes is the fact that the profiles of the matter fields depend

explicitly on the cosmological constant (this property is somehow related to the fact that

these spacetimes are not asymptotically AdS), so varying the cosmological constant will

affect the matter fields.
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In the second part of the paper, we related the thermodynamic volume to the holo-

graphic proposals for the complexity. In particular, we showed that the thermodynamic

volume (together with its conjugate the pressure) is intimately related to the WDW patch

of an eternal AdS black hole, and this holds for a large class of AdS black holes. This

intimate relationship can be stated cleanly in two different ways: on one hand, the rate

of change of the WDW spacetime volume in the late time limit is precisely the thermody-

namic volume (if there is only one horizon) or the difference of thermodynamic volumes

(if there are two horizons). On the other hand, the bulk action evaluated on the WDW

patch (ignoring boundary contributions) is the sum of “work terms” involving pressure-

volume and charge-potential. The several different ways to arrive at the thermodynamic

volume presented in this paper may be a little confusing to the reader, so let us state again

the relationship between them: the thermodynamic volume may be defined in the usual

thermodynamic fashion as the partial derivative of the ADM mass with respect to the

pressure. The volume computed by the Iyer-Wald formalism is by construction the same

quantity. We conjecture that this should further correspond to the late-time value of the

time derivative of the spacetime volume of the Wheeler-DeWitt patch, and have checked

several examples, but have no proof that this holds generally.

How to take this story further? As mentioned in the introduction, a tensor network

picture of the black hole interior was introduced by Hartman and Maldacena in [32]. Tensor

network is a topic of much recent interest for holographers [51–54] with an eye on the

emergence of spacetime. Thus one can ask the question: can the pressure-volume variables

be understood in the language of tensor networks or quantum circuits ? Also, according

to black hole complementarity [55, 56], the black hole interior is an example of emergent

space par excellence. Thus, one can hope that the pressure and volume variables can prove

helpful to our understanding of quantum gravity in the future.

Acknowledgments

We would like to thank Adam Brown, Bartlomiej Czech, and Leonard Susskind for the

useful comments which they provided on an early draft of this paper. We would further like

to thank Kimberly Carmona for assisting in proof-reading the manuscript. This material

is based upon work supported by the National Science Foundation under Grant Number

PHY-1620610.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

[2] J.D. Bekenstein, Generalized second law of thermodynamics in black hole physics, Phys. Rev.

D 9 (1974) 3292 [INSPIRE].

– 26 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D7,2333%22
http://dx.doi.org/10.1103/PhysRevD.9.3292
http://dx.doi.org/10.1103/PhysRevD.9.3292
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D9,3292%22


J
H
E
P
0
3
(
2
0
1
7
)
1
1
9

[3] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199

[Erratum ibid. 46 (1976) 206] [INSPIRE].

[4] S.W. Hawking, Black Holes and Thermodynamics, Phys. Rev. D 13 (1976) 191 [INSPIRE].

[5] D. Kastor, S. Ray and J. Traschen, Enthalpy and the Mechanics of AdS Black Holes, Class.

Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].

[6] D. Kubiznak and R.B. Mann, Black hole chemistry, Can. J. Phys. 93 (2015) 999

[arXiv:1404.2126] [INSPIRE].

[7] B.P. Dolan, Where is the PdV term in the fist law of black hole thermodynamics?,

arXiv:1209.1272 [INSPIRE].

[8] A.M. Frassino, R.B. Mann and J.R. Mureika, Lower-Dimensional Black Hole Chemistry,

Phys. Rev. D 92 (2015) 124069 [arXiv:1509.05481] [INSPIRE].

[9] D. Kubiznak, R.B. Mann and M. Teo, Black hole chemistry: thermodynamics with Lambda,

Class. Quant. Grav. 34 (2017) 063001 [arXiv:1608.06147] [INSPIRE].

[10] C.V. Johnson, Holographic Heat Engines, Class. Quant. Grav. 31 (2014) 205002

[arXiv:1404.5982] [INSPIRE].

[11] E. Caceres, P.H. Nguyen and J.F. Pedraza, Holographic entanglement entropy and the

extended phase structure of STU black holes, JHEP 09 (2015) 184 [arXiv:1507.06069]

[INSPIRE].

[12] A. Karch and B. Robinson, Holographic Black Hole Chemistry, JHEP 12 (2015) 073

[arXiv:1510.02472] [INSPIRE].

[13] E. Caceres, P.H. Nguyen and J.F. Pedraza, Holographic entanglement chemistry,

arXiv:1605.00595 [INSPIRE].

[14] P.H. Nguyen, An equal area law for holographic entanglement entropy of the AdS-RN black

hole, JHEP 12 (2015) 139 [arXiv:1508.01955] [INSPIRE].

[15] D. Kastor, S. Ray and J. Traschen, Extended First Law for Entanglement Entropy in

Lovelock Gravity, Entropy 18 (2016) 212 [arXiv:1604.04468] [INSPIRE].

[16] D. Kastor, S. Ray and J. Traschen, Chemical Potential in the First Law for Holographic

Entanglement Entropy, JHEP 11 (2014) 120 [arXiv:1409.3521] [INSPIRE].

[17] P. Pradhan, Thermodynamic Products in Extended Phase Space, Int. J. Mod. Phys. D 26

(2016) 1750010 [arXiv:1603.07748] [INSPIRE].

[18] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical

black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

[19] V. Iyer and R.M. Wald, A Comparison of Noether charge and Euclidean methods for

computing the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430

[gr-qc/9503052] [INSPIRE].

[20] T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from

Entanglement in Holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].

[21] J. Lin, M. Marcolli, H. Ooguri and B. Stoica, Locality of Gravitational Systems from

Entanglement of Conformal Field Theories, Phys. Rev. Lett. 114 (2015) 221601

[arXiv:1412.1879] [INSPIRE].

– 27 –

http://dx.doi.org/10.1007/BF02345020
http://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,43,199%22
http://dx.doi.org/10.1103/PhysRevD.13.191
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D13,191%22
http://dx.doi.org/10.1088/0264-9381/26/19/195011
http://dx.doi.org/10.1088/0264-9381/26/19/195011
https://arxiv.org/abs/0904.2765
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2765
http://dx.doi.org/10.1139/cjp-2014-0465
https://arxiv.org/abs/1404.2126
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.2126
https://arxiv.org/abs/1209.1272
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.1272
http://dx.doi.org/10.1103/PhysRevD.92.124069
https://arxiv.org/abs/1509.05481
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.05481
http://dx.doi.org/10.1088/1361-6382/aa5c69
https://arxiv.org/abs/1608.06147
http://inspirehep.net/search?p=find+EPRINT+arXiv:1608.06147
http://dx.doi.org/10.1088/0264-9381/31/20/205002
https://arxiv.org/abs/1404.5982
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5982
http://dx.doi.org/10.1007/JHEP09(2015)184
https://arxiv.org/abs/1507.06069
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.06069
http://dx.doi.org/10.1007/JHEP12(2015)073
https://arxiv.org/abs/1510.02472
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.02472
https://arxiv.org/abs/1605.00595
http://inspirehep.net/search?p=find+EPRINT+arXiv:1605.00595
http://dx.doi.org/10.1007/JHEP12(2015)139
https://arxiv.org/abs/1508.01955
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.01955
http://dx.doi.org/10.3390/e18060212
https://arxiv.org/abs/1604.04468
http://inspirehep.net/search?p=find+EPRINT+arXiv:1604.04468
http://dx.doi.org/10.1007/JHEP11(2014)120
https://arxiv.org/abs/1409.3521
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.3521
http://dx.doi.org/10.1142/S0218271817500109
http://dx.doi.org/10.1142/S0218271817500109
https://arxiv.org/abs/1603.07748
http://inspirehep.net/search?p=find+EPRINT+arXiv:1603.07748
http://dx.doi.org/10.1103/PhysRevD.50.846
https://arxiv.org/abs/gr-qc/9403028
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9403028
http://dx.doi.org/10.1103/PhysRevD.52.4430
https://arxiv.org/abs/gr-qc/9503052
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9503052
http://dx.doi.org/10.1007/JHEP03(2014)051
https://arxiv.org/abs/1312.7856
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.7856
http://dx.doi.org/10.1103/PhysRevLett.114.221601
https://arxiv.org/abs/1412.1879
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.1879


J
H
E
P
0
3
(
2
0
1
7
)
1
1
9

[22] N. Lashkari and M. Van Raamsdonk, Canonical Energy is Quantum Fisher Information,

JHEP 04 (2016) 153 [arXiv:1508.00897] [INSPIRE].

[23] N. Lashkari, J. Lin, H. Ooguri, B. Stoica and M. Van Raamsdonk, Gravitational Positive

Energy Theorems from Information Inequalities, PTEP 2016 (2016) 12C109

[arXiv:1605.01075] [INSPIRE].

[24] B. Mosk, Holographic equivalence between the first law of entanglement entropy and the

linearized gravitational equations, Phys. Rev. D 94 (2016) 126001 [arXiv:1608.06292]

[INSPIRE].

[25] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity

Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

[26] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and

black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

[27] M. Alishahiha, Holographic Complexity, Phys. Rev. D 92 (2015) 126009 [arXiv:1509.06614]

[INSPIRE].

[28] D. Momeni, M. Faizal, S. Bahamonde and R. Myrzakulov, Holographic complexity for

time-dependent backgrounds, Phys. Lett. B 762 (2016) 276 [arXiv:1610.01542] [INSPIRE].

[29] D. Momeni, S.A.H. Mansoori and R. Myrzakulov, Holographic Complexity in Gauge/String

Superconductors, Phys. Lett. B 756 (2016) 354 [arXiv:1601.03011] [INSPIRE].

[30] O. Ben-Ami and D. Carmi, On Volumes of Subregions in Holography and Complexity, JHEP

11 (2016) 129 [arXiv:1609.02514] [INSPIRE].

[31] M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Distance between

Quantum States and Gauge-Gravity Duality, Phys. Rev. Lett. 115 (2015) 261602

[arXiv:1507.07555] [INSPIRE].

[32] T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole

Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

[33] L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016)

24 [arXiv:1403.5695] [INSPIRE].

[34] D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90

(2014) 126007 [arXiv:1406.2678] [INSPIRE].

[35] T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587

[gr-qc/9312023] [INSPIRE].
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