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Summary
Ensuring AI models align with human values is essential for their safety and functionality.

Reinforcement learning from human feedback (RLHF) leverages human preferences to achieve
this alignment. However, when preferences are sourced from diverse populations, point esti-
mates of reward can result in suboptimal performance or be unfair to specific groups. We
propose Pareto Optimal Preference Learning (POPL), which enables pluralistic alignment by
framing discrepant group preferences as objectives with potential trade-offs, aiming for policies
that are Pareto-optimal on the preference dataset. POPL utilizes lexicase selection, an iterative
process that selects diverse and Pareto-optimal solutions. Our theoretical and empirical evalu-
ations demonstrate that POPL surpasses baseline methods in learning sets of reward functions
and policies, effectively catering to distinct groups without access to group numbers or mem-
bership labels. We verify the performance of POPL on a stateless preference learning setting, a
Minigrid RL domain, Metaworld robotics benchmarks, as well as large language model (LLM)
fine-tuning. We illustrate that POPL can also serve as a foundation for techniques optimizing
specific notions of group fairness, ensuring safe and equitable AI model alignment.

Contribution(s)
1. We extend the problem of Reinforcement Learning from Human Feedback with Hidden

Context (RLHF-HC) introduced by Siththaranjan et al. (2023), addressing critical limita-
tions in preference learning for sequential, time-based domains, as opposed to contextual
bandits.
Context: Siththaranjan et al. (2023) assumes a contextual bandit setting, where hidden
context exists independently across states. For use in sequential settings, we argue that
preference learning frameworks must pay attention to persistent annotator identity.

2. We adapt lexicase selection to preference learning, enabling an iterative process to filter
candidate models based on diverse subsets of human preferences.
Context: Lexicase selection has been used in a variety of other domains (Spector et al.,
2024); here, it is adapted to handle conflicting human preferences in sequential RL settings.

3. We provide theoretical justification showing that, under noiseless conditions, optimal re-
ward functions and policies for hidden context groups are inherently Pareto-Optimal with
respect to the the entire set of preferences.
Context: This result grounds the method in robust multi-objective optimization principles,
offering clear theoretical support for POPL, while acknowledging that real-world settings
will need to manage additional complexities such as noise and choice of regularization.

4. We empirically demonstrate that searching for Pareto-optimal reward functions and policies
recovers those that align with the values of specific groups of humans.
Context: We show this by creating situations where hidden context will be present in a
variety of tasks, including Minigrid (Chevalier-Boisvert et al., 2023), Metaworld (Yu et al.,
2019) and LLM jailbreaking detection based on RLHF-HH (Bai et al., 2022; Wei et al.,
2024), and show that our reward or policy inference set contains personalized models for
our chosen groups.
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Abstract

Ensuring AI models align with human values is essential for their safety and function-1
ality. Reinforcement learning from human feedback (RLHF) leverages human pref-2
erences to achieve this alignment. However, when preferences are sourced from di-3
verse populations, point estimates of reward can result in suboptimal performance or4
be unfair to specific groups. We propose Pareto Optimal Preference Learning (POPL),5
which enables pluralistic alignment by framing discrepant group preferences as objec-6
tives with potential trade-offs, aiming for policies that are Pareto-optimal on the prefer-7
ence dataset. POPL utilizes lexicase selection, an iterative process that selects diverse8
and Pareto-optimal solutions. Our theoretical and empirical evaluations demonstrate9
that POPL surpasses baseline methods in learning sets of reward functions and policies,10
effectively catering to distinct groups without access to group numbers or membership11
labels. We verify the performance of POPL on a stateless preference learning setting, a12
Minigrid RL domain, Metaworld robotics benchmarks, as well as large language model13
(LLM) fine-tuning. We illustrate that POPL can also serve as a foundation for tech-14
niques optimizing specific notions of group fairness, ensuring safe and equitable AI15
model alignment.16

1 Introduction17

For both safety and functionality, it is critical for AI models to align with the values of human users18
and stakeholders. Recently, reinforcement learning from human feedback (RLHF) (Christiano et al.,19
2017) has emerged as an effective mechanism for model alignment, using preferences to capture20
human values. However, when preferences are sourced from large groups of potentially diverse21
people, methods that rely on point estimates of human values are bound to either be suboptimal for22
all groups or unfair to certain groups, both of which are problematic in their own ways.23

In this work, we build upon the notion of hidden context proposed by Siththaranjan et al. (2023)24
and focus on the problem of Reinforcement Learning from Human Feedback with Hidden Context25
(RLHF-HC). Hidden context refers to information that is unavailable to a preference learning system26
yet affects the preferences given. For example, a person’s dominant hand might determine on which27
side they would prefer a robotic assistant to hand them an object. Under this formulation, our goal28
is to build a set of policies that contains the optimal policy under the reward function for each group29
of people. In practice, we see two clear use cases of such a set of policies. First, they can be30
selected from at test time to find an optimal policy for a given user without in a few-shot manner.31
Second, this set can be used to measure and ensure fairness between groups. Minimizing risk with32
respect to this diverse distribution of policies ensures that no specific group is disregarded in the risk33
measurement–thus enhancing safety.34

Preferences with hidden context may be contradictory i.e., not mutually satisfiable by a well-35
regularized policy or reward function. So, we propose to frame these preferences as objectives36
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Figure 1: An outline of the proposed Pareto Optimal Preference Learning (POPL) framework. Given
a set of pairwise preferences over trajectory segments from groups with potentially different ground
truth reward functions, we infer a set of reward functions or policies that captures each group’s
ground truth, without group membership labels. To do this, we frame reward inference as multi-
objective optimization, where each preference forms a single objective, and find a set of Pareto-
optimal reward functions or policies.

with potential trade-offs between each other. With this re-framing, the optimal policy for each indi-37
vidual hidden context group would be Pareto-optimal (non-dominated) on the dataset of preferences.38
With this in mind, we propose Pareto Optimal Preference Learning (POPL), where we learn a set of39
reward functions or policies (directly) that are optimized towards being Pareto-optimal with respect40
to the set of preferences given by a potentially diverse set of human annotators. To do this, we use41
an iterative selection process known as lexicase selection (Spector, 2012), which has been shown42
under mild assumptions to select individuals that are both Pareto-optimal and diverse. An outline of43
our method can be found in Figure 1. Our contributions can be summarized as follows:44

• We extend the problem of Reinforcement Learning from Human Feedback with Hidden Context45
(RLHF-HC) introduced by Siththaranjan et al. (2023), addressing critical limitations in preference46
learning for sequential, time-based domains, as opposed to contextual bandits.47

• We derive theoretical results proving that optimal reward functions and policies for hidden context48
groups are inherently Pareto-Optimal with respect to the given preferences, establishing a rigorous49
mathematical basis for our approach.50

• We develop “Pareto-Optimal Preference Learning" (POPL), a framework leveraging lexicase se-51
lection to generate a set of Pareto-Optimal reward functions or policies. POPL ensures diverse,52
group-specific alignment with human preferences, enabling robust personalization and fairness.53

• We demonstrated POPL’s superiority over strong baselines in diverse settings, including:54

– Minigrid RL: Policy learning in grid-based decision making dsomains.55

– Metaworld: Balancing safety and speed in 3D robotics manipulation tasks.56

– LLM Jailbreaking Detection: Mitigating harmful outputs by aligning preferences for both help-57
fulness and harmlessness (without labels).58

• We showcased POPL’s ability to efficiently scale to high-dimensional tasks, such as those in-59
volving LLMs, while maintaining computational efficiency. POPL achieves robust results with60
pre-trained models, making it broadly applicable across domains requiring fairness, alignment61
and diversity.62

2 Related Work63

Diversity in Human Preferences Data used for RLHF systems often comes from multiple people,64
who are diverse in their preferences and values (Bobu et al., 2023; Peng et al., 2023; Biyik & Sadigh,65
2018; Santurkar et al., 2023). This data, when considered in its aggregated form, can not be captured66
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perfectly by a decision-making model that relies on a point estimate of utility (Casper et al., 2023).67
These models try to find a single reward function that is most likely, which is often not the optimal68
reward function for any one single person. When the groups are not perfectly balanced, the minority69
groups might be underrepresented in the inferred reward function (Siththaranjan et al., 2023; Feffer70
et al., 2023; Kirk et al., 2023; Myers et al., 2021) or simply treated as noise (Baumler et al., 2023).71
There have been attempts at explicitly modeling different people with different levels of expertise72
(Gordon et al., 2021; Daniels-Koch & Freedman, 2022; Gordon et al., 2022; Barnett et al., 2023),73
but these methods generally rely on concrete ways to distinguish between groups.74

Accounting for Diversity In the context of RL, Myers et al. (2021) outlines an approach that75
involves learning a multi-modal reward function from online interaction between a human expert76
and a preference learning system. Ramé et al. (2024) learn a set of reward models by optimizing for77
diversity amongst the outputs. While similar to our approach, we also aim to align our reward models78
with hidden context groups through optimizing for Pareto-optimality. There have been a variety of79
studies attempting to align large models with diverse human preferences. Chakraborty et al. (2024)80
and Siththaranjan et al. (2023) learn a mixture of preference distributions or a parameterized reward81
distribution, respectively. However, both these techniques operate under a contextual bandit setting82
which results in sub-optimal performance when used in the more general RL setting (discussed83
further in Section 3). Bradley et al. (2024) and Ding et al. (2024) leverage fine-tuning to improve84
the diversity of model responses for better alignment and creativity, which do not directly address the85
ambiguity and hidden context in human preferences. Poddar et al. (2024) learn latent conditioned86
reward models or policies that align with the preferences of specific users. While in a similar setting,87
our approach focuses on learning a set of diverse reward functions to enable both personalization as88
well as fairness applications. Jang et al. (2023) and Dai et al. (2023) elicit preferences specifically89
along different dimensions in order to cater custom reward functions for users in test time, and to be90
safe with respect to conflicting objectives, respectively. While we also aim to cater reward functions91
in test time as well as optimize fairness between groups, we do not have access to labels regarding92
the context of the preferences generated. Finally, Rame et al. (2024) also generates a set of Pareto-93
optimal reward functions. However, in their setting, the system has access to ground truth reward94
functions for each group, and the Pareto-front is generated through weight interpolation between95
these functions.96

Bayesian Reward Inference Bayesian Reward Extrapolation (B-REx) (Brown et al., 2020b) in-97
stead learns a distribution of reward models from pairwise human preferences. B-REx is then able to98
perform Bayesian inference using MCMC (MacKay, 1992) to sample from the posterior of reward99
functions. With this distribution, a practitioner can establish high confidence performance bounds100
that can be used to assess risk in evaluated policies as well as detect reward hacking behaviors.101
However, B-REx and other reward inference methods often rely on a faulty assumption that humans102
provide preferences in a Boltzmann-rational way.103

3 Preliminaries104

Learning from Human Preferences Reinforcement learning from human feedback considers hu-105
man preferences over trajectories (or more generally, outputs of a model) in order to learn a reward106
model or policy that respects the preferences (Brown & Niekum, 2019; Rafailov et al., 2024; Hejna107
et al., 2024; Casper et al., 2023; Finn et al., 2016).108

In order to learn meaningfully from human preferences, one must characterize how preferences are109
generated from some parameterized preferences model P (σi ≺ σj). Usually, this preference model110
is based on the notion of Boltzmann-rationality, where humans generate preferences in accordance111
to the Bradley-Terry (BT) model (Bradley & Terry, 1952). The probability of pairwise preference112
(σi ≻ σj) between two trajectories segments given some utility function f(σ) can be written as113

P (σi ≻ σj) =
eβf(σi)

eβf(σj) + eβf(σi)
(1)
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Figure 2: An example of a situation where using POPL is preferable to using a Marginalized Dis-
tributional Preference Learning (MDPL) system. Due to the fact that these systems marginalize
over the hidden context z for each state, MDPLs are unable to be sensitive to persistent annotator
identity. MDPLs represent the distribution of utility values in a column-wise fashion, or maintain
a distribution of utilities for each state, that is decoupled from that for other states. Therefore, the
utility for both groups of the trajectory AB is indistinguishable from that for BC by an MDPL.
POPL, on the other hand, represents the distribution row-wise, finding a set of utility functions that
should include the ground truth for each group. In this case, POPL can represent the fact that AB is
an unfair trajectory and BC is fair, whereas MDPLs are unable to make this distinction.

114

where β models the confidence in the preference labels. β →∞ signals that the preference provider115
is perfectly rational, and β = 0 signals that preferences are random. The BT model is used in many116
fields, such as psychology (Baker et al., 2009; Goodman et al., 2011; Goodman & Stuhlmüller,117
2013). However, this model does not perfectly capture the mechanisms driving the preferences that118
humans give (Ghosal et al., 2023; Jeon et al., 2020; Knox et al., 2022; Bobu et al., 2020; Lee et al.,119
2021). For example, people in different groups could systematically deviate from each other in a120
fashion that cannot be represented by the BT-model, such as if they had differing underlying f(·).121
This “systematic deviation" can be a result of what we will heron refer to as hidden context.122

Hidden Context Siththaranjan et al. (2023) introduce the problem of preference learning with123
hidden context. This is the idea that preferences are generated not only based on the exponential124
utility (partial return or regret), but also on some latent hidden context variable z. This variable is125
not accessible to preference learning systems and poses a challenge as it is often the case that this126
variable results in breaking the assumption that preferences are generated Boltzmann-rationally.127

Marginalized Distributional Preference Learning In order to account for hidden context in the128
preferences learned, Siththaranjan et al. (2023) introduce Distributional Preference Learning, which129
relies on a single model of utility u(s|z) to output a distribution of utility assignments u(s) for130
each state s ∈ S, marginalizing over the hidden context variable z. In other words, they are able131
to represent the marginalized probability P (R|s) of a specific utility R in a state s. Herein, we132
will refer to a model that outputs a distribution per state as a Marginalized Distributional Preference133
Learning (MDPL) system.134

Due to the marginalization process inherent in these systems, the utility function is unable account135
for persistent annotator identity—the fact that hidden context transcends a single preference an-136
notation. In a contextual bandit setting such as those often found for finetuning LLMs (Rafailov137
et al., 2024), this is not an issue, as determining that an output has high risk simply depends on the138
distribution of rewards attributed to that specific state. However, in sequential tasks, where there139
are relationships between preferences at different times, it is important to maintain full, coherent,140
reward functions or policies for each group.141

An example of how using an MDPL can lead to fairness issues is outlined in Figure 2. There are two142
groups that have different utilities for three states A, B and C. MDPLs fail to differentiate between143
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trajectories like AB, BC, and AC, which have distinct fairness profiles and utilities for different144
groups, as their representation marginalizes over group-specific utilities.145

Contrastive Preference Learning Contrastive Preference Learning (CPL) (Hejna et al., 2024)146
learns a policy directly from preferences without needing to learn an intermediate reward function.147
This method uses a regret-based model of preferences rather than the standard partial return inter-148
pretation. The probability of a preference under a candidate policy can be written as the ratio of the149
exponentiated sum of log-likelihoods of the chosen segment to the disregarded segment. We choose150
CPL over Direct Preference Optimization (DPO) (Rafailov et al., 2024) as DPO can be derived as a151
special case of CPL with trajectories of length 1, starting from the same state. Furthermore, POPL is152
designed to be used in a variety of sequential, time-based domains, but DPO and other contemporary153
RLHF methods restrict themselves to contextual bandit settings (such as in large language models).154
CPL, on the other hand, overcomes these limitations Hejna et al. (2024).155

4 Problem Statement and Theoretical Foundation156

We operate in a common RLHF setting in which, given a dataset D = {σ1, · · · , σm} of trajectory157
segments and a set P = {(i, j) : σi ≻ σj} of pairwise preferences over these segments, we wish158
to infer an unknown reward function r : S 7→ R that respects the preferences. This reward function159
represents an assignment of utility r(s) to each state s in the state space S. r can then be used as the160
reward function to train a policy π(a|s) : S ×A 7→ [0, 1] with RL.161

In light of our discussion in section 3, we re-frame the problem of preference learning with hidden162
context as follows. The goal is to learn a set Π = {π1, π2 · · · , πn} of policies such that, for the163
hidden context group represented by a variable z ∈ Z , there is a policy πz ∈ Π that is the optimal164
policy for the ground truth reward function rz for the group. Note that this can be accomplished165
by standard (reward-based) RLHF (experiments in sections 6.1 and 6.4) or direct (reward-free)166
RLHF (experiments in sections 6.2 and 6.3). For the standard approach, a series of reward functions167
R = {r1, r2 · · · , rn} are first learned from preferences, then used to train n optimal policies. In168
the direct approach, the policies are learned directly from preferences such as done by Hejna et al.169
(2024) and Rafailov et al. (2024).170

We now show that optimal policies for hidden context groups are Pareto-optimal with respect to the171
set of preferences given by all annotators. Therefore, recovering the set of pareto-optimal policies is172
a viable way to solve the RLHF-HC problem formatted above.173

Definition 1 (Policy passing preference). A policy π(a|s) : S × A 7→ [0, 1] passes a pref-174
erence (σi≺σj) if the probability of the preferred segment

∏
(s,a)∈σj

π(a|s) is higher than the175
probability of the other segment

∏
(s,a)∈σi

π(a|s). Or, equivalently, if
∑

(s,a)∈σj
log π(s, a) >176 ∑

(s,a)∈σi
log π(s, a).177

Definition 2 (Policy-set-relative Pareto-optimality). A policy π(a|s) : S × A 7→ [0, 1] is Pareto178
optimal with respect to a set of preferencesP relative to a set of other policies Π = {π1, π2, · · · , πn}179
if and only if there exists a preference (σi ≻ σj) ∈ P that only π passes out of all policies in Π180

Definition 3 (Hidden context group). A hidden context group is a group of m annotators, each181
with their own reward function r1, r2, . . . , rm that identically rank the segments σ ∈ D.182

Definition 4 (Optimal policy for hidden context group). An optimal policy π∗
g for a hidden183

context group g is an optimal policy in a given environment (MDP/R) using the group’s implicit184
ground truth reward function rg as the reward function.185
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Figure 3: Lexicase selection being used to select a single candidate hypothesis. Starting with a
random ordering, the pool of reward hypotheses is filtered down based on the preferences in order,
until a single individual remains or we run out of preferences. The resulting reward function is added
to the next pool, and this process is repeated (with new shuffles) to fill the population.

Definition 5 (Contradictory preferences). A pair of preferences (σi ≻ σj), (σx ≻ σy) are con-186
tradictory under a specific policy regularization scheme if the likelihood of any policy that satisfies187
both is lower than the likelihood of a policy that satisfies either.188

With no regularization, a policy that satisfies two preferences should have a higher likelihood than189
one that satisfies one but not the other. This is because the likelihood of a certain policy is related to190
the total number of preferences passed by it. Passing two preferences would therefore elicit a higher191
likelihood than passing just one of them. However, if by satisfying both preferences, the models192
would need to incur a much greater regularization loss, it is likely that these two preferences came193
from individuals with differing hidden contexts.194

Theorem 1. In a completely noiseless setting, all policies that are optimal for specific HC groups195
are Pareto optimal with respect to the set of all preferences P generated from all the groups, and the196
space of all possible policies Π = {π|π ∈ S ×A 7→ [0, 1]}197

A proof of Theorem 1 can be found in the appendix. In essence, a set of Pareto-optimal policies must198
each satisfy a unique set of mutually satisfiable preferences (ones that do not contain a contradictory199
preference). As such, the optimal policies for a group with hidden context would also be Pareto-200
optimal.201

5 Pareto Optimal Preference Learning202

In this section, we outline an algorithm that can be used to generate a set of polices or reward func-203
tions that align with the preferences of different groups of people. We introduce lexicase selection,204
a method that can select candidate hypotheses that lie on the Pareto front. Our population represents205
a belief distribution that is updated based on observed evidence. Lexicase selection continually nar-206
rows the hypothesis space based on selection criteria, effectively ‘learning’ which policies or reward207
functions hold promise given the current (hidden-context-laden) data.208

Lexicase Selection for Pluralistic Outcomes To obtain a set of Pareto optimal policies, we adopt209
the idea of lexicase selection (Spector, 2012; Helmuth et al., 2015), which uses a random ordering210
of metrics for each selection event, with only the candidates that perform the best on each successive211
metric retained for filtering by the remaining metrics. This process is repeated until all metrics are212
exhausted or a single individual remains. Through this process lexicase selection prioritizes, over213
multiple selection events, each particular metric and each particular combination of metrics to the214
exclusion of all others. We can consider this to be a “particularity” approach for achieving pluralistic215
outcomes (Spector et al., 2024).216
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In the setting of preference learning, each metric corresponds to a preference sourced from a human217
with hidden context. The preference is ‘passed’ if the candidate policy correctly ranks the pair218
of segments in the preference corresponding to that metric (formally defined in Section 4). If no219
individuals in the current pool pass the preference, all individuals make it through this selection step.220
With this feature, contradictory preferences are addressed by giving priority to the first preference221
in the shuffle. Each random shuffle of preferences therefore results in a diverse profile of reward222
functions being selected for. Figure 3 shows an example of a single selection event.223

A key property of lexicase selection is that it selects candidates that are Pareto-optimal relative to a224
starting set of candidates (as opposed to all possible candidates). These individuals tend to spread225
the corners of the Pareto front and thus be diverse (La Cava et al., 2019). Lexicase selection also226
gives individuals that are good at more subsets of things greater weight. This idea has been utilized227
in many machine learning optimization problems for improving generalization, as shown in recent228
work (Ding et al., 2022; 2023; Ni et al., 2024; Boldi et al., 2023; Ding & Spector, 2022).229

Overview With a method to select Pareto-optimal candidates such as lexicase selection in hand,230
one can infer a set of reward functions or policies directly from preferences. Initially, a random set231
of candidate models is created. Then, the chosen method is applied to select (with replacement) the232
Pareto-optimal candidates from this random starting set. This pool is perturbed by adding random233
Gaussian noise, generating a new set of candidates. The selection and perturbation steps are repeated234
iteratively until the average performance converges, or a fixed number of iterations is passed. The235
final set of candidates should align with the preferences of hidden context groups. A full overview236
of our algorithm can be found in Appendix 8.237

6 Experiments238

In this section, we detail our experimental results to validate the proposed POPL method. To verify239
that POPL can work in a large variety of settings at different scales, as well as for generating both re-240
ward functions and policies, we perform four sets of experiments. A synthetic, stateless experiment241
(reward inference), a Minigrid RL environment (policy inference), a Metaworld robotics environ-242
ment (policy inference) and LLM finetuning from human preferences (reward inference). Further243
implementation details are provided in Appendix 10.244

Baselines Throughout our experiments, we will use 3 main baselines. In the experiments on re-245
ward function inference, we use Bayesian Reward Extrapolation (B-REx) (Brown et al., 2020b) as246
a baseline, as it generates a large set of reward function hypotheses (i.e., candidate models) based247
on a Boltzmann-rational likelihood function, and has demonstrated efficacy in RL domains. For our248
policy inference experiments, we compare to Contrastive Preference Learning (Hejna et al., 2024)249
as it is a leading RLHF algorithm for sequential tasks. We also use a naive method of learning a set250
of policies based on CPL that we call Multi-CPL. In this approach, after pretraining, we fine-tune251
the last layer using the CPL objective multiple times to generate a large set of policies. Although252
we could do full network fine-tuning, we wanted to hold constant the trainable parameters available253
to each approach to ensure a fair comparison to POPL, which uses last-layer fine-tuning. Policy254
learning settings in this work model human preferences as being generated based on regret, as op-255
posed to partial return (Knox et al., 2022). Including the policy inference experiments allows us256
to ensure our method is not sensitive to assumptions regarding how the preferences are generated.257
For our language model (contextual bandit) experiments, we compare to both B-REx and Distribu-258
tional Preference Learning (DPL) (Siththaranjan et al., 2023), as well as standard the standard RLHF259
paradigm (Christiano et al., 2017), as these present a variety of approaches for generating reward260
models that can be used to ensure fairness across groups.261

Metrics Given a set of reward functions or policies, we can verify how well they perform on the262
two downstream tasks we have identified for this work: personalization and fairness. For personal-263
ization, we inspect the content of the personalized policies or reward functions to verify their align-264
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ment with each hidden context group’s preferences. For fairness, we ensure that no single group is265
having its values undermined (by taking low-probability actions) in an attempt to satisfy a different266
group. Although this is a relatively simple notion of fairness, this method could be extended to be267
compatible with other fairness optimization approaches (Mehrabi et al., 2021).268

6.1 Synthetic Stateless Experiment269

(a) B-REx Catering (b) POPL Catering

Figure 4: (a) and (b) show the catered reward
functions for each of the two hidden context
groups z = 0, z = 1. From a set of reward func-
tions that is inferred from a diversity of human
preferences, we select a single reward function for
each unique group with a small number of prefer-
ences (2% the size of the training set). POPL is
able to cater for both groups, while B-REx is only
able to cater for one of the two groups (z = 1,
red line). For B-REx, the z = 0 (green) group’s
catered reward function doesn’t capture the fact
that any state a < 0.8 is preferred to any state
a ≥ 0.8.

The first set of experiments we perform will test270
whether POPL is able to recover a set of reward271
functions from a series of preferences generated272
with hidden context in a very simple stateless273
domain. Doing this, we are testing whether the274
fact that the outputs of lexicase selection are an275
approximation of the global Pareto-front signif-276
icantly degrades the quality of reward functions277
generated. Then, we will select a personalized278
reward function for each group and compare279
them to the ground truth reward functions used280
to generate the preferences.281

Following the synthetic experiments outlined282
by Siththaranjan et al. (2023), we compare B-283
REx and POPL on learning from preferences284
where with hidden context variable z ∼ B(0.5)285
where B(0.5) is a Bernoulli distribution. The286
utility in this scenario can be modeled as287

u(a, z) =

{
a if a < 0.8

2az otherwise
(2)

In order to test whether POPL covers the hidden context groups, we inspect some selected reward288
functions for each group. We use a smaller set of the preferences that all have a shared hidden289
context, and select a reward function for each group. Figure 4 shows the results of catering a reward290
function for each of the hidden context classes z = 0 and z = 1. Due to B-REx using the Boltzmann291
rationality assumption, it concentrates much of the distribution on the z = 1 case, and does not292
capture the preferences given by the z = 0 group. POPL, on the other hand, is able to recover the293
reward functions for both groups from the learned distributions.294

6.2 Minigrid Policy Inference295

After demonstrating POPL’s efficacy in reward inference from preferences with hidden context, we296
perform a second set of experiments to verify whether 1) POPL is able to generate policies directly297
from preferences, and 2) POPL is able to perform in a sequential RL domain, where annotators’298
hidden context is persistent (i.e. potentially affects more than one segment preference annotation).299
The domain used in these experiments is outlined in Figure 5a. The agent (red triangle) must make300
it to the solid green goal tile as fast as possible. The agent must choose one of the two doors (top or301
bottom) to use to reach the goal. The hidden context groups in this scenario delineate whether the302
annotator inherently prefers the bottom or top door to be used to get to the goal (Figure 5d). The303
preferences were labeled according to the regret preference model from members of both groups304
(extracted from the optimal policy for each group’s ground truth reward model).305

After running this optimization, the state occupancy distribution for catered policies for each group306
can be found in Figures 5b and 5c for POPL, and 5e and 5f for MultiCPL. We find that POPL is307
able to successfully cater policies for both groups of people (as exhibited by policies reaching the308
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(a) Domain (b) POPL for Group 1 (c) POPL for Group 2

(d) HC Groups (e) MultiCPL for Group 1 (f) MultiCPL for Group 2

Figure 5: Minigrid experiments. Plots in (c), (d), (e) and (f) show average state occupancy for
policies catered for each hidden context group. POPL is able to cater distinct policies for each
group, while MultiCPL collpases to a single group’s preferences.

goal via both doors), despite not having labels regarding their group membership. MultiCPL, on the309
other hand, is unable to cater a policy for Group 1.310

6.3 Metaworld Policy Inference311

Figure 6: Case study for a single
button-press-v2 run. POPL finds policies
that perform well under both ground truth reward
functions. We also include a behavior cloning
(BC) baseline, where the policies are simply
trained to match the demonstrations.

In order to verify how well POPL can infer poli-312
cies in larger scale sequential environments, we313
include results performing policy inference on314
the Metaworld Robotics Benchmark (Yu et al.,315
2019). We artificially create two hidden con-316
text groups: one that prefers safe (low angu-317
lar velocity) robotic movements, and one that318
prefers speed (low time to task completion).319
We generate preferences from these two groups320
at random, and then compare POPL and Mul-321
tiCPL’s ability to cater individual policies for322
each group.323

Figure 7 outlines the performance of all the324
policies generated by POPL and the MultiCPL325
baseline. We also include a case study com-326
paring a single run of POPL and MultiCPL in327
Figure 6. POPL is able to generate policies328
that outperforms the MultiCPL and behavior329
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(a) button-press-v2 (b) reach-v2

Figure 7: Metaworld Policy Inference Results. Box plots outline the performance of the best
(catered) individual from each population on both identities across 10 random seeds. We also show
the average performance of the best “compromise," or the single policy that does the best across
both identities. POPL tends to have a higher catered policy performance across both identities, and
also discovers a more fair compromise between values of the two groups.

cloning baselines. POPL finds policies that are maximally good for either group, as well as those330
that find strong compromises between the two group’s values.331

6.4 Language Model Experiments332

In this section, we test the ability of POPL to scale to domains involving human annotations. We333
investigate whether POPL can be sensitive to hidden context in whether annotators prefer harmless334
or helpful responses (Bai et al., 2022). When reward models are trained on the entire set of prefer-335
ences, whether they were generated based on helpfulness or harmlessness is hidden context, as this336
information affects preferences but is unavailable to a reward inference system.337

Importantly, preferences based on helpfulness and harmlessness can often be contradictory. In fact,338
Wei et al. (2024) find examples of user prompts that directly pit these objectives against each other,339
leading a language model to output harmful outputs, a phenomenon known as jailbreaking. An340
RLHF system built with hidden context in mind would help detect jailbreaking before a harmful341
output would be given to a user. In the context of this work, a model that is susceptible to jailbreaking342
would be unfair to certain groups (compromising its efficacy for the harmlessness group in order to343
optimize for the helpfulness group).344

Table 1 presents the jailbreak rates and helpfulness accuracy for standard RLHF, B-REx, DPL, and345
our proposed POPL. For B-REx and POPL, we generate a set of reward functions by extrapolating346
the last layer of a fine-tuned LLAMA-2-7b (Touvron et al., 2023) preference model. Default settings347
use the mean reward across the entire set. For fairness optimization, we use the 10th percentile of348
reward values across all the reward functions in the set.349

The results indicate that B-REx’s performance is inferior to standard RLHF, even when employing350
fairness-focused strategies using the lower quantile of rewards. This suggests that the likelihood351
estimated by the BT model does not adequately accommodate scenarios where preferences are in352
conflict, and B-REx fails to accurately approximate the distribution of rewards. POPL performs the353
best out of all methods without employing any fairness optimization. Given the high-dimensional354
nature of reward features in LLM tasks, a population-based approach is essential for accurately355
modeling and enhancing the diversity of reward hypotheses.356
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Table 1: Results on LLM jailbreaks. POPL has the lowest jailbreak rate across all methods without
any fairness optimization. For fairness optimization, POPL has a lower jailbreak rate than B-REx,
standard RLHF, as well as Mean & var. DPL, and is competitive with categorical DPL.

Method Training data Jailbreak rate (%) Helpfulness acc. (%)

Standard Helpful 52.4 72.6
Standard Harmless 3.7 49.5
Standard Combined 25.1 68.2

Mean & var. DPL Combined 30.5 68.4↰

Fair 20.3 66.4
Categorical DPL Combined 32.1 66.2↰

Fair 13.4 66.2

Bayesian REx Combined 28.3 67.5↰

Fair 27.8 50.4
POPL Combined 17.6 66.1↰

Fair 15.0 65.7

When compared to the current state-of-the-art, POPL outperforms Mean & Var DPL and competes357
closely with Categorical DPL. Notably, unlike DPL which requires training a new reward model with358
different outputs, POPL efficiently extrapolates directly from the last layer of pre-trained RLHF re-359
ward models, making it highly efficient and broadly applicable. For example, POPL can be applied360
to a pre-trained 7b-LLM reward model in under an hour on a single NVIDIA A100 GPU. Another361
advantage of POPL is its independence from assumptions about the distribution of reward hypothe-362
ses. In contrast, DPL methods require a predefined reward distribution, such as the assumption of363
normally distributed rewards for Mean & Var DPL, or correctly sized bins for Categorical DPL.364

7 Conclusion365

When learning from human preferences for the sake of aligning to human values, systems often366
rely on point estimates of return or regret, limiting them to aligning to a single group of humans.367
Preferences, however, often come from distinct groups with diverse preferences. We have formalized368
this as the problem of preference learning with hidden context. Under this conception, a set of369
policies must be generated that contains the optimal policy for each distinct group.370

To solve this problem, we relied on the concept of Pareto-optimality to generate a series of reward371
functions and/or policies that are optimal with respect to unique sub-sets of preferences. To optimize372
towards Pareto-optimality, we used a technique known as lexicase selection, that selects individuals373
from a large set based on a randomized (lexicographic) prioritization of the training data.374

We verified that lexicase selection can be used to generate diverse distributions of either reward375
functions or policies that align with the diverse preferences that human annotators have. We evalu-376
ated and verified the performance of POPL in a variety of domains, including a synthetic stateless377
domain, a Minigrid RL domain, a Metaworld Robotics benchmark, and even language model jail-378
break detection. Across these domains, we have demonstrated POPL’s efficacy when compared to379
contemporary algorithms in dealing with hidden context in the preferences. Without modifications380
to the framework, POPL can be used to optimize for diverse reward functions or policies, and can381
work in stateless and sequential domains at a variety of scales.382

One limitation of this work is the lack of use of gradients in training policies. The optimization383
procedure used after lexicase selection relies on random variations and repeated selections, which384
allows for effective trade-offs between exploration and exploitation of the preference landscape.385
Although empirically verified to work well, it may be possible to augment the core idea in future386

11



Under review for RLC 2025, to be published in RLJ 2025

work to allow it to utilize gradients. Furthermore, a study into the conditions required for the output387
of the procedure to be globally Pareto-optimal could be instrumental.388

Reproducibility Statement389

We are committed to the reproducibility of our results. We will release the full code to replicate our390
results upon acceptance. This code includes dataset generation and the full POPL training pipeline.391
Furthermore, we outline experimental details needed to independently reproduce the results in Ap-392
pendix 10. The theory performed in Section 4 has proofs associated in Appendix 9 and assumptions393
outlined therein.394
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8 Full Algorithm589

Algorithm 1 gives an outline of a single step of Pareto Optimal Preference Learning (POPL).590

Data: A dataset of demonstrations D and a series of pairwise preferences P
Result: A set of reward function or policy hypotheses

candidates← randomly initialize p hypotheses
for iter 1→ N do

for ind 1→ p do
shuffled_prefs← Shuffle(P)
for pref in shuffled_prefs do

old_subset← candidates
candidates← subset of candidates that pass pref.
// if all individuals have failed, we skip this preference
// as it is likely to be contradictory with a previous preference
if candidates contains no candidates then

candidates← old_subset
end
if candidates contains only one candidate then

break
end

end
candidate← a random individual from candidates
Append candidate to new population

end
candidates← add random noise to candidates

end
return candidates

Algorithm 1: Pareto Optimal Preference Learning

9 Proofs591

Proof of Theorem 1 (Contradiction). Let us assume that there is a policy π∗
z that is the optimal592

policy according to a hidden context group z. This means π∗
z passes all the preferences compatible593

with the values of group z and fails only the preferences that are not compatible with preferences594
given by group z. For sake of contradiction, we assert that this reward function is not Pareto optimal595
with respect to all other reward function candidates. This means there exists another reward function596
π′ that performs better than or equal to π∗

z across every preference in P , including those generated597
by group z. This is a clear contradiction as that would imply π′ is the optimal policy for group z598
instead of π∗

z .599

10 Implementation Details600

In this section, we include more implementation details of our experiments.601
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10.1 Synthetic Experiments602

We follow the experimental procedure of Siththaranjan et al. (2023) in generating preferences, ex-603
cept modify their code such that we ensure that annotator identity is held constant for each pref-604
erence. We use last layer finetuning on a neural network that is randomly initialized. We did not605
include any pre-training here to ensure that we are not pushing our reward models towards any606
modes before starting to train. We use a batch size of 2048 preferences, a step size of 0.1 and 10000607
steps of MCMC for B-Rex. For POPL, we use a population size of 100 and a generation count of608
100. We use a β (confidence) value of 10, although have found that changing this value does not609
significantly affect B-REx’s performance.610

10.2 Minigrid Experiments611

For the Gridworld model experiments, we base our environment on the Minigrid package Chevalier-612
Boisvert et al. (2023). Demonstrations were generated by rolling out many checkpointed policies613
at different levels of performance, trained using Proximal Policy Optimization (PPO). Then, these614
demonstrations were annotated based on a high performing policy’s action selection probabilities.615

For MultiCPL and POPL, we use behavior cloning directly on the demonstrations for 1000 iterations616
with a batch size of 64 and a learning rate of 0.001 with the Adam optimizer Kingma & Ba (2014)617
as pretraining. The model architecture was a simple convolutional neural network that takes input618
from the agent’s view window, and has a single fully connected layer with 128 nodes to output the619
7 actions from the environment. For both MultiCPL and POPL, we use last layer fine-tuning. For620
MultiCPL, we use the CPL objective, a learning rate of 0.001, where each model in a population621
of 500 models is trained for 20 iterations. For POPL, we use a learning rate of 0.2, and 1000 total622
steps. We sample 640 preferences every 10 iterations (as we can cache the last layer features for this623
examples for improved performance), and sub-sample a batch of size 64 for each step of lexicase624
selection. For a fair comparison between these two approaches, we approximately hold constant625
total wall clock time on the same hardware. Given a final population of policies generated by POPL626
or MultiCPL, we select the top 10 models for each hidden context class as the catered policy for that627
group.628

10.3 Metaworld experiments629

For the Metaworld robotics benchmark (Yu et al., 2019), we create augmented reward functions with630
greater emphasis on speed or safety, respectively. For the speed reward function, we add a penalty631
of 10

T , where T is the maximum timesteps allowed for that environment, for every timestep until the632
goal (as defined by the metaworld environment) is met. For the safety reward function, we add a633
penalty of 10 · ∥Ω∥2 where Ω is the angular velocity of all the robot’s joints. We also include, for634
each group, the reward from the other group, weighted with 0.1 instead of 10.635

We generated demonstrations by training optimal policies on each task studied using Proximal Pol-636
icy Optimization (Schulman et al., 2017) with the Stable Baselines package (Raffin et al., 2021).637
Every 100,000 steps, we cached the policy parameters to be used to generate sub-optimal perfor-638
mance. We train one policy on each reward function for a total of 1 million timesteps. We then roll639
out the policies at each checkpoint to generate 600 demonstrations, that are used to select snippets of640
length 150 that are ranked using log-likelihoods of the trajectory snippets under the optimal policy.641
These preferences are fed to the preference learning system.642

The experiments follow a very similar outline to the Minigrid experiments outlined in Appendix 10.2643
above. All frameworks use the same network architecture: A simple two layer Neural Network with644
1024 hidden nodes. For the button-press-v2 env, for example, this policy has 35 input nodes,645
1024 hidden nodes, and 4 output nodes, with ReLU activation at the hidden layer. For both MultiCPL646
and POPL, we pre-train with behavior cloning directly from the demonstrations for 1000 iterations647
at a batch size of 16 and learning rate of 0.001. We use last layer finetuning for both POPL and648
MultiCPL. For MultiCPL, we use the CPL objective, and train the last layer using a batch size of649
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16, learning rate of 0.001, and for 50 iterations each. For POPL, we sample 512 preferences every650
25 iterations, and sub sample a batch of size 256 to use for lexicase selections. We use a Gaussian651
mutation with mean 0 and standard deviation of 0.01 to mutate our policies at each step.652

10.4 Language Model Experiments653

In the LLM experiments, we assess the performance of reward learning by examining preference654
accuracy on the test set. To investigate vulnerabilities to jailbreak, we analyze pairs of responses to655
jailbreak prompts designed by Wei et al. (2024) to deceive the model into giving a harmful response.656
We calculate the percentage of prompts where it assigns a higher reward to the jailbroken response657
(“jailbreak rate"). Additionally, we evaluate the reward function’s ability to assess helpfulness on658
non-harmful prompts, i.e., the reward function predicts higher rewards on the more helpful response.659
We compare our method to normal RLHF with an LLM-based preference model, Bayesian Reward660
Extrapolation (B-REx), and distributional preference learning (DPL). DPL methods predict parame-661
ters of the distribution of reward values for each response, rather than a single reward value, in order662
to better account for hidden context in human preferences.663

For standard RLHF, we use the pre-trained LLAMA-2-7b (Touvron et al., 2023) preference model664
by Siththaranjan et al. (2023), which is fine-tuned on the HH-RLHF dataset using LoRA (Hu et al.,665
2022). We implement B-REx by performing linear reward extrapolation on the last layer of the666
pre-trained LLAMA-2-7b preference model. Following the B-REx implementation in (Brown et al.,667
2020a), we run 200,000 steps of MCMC with a step size of 0.05. We use a burn-in of 5000 and668
a skip every 20 samples to reduce auto-correlation. For POPL, we run lexicase selection for 100669
generations with a population size of 1000, and randomly sample 100 reward functions in the last670
generation.671

Because the ranking likelihood is invariant to affine transformations of the rewards, we normalize672
the rewards by subtracting the median reward calculated on the training set over all the responses.673
This ensures that the reward values are comparable when calculating the lower quantile of rewards674
in risk-averse optimization.675

11 Broader Societal Impacts676

The proposed work on Pareto Optimal Preference Learning (POPL) aims to enhance the alignment677
of AI systems with diverse human values, thereby addressing critical issues of fairness and repre-678
sentation. By focusing on learning from human preferences with hidden context, our method seeks679
to ensure that AI models do not disproportionately favor or disadvantage specific groups, making680
them more equitable and just. This has the potential to significantly improve the societal acceptance681
and trust in AI systems, particularly in sensitive applications such as healthcare, education, and law682
enforcement, where fairness and inclusivity are critical.683

However, there are potential negative societal impacts to consider. The deployment of AI systems684
that can cater to specific groups might inadvertently reinforce existing biases if the hidden context re-685
flects social prejudices or discriminatory practices. Therefore, it is crucial to incorporate safeguards686
and robust validation mechanisms to detect and mitigate any biased outcomes. As researchers and687
developers, we must be vigilant about the sources of our training data and continually audit AI688
systems for unintended consequences.689

Moreover, the computational work required for training these models can have environmental im-690
pacts, given the high-energy consumption associated with large-scale AI computations. Researchers691
should consider optimizing algorithms to be more efficient and exploring the use of renewable en-692
ergy sources to mitigate this impact.693

By considering these factors, we aim to advance AI technologies in a direction that promotes fair-694
ness, inclusiveness, and sustainability, ensuring that they serve the broader interests of society.695
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