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Abstract
High-dimensional deep neural network representations of images and concepts can be
aligned to predict human annotations of diverse stimuli. However, such alignment re-
quires the costly collection of behavioral responses, such that, in practice, the deep-feature
spaces are only ever sparsely sampled. Here, we propose an active learning approach to
adaptively sample experimental stimuli to efficiently learn a Bayesian matrix factorization
model with deep side information. We observe a significant efficiency gain over a passive
baseline. Furthermore, with a sequential batched sampling strategy, the algorithm is ap-
plicable not only to small datasets collected from traditional laboratory experiments but
also to settings where large-scale crowdsourced data collection is needed to accurately align
the high-dimensional deep feature representations derived from pre-trained networks. This
provides cost-effective solutions for collecting and generating quality-assured predictions in
large-scale behavioral and cognitive studies.
Keywords: Bayesian Matrix Factorization, Deep Learning, Active Learning

1. Introduction

In cognitive research, Bayesian probabilistic models typically serve two principal roles: one
as a hypothesis positing how individuals draw inferences from their observations of the
environment, and the other as a tool enabling scientists to learn from observations of human
behavior (Vul et al. (2014); Griffiths et al. (2008); Mamassian et al. (2002)). Our work
acts as an intermediate approach that bridges these two uses of Bayesian models. We use
Bayesian Probabilistic Matrix Factorization (BPMF) with deep-side information to align
a machine representation of entities to human behavioral responses to those entities, such
that the model serves as both a model of people’s mental representations and as a predictive
model of their behavior. This method enables accurate inference of behavioral responses by
generating low-rank predictions of perceptual response matrices. It offers a feasible model
structure to align machine vision systems with human visual perception. For instance, it
can integrate the bimodal information from facial imagery and psychological attributes and
yield predictions of people’s impressions of human faces.
BPMF has proven effective in consolidating multi-source information and predicting missing
responses while constructing confidence intervals (Salakhutdinov and Mnih (2008); Adams
et al. (2010)). In traditional laboratory experiments, it has been successfully applied to pre-
dict individuals’ perceptual outcomes based on human interpretable features (Zhang et al.
(2020)). Nevertheless, implementing BPMF in large-scale behavioral prediction tasks with
multi-modal object features presents two primary challenges. First, high-quality predictions
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require advanced machine-generated features outperforming traditional human-defined ones.
Machine learning algorithms can generate a vast array of new objects based on prior ones,
boosting diversity and realism while minimizing bias among stimuli. However, employing
deep learning algorithms to extract informative, high-dimensional features from various ob-
jects linearly escalates computational costs with the number of data features. This compli-
cates the integration of BPMF with deep learning methods, restricting it to sparse sampling
from the deep-feature space. The second challenge arises from the scarcity of essential in-
formation for reliable predictions, owing to the highly sparse response matrix, a scenario
exacerbated in human-subjects research. Here, data collection, constrained by budget and
resources, needs to deal with large participant populations and potentially extensive ques-
tion lists. Budgetary limits might restrict the number of questions posed, and elongated
experimental instruments could yield inaccurate responses as participants may resort to
mental shortcuts (Krosnick (1991)). Consequently, large-scale experiments often only cap-
ture responses to a minor portion of the total instrument from each participant. Thus, to
effectively employ BPMF with deep side information on large-scale behavioral prediction
tasks, developing a data sampling strategy to effectively target the most informative data
points is critical, ensuring satisfactory predictive outcomes despite these constraints.
Active learning is a data acquisition technique that can interactively identify the most in-
formative samples to efficiently create a training data set. Although this training set can be
compact, it possesses a powerful predictive capacity. Active learning has been widely em-
ployed to tackle problems associated with accuracy in sparse matrix completion (Elahi et al.
(2016); Chakraborty et al. (2013a)). One of its key strengths is the capacity to accurately
infer the complete response distribution from a limited selection of samples, obviating the
need to query the majority of the response matrix.
Here, we propose an active learning method for a BPMF model using uncertainty (Sugiyama
and Ridgeway (2006)) and k-Center Greedy (Sener and Savarese (2017)) sampling strategies,
showing enhanced learning efficiency compared to passive learning. We further examine
the effect of varying Markov chain Monte Carlo(MCMC) simulation chain lengths on the
active sampling performance to optimally integrate active learning into the BPMF model
framework. The estimation of posterior uncertainty brings a cost associated with the number
of posterior MCMC samples collected, presenting a trade-off between slow precise estimates
and quick, less accurate ones. We investigate this trade-off by adjusting the number of
MCMC samples for posterior uncertainty estimation in model parameters and measure its
impact on algorithm performance within a fixed computational budget.
In this paper, we outline an active learning framework for the deep Bayesian matrix fac-
torization model, train it on a large behavioral dataset—One Million Impressions dataset
(Peterson et al. (2022)), and validate the model’s learning efficiency and performance im-
provement via an effective active strategy. Lastly, we demonstrate our method’s promising
predictive results by adaptively querying a subset of the data for training.

2. Related work

We categorize the related work into three sections.
Bayesian Probabilistic Matrix Factorization: BPMF acts as a bridge between human
cognition and mathematical inductive inference. Based on assumptions regarding cogni-
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tive problems, it integrates prior knowledge from multiple channels, guiding participants to
update their beliefs using mathematical forms. In the context of visual perception mod-
eling, BPMF uses a matrix structure to combine 2-way side information - visual objects
and observers’ features, over priors. Through MCMC simulations, Bayesian posteriors are
computed and linked to perceptual inference outcomes (Mamassian et al. (2002); Kersten
et al. (2004)). A balance between the number of warm-ups and posterior samples is needed
to avoid significant fluctuations and overkill in MCMC simulation performance (McElreath
(2020)). It helps the BPMF achieve satisfactory predictive results through MCMC.
Modeling Perception Using Deep Features: Human perceptual tasks often benefit
from multi-modal data fusion like visual and linguistic inputs. Prior research (Peterson
et al. (2022); Zhang et al. (2018)) highlights machine-generated deep features’ superior-
ity over traditional human-interpretable attributes (e.g., image color or size) due to their
comprehensive high-dimensional representations and self-generating capability for novel pre-
dictions. Utilizing pretrained networks like StyleGAN2 (Karras et al. (2020)) for images and
Sentence-BERT (Reimers and Gurevych (2019)) for text, significantly lowers data-collection
costs while enhancing prediction quality in the BPMF framework.
Active Learning: Inspired by sparse matrix completion research (Settles (2009); Chakraborty
et al. (2013b)), we employ active learning to estimate a complete response distribution for
each participant across diverse objects from a sparsely filled response matrix. This method
expedites the alignment of machine inferences with human cognition by selectively querying
the most informative data points, proving crucial in large-scale behavioral and cognitive
experiments with limited resources.

3. Methods

The details of this approach and notation are articulated in two sections below.

3.1 Deep Bayesian Probabilistic Matrix Factorization

First, in predicting first impressions, pre-trained deep networks create face and trait features.
Using indices j for face images, h for traits, and i for participants, Peterson et al. (Peterson
et al. (2022)) extracted deep face features fj via StyleGAN2, while we used Sentence-BERT
for deep trait features th. This results in two latent spaces for response matrix R: a 512-
dimensional image feature space F for faces and a 300-dimensional linguistic space T for
traits, represented by conditioned, unit-variance, multivariate normal latent variables: ωfj

and ωth respectively. Second, under the BPMF setting, the latent variables represent the
computational coefficients for the participants’ impression ratings Rjh. The coefficients are
estimates based on two priors of ωfj , ωth following spherical Gaussian distributions (Gurkan
and Suchow (2022)). In Formulas 1 and 2, the two-sided features are first condense to
a consistent dimensionality within the latent spaces and then merged through a fusion
process. The fusion products are processed via Gaussian likelihood functions. Subsequently,
the resulting predictions, denoted as R̂jh, are derived through MCMC simulations.

p(ωfj |σ) = Normal(ωfj |σ
−1I); p(ωth |σ) = Normal(ωth |θ

−1I), (1)
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Fj = fj × ωT
fj
; Th = th × ωT

th
; R∗

jh = Fj × T T
h + εjh; R̂jh = sigmoid(R∗

jh)× 100, (2)

where σ and θ are independent and Gamma distributed. fj and th are row vectors and
R∗

jh ∈ (−∞,∞) is projected into predicted ratings as a continuous value R̂jh ∈ (0, 100).

3.2 Actively Learning The Matrix Factorization Model

In the BPMF training data sampling process, we implement active learning to minimize
training matrix entries, predict remaining responses, and achieve model convergence. Ini-
tially, a small training pool, S0 of size L, is randomly selected from the entire rated
data pool S of size N . With a budget of Q opportunities, we query an oracle for an
extra p data points (set Sp) to be added in the training pool, guided by a certain ac-
tive learning algorithm AS as depicted in Appendix E or F. The algorithm updates pa-
rameters ωfj

, ωth
based on S0∗ = S0 ∪ Sp, minimizing future expected learning loss:

min
S

p
q

E(C1,...,CN )∼S [L(Cn;AS0∪...Sp
q
)]. Diverging from traditional active learning, AS queries a

batch of p data points each round, as single data point additions have minimal impact in
large datasets (Sener and Savarese (2017); Zhang et al. (2020)). We extend active learning
to continuous prediction tasks by reformulating learning metrics and loss functions. Two
strategies are explored: one on uncertainty-based sampling and another balancing sampling
diversity and uncertainty, with performance comparisons conducted.
Uncertainty Sampling targets the least confident samples in each active iteration, with
Sugiyama et al. (Sugiyama and Ridgeway (2006)) advocating for the selection of data
points with maximum predictive distribution standard deviations. We adapt this strategy to
BPMF due to its applicability in continuous prediction scenarios with a univariate Gaussian
prediction distribution, similar to Gaussian linear regression. The iterative selection of
the p most uncertain samples, as detailed in Algorithm 1 (Appendix E) and Formula 3
(Appendix B), enhances the training pool’s informativeness. k-Center Greedy sampling
is a pool-based active strategy where p points representing cluster centers of the entire data
distribution are chosen from the unexplored data pool during each adaptive sampling cycle
(Sener and Savarese (2017)). In our continuous target prediction scenario, the Bayesian
model primarily manages generalization and training loss, while the active learning strategy
aims to minimize core-set loss, comparing average empirical loss over known and unknown
rating entries. Optimization specifics are elaborated in Appendix F.

4. Experiments and Results

We executed two experimental sets to evaluate the potential of integrating an active learning
strategy for training the deep BPMF model, focusing on the optimal active learning strategy
and batch size, and exploring if extending BPMF simulation steps in passive learning could
surpass the active learning benefits. The experimental dataset is One Million Impressions
dataset (Peterson et al. (2022)), which comprises over 1 million impression ratings on 34
traits for 1,000 machine-generated face images. Given that each image only receives ratings
from a limited group of participants, the response matrix is relatively sparse. We assessed
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the active learning method’s effectiveness and efficiency using the test Root Mean Square
Error (RMSE) averaged across three experimental repetitions.

4.1 Choices of Strategy and Batch Size

Figure 1: Test RMSEs over sample number with different batch sizes for uncertainty vs.
k-Center Greedy active strategies with 95% confidence intervals.1

The first experiment investigates optimal batch size for large-scale active learning using
uncertainty and k-Center Greedy strategies in deep BPMF for predicting impression ratings.
Five distinct models with different active learning strategies and batch size combinations
are run concurrently, contrasting with a passive baseline model. Figure 1 shows uncertainty
strategy outperforming others. A batch size of 8 is optimal, showing the quickest RMSE
reduction, notably beneficial under 10,000 samples, roughly 0.1% of the total dataset, where
test RMSE drops from 32.1 to 27.8, about 1.0 lower than passive learning’s test RMSE.
Conversely, k-Center Greedy doesn’t exceed the baseline in any scenario. After reaching
28,000 samples, batched uncertainty models converge with the baseline. This confirms the
batched uncertainty strategy’s effectiveness in reducing predictive RMSE with limited data,
emphasizing the impact of batch size on prediction stability.

4.2 Impact of Simulation Chain Length

The second experiment aims to determine if extending the MCMC simulation chain in
passive learning can match the efficiency gain of active learning. We tested three MCMC
configurations: (1) incrementing both warm-ups and posterior samples in a 3:5 ratio by 8
samples; (2) extending posterior samples by 5 steps without warm-ups; and (3) increasing
warm-ups by 5 steps with constant 5-step posterior samples. Using a 1000-sample subset
from the same dataset comprising ten random responses from each combination of ten faces
and ten traits, we compared predictive RMSE on 650 test data points to assess model
performance. We employed the prior best strategy – uncertainty sampling, on the BPMF,
adjusting the batch size to two due to the dataset size reduction.
First, testing three passive-sampling BPMF models revealed that Option (1) efficiently re-
duced predictive RMSE with increasing simulation steps (Figure 2(a)). Applying this op-
timal simulation chain to an active sampling BPMF model significantly improved perfor-

1. To smooth out fluctuations, each dot in Figures 1 is averaged from 200 samples of the adjacent epochs.
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(a) Test RMSEs for different model options over the
lengths of the simulation chain with 350 training
samples

(b) Test RMSEs for the BPMF using batch-2 active
strategy with different simulation chain lengths over
training sample numbers.

Figure 2: Result summary of the second experiment. 2

mance with fewer steps compared to passive models. By 220 steps, the active model’s RMSE
dropped to 27.024, outperforming the best performed passive model. The training time anal-
ysis (Table 1 in Appendix D) highlighted the sustained superiority of the active strategy,
not offset by extending the simulation chain in passive models. Second, with 350 queried
samples, the active strategy’s performance peaked with a 1,800-step simulation chain, main-
tained throughout the adaptive sampling process (Figure 2(b)). The 1,800-step model’s
test RMSE remained low as the training set expanded from 50 to 350 samples, indicating
consistent performance across varying training sizes.

5. Conclusion and Discussion

In this work, we propose an active learning method using BPMF with deep neural net-
works to predict human behavioral data, which selects informative stimulus-attribute pairs
based on model parameter uncertainty. Our empirical tests demonstrate superior perfor-
mance over passive learning, crucial for budget-limited crowdsourced studies and applicable
across domains like online recommendations for social media or e-commerce. Key factors
affecting performance include sampling strategy, active learning batch size, and simulation
chain lengths. Our experiments highlight the effectiveness of the uncertainty sampling strat-
egy over the k-Center Greedy strategy, especially in large behavioral datasets. Despite a
smaller training pool, Bayesian inference efficiently learns from less confident data, reducing
predictive error. However, k-Center Greedy sampling fails to capture feature diversity effec-
tively. Our findings suggest that an appropriate active strategy and batch size, along with
an optimized simulation chain length in the BPMF model, significantly enhance predictive
performance, especially under data query budget and computational resource constraints.
The integration of deep Bayesian matrix factorization with the uncertainty active strategy
is promising for impression prediction, using deep image and trait features to generate a
2D response matrix. Given Bayesian factorization’s capability with 3D tensors (Xiong et al.
(2010)), there’s interest in exploring our approach’s adaptability to more complex behavioral
datasets with diverse features.

2. To smooth out fluctuations, the dots in Figures 2 are averaged from 5 adjacent epochs.
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Appendix A.Queried data samples in k-Center greedy active learning
strategy.

The following graph Figure 3 depicts p centers and their associated coverage radii dS0∪Sp

during one batch selection of k-Center Greedy active sampling. This representation is uti-
lized to illustrate one essential component of the upper bound of Core-set loss.

Figure 3: Queried data points and dS0∪Sp in one batch.

Appendix B.Batched sample selection formula of uncertainty active
learning strategy.

Sp∗ = argmax
Cn∈S\Sp

p∑
h=1

σω∗
Ul q

(R∗|ρ(R∗)) (3)

, where the standard deviations of predictive distribution is σω∗
Ul

.

Appendix C.Extension of the mathematical details to formulate K-center
Greedy active learning strategy.

Sener et al. (Sener and Savarese (2017)) regard active learning loss for classifications using
CNN given a batch of p samples, E(C1,...,CN )∼S(L(Cn;ASp)), as containing three components:
generalization loss, training loss, and core-set loss. p denotes the number of central points
in the unexplored data pool and also equates to the count of points chosen during each
adaptive sampling cycle. In our scenario, which involves predicting continuous targets, the
first two losses are primarily managed by the Bayesian model, while the active learning
strategy concentrates on minimizing core-set loss. Core-set loss is defined as the distance
between average empirical loss over the points with known ratings and that over the entire
dataset, including entries with unknown ratings. Sener et. al shows its upper bound as
O(dS0∪Sp) + O(

√
1
N ). Consequently, the optimization goal of loss can be converted to

minimize the coverage radius from p centers (dS0∪Sp), as illustrated in Figure 3 (in Appendix
A).
The subsequent Formulas 4, 5, and 6 illustrate further deductions of the batch selection
criteria, informed by the knowledge that the upper bound of the Core-set loss primarily
consists of the component O(dS0∪Sp). The task of finding the upper bound for Formula 4
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is equivalent to the k-Center problem presented in Formula 5, which is described as the
min-max facility location problem in Wolf’s work (Wolf (2011)).

1

N

∑
n∈S L(Cn;AS0∪Sp)−

1

L

∑
l∈Sp L(Cl;AS0∪Sp)

≤ O(dS0∪Sp) +O(
√

1

N
)

(4)

min
Sp

dS0∪Sp ≃ min
Sp

max
Cn∈S\(S0∪Sp)

min
Cl∈S0∪Sp

△ (Un,Ul) (5)

Sp∗ =

p∑
l=1

argmax
Cl∈S\Sp

minCL∈Sp △ (Ul,UL) (6)

The minimization of dS0∪Sp is further deduced as min
Sp

max
Cn∈S\(S0∪Sp)

min
Cl∈S0∪Sp

△ (Un,Ul)

when p data points are queried.This formula can be computed based on the distances of
feature pairs Un = (fjn, thn) and Ul = (fjl, thl) in a two-dimensional coordinate system. The
min
Sp

S0 ∪ Sp is iteratively recomputed in Algorithm 2 to search for new data points to be
queried.

Appendix D.Active learning vs. passive learning training time and test
RMSE in the third experiment.

This training time analysis was run on a single NVIDIA GeForce RTX 4090 GPU with 24
GB memory.

MCMC chain length Learning Type Running time (min-
utes)

Test RMSE

220 Active 32.4633 27.024
280 Active 36.1294 26.1506
64,000 Passive 29.3237 27.4982
80,000 Passive 35.8137 27.7274
88,000 Passive 39.5863 27.1459

Table 1: Active learning vs. passive learning training time and test RMSE in the third
experiment.
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Appendix E.Pseudocode of Batched Uncertainty Sample Selection for
Deep Bayesian Matrix Factorization.

Algorithm 1 Batched Uncertainty Sample Selection for Deep Bayesian Matrix Factorization

Input: The set of randomly selected d rat-
ings as initial pool S0; The rating Ril in
S0 is given by a participant i for a face im-
age in terms of a certain trait. And budget
Q > 0.

Output: Predicted ratings for all entries of
the response matrix, R̂
Extract deep features face images fjl and
trait thl
repeat Q times, initialize q = 1;

Update parameters ω∗
fj q

, ω∗
thq

via
MCMC

Compute predicted R̂q, σq for the re-
sponse matrix

Query Sp
q with argmax

∑p
z=1 σzq

3

S0
q ← Sp

q ∪ S0
q−1

q = q + 1
until q = Q
return R̂Q, S \ S0

Q

Appendix F.Pseudocode of k-Center Greedy Sample Selection for Deep
Bayesian Matrix Factorization.

Core-set loss is defined as the distance between average empirical loss over the points with
known ratings and that over the entire dataset, including entries with unknown ratings.
Sener et. al shows its upper bound as O(dS0∪Sp)+O(

√
1
N ). Consequently, the optimization

goal of loss can be converted to minimize the coverage radius from p centers (dS0∪Sp), as
illustrated in Figure 3 (in Appendices A and C). The minimization of dS0∪Sp is further
deduced as min

Sp
max

Cn∈S\(S0∪Sp)
min

Cl∈S0∪Sp
△(Un,Ul) when p data points are queried.This formula

can be computed based on the distances of feature pairs Un = (fjn, thn) and Ul = (fjl, thl)
in a two-dimensional coordinate system. The min

Sp
S0 ∪ Sp is iteratively recomputed in

Algorithm 2 to search for new data points to be queried.

3. σzq denotes the predicted standard deviation for the zth queried data point in a batch p samples during
the qth iteration of the uncertainty strategy

4. Sp
hq

denotes the kth queried data point in a batch p in the qth iteration of k-Center Greedy active
strategy.
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Algorithm 2 k-Center Greedy Sample Selection for Deep Bayesian Matrix Factorization

Input: The set of randomly selected d rat-
ings as initial pool S0; the rating Ril in S0

is given by a participant i for a face image
in terms of a certain trait. And budget
Q > 0.

Output: Predicted ratings for all the entries
of the response matrix, R̂
Extract deep features face images fjl and
trait thl
repeat Q times, initialize q = 1;

Update parameters ω∗
fj q

, ω∗
thq

via
MCMC

Set p learning centers
Choose p centers (C1q, ..., Cpq) = Sp

q
4by

Sp
q = argmax

Cnz∈S\Sp
z q

minClz∈S
p
z q
△ (Unz,Ulz),

where set Sp
q ⊆ S \ S0

q−1

S0
q ← S0

q−1 ∪ Sp
q

q = q + 1
until q = Q
return R̂Q, S \ S0

Q
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